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SURVIVAL ASYMPTOTICS FOR BROWNIAN MOTION
IN A POISSON FIELD OF DECAYING TRAPS!

By ERWIN BOLTHAUSEN AND FRANK DEN HOLLANDER

Universitdt Ziirich and Universiteit Utrecht

Let W(¢) be the Wiener sausage in R?, that is, the a-neighborhood for
some a > 0 of the path of Brownian motion up to time ¢. It is shown that
integrals of the type [{v(s)d|W(s)|, with ¢ — v(¢) nonincreasing and »(¢)
~ vt~?, t - o, have a large deviation behavior similar to that of |W(¢)|
established by Donsker and Varadhan. Such a result gives information
about the survival asymptotics for Brownian motion in a Poisson field of
spherical traps of radius a when the traps decay independently with
lifetime distribution »(¢)/v(0). There are two critical phenomena: (i) in
d > 3 the exponent of the tail of the survival probability has a cross-
over at y = 2/d; (ii) in d > 1 the survival strategy changes at time s =
[y/(1 + y)k, provided y < 1/2, d = 1, respectively, y < 2/d, d > 2.

1. Introduction.

1.1. Integrals of the Wiener sausage. Let B(¢), t > 0, be standard Brown-
ian motion in R?. For a > 0 the Wiener sausage is the random process W(¢),
t > 0, given by

(1.1) W(t) = U Bau(B(5)),

O0<s<t

where B,(x) is the closed ball of radius ¢ around x. Donsker and Varadhan
(1975) proved that for v > 0,

(1.2) lim ¢~¢/“*2 log E(exp[ —v|W(2)|]) = —k(d,v)
t—o00
where | - | is Lebesgue measure and

(1.3) k(d,v) =

d/(d+2)
d .

d+2(d 2/(d+2)
()

—vwy
d

2

Here w, and u, are the volume of the unit ball B,(0) the principal Dirichlet
eigenvalue of — 1A on ball B,(0). Observe that k(d, v) does not depend on a.
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SURVIVAL ASYMPTOTICS FOR BROWNIAN MOTION 161 .

Equation (1.2) gives information about the probability that |W(z)| is untypi-
cally small.
It is the aim of this paper to extend (1.2) in the following way:

THEOREM 1.4. Let v(¢), t > 0, be any positive nonincreasing function such
that v(t) ~ vt~ as t - . If v > 0 and either

1
0<y< 3 andd =1, or
(1.5)

2
O<y<zi— andd > 2,

then for any a > 0

(1.6) lim ¢~ (@=20/(d+2 Jog E(exp[—/otv(s) d|W(s)|]) = —k(d,v,y)

t—>o

with

= d/(d+2
(1.7) k(d,v,y) = 7 5 " pd/ @+,

vwy

d+2 (d 1+
— 2y 9

)2/(d+2)

We shall obtain (1.7) by deriving the following variational representation as
an intermediate step.

THEOREM 1.8. Under the conditions of Theorem 1.4,

) 1o(u) du o/d [1
(1.9) k(d,v,7)=u}gg{v[w(1)+7f07+y— + Ry /Om ,

where the infimum is over the set
Q={w:[0,1] » R,: w(0) =0,
110 (0:10,1] > R, 0(0)
0 <w(u) <= foru € (0, 1], nondecreasing}.

Equation (1.9) has a unique minimizer w* € Q given by

w*(u) =1(d,v,y)udd/@+2 for 0 <u < 4
1+y
(1.11) ,
= @* for <u<x<l
1+y 1+y

with 1(d, v,y) = %@ P@Qu,/(dyv))3/@+?,

Equation (1.9) should be interpreted as an optimization of the growth profile
of [W(s)|, 0 < s < t. Here is a heuristic explanation. We shall see that the best
strategy for the Wiener sausage is to fill balls of a growing radius, namely,

(1.12) IW( ut)| leU(u)t(l+y)/(d+2)(O),, O<ucx<l,
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for some v € ). We shall prove that as ¢ — « the event in (1.12) has
probability approximately

(1.13) exp

_ [1 d(ut)
Ha), (v(w)t@+n/@+dy? |
The integral in (1.6) can be written

[r()dlW(s)| = v W()| = [1W(s)|dv(s)

(1.14) 1|W(ut)|du]

~ Vt_V[IW(t)I + yfo e

where we substitute v(¢) ~ v¢™” and dv(s) ~ —vys~ 177 ds and put s = ut.
On the event in (1.12) the r.h.s. of (1.14) assumes the value approximately
d
1v(u) du

- d(1 )/ (d+2)],,d N
(1.15) vtV 40+ lv (1) +yf0 ez ]
If we now combine (1.13) and (1.15), then we see the power ¢(?=2v/@+2
appearing and find that a natural guess for the limit in (1.6) is

d
. 1v°(u) du 1 du
(1.16) - vllelg{vwd[vd(l) + yj; ——um— + Mmg A Uz(u) .

Indeed, this is the same as the r.h.s. of (1.9) with w(x) = w v%(u).

The above heuristic explanation is made precise by the following result. Let
P, be the Wiener measure on Cy([0, ¢]; R%) (the set of continuous paths in R¢
of length ¢ starting at 0) and define a new measure @, by putting

dQ, 1
@11 i) = 5 o]~ [() d| W 59) |

where W(x ;3 8) = U<, < B, (x(r)) and Z, is the normalizing constant equal
to the expectation appearing in (1.6).

THEOREM 1.18. Under the conditions of Theorem 1.4,

(1.19) limQt( sup |t_d(1+”/(d+2)|W(ut)|—w*(u)|>s)=O
t—o0

O<uxl

for all € > 0 with «* given by (1.11).

Equation (1.19) identifies w* as the optimal growth profile. Note that it
only makes a statement about the volume |W(ut)|, not about the set W(ut)
itself. Probably it is true that [t~ /@ DW(ut) A B, (2(u))] > 0 as ¢t > @
for every u and some random z(u). Techniques to handle this question have
been developed in Schmock (1990), Bolthausen (1994) and Sznitman (1991) for
the case y =0,d = 1,2.
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1.2. Brownian motion and decaying Poisson traps. The results in Theo-
rems 1.4 and 1.18 have an interpretation in terms of survival asymptotics. Let
{X,} be a Poisson point process in R¢ with intensity v > 0. Let 7, be ii.d.
random variables in (0, «), independent of the X,’s, with distribution

(1.20) &) =P(r;>t), t=>0,

where £(¢) is any nonincreasing function with £(0) = 1. Consider now the
random process V(¢), ¢t > 0, given by

(1.21) V()= U Bu(X)).

{i:7;>¢)

Think of V(¢) as a collection of spherical traps (with radius a and centered at
the X;’s) that decay independently according to the lifetime distribution £(¢) in
(1.20). The trapping time of Brownian motion is the first hitting time of a
surviving trap, that is,

(1.22) T =inf(t > 0: B(t) € V(¢)}.

The following two propositions make the link with subsection 1.1.

ProPOSITION 1.23. With v(t) = vé(t),

(1.24) P(T > ¢) =E(exp[—fotv(s)d|W(s)|}).

Proor. Condition on B(s), 0 < s < ¢, and use the fact that B(r) € V(r) if
and only if X; € B (B(r)) for some i with r, > r, to obtain P(T > r + dr|T >
r; B(s),0<s <t)=1—vé(r)dIW(r). O

ProposITION 1.25. On C([0, ¢]; R%),
(1.26) P(-IT >¢t) =@Q,(").

Proor. Obvious from (1.17). O

There are two interesting phenomena contained in Theorems 1.4 and 1.18.
(i) For the range of y-values in (1.5) the exponent (d — 2y) /(d + 2) in (1.6)
assumes values in the intervals

1.27 o d=1,2 -z d d>3

azm (o) d-1z (Y avs) a=e

Thus in d > 3 we are left with a gap, namely (0,(d — 2)/d], which must
correspond to y > 2/d (i.e., fast decay of traps). At y = 2/d there is a cross
over. Indeed, from Jensen’s inequality applied to (1.6) together with E|W(¢)|
~ c,t we see that the exponent in (1.6) cannot exceed 1 — y [recall that
v(¢) ~ vt~7], and so it cannot stick to the value (d — 2y)/(d + 2) for y > 2/d.
What happens is that for y > 2 /d the strategy in (1.12) breaks down because
it would correspond to |W(#)| growing faster than linear instead of slower, that
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is, in the opposite direction from the typical linear growth. Such large devia-
tions would obviously not be the ones giving the main contribution to the
expectation in (1.6). By using our result for y = 2/d — ¢ (¢ > 0 arbitrary) we
can actually show that the exponent, if it exists, must be 1 — y for y > 2/d.
However, we do not know how to prove its existence nor how to identify the
underlying variational principle.

A discrete time/space version of the trapping model was investigated by
den Hollander and Shuler (1992). Here the correct exponent was proved only
for d = 1, and for d > 2 it was argued heuristically that the exponent should
be(d —2y)/(d+ 2),0<y<2/dand 1 —1y,2/d <y <1, as above.

In order that P(T = «) = 0 we must restrict v to 0 <y <1/2if d =1,
and to 0 < y < 1if d > 2 [see den Hollander and Shuler (1992)].

(ii) The minimizer «* in (1.11) sticks at o*(x,) for all u > u,, where
u,=v/(1 +vy) is a critical scaled time. Apparently, it is easier for the
Brownian motion to stay inside the ball of radius v*(u )td*7/(@+2 [recall
(1.12), and w*(u) = wdv*d(u)] than it is for the traps in the annulus around
this ball to decay in order to allow the Brownian motion more space. Thus
v*(u,) is a critical scaled radius where the strategy changes. -

Note that whereas v*(u« ) depends on all parameters, remarkably u«, only
depends on .

2. Proof of the lower bound. For the lower bound it suffices to consider
strategies of the type in (1.12). Subsection 2.1 contains a standard technical
lemma. The proof comes in subsection 2.2.

2.1. Confinement to balls.
LEMMA 2.1. There exists ¢ > 0 such that forallr > 2 and t > 0,
inf P(B(s) €B, for 0 <s <t,
x€B,
(2.2) c t
B(t) € BJB(0) = %) = — exp[—ud; .

Proor. Let p/(x,y) be the transition kernel of Brownian motion killed
outside B,. Pick r > 2. There exists ¢; > 0 and independent of r such that

(2.3) inf pi(x,y) =c,.
x,y€B;

Pick ¢ > 2. Use (2.3) to estimate

X

(2.4)

inf p/(x,y)= inf [ da|[ dbpi(x,a)p] s(a,b)pi(b,y)
nyBl x'yEBl Br Br

>cif da [ dbls(a)pis(a,b)1s(b)

= Cf<131, ptr—2131>’
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By the spectral theorem,
(2.5) (1g,, P/_51p) = (¥, 15 e M=?

with A,, and ¢, the principal Dirichlet eigenvalue and eigenfunction of — A
on B, ([pyX(x)dx = 1). Hence

(2.6) inf [ pi(x,5)dy = IB,leX,, 1y Y2 =2,
x€B,’B;

The Lh.s. of (2.6) equals the Lh.s. of (2.2). For the r.h.s. of (2.6) use scaling

/\1 .
A= with Ay = g,

r

(2.7) L.
0(2) = (5 ).

r

Since there exists ¢, > 0 independent of r such that inf, _ B, Pi(x) > ¢y, it
follows from (2.7) that {y,,1 B, > > |B,lcy/r?/2. This proves the claim in (2.2)
for ¢t > 2. The case 0 < ¢ < 2 is trivial. O

2.2. Lower bound. Pick N large. Split the time interval [0, ¢] into pieces
by cutting it at the sequence of times

TO=0,

_ _1 + .
T =2, 1=1,...,1i,

(2.8)
1
Ti=N(I_Lt)t’ i=i,+1,...,i,+ N,

where i, is chosen such that 2" = (1/N)t. The reason for cutting differently
below and above (1/N)t has to do with the singularity in (1.9) and (1.16) at
u = 0. Next, pick v € Q [recall (1.10)] and « € (y/d,(1 + y)/(d + 2)) and
define the sequence of radii

ro= U(l)t(1+7)/(d+2)[2i—1Nl] i=1 i
13 N t 9 PICIICIY I
(2.9)

1
ri=v(ﬁ(i—it))t(“”/(d*z), i=i,+1,...,i,+N.

Note that the 7,’s and r,’s are increasing and that r, — « as ¢ — o« for all i.
According to Lemma 2.1,

P( ﬂ {B(s) €B, fors e [7i_1 7], B(7:) EBl)
(2.10) ’ . o
> Hr—dexp[—udl—zl_l}.

i r
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On the event in (2.10) the integral in (1.6) can be estimated by
t t
[rs)dlW(s)| = @) W) = [1W(s)ldv(s)
(2.11)

= V(Tit+N)IBa+r,-t+N| + Z(V(Ti—l) - V(Ti))lBa'f-ril'

Combining (2.10) and (2.11), and substituting (2.8), (2.9) and v(¢) ~ vt~7, we
obtain

log E(exp[~LtV(S) d|W(3)|])

> —(1+0(1) {Vt"mdvd(l)td(””/(d*z)

i,+1
t ) 1
+ Z V(27 _ 1)2~7(1-1)wdvd(N)td(1+7)/(d+2)
i=1
. N ad
x{2t-1 —]
t
LN (i—-i,-Dt]7 [G-ipt]”
@12 U= AT
i=1,+2 N N
%o vd(i — i )td(1+y)/(d+2)
d N
i;+1 1
g Z 2i~lv—2(_ £ 21 +)/(d+2)
i=1 N

4 1772«
x[zl‘lN—]
¢

i,+N 1 i—1i
tug Y Ntv“2(—N t)t-2<1+v)/(d+2)+ O(i,logt)).
i=i,+2

In the first sum we have also inserted the asymptotic form of v(7,_;) — v(7,)
for small i, thereby making an error that is incorporated in the lead factor
1 + o(1). In the third sum we have dropped 7,_; for i > 2. Both these sums
can now be computed and expressed in terms of N and ¢ via the relation
2% = (1/N)t. Collecting powers of ¢ and noting that ad >y, 2a > 1 and
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i, = O(log t), we get for the r.h.s. of (2.12)
- (1+ 0(1))t(d—27)/(d+2)

x{md[ud(l) + —lz_—z_l—d(%)”d(%)
a9 A1) )l

1 1 1 N 1 j
] (il —o2 |
1- 221 N' (N) EzN” (N)”
Next let N — «. We claim that the term between braces in (2.13) converges
to

(2.14) vwd[vd(l) + fold(—u-V)vd(u)] +Mdf01duv-2(u),

provided v € Q is such that the two integrals in (2.14) are finite. The proof
uses the fact that v is nondecreasing. Indeed, by this property the second and
the fourth term in (2.13) can be bounded by

(%)”d(%) s 1—12—vf2/Nd( u")oi(u),

1 1 1/N
— -2l = -2
N (N)S'/;) duv™*(u)
and therefore both tend to zero. The fifth term in (2.18) can be estimated by
N

1 1 1 J 1
-2 -2 -2 -2
N (1) + L/Nduv (u) < j§=2, N (N) < 1/Nduv (u)

tug

(2.15)

and therefore converges to the second integral in (2.14). A similar estimate
applies to the third term in (2.13) [after notmg that [((j — D/N)™” —
G/N)"I/IG/N)™ = ((j + D/N) "1 - 1 as j — » uniformly in N], which
therefore converges to the first integral in (2.14).

Finally, take the infimum of (2.14) over v € Q and afterwards remove the
restriction on the finiteness of the integrals. The resulting expression is the
same as (1.16). O

3. Proof of the upper bound. Subsections 3.1 and 3.2 are preparations.
The actual proof is given in subsection 3.3.

3.1. The shrinking Wiener sausage on the torus. Write W(¢) instead of
W(#) to display the radius @ > 0 of the Wiener sausage. By scaling we have for
arbitrary 6 > 0

(3.1) (IWe(ut))o<u<1 = (tsd,Wat (ut1_23)|)05u51
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where =, means equality in distribution. Pick & such that 6d — vy = 1 — 26,
that is, 8 = (1 + y)/(d + 2), and abbreviate 7 = t(?=21/@+2 and a = (1 +
v)/(d — 2v), to get

(3.2) (W () Nocuer =p (tIW* " (u7) )ocyer-
Pick N large. The integral in (1.6) can be estimated by
t
[r(s)dlwe(s)l
a ¢ a
(33)  =u@)We@)| - [1We(s)ldv(s)
N_

()}

lim sup¢ (@~ 21/(@+2) Jog E(exp[—ftv(s) d|\We(s) |]) -

t—o0

> v(t)|We(t)| + Zl(y(%t) - v(i ;,1t

i=1

Substitute v(¢) ~ v¢~” and use (3.2) to get

(3.4)

0

N
Ybiy
i=1

)

i\T (i+1\77
(3.5) bi,N=(—) —( ) . i=1,..,N-1;by y=1.

of ¥
< limsupr~!log E(exp[—q-y wer (NT)

T—00

with the notation

N N
The large deviation problem in the r.h.s of (3.4) has two aspects:

() the exponent is a functional of the multivariate random variable
{{IWe*(G/N)DIL
(ii) the latter involves the shrinking Wiener sausage with radius a7~

In order to handle these aspects and to apply some standard large deviation
techniques, we go to the torus

(3.6) Ty = [0, R)d with periodic boundary conditions.

Let Bg(¢), ¢t = 0, be Brownian motion wound up on T, and let Wg(¢), ¢ > 0, be
its Wiener sausage in Ty. Since |Wg(¢)| < [W(¢)| for any ¢, R and a, we have

o
)

of T
W}g‘r (ﬁT)

We shall compute the r.h.s. of (3.7) and then let R — «, N — o,

N
—TV Z bi,N
i=1

T

limsupr~! log E(exp
(3.7)

N
< limsup7~!log E(exp[—ﬂ/ Ybn
i-1

T ®©
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3.2. Mollified empirical measures on Ty. Define the empirical measures

. t\7! ,
(38) Ly y.= (ﬁ) Oppsyds, i=1,...,N.

’/[‘((i —-1)/N),(i/N))

Let x,(x) = B, ll(xe B, and define the mollified empirical densities w.r.t.
Lebesgue measure:

lé%,N,t(x) = (L%,N,t * Xa‘r‘“)(x)

(3.9) 4 .
= [Xaro(x =)L w(dy), i=1,...,N.

This is a random element of 2,(T) (the set of probability densities on Tj).
Obviously

(3.10)

=l U supp(l{e,N,,).

l<j=<i

of
ng‘r a(ﬁ’?‘)

We need a large deviation principle (LDP) for {1}, t}N L on (Z(TR)Y in the
product of the norm topologies. This is contained in the following lemma,
which is a multivariate extension of Theorem 2 in Bolthausen (1990) [see also
Sznitman (1990)].

LEmMMA 3.11. Assume a >0 and 0 <a<w if d=1,2, or 0<a<1/
(d —2) if d=38. Then {ly y )., satisfies the LDP on (Z(T)V in the
product of the norm topologzes with rate function IY given by

1
(3.12) () = 5 . Ia( )
i=1
with
v f|2
(3.13) In(f) = & —F(x)dx,

R

provided the weak gradient Vf and the integral exist, and otherwise I(f) = .

Proor. We start with the result of Donsker and Varadhan that the empiri-
cal measure Ly , = ¢"'[{8 r(s) @5 satisfies the uniform LDP on .#(Ty) (the
set of probablhty measures on Ty) in the weak topology with rate function
I,(w) given by

du
(3.14) In(w) = In(f) if == =f,

= otherwise,
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where A is Lebesgue measure. That is,

— inf Ip(wp) < llmlnf log 1nf P(Lg,;€A)

wneEint A

(3.15)

< hmsup log sup P,(Lp , € A)
t— o x€Tg

< — inf I ,
el A r(K)

where P, is the path space measure conditioned on Bz(0) = x, and int A and
cl A are the weak interior and closure of A [see Deuschel and Stroock (1989),
Theorems 4.2.43 and 4.2.58, eqs. (4.2.48) and (4.2.49), page 113]. Because the
estimates in (3.15) are uniform in the startlng point x € Ty, it immediately
follows that for every finite N, {L% y Y, satisfies the LDP on (%I(TR))N
the product of the weak topologies with rate function I r((u; )l D=
(1/N)LN In(n,). Namely, by the uniformity, the above (.#,(Tx))"-valued
random element satisfies the same LDP as N independent copies of L% y ,. To
get the claim in Lemma 3.11 we use the mollification procedure in Donsker
and Varadhan (1975) and Bolthausen (1990), as follows.

First, since u * x,,-« converges to u uniformly on compact subsets of
A (Tg) as ™ — o, it follows from the contraction principle as formulated in
Varadhan [(1984) Theorem 2.4] that

(3.16) {LR Nt * Xm‘“}fv 1 {lfR N, z}fv 1

satisfies the LDP in the weak topology. [Here we interpret both sides as
elements in (.Z(T)" given by the density in (3.9).]

Next, let x € 2,(T) be any mollifier. Then, since u — u * y is continuous
from #(Tg) with the weak topology to Z,(T) with the norm topology, it
follows, again from Varadhan [(1984), Theorem 2.4], that

, N
(3'17) {lii,N,t *X}i=1
satisfies the LDP in the norm topology.

Next, use Lemma 14.6 in Varadhan (1984), which states that for the
empirical measure Lp ,

1
(3.18) lim lim sup — log P(ILg ; * Xar-«*x — Lp ;% Xgrall1 > &) = —
X728 toow

for every ¢ > 0 and @ = 1/d. By applying this to each of the components
i=1,..., N in (38.17) we obtain that

N

(3.19) {lk v, ehict

satisfies the LDP in the norm topology, again for a« = 1/d.
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Finally, use the proposition in Bolthausen (1990), which states that for
LR tr

1
(3.20) lim n log P(ILg ; * Xar-« = Lg s * Xqr-elli > &) = —o0
t— o

forevery e >0and 0 <a<a' <wif d=1,2,or 0<a <o <1/(d - 2)if
d > 3. By applying this to each of the components we obtain the claim. O

3.3. Upper bound. Apply Lemma 3.11 to the r.h.s. of (3.7), recalling the

representation in (3.10). Then, since f — |supp( f)| is lower semicontinuous in
the norm topology, we get [see Varadhan (1984), Theorem 2.3]

-

i 1 N
U SUPP(fj) + N Z In( fi):l
J=1 i=1

T ®© i=1

N
lim sup7~! log E(exp[—rv b N

(3.21) N
< - inf 14 Z bi,N
i=1

= _JR,N‘

Here we use the fact that, for the range of y-values in (1.5), the shrinking rate
a=(1+1vy)/(d - 2y) in (3.7) [recall (3.2)] exactly matches the range of a-val-
ues in Lemma 3.11.

As R is arbitrary, we get via (3.4) and (3.7) that

(3.22) limsupt @~ 2/@+2 ]og E(exp[—ftu(s) d|W"(s)|}) < —supdJp y.
0 R>0

t—>x

By the same approximation argument as in Deuschel and Stroock [(1989)
Section 4.3, leading up to (4.3.21)] we have

i

U4,

Jj=1

b

1 N

N
3.23) supdp x> inf v ), b
(3.23) roo BNT o4, ANeOb[ E’l N

where O, is the set of nonempty bounded open subsets of R? and A(A) is the
principal Dirichlet eigenvalue of — ;A on A. The latter comes in because
inf I(f) =xA)
e D(R?): supp(f)cA

when I(f) is defined as in (3.13) with T} is replaced by R? [as is seen after
substituting f = g2 into the r.h.s. of (3.13)].

Putting B; = U’_;A; and noting that A(A) is nonincreasing in A, we
obtain

lim sup ¢~ (@~ 2/(@+2 Jog E(exp[—ftv(s) d|We(s) l])
t— o 0

(3.24) N 1 N
< — inf [V Y. b, nIBi| + N P )‘(Bi)]-
i=1

Byc - CByEOy| ;1



172 E. BOLTHAUSEN AND F. DEN HOLLANDER

We are now in a position to reduce the variational problem still further by
using the fact that A(B,) given |B,| is minimal when B, is a ball. This implies

- inf [ Y b NIBil + = ZA(B)]

B,c --- cBy€EO,

i=1
(3.25) f N s JZV: 11
— 1 + [
= o<ry ln <ry<e® dezzl Nr #d N 2
[recall (2.7)].
Next, for every 0 < r; < -+ < ry < « the function v given by

v(u) =uNr;, forue [0,

i 1+1
v(u) =r, forue[ﬁ, )andi=1,...,N—1,

v(l) =ry
is an element of  [recall (1.10)]. In terms of this v we can write
N N 1 1
vag ), bi,Nrid +tpg Y =
i=1 i N
(3.26) = vwy|vé(l) + fl d(—u")vd(u)]
1/N

t Uy

—v7%(1) + j;l/Nduv_z(u) ,

using (2.9). Hence

N N 1

0<rj< - <ry<ew

(3.27) < - v12£{vwd[vd(1) + jll/Nd(—u-v)ud(u)

tug

—v72(1) + fll/Nduv‘2(u)]}.

Finally, drop the term (1/N)v~%(1) and let N — . One easily justifies
pulling the limit under the infimum after assuming convergence of the inte-
grals. The resulting expression is the same as (1.16) O

4. Solution of the variational problem. Let 8 = vu] 0% . Then (1.9)
becomes

w(u) du

d
(41)  k(d,v,y) =» inf w(l)+7f Tw[;%}.
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We proceed in two steps:

(i) minimize over w under the restriction (1) = x;
(ii) minimize over x.

Proor. (i) For u fixed define

v 1
(4.2) vu(9) = iyt 5y
The function y — i, (y) is strictly convex with a unique minimum at
28 d/(d+2)
(4.3) Yo =Yo(u) = (d—u“’)
Y

Hence the sum of the two integrands in (4.1) is minimal when o(u) = y,(u).
However, the restriction that w(z) < w(1) = x for u < 1 [recall (1.10)] forces
the minimizer to be

28 d/(d+2) .
) , for0 <u<u/x),

(4.4) w(u)—(—;u

=x, foru (x) <u<l,

with u (x) the smallest u for which w(x) = x, that is,

1/(1+y)
) AL

(45) i) = [ Gpare

[Note that if x < x, = (26/dy)?/@*?, then u (x) < 1 and w(u) sticks at the
value x for u > u (x), which still minimizes ,(y) uniquely because y — ,(y)
is strictly convex.] After substituting (4.4) and (4.5) into (4.1) and performing
the integrations, we arrive at the following expression:

d(1+7v)®
d—2y \dvy

Here we may already put in the restriction x < x,, because the minimizer in
(4.4) is the same for all x > x, (i.e., u (x) = 1) except at the point u = 1. So
x = x, gives a smaller infimum than any x > x, because of the term (1) in
the r.h.s. of (4.1).

(ii) The sum between the square brackets in (4.6) has a unique minimum at

25 v )d/(d+2)

- [T

x(@=2v/dA+y) 4

5 v/A+y)
(4.6) k(d,v,y) =v inf )

O<x=<x, x2/d '

<x

Substitution into (4.6) gives

d(1+y)"
E v

d+ 2

5d/(d+2)_
d— 2y

(4.8) k(d,v,y) =v

)2/(d+2)
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Recalling that 6 = p 0% 4 /v, we have proved (1.7). Substitution of (4.7) into
(4.5) yields

(4.9) . (xo) =

and so via (4.4) we have also proved (1.11). O

Y
1+y

5. Proof of Theorem 1.18. Because |W(ut)| is nondecreasing and o*(u)
is continuous in u, it suffices to prove that for all N and ¢ > 0,

i i
s—da+y/@s 2wl —_ gl — o —
| (N)' @ (N)

For this, in turn, it suffices to prove that forall { =i,/N,1 <i, <N - 1, and
£ > 0 there exists § > 0 such that

(5.2) limsup ¢~ @ 2/@+D Jog @, (¢~ ¢+ @D W (t)| > w*({) + ) < -85,

t—o

1<i<N-1

(5.1) }E?oQt( max > e) =0.

(5.8) limsup ¢~ @=2/@+Dog @, (¢~ MM/ @D W({t)| < w*({) — &) < —8.

t—o

The arguments to prove these two inequalities are slightly different.
We start with (5.2). By (1.17) we have

Q,(t_d(1+7)/(d+2)' W({t)l > w*({) + 8)

1 ¢
(5.4) _ EE(exp[—j;)V(S) le(s)l]; ,W({t), > td(1+y)/(d+2)(w*({) + 8)

' g ‘v(s) AV, ]
< — —
<7z exp[ fov(s) 2(s) ),
where Z, is the expectation in (1.6) and

w v td(1+y)/(d+2) * + , f > (t,
65 Vi < |17 (o(§) +e), fors =y
|W(S),, for s < {t.
The same argument as in Section 3 gives [recall (1.16)]
. —(d— t
lim sup ¢~ 27)/(‘“2)E(exp[—j;v(s) dVg(s)])

t—o

cwqvi(u) du

< - inf {v[wdv%l) V(W (@) +e) [

(56) ve
1@ vd(u) V (0*({) +¢) 1 du
+yf{ ) Ty du] +Mdfo v2(u)}

u
< —k(d,v,vy).

The last inequality is strict because w* is the unique minimizer of (1.9) [and of
(1.16) with w(u) = wdvd(u)]. Theorem 1.4 and (5.6) prove (5.2).
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We cannot use the same argument for (5.3). Indeed, if we would replace
wyv¥(w) in (1.16) by wyv¥(u) A (0*({) — &) on the interval [0, {], then this
would increase —inf, ., and so the inequality in (5.6) would go in the other
direction. To get the desired bound we proceed as follows from the equality in
(5.4). Observe that the indicator function of the event

{W(gt)] < t90+/@ (¥ ({) — ¢))

does not decrease when we replace W({¢) by Wg({t), the torus Wiener sausage.
We can therefore argue in the same way as in subsection 3.1, obtaining as in
(3.4) and (3.7):

(5.7) lim sup ¢~ (@=21/(@+2) Jog E(exp[—ftv(s) d|W(s) |],
0

t—o oo

W(Lt)| < 209/ g (1) — s))

o 2
ng‘r (N'T)],

|We™({r)| < 0*(£) - )

N
< limsup 77! log E(exp[—ﬂ/ Y b n

T 00 i=1

Next, since [ = Lygunry <a) is upper semicontinuous on ,@l(TR) in the norm
topology, we can argue as in subsection 3.3, obtaining as in (3.24) and (3.25)
(after letting R — «)

N
Lhs. (5.7) < — inf [vwd Y b w1
0<r< - <ry<e i=1
5.8
(5.8) N 11 .
+I~Ldl§1N""§2—; wd" <w*({) -

Letting N — « we get

vd

D CRTACECE
< —k(d,v,y).
This proves (5.3). O
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