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Abstract

Systems of hierarchically interacting diffusions allow for a rigorous renormalization
analysis. By bringing into play the powerful machinery of stochastic analysis, it is possible
to obtain a complete classification of the large space-time behavior of these systems into
universality classes. The present paper outlines a general renormalization program that
is being pursued since ten years and describes four examples where this program has been
successfully carried through. The systems under consideration model the evolution of
multi-type populations subject to migration and resampling.
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1 Overview

1.1 Interacting diffusions

The systems that will be considered in this paper evolve according to the following set of
coupled one-dimensional SDE’s:

dXη(t) =
∑

ζ∈ΩN

aN (η, ζ) [Xζ(t)−Xη(t)] dt +
√

g(Xη(t)) dWη(t), η ∈ ΩN , t ≥ 0, (1.1)

where

(1) Xη(t) ∈ S ⊆ R is the single-component state space.

(2) ΩN is the hierarchical group of order N ∈ N.

(3) aN (·, ·) is the interaction kernel on ΩN × ΩN .

(4) g(·) is the [0,∞)-valued diffusion function on S.

(5) {Wη(·)}η∈ΩN
are independent standard Brownian motions on R.

We will also look at higher-dimensional versions of (1.1). In what follows we will focus on
one particular choice for aN (·, ·), but we will consider several choices of S and g. As initial
condition we take

Xη(0) = θ ∈ int(S) ∀ η ∈ ΩN . (1.2)

Equation (1.1) arises as the continuum limit of discrete models in population dynamics. In
these models, individuals of different types live in large colonies, labelled by the hierarchical
group. The state of a colony describes the composition of the population at that colony (such
as the fractions or the total masses of the different types of individuals). Individuals migrate
between colonies, i.e., they move from one colony to another according to a random mechanism
that depends on the locations of the two colonies. This is described by the first term in the
right-hand side of (1.1). Moreover, individuals are subject to resampling within each colony,
i.e., they are replaced by new individuals according to a random mechanism that depends on
the state of the colony. This is described by the second term in the right-hand side of (1.1).
The system in (1.1) arises after letting the number of individuals per colony tend to infinity
and normalizing both the state and the rate of evolution of the colony appropriately. For
more background, the reader is referred to Sawyer and Felsenstein [20] and Ethier and Kurtz
[16], Chapter 10.

1.2 Hierarchical group and multi-scale block averages

The hierarchical group of order N is the set

ΩN =

{
ξ = (ξi)i∈N ∈ {0, 1, . . . , N − 1}N :

∑
i∈N

ξi < ∞

}
(1.3)

with addition modulo N . On ΩN , the hierarchical distance is defined as

d(η, ζ) = min{i ∈ N ∪ {0} : ηj = ζj ∀ j > i}, (1.4)
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which is an ultrametric.
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Schematic picture of Ω4. Blocks of radius 0, 1 and 2
around the origin (first three digits indicated only).

At first sight, the choice for ΩN as the index set for the colonies may seem a bit artificial.
However, it is completely natural within a genetics context. Indeed, what ΩN does is organize
the colonies according to their genetic location. The population is divided into families, clans,
neighborhoods, villages, regions, etc. Site ξ contains all individuals that are in family ξ1, clan
ξ2, neighborhood ξ3, village ξ4, region ξ5, etc. The hierarchical distance between two colonies
measures the smallest level in the hierarchy to which both colonies belong.

Our goal will be to study the evolution of the system in (1.1–1.2) on large space-time scales
in the limit as N → ∞, the so-called hierarchical mean-field limit. To that end, we define
block averages on space-time scale k ∈ N ∪ {0} by putting

Y
[k]
η,N (t) =

1
Nk

∑
ζ∈ΩN

d(η,ζ)≤k

Xζ(Nkt), η ∈ ΩN , t ≥ 0, (1.5)

where we average over all components in a block of radius k around a given site and speed up
time proportionally to the size of the block.

In what follows, we will make a particular choice for the interaction kernel in (1.1), namely,

aN (η, ζ) =
∑

k≥d(η,ζ)

ckN
1−2k ∀ η 6= ζ, (1.6)

where (ck)k∈N is a given sequence of positive constants such that the sum is finite for all N
large enough. One reason for this choice is that (1.1) takes on a particularly suitable form,

dXη(t) =
∑
k≥1

ckN
1−k

[
Y

[k]
η,N (tN−k)−Xη(t)

]
dt +

√
g(Xη(t)) dWη(t), (1.7)

where single components are attracted towards successive block averages. Another reason is
that, modulo normalization, (1.6) is the transition kernel of a random walk on ΩN whose
potential-theoretic properties are independent of N , for N sufficiently large, and are com-
pletely determined by the sequence (ck)k∈N.

The interpetation of (1.6) is that the random walk picks an integer k with probability
proportional to ck/N

k−1 and jumps to a site within the k-block around its current position
according to the uniform distribution on this k-block. Throughout the paper we will assume
that ∑

k∈N

1
ck

= ∞, (1.8)
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which makes the random walk on ΩN critically recurrent. This is crucial for the universal
behavior to be described later on.

The key point about (1.7) is that it is susceptible to a renormalization analysis.

1.3 Renormalization transformation

Let us consider the blocks around the origin. If we let N → ∞ in (1.7), then only the term
with k = 1 survives. Moreover, the term Y

[1]
0,N (tN−1) converges to θ for all t ≥ 0, because of

(1.2). Therefore we find that (=⇒ denotes convergence in law)

{X0(t) : t ≥ 0} =⇒ {Zθ,g,c1(t) : t ≥ 0} as N →∞, (1.9)

where Zθ,g,c1(t) is the solution of the autonomous SDE

dZ(t) = c1 [θ − Z(t)] dt +
√

g(Z(t)) dW (t), Z(0) = θ. (1.10)

In other words, in the limit as N → ∞ the single components decouple and follow a simple
diffusion equation parameterized by θ, g and c1. (The behavior expressed by (1.9–1.10) is often
referred to as “McKean-Vlasov limit” and “propagation of chaos”.) Under mild restrictions
on S and g, this diffusion equation has an equilibrium distribution, which we denote by νθ,g,c1

and which lives on S.
We next move up one step in the hierarchy. By summing (1.7) over the components in a

1-block, we get

dY
[1]
η,N (t) =

∑
k≥2

ckN
2−k

[
Y

[k]
η,N (tN1−k)− Y

[1]
η,N (t)

]
dt +

1√
N

∑
ζ∈ΩN

d(η,ζ)≤1

√
g(Xζ(Nt)) dWζ(t).

(1.11)
Here, time is scaled up by a factor N , both in the 1-block and in the Brownian motions (hence
the factor 1/

√
N), and the term with k = 1 cancels out. If we let N →∞ in (1.11), then only

the term with k = 2 survives. Moreover, the term Y
[2]
0,N (tN−1) converges to θ for all t ≥ 0

because of (1.2). Furthermore, if Y
[1]
0,N (t) = y, then each of the N components in this block

is linearly attracted towards a value that is approximately y, since the attraction towards the
values of the k-blocks with k > 2 is weak when N is large (recall (1.7)). Therefore, at time
Nt each of these components is close in distribution to the equilibrium νy,g,c1 (associated with
(1.10) after replacing θ by y). Thus, it is reasonable to expect that{

Y
[1]
0,N (t) : t ≥ 0

}
=⇒

{
Zθ,Fc1g,c2(t) : t ≥ 0

}
as N →∞, (1.12)

where Zθ,Fc1g,c2(t) is the solution of the SDE

dZ(t) = c2 [θ − Z(t)] dt +
√

(Fc1g)(Z(t)) dW (t), Z(0) = θ, (1.13)

where Fc1g is the diffusion function on scale 1 obtained from the diffusion function g on scale
0 by averaging it w.r.t. the equilibrium distribution associated with (1.10) on scale 0:

(Fc1g)(y) =
∫

S
g(x)νy,g,c1(dx). (1.14)

This formula defines a renormalization transformation Fc1 acting on the function g.
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The above renormalization procedure can be iterated. Indeed, it is reasonable to expect
that {

Y
[k]
0,N (t) : t ≥ 0

}
=⇒

{
Zθ,F [k]g,ck+1

(t) : t ≥ 0
}

as N →∞, (1.15)

where Zθ,F [k]g,ck+1
(t) is the solution of the SDE

dZ(t) = ck+1 [θ − Z(t)] dt +
√

(F [k]g)(Z(t)) dW (t), Z(0) = θ, (1.16)

where F [k]g is the diffusion function on scale k obtained from the diffusion function g on scale
0 by applying k times the renormalization transformation:

F [k] = Fck
◦ · · · ◦ Fc1 . (1.17)

The intuition behind this claim is as follows:

(a) On time scale Nkt, the block averages on scale k fluctuate while the block averages on
scales > k almost stand still and therefore remain close to the initial vlaue θ.

(b) Given that the block averages on scale k have value y, the block averages on scale k− 1
reach equilibrium with drift towards y almost instantly on time scale Nkt.

(c) Consequently, the diffusion function on scale k is the average of the diffusion function
on scale k − 1 under this equilibrium.

The limit N →∞ provides the separation of successive space-time scales.

1.4 Renormalization program

The above heuristic observations naturally lead to a two-step programme for renormalization:

(I) Stochastic part: Show that (1.15–1.16) indeed arise from (1.1–1.2) in the limit as N →∞
for all scales k ∈ N.

(II) Analytic part: Study the orbits of (F [k])k∈N, determine their fixed points, and classify
their domains of attraction.

The goal is to try and carry out this programme for relevant choices of S for appropriate classes
H = H(S) of diffusion functions. For tutorial overviews on this programme, see Greven [17]
and den Hollander [18].

In what follows we will describe two one-dimensional examples where the above renor-
malization program has been fully carried through (Section 2) and two higher-dimensional
examples where it has been partially carried through (Section 3). It will turn out that, in
each of these four examples, (F [k])k∈N has an interesting structure of fixed points and domains
of attraction. The fixed points correspond to special choices of g that play the role of universal
attractors for the dynamics (1.1–1.2) on the macroscopic scale corresponding to k →∞. We
close with listing some open problems (Section 4).

For ease of exposition, we will henceforth restrict to the case where ck = 1 for all k. We
then have F [k] = F k with F = F1. It is straightforward to extend the results to the case (1.8).
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2 One dimension

2.1 S = [0, 1]

In this example, our choice for the state space and the class of diffusion functions is:

S = [0, 1] and g ∈ H, the class of functions satisfying:

1. g is Lipschitz on [0, 1].
2. g(x) > 0 for x ∈ (0, 1).
3. g(0) = g(1) = 0.

The stochastic part of the renormalization program was carried out by Dawson and Greven
[9], [10] and is given in Theorem 2.1.

Theorem 2.1 In the limit as N →∞, (1.15–1.16) arise from (1.1–1.2) with F given by

(Fg)(y) =
∫

[0,1]
g(x)νy,g(dx), (2.1)

where νy,g is the equilibrium distribution of

dZ(t) = [y − Z(t)] dt +
√

g(Z(t)) dW (t), (2.2)

which is given by

νy,g(dx) =
1

Zy,g

1
g(x)

exp
[
−

∫ x

y

z − y

g(z)
dz

]
dx (2.3)

with Zy,g the normalizing constant.

Note that F is an integral operator. Since νy,g depends on g itself, F is non-linear.
The analytic part of the renormaliztion program was carried out by Baillon, Clément,

Greven and den Hollander [2] and is given in Theorems 2.2–2.4.

Theorem 2.2 (a) FH ⊂ H.
(b) ∀ g ∈ H: y 7→ (Fg)(y) is C∞ on (0, 1).

Theorem 2.3 The solution of the eigenvalue problem Fg = λg, g ∈ H, λ > 0, is the 1-
parameter family

g = dg∗ and λ =
1

1 + d
, d > 0, (2.4)

where g∗(x) = x(1− x).

Theorem 2.4 For all g ∈ H,
lim

k→∞
kF kg = g∗ (2.5)

uniformly on [0, 1].
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These results show that F is well-defined on the class H, is smoothing, and has a fixed
shape g∗ that is globally attracting after proper normalization. Thus, (1.1–1.2) exhibits full
universality : No matter what the diffusion function g on scale 0 is, the diffusion function F kg
on scale k is close to (1/k)g∗. The case g = g∗ is called the Fisher-Wright diffusion.

2.2 S = [0,∞)

In this example, our choice for the state space and the class of diffusion functions is:

S = [0,∞) and g ∈ H, the class of functions satisfying:

1. g is locally Lipschitz on [0,∞).
2. g(x) > 0 for x > 0.
3. g(0) = 0.
4. limx→∞ g(x)/x2 = 0.

The stochastic part of the renormalization program was carried out by Dawson and Greven
[11]. The same formulas as in Theorem 2.1 apply, but now on [0,∞) instead of [0, 1].

The analytic part of the renormalization program was carried out by Baillon, Clément,
Greven and den Hollander [3] and is given in Theorems 2.5–2.8.

Theorem 2.5 (a) FH ⊂ H.
(b) ∀ g ∈ H: y 7→ (Fg)(y) is C∞ on (0,∞).

Theorem 2.6 The solution of the eigenvalue problem Fg = λg, g ∈ H, λ > 0, is the 1-
parameter family

g = dg∗ and λ = 1, d > 0, (2.6)

where g∗(x) = x.

Theorem 2.7 If limx→∞ x−1g(x) = d, then

lim
k→∞

F kg = dg∗ (2.7)

uniformly on compact subsets of [0,∞).

.

................................................................................................................................................................................................................................

0

g∗(x)

xs
Feller diffusion function.
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Theorem 2.8 Suppose that g(x) ∼ xαL(x) as x → ∞ with α ∈ (0, 2)\{1} and L slowly
varying at infinity. Let (ek)k∈N be defined by

1
k

=
g(ek)
e2
k

. (2.8)

Then there exist constants 0 < K1(α) ≤ K2(α) < ∞ such that

K1(α)g∗ ≤ lim inf
k→∞

k

ek
F kg ≤ lim sup

k→∞

k

ek
F kg ≤ K2(α)g∗ (2.9)

uniformly on compact subsets of [0,∞).

REMARKS: (i) Theorem 2.7 (which is Theorem 2.8 for α = 1 and L ≡ d) says that all g that
are asymptotically linear are iterated towards a linear.
(ii) In Theorem 2.8, if L ≡ 1, then ek ∼ k1/(2−α) as k →∞, and so

F kg � k−(1−α)/(2−α)g∗. (2.10)

Thus, concave g are iterated downwards, while convex g are iterated upwards.
(iii) It is shown in [3] that all solutions of (2.8) have the same asymptotic behavior as k →∞.
(iv) It is conjectured in [3] that

K1(α) = K2(α) = (α!)1/(2−α)2(1−α)/(2−α). (2.11)

The above results show that g∗ again acts as a globally attracting fixed point, except that
now the normalization depends on the behavior of g at infinity. Thus, once again (1.1–1.2)
exhibits universality : No matter what the diffusion function g on scale 0 is, the diffusion
function F kg on scale k is close to (ek/k)g∗. The case g = g∗ is called the Feller diffusion.

3 Higher dimension

In higher dimension our system in (1.1) must be written in vector form:

dX i
η(t) =

∑
ζ∈ΩN

aN (η, ζ)
[
Xi

ζ(t)−Xi
η(t)

]
dt +

√
gi

(
~Xη(t)

)
dW i

η(t), 1 ≤ i ≤ d. (3.1)

Here, the scalar component Xη(t) in (1.1) is replaced by the vector

~Xη(t) =
(
X1

η (t), . . . , Xd
η (t)

)
∈ S ⊆ Rd,

while the scalar diffucion function g(Xη(t)) in (1.1) is replaced by the vector

~g
(

~Xη(t)
)

=
(
g1

(
~Xη(t)

)
, . . . , gd

(
~Xη(t)

))
∈ [0,∞)d.

The dynamics of the d components are coupled because the argument of each gi is the full
vector ~Xη(t). The analogue of (1.16) reads

dZi(t) = ck+1

[
θi − Zi(t)

]
dt +

√
(F [k]~g)i(~Z(t)) dW i(t), 1 ≤ i ≤ d, ~Z(0) = ~θ. (3.2)

The step from one to more dimensions brings about major mathematical complications:
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• Only for a limited class of choices of S and ~g has it been proved that (3.1) has a unique
weak solution. A similar problem occurs for (3.2).

• The stochastic part of the renormalization program has been carried through only for
special choices of S and g (on the basis of so-called duality arguments).

• The analytic part of the renormalization program is hampered by the fact that it is in
general not possible to write down an explicit formula for the equilibrium distribution
of (3.2) and hence for the renormalization transformation F .

We will look at two cases where the analytic part of the renormalization program can be
completed.

3.1 S ⊂ Rd compact convex

Den Hollander and Swart [19] considered the isotropic case

g1 = . . . = gd = g, (3.3)

chose S to be a compact convex subset of Rd, d ≥ 2, and took for H the class of functions
satisfying:

1. g is locally Lipschitz on S.

2. g > 0 on int(S).

3. g = 0 on ∂S.

Define

(a) H′ is the largest subclass of H for which (1.16) has a unique weak solution and a unique
equilibrium.

(b) H′′ is the largest subclass of H′ that is closed under F .

Then H′ is the class on which F is well-defined and H′′ is the class on which F can be iterated.
In what follows we will assume that

H′′ = H′ = H. (3.4)

Theorems 3.1–3.2 are taken from [19] and rely on (3.4).

Theorem 3.1 The solution of the eigenvalue problem Fg = λg, g ∈ H, λ > 0, is the 1-
parameter family

g = dg∗ and λ =
1

1 + d
, d > 0, (3.5)

where g∗ is the unique continuous solution of

∆g∗ = −2 on int(S),
g∗ = 0 on ∂S.

(3.6)
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Theorem 3.2 For all g ∈ H,
lim

k→∞
kF kg = g∗ (3.7)

uniformly on S.

The above g∗ takes over the role of the Fisher-Wright diffusion function on the unit interval
(recall Section 2.1).

It is believed that the assumption in (3.4) is valid in full generality for the choice of S and
H indicated above, but so far this remains a challenge. Swart [22] has proved that H′ contains
all those g ∈ H for which there exists an ε > 0 such that the level sets {x ∈ S : g(x) ≥ r} are
convex for all 0 < r < ε. The stochastic part of the renormalization program is largely open.

Without the isotropy assumption in (3.3), little is known so far. Dawson and March
[14] proved that for S the simplex, H′ contains a small neighborhood of the d-dimensional
analogue of the Fisher-Wright diffusion. Cerrai and Clément [6], [7] proved that for S the
simplex and the hypercube, respectively, H′ contains a large subset of H. This work represents
very important progress on the difficult weak uniqueness issue in the anisotropic case. The
stochastic part of the renormalization program in the anisotropic case is also largely open,
with partial progress in Dawson, Greven and Vaillancourt [13] for S the simplex.

3.2 S = [0,∞)2

In Dawson, Greven, den Hollander, Sun and Swart [12] (work in progress) the two-dimensional
version of (3.2) is considred:

dX1
η (t) =

∑
ζ∈ΩN

aN (η, ζ) [X1
ζ (t)−X1

η (t)] dt +
√

g1(X1
η (t), X2

η (t)) dW 1
η (t),

dX2
η (t) =

∑
ζ∈ΩN

aN (η, ζ) [X2
ζ (t)−X2

η (t)] dt +
√

g2(X1
η (t), X2

η (t)) dW 2
η (t).

(3.8)

Here, ~g = (g1, g2) is a pair of diffusion functions driving the pair of components ~Xη(t) =
(X1

η (t), X2
η (t)). Unlike in Section 3.1, we will allow the anisotropic case g1 6= g2. The two-

dimensional version of (3.2) (for ck ≡ 1) reads

dZ1(t) = [θ1 − Z1(t)] dt +
√

g1(Z1(t), Z2(t)) dW 1(t),

dZ2(t) = [θ2 − Z2(t)] dt +
√

g2(Z1(t), Z2(t)) dW 2(t).
(3.9)

The stochastic part of the renormalization program is addressed in Cox, Dawson and
Greven [8] for a special case, and is largely open. The analytic part is being addressed in [12].
For this part, ~g = (g1, g2) is taken from the following class, which we denote by H:

1. g1, g2 > 0 on (0,∞)2.

2. g1(x1, x2) = x1h1(x1, x2) with either:

2.a. h1 > 0 on [0,∞)2 and h1 Hölder on compact subsets of [0,∞)2.

2.b. h1(x1, x2) = x2γ1(x1, x2), γ1 > 0 on [0,∞)2 and γ1 Hölder on compact subsets of
[0,∞)2.

3. g2(x1, x2) = x2h2(x1, x2) with either:
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3.a. h2 > 0 on [0,∞)2 and h2 Hölder on compact subsets of [0,∞)2.

3.b. h2(x1, x2) = x1γ2(x1, x2), γ2 > 0 on [0,∞)2 and γ2 Hölder on compact subsets of
[0,∞)2.

4. g1(x1, x2), g2(x1, x2) ≤ C(x1 + 1)(x2 + 1) for some C = C(g1, g2) < ∞.

Dawson and Perkins [15] (work in progress) show that (3.9) has a unique weak solution
under properties 1-3 above. Earlier results in this direction, under stronger restrictions on g,
were obtained by Athreya, Barlow, Bass and Perkins [1] and by Bass and Perkins [4], [5]. In
[12] it is shown that properties 1-3 are enough to also have a unique equilibrium. Thus, if we
define subclasses H′′ ⊂ H′ ⊂ H as in Section 3.1, then we have

H′ = H. (3.10)

It is believed that under properties 1-4 above,

H′′ = H, (3.11)

although this is still open.
A number of results are derived in [12] subject to (3.11). We cite two results in Theorems

3.3–3.4, subject to the condition that ~g be “sufficiently regular near the boundary and at
infinity”. The precise regularity conditions are technical. Regularity near the boundary
means that g1 is either everywhere zero or everywhere positive on {x2 = 0}, and similarly for
g2 on {x1 = 0}. Regularity at infinity means that g1, g2 are regularly varying along rays in
[0,∞)2 in a certain uniform sense.

The renormalization transformation F , which acts on the pair of diffusion functions ~g =
(g1, g2), is given by

(F~g)(~y) =
∫

[0,∞)2
~g(~x)ν~y,~g(d~x), (3.12)

where ν~y,~g is the equilibrium distribution of (3.9).

Theorem 3.3 The solution of the eigenvalue problem F~g = λ~g, ~g ∈ H, λ > 0, subject to g
being “sufficiently regular near the boundary and at infinity”, is the 4-parameter family

~g = ~g ∗d and λ = Id, d = (d1, d2, d3, d4) ≥ 0, (3.13)

where ~g ∗d = (g∗,1d , g∗,2d ) has the form

g∗,1d (x1, x2) = (d1 + d2x2)x1,

g∗,2d (x1, x2) = (d3 + d4x1)x2.
(3.14)

Theorem 3.4 For all ~g ∈ H that are “sufficiently regular near the boundary and at infinity”,

k

ek
F k~g � ~g ∗d as k →∞, (3.15)

where d is determined by the behavior of ~g near the boundary and (ek) by the behavior of ~g at
infinity.
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For instance, if g1 = g2 = 0 on {x1 = 0} ∪ {x2 = 0} and g1(x1, x2) = g2(x1, x2) � xα
1 xβ

2 as
x1, x2 →∞ with 0 < α ∨ β ≤ 1, then

d = (0, 1, 0, 1) and ek � k1/(2−α∨β). (3.16)

The 4 universality classes in Theorem 3.3 correspond to special diffusions:

d = (> 0, 0, > 0, 0): non-catalytic branching.
d = (0, > 0, > 0, 0): catalytic branching.
d = (> 0, 0, 0, > 0): catalytic branching.
d = (0, > 0, 0, > 0): mutually catalytic branching.

These take over the role of the Feller diffusion function on the halfline (recall Section 2.2).

4 Open problems

The main open problems are:

(a) Carry out the stochastic part of the renormalization program in higher dimension (for
the examples in, respectively, Sections 3.1 and 3.2).

(b) Prove (3.4) for S the simplex, respectively, the hypercube. Attempt to extend the proof
for S an arbitrary compact convex subset of Rd.

(c) Prove (3.11) for S = [0,∞)2.

It clearly is a challenge to push the renormalization analysis forward to even richer examples.
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