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Abstract

Let k � � be an integer� For � � s � �� let Ds � IR� be the set that is constructed
iteratively as follows� Take a regular open k�gon with sides of unit length� attach regular
open k�gons with sides of length s to the middles of the edges� and so on� At each stage of
the iteration the k�gons that are added are a factor s smaller than the previous generation
and are attached to the outer edges of the family grown so far� The set Ds is de�ned to
be the interior of the closure of the union of all the k�gons� It is easy to see that there
must exist some sk � � such that no k�gons overlap if and only if � � s � sk� We derive
an explicit formula for sk�

The set Ds is open� bounded� connected and has a fractal polygonal boundary� Let
EDs

	t
 denote the heat content of Ds at time t when Ds initially has temperature � and
�Ds is kept at temperature �� We derive the complete short�time expansion of EDs

	t
 up
to terms that are exponentially small in ��t� It turns out that there are three regimes�
corresponding to � � s � ��	k��
� s � ��	k��
 respectively ��	k��
 � s � sk� For s ��

��	k��
 the expansion has the formEDs
	t
 � ps	log t
t

��
ds

� �Ast
�

� �Bt�O	e�
rs

t 
� where
ps is a log	��s

�
�periodic function� ds � log	k� �
� log	��s
 is a similarity dimension� As
and B are constants related to the edges respectively vertices of Ds� and rs is an error
exponent� For s � ��	k � �
 the t

�

� �term carries an additional log t�

AMS �� subject classi�cations� ��K��� ��A��� ��J���
Key words and phrases� Fractal polygon� heat equation� Brownian motion�
Running title� Heat content of a fractal polygon�

� Research supported by the British Council and the Netherlands Organization for Sci�
enti�c Research� joint scienti�c research project JRP��������

�



Contents

�



� Introduction and main results� Theorems ���

For m � � integer� let D be an open set in Euclidean space IRm with boundary �D� Let
uD � �D � �D�� �	���� IR be the unique �weak� solution of the heat equation

�
�tuD 
 �uD �x � D� t � 	�

uD�x� 	� 
 	 �x � D�
uD�x� t� 
 � �x � �D� t � 	��

�����

i�e�� D initially has temperature 	 and heats up because �D is kept at temperature �� The
total heat content of D at time t is

ED�t� 

Z
D
dx uD�x� t�� �����

The asymptotic behaviour of ED�t� as t � 	 is well understood if D is bounded and �D is
smooth �see ������ Moreover� for m 
 � and for D bounded and connected and �D a �nite
polygonal� it is shown in ��� that

ED�t� 

�

�
�
�

j�Djt �� � t
NX
i��

c��i� � O�e�
r
t � �t � 	�� ����

Here� j�Dj is the length of �D� ��� � � � � �N are the interior angles at the vertices of �D�

c��� 
 �
Z �

�
d�

sinh��� � ����

sinh���� cosh����
�����

is an angle function� and r is a strictly positive constant depending on D� Note that the
leading term in ���� is proportional to the length of the boundary� while the correction term
gives a negative contribution for non�re�ex angles �	 	 �i 	 �� and a positive contribution
for re�ex angles �� 	 �i 	 ���� Contrary to the case where �D is smooth� there are no
polynomial terms beyond order t�

In this paper we consider the problem of �nding the asymptotic behaviour of EDs�t�
as t � 	 for a speci�c region Ds 	 IR� with a fractal polygonal boundary� This region is
constructed as follows �see Fig� ��� Let k �  be an integer� Let Q� be a regular open
k�gon with j�Q�j 
 k �sides of unit length�� Attach k regular open k�gons Q���� � � � � Q��k with
j�Q��ij 
 ks to the middles of the k edges of Q� �	 	 s 	 � is the scaling factor�� Proceed by
induction and for j 
 �� � � � � attach N�j� 
 k�k���j�� regular open k�gons Qj��� � � � � Qj�N�j�

with j�Qj�ij 
 ksj to the middles of the k � � outer edges of Qj����� � � � � Qj���N�j���� In
Section � we shall see that there exists an sk � 	 such that no k�gons overlap if and only if
	 	 s 
 sk� and we shall derive an explicit expression for sk� The region Ds is now de�ned
as

Ds 
 interior
n
Q� � ��j�� ���i�N�j� Qj�i�

o
�k � � 	 	 s 
 sk�� �����

The set Ds is open� bounded� simply connected and has volume �

jDsj 
 � � s�

�� �k � ��s�
jQ�j� �����

�At the end of Section � we shall see that s�k � ���k � ��� so jDsj � � for all � � s � sk� This is no
surprise� because Dsk is bounded and all its k	gons are disjoint�





where jQ�j is the volume of the basic k�gon�

jQ�j 
 �

�
k cot

��
k

�
� �����

The boundary �Ds is not strictly fractal self�similar� Still� it has an interior Minkowski
dimension �see ���� given by

d��Ds� 
 maxf�� dsg� �����

where 	 	 ds 	 � is a similarity dimension given by

ds 

log�k � ��

log��s�
� �����

The length of �Ds is

j�Dsj 

�

k���s�
���k���s �	 	 s 	 �

k�� �

� � �
k�� 
 s 
 sk��

����	�

Moreover� one can show that �Ds has �nite d��Ds��dimensional upper Minkowski content
and strictly positive d��Ds��dimensional lower Minkowski content �see ����� Therefore� Ds

being simply connected� ��� Corollary ��� implies that for �
�k � �� 	 s 
 sk there exist
constants 	 	 C 	� and 	 	 t� 	� such that

�

C
t��

ds
� 
 EDs�t� 
 Ct��

ds
� �	 
 t 
 t��� ������

As far as we know� the only non�trivial example for which a more detailed analysis is
available is the triadic von Koch snow�ake K� Namely� in ��� the existence is proved of two
�log ���periodic functions p and q such that

EK�t� 
 p�log t�t��
log �
log � � q�log t�t� O�e�

�
����t �� ������

Expansion ������ resembles ���� for �nite polygons in that both have an exponential remain�
der term as well as a term of order t�

Our main motivation for studying the heat content of the regions Ds �k � � 	 	 s 
 sk�
de�ned above is that by varying both k and s we shall be able to obtain some insight into
the structure of the asymptotic expansion� Indeed� the expansion obtained below �for three
di�erent s�regimes� contains three terms� two of which are computed explicitly and the third
of which contains a periodic function like the ones appearing in �������

In the three theorems below�

�k 
 � � ��

k
�����

denotes the interior angle of the regular k�gons� c is the angle function de�ned in ������ ds is
the similarity dimension de�ned in ������ and rs is an error exponent given by

rs 


���
��

s�

����
p
����� p

� �k 
 �
s�

	 �� �
p
�� �k 
 ��

s�

�� sin
���k � �k � ���

������

All expansions are for t � 	�

�



Theorem � Let k 
 � � � � � � and �
�k � �� 	 s 
 sk� Then

EDs�t� 
 ps�log t�t
�� ds

� �
�

�
�
�

k��� s�

�� �k � ��s
t
�
� �

�k

k � �
c�� � �k�t� O�e�

rs
t �� ������

with ps a log��
s���periodic� continuous and strictly positive function�

Theorem � Let k 
 � � � � � � and s 
 �
�k � ��� Then

ED �
k��

�t� 

�

�
�
�

k�k � ��

�k � �� log�k � ��
t
�
� log

��
t

�
�p �

k��
�log t�t

�
� �

�k

k � �
c����k�t�O�e�

r���k���
t ��

������
with p �

k��
a log��k� �����periodic and continuous function�

Theorem � Let k 
 � � � � � � and 	 	 s 	 �
�k� �� or k 
 �� �	� � � � and 	 	 s 
 sk� Then

EDs�t� 

�

�
�
�

k��� s�

�� �k � ��s
t
�
� � ps�log t�t

�� ds
� �

�k

k � �
c�� � �k�t� O�e�

rs
t �� ������

with ps a log��
s���periodic and continuous function�

Note that ������ and ������ are identical except for the order of the �rst two terms� We shall
see in Section � that sk 	 �
�k � �� if and only if k � �� which explains the various cases in
Theorems ���

REMARKS�

�� A small computation shows that maxf�� dsg is the interior Minkowski dimension of the
edges of �Ds �as stated in ������ and that ds is the interior Minkowski dimension of the
vertices of �Ds� For �
�k � �� 	 s 
 sk � the leading term in the expansion agrees with
the earlier estimate ������� In this case ds � �� For 	 	 s 	 �
�k � ��� on the other
hand� the leading term in the expansion is the same as in ���� because j�Dsj 	 �
�recall ����	��� In this case ds 	 �� For s 
 �
�k � ��� �nally� the behavior is critical�
In this case ds 
 ��

�� Note that the coe�cient of t does not depend on s� This is because� unlike the edges�
the angles at the vertices do not depend on s� It is remarkable that in this coe�cient
only ���k features and not �k� Apparently� only those angles in �Ds where the k�gons
make contact survive in the expansion�

� The sign of the coe�cient of t is di�erent from ����� Apparently� the term of order t
�
�

already contains part of the contribution of the angles at the vertices�

�� We conjecture that ps is non�constant� Heuristically this may be visualised by thinking
of a �heat front� that moves in from the boundary and that has a period log��
s�� on a
logarithmic time scale due to the discrete self�similar structure of �Ds and the classical
space�time scaling of heat conduction� Unfortunately� we have not been able to con�rm
this picture� As will become clear at the end of Section �� the function ps is an in�nite
sum of scaled quantities and as such is a rather complicated object�

�



The remainder of this paper is structured as follows� In Section � we compute the value
of sk � In Section  we derive some estimates on uDs�x� t� for points near a vertex of �Ds and
for points near an edge of �Ds but not near a vertex� The contribution coming from points
away from �Ds is shown to be exponentially small in �
t� In Section � we derive a functional
equation for EDs�t�� from which we are able to draw out the expansions ����������� and show
that ps is log��
s

���periodic� In Section � we prove that ps is continuous� which by periodicity
implies that ps is bounded� and we derive upper and lower bounds on ps� Finally� in Section
� we give some results �without proofs� for the partition function of the Dirichlet problem
associated with Ds� These are obtained along the lines of Sections ���

� Computation of sk� Theorem �

It is easy to see that for all k �  there must exist some sk � 	 such that no k�gons in the
iterative construction of Ds overlap if and only if 	 	 s 
 sk � The following theorem gives an
explicit �and surprisingly simple� formula for sk�

Theorem � All k�gons are disjoint if and only if 	 	 s 
 sk with

sk 

�

�k

�q
� � ��k � �

�
� �����

where
k even� �k 
 �� cos���k �

k odd� �k 
 �
��cos� ��

k
�

�
cos��
k
� 
 ���� cos��k ���

�����

The �rst few values of sk are�

s� 

�
��
p
�� �� 
 	����	 � � � ��� 
 ��

s� 

p
�� � 
 	����� � � � ��� 
 ��

s� 

�
��
q
	 � �

p
�� � p

�� 
 	��� � � � ��� 
 � p
��

s� 

p
�� � 
 	���	 � � � ��� 


�
���

����

Proof� Because of the self�similar growing procedure� all k�gons are disjoint if and only if�

�I� The k�gons grown from one edge of Q� do not intersect the line through this edge�

�II� The k�gons grown from two neighbouring edges of Q� do not intersect the line that
bisects the angle between these edges�

In order to investigate �I� and �II� we �rst need to locate the vertices of the k�gons�

�� Location of the vertices� Pick an edge of Q� and place this edge vertically� with its
middle at the origin and with Q� in the left half plane� We begin by writing down a formula
for the centres of all the k�gons grown from this edge� For this is will be convenient to map
IR� to the complex plane� �x�� x��� x� � ix��

The �rst generation consists of one k�gon� say Q���� with sides of length s and centre at

c� 
 Lsei�� �����

�



where L 
 �
�cot�

�
k � is the inner radius of the basic k�gon Q� �i�e�� the distance from the

centre to the middles of the edges�� The second generation consists of k � � scaled k�gons�
say Q���� � � � � Q��k��� whose centres are located at positions

cj�� 
 c� � L�s� s��ei���j�
��
k
� �j� 
 �� � � � � k � ��� �����

Namely� the middles of the k � � outer edges of Q��� lie in the directions � � j�
��
k �j� 


�� � � � � k � �� relative to the direction of the centre of Q���� The backward direction with
j� 
 	 is excluded� because this is where Q��� is attached to Q�� Note that L�s � s�� is the
sum of the inner radii of Q��� and Q���� � � � � Q��k��� Similarly� the centres of the �k���� scaled
k�gons in the third generation are located at positions

cj��j�� 
 cj�� � L�s� � s��ei���j�
��
k
�
���j� ��

k
�� �j�� j� 
 �� � � � � k� ��� �����

Inductively� we thus �nd that the centres of the �N � ���st generation are

cj������jNN
� 
 L
h
s �

NX
n��

�sn � sn
��ei�
Pn

m��
��jm�

i
�j�� � � � � jN 
 �� � � � � k� ��� �����

where we abbreviate ��j� 
 �� j �k �

Having found ������ we can now write down a formula for the vertices of the k�gons� Let
L� be the outer radius of the basic k�gon Q� �i�e�� the distance from the centre to the vertices��
which equals L� 
 L
 cos��k �� Then the vertices of the k�gon with centre cj������jNN
� are located
at positions

vj������jNN
� �j�N� 
 cj������jNN
� � L�sN
�ei�
PN

m��
��jm�
��j�N�
 �

k
� �j�N 
 	� �� � � � � k� ��� �����

The angles in the last term are �
k � j�N

��
k �j�N 
 	� �� � � � � k � �� relative to the direction

�
PN

m�� ��jm� � � of the previous centre�

�� Veri�cation of �I	� For the k�gons not to intersect the vertical axis �which is the line
through the edge from which they are grown� the following condition is necessary and su��
cient�

Re
�
vj������jNN
� �j�N�

�
� 	 for all indices� �����

Substituting ��������� into ����� and dividing by L� we obtain for condition �I�

s� �� � s�
PN

n�� s
n cos

�
�
Pn

m�� ��jm�
�

�sN
� �
cos��

k
� cos

�
�
hPN

m�� ��jm� � ��j�N� �
�
k

i�
� 	 for all indices�

����	�

De�ne
xN 
 inf

fj������jN �j�Ng
l�h�s�����	� �N � 	�� ������

Then LxN is the distance to the vertical axis of the left�most vertex in the �N � ���st gener�
ation� We must show that xN � 	 for all N � 	 if and only if 	 	 s 
 sk with sk given by
����������

�



Trivially� x� 
 	 because the ��st k�gon is attached to the vertical axis �the in�mum is
attained at j�� 
 	�� For N � �� on the other hand� the in�mum is attained whenPn

m�� ��jm� �� 
 n 
 N� and
PN

m�� ��jm� � ��j�N � �
�
k

are as close as possible to � �mod ���
������

This occurs �not necessarily uniquely� when

N 
 � � j� 
 �

j�� 
 bk�c

N � � � j� 
 �� j� 
 dk� e � ��

jm 
 bk�c � 
 m 
 N odd�� jm 
 dk�e � 
 m 
 N even��

j�N 
 dk�e�

�����

Hence we �nd

k even� xN 
 s� �� � s�
h
s cos���k � �

PN
n�� s

n
i
� sN
�

�N � ��

k odd� xN 
 s� �� � s�
h
s cos���k � �

PN
n���even s

n cos��k � �
PN

n���odd s
n
i
� sN
�

�N � � even�

xN 
 s� �� � s�
h
s cos���k � �

PN
n���even s

n cos��k � �
PN

n���odd s
n
i
� sN
� �

cos��
k
�

�N � � odd��
������

Our next step is to look at di�erences� From ������ we easily deduce the following�

k even� xN � xN
� 
 �sN
� �N � ��

k odd� xN � xN
� 
 sN
��� � s��� � cos��k �� �N � � even�

xN � xN
� 
 sN
��� � s�
�
cos��

k
�

cos��
k
�

n
s� ��� cos��k ��

o
�N � � odd��

������

From this we see that �xN�N�� is always decreasing when k is even� always decreasing along
the even integers when k is odd� and decreasing or increasing along the odd integers �depending
on s� when k is odd� Consequently� we have xN � 	 for all N � � if and only if

k even� x� � 	
k odd� x� � 	� x� � 	�

������

Hence it remains to investigate �������

From ������ we readily obtain that x� � 	 if and only if

s� �
�

�k
s� � 
 	 ������

with �k given by ������ Inequality ������ holds for all 	 	 s 
 sk with sk given by ������ Thus�
to complete �I�� it remains to check that x� � 	 for k odd and 	 	 s 
 sk � A computation
shows that this condition amounts to

sk 
 �bk��� bk�

�� �bk��� bk�
with bk 
 cos

��
k

�
� ������

�



However� sk 
 �
��k and �k 
 ��� � bk� by ���������� Substitution yields that ������ is true

because bk 
 �
� for all k � �

�� Veri�cation of �II	� The necessary and su�cient condition for the k�gons in �I� not to
intersect the line that bisects the angle between the vertical edge Q� and its upper neighboring
edge is

Im
�
vj������jNN
� �j�N�

�

 �

�
� tan

��
k

�
Re
�
vj������jNN
� �j�N�

�
for all indices� ������

Indeed� �
k is the angle between the horizontal axis and the bisector� Inequality ������ says
that all the vertices stay below this bisector�

After substituting ��������� into ������ inserting the expressions for L� L�� and manipulating
to put the real and the imaginary part together� we obtain for condition �II�

�� � s� cos��k �
n
sin��k ��

PN
n�� s

n sin
�
�
hPn

m�� ��jm�� �
k

i�o

�sN
� sin
�
�
hPN

m�� ��jm� � ��j�N�
i�
� 	 for all indices�

����	�

We shall verify that this inequality holds for all k �  and 	 	 s 
 sk � For this we shall need
to distinguish between the cases k 
  and k � ��

Case k � �� For inequality ����	� to hold it su�ces that

sin
��
k

�
�

NX
n��

sn � sN
�

�� � s� cos��k �
� 	 for all N � 	� ������

Since the left hand side is decreasing in s it su�ces to check the inequality for s 
 sk � This
goes in two steps�

Lemma � �� � sk� cos�
�
k � � � for k 
 �� �� � � �

Proof� By ������ we obtain �after some arithmetic� that the inequality claimed is equivalent
to

�k
h
�� � cos

��
k

�i
� � cos

��
k

�
� �

h
cos

��
k

�i� 
 	� ������

From ����� we have

�� cos
���
k

�

 �k 
 �

h
�� cos

��
k

�i
� �����

Because cos��k � � �
�

p
� � �

� � we see from the lower bound in ����� that it su�ces to check

h
�� cos

���
k

�ih
�� � cos

��
k

�i
� � cos

��
k

�
� �

h
cos

��
k

�i� 
 	� ������

which is equivalent to ���cos��k ��
� � ���cos��k � � �� 
 	� But the latter is trivial because

� � cos��k � � �
�

p
��

Lemma � sin��k � � sk
��sk for k 
 �� �� � � ��

�



Proof� From ���� we easily check that the inequality claimed holds for k 
 �� �� Therefore
let k 
 �� �� � � � Again by ������ we obtain �after some arithmetic� that the inequality claimed
is equivalent to �����

� sin
��
k

�h
� � sin

��
k

�i
� �k

h
� � � sin

��
k

�i
� ������

We see from the upper bound in ����� that it su�ces to check

sin
��
k

� � � sin��k �

� � � sin��k �
� �

h
�� cos

��
k

�i
� ������

Since sin��k � 
 �
� � it in turn su�ces to check that



�
sin

��
k

�
� �

h
�� cos

��
k

�i
� ������

But the latter is trivial because the right hand side is ��sin� ��k ��
��

Combine Lemmas ��� and use that s 
 sk � to obtain ������ and hence ����	� for k � ��

Case k 
 � Return to ����	�� Since j� 
 �� � and ��j� 
 �� �j
� � we have that sin�����j���

�
��� 
 	� Moreover�

Pn
m�� ��jm� � �

� and
PN

m�� ��jm� � ��j�N� are integer multiples of �
� �

Hence the left hand side of ����	� is bounded from below by

sin
��


�h
�� � s� cos

��


�n
��

NX
n��

sn
o
� sN
�

i
� ������

Since s 
 s� and s��
��� s�� 
 �� we have

NX
n��

sn 

NX
n��

sn� 
 �� sN
�
�

�� s�
� ������

Hence we �nd that ������ is bounded from below by

sin
��


�
sN
�
�

ncos��� �
�� s�

� �
o
� ���	�

But this is � 	 because cos��� � 

�
� � � � s�� and so we have completed the proof of ����	�

for k 
 �

The above estimates complete the proof of Theorem ��

We check that s�k 	 �
�k� �� for all k � � which guarantees that our region Ds has �nite
volume for all 	 	 s 
 sk �recall ����� and footnote ��� For k 
 � � the inequality follows
from ����� Use ��������� to estimate sk 
 �

��k and �k 
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To conclude this section� note from ��������� that
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� Heat content for kites� rectangles and sectors in wedges

In this section we compute the heat content of certain simple regions� These will later be
used as building blocks for our region Ds� The results will be needed in Section � to derive a
functional equation for the heat content EDs�t��

��� Kites and rectangles in wedges� Propositions ���

For 	 	 � 	 �� and R � 	� we de�ne the wedge and the sector in polar coordinates by

W� 
 f�r� � � r � 	� 	 	  	 �g

W��R� 
 f�r� � �W� � 	 	 r 	 Rg�
����

We also de�ne� for 	 	 � 	 �� R � 	 and L � 	� the kite �see Fig� �� and the rectangle in
cartesian coordinates by

U��R� 
 f�x�� x�� � W� � x� 	 R� x� cos � � x� sin � 	 Rg

V �R�L� 
 f�x�� x�� � �R 	 x� 	 L� 	 	 x� 	 Rg�
����

Let uW� be the solution of ����� for D 
 W� � Abbreviate

d��� 

�

�
cosec

���

�

�
� ���

which plays a role analogous to ������ Our main results in this section are the following three
estimates�

Proposition � ��kite in non�re�ex wedge�� For 	 	 � 	 � and R � 	�
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Proposition � ��kite in re�ex wedge�� For 	 	 � 	 � and R � 	�
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Proposition � ��rectangle in re�ex wedge�� For 	 	 � 	 � and L � R � 	�
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The proof of these propositions is organized as follows� In Section �� we compute the in�
tegrals over �sectors in wedges� using the Kontorovich�Lebedev representation of the Dirichlet
heat kernel in polar coordinates� In Section � we derive some probabilistic estimates that
will allow us to estimate the contribution of points away from the boundary respectively to
compare uD�s for di�erent regions D� In Section �� we complete the proof of Propositions
�� using these results�

��



��� Sectors in wedges

The following three lemmas will be needed in Section �� to prove Propositions ��� Abbre�
viate

��R� t� 
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It is easily checked that ��R� t� 
 �t
R� �O�t�� as t � 	�

Lemma � ��sector in wedge�� For 	 	 � 	 � or � 	 � 	 �� and R � 	�
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Lemma � ��non�re�ex sector in re�ex wedge�� For 	 	 � 	 � and R � 	�
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Lemma 
 ��half disc in re�ex wedge�� For 	 	 � 	 � and R � 	�
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Proof of Lemma �� Lemma  follows from ��� Theorem � and Corollary �

Proof of Lemma 
� By symmetry�Z
W��R�

dx uW��� �x� t� �

Z
W��R�

dx uW��� �x� t� 


Z
W����R�

dx uW��� �x� t�� �����

Therefore the claim follows directly from Lemmas ���

Proof of Lemma �� The proof comes in eight parts�
�� Let ��W��� be the Dirichlet Laplacian for W�
� � Let

pW��� �A�� A�� t� �A�� A� � W�
� � t � 	� �����

denote the heat kernel associated with the parabolic operator ��W��� � �
�t� The Laplace
transform of this heat kernel�

GW��� �A�� A���� 
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is given by the Kontorovich�Lebedev representation �see ��� p� ���
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where A� 
 �a�� ���� A� 
 �a�� ��� are written in polar coordinates and Ki	 is the modi�ed
Bessel function ��� ���	��� In the following part we integrate ����� in successive steps�
�� First we integrate ����� over �� � ��� �� and �� � �	� � � ��� This gives� after some
straightforward manipulations�R �

� d��
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Here we have introduced the abbreviation
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Next� since pW��� is the fundamental solution of the heat equation on W�
� with initial
temperature � and boundary temperature 	� we have the relationZ
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�� In parts ��� below we shall show that the last term in the right hand side of ���� is
O�exp���R sin��
����
�t��� But �rst we complete the proof of Lemma � using this fact�
Indeed� by symmetry we have

�
Z
W��R�

dx uW��� �x� t� �
Z
W��R�nW��R�

dx uW��� �x� t� 

Z
W��� �R�

dx uW��� �x� t�� �����

Combining �������� with Lemma  and recalling the abbreviation in ����� we may now
write R

W��R� dx uW��� �x� t�
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Next� recalling ����� and ������ we write
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where the third equality uses ��� �������� The claim in Lemma � follows by combining �����
and ������
�� To complete the proof of Lemma �� we estimate the last term in the right hand side of
����� For this we need to distinguish three regimes for � �see parts ��� below�� The key
relations are
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which follow from ��� ������� respectively ��� ������ Here Erfc is the complementary error
function de�ned by Erfc�x� 
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where the second equality uses ��� �������� and the third equality ��� ������ Combining ����
and ����� we get the remainder estimate as claimed�

��� Three comparison lemmas

Lemmas ��� below are technical estimates that will be needed later on to compare the heat
content of di�erent regions�

Let �B�t� � t � 	� be standard Brownian motion on IR�� i�e�� the process with generator
��� �
�t� Write Px to denote its probability law given B�	� 
 x� For A 	 IR� open� de�ne
the �rst exit time

TA 
 infft � 	 � B�t� 
� Ag �B�	� � A�� ����

Then for D open the solution uD of ����� has the well�known representation

uD�x� t� 
 Px�TD 
 t� �x � D�� ����

The following lemma is known as �Kac�s principle of not feeling the boundary� �����

��



Lemma � For x � D and t � 	�

uD�x� t� 
 �e�
d��x��D�

�t � ���	�

where d�x� �D� 
 minfjx� yj � y � �Dg�

Proof� By Levy�s maximal inequality ����� Theorem �����

Px�TD 
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Next we formulate two lemmas that will allow us to compare solutions of ����� for di�erent
regions� These will serve us later when we approximate parts of Ds by the simpler regions
studied in Propositions ���

Lemma � Let uD and uF be the solutions of �	�	
 for two open sets D resp� F in IR��
Suppose that E 	 �D � F �� and that E is measurable� Then
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E
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It therefore follows from Lemma � and ���� that
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Integrate over x � E to get the claim�

Lemma  Let D� F and G be open sets in IR� such that G 	 �D � F �� Suppose that E is a
bounded measurable subset of G� Then
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By symmetry� the same inequality holds with D and F interchanged� Hence we obtain �����
with � given by ���	�� Integration over x � E yields ����� �recall ���� and �������

��



��� Proof of Propositions ���

With the help of Lemmas �� we can now prove Propositions ���

Proof of Proposition �� The proof comes in four parts�
�� For 	 	 � 	 � and R � 	� de�ne �see Fig� �
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Combining Lemma � ������ ����� and ������ we thus �nd that
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This last integral is a truncated form of ���� and we therefore get
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Note that a cancellation occurs here of terms that are polynomial in t as t � 	� Proposition �
follows by combining ����������

Proof of Proposition �� The proof comes in four parts�
�� The integral in Proposition � equals

R
U��R� dx uW��� �x� t�



R
W��R� dx uW��� �x� t� �

R
C�
� �R� dx uW��� �x� t� �

R
C�
� �R� dx uW��� �x� t��

����

The integral over W��R� we know from Lemma ��
�� The distance between C�� �R� and �W�
� is R sin��
��� Hence it follows from Lemma �
that Z
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� To estimate the contribution from C
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�� It now follows from Lemma �� ����� and ����� that

Z
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Again there is a cancellation� as in ������ leading to the same error estimate�

�	



Proof of Proposition �� The proof comes in four parts�
�� For L � R � 	� de�ne �see Fig� ��

D
�R�L� 
 f�x�� x�� � V �R�L� nW��R� � 	 	 x� 	 Lg
D��R�L� 
 f�x�� x�� � V �R�L� nW��R� � �R 	 x� 	 	g� �����

The integral in Proposition  equals

R
V �R�L� dx uW��� �x� t�



R
W��R� dx uW��� �x� t� �

R
D��R�L� dx uW��� �x� t� �

R
D��R�L� dx uW��� �x� t��

�����

The integral over W��R� we know from Lemma ��
�� Pick 	 	 � 	 �� The distance between D��R�L� and �W�
� is R sin � if 	 	 � 	 �
� and
is R if �
� 	 � 	 �� Hence � � R sin��
�� in either case� and

Z
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dx uW��� �x� t� 
 �jD��R�L�j e�
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� �
�
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by Lemma �� � To estimate the contribution from D
�R�L�� we pick D 
 W�
� � F 
 W��
E 
 D
�R�L� and G 
 fx � D � d�x�D
�R�L�� 	 Rg in Lemma �� Then � 
 R in ���	��
We obtain via ����� that

R
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�� It now follows from Lemma �� ����� and ���	� that

Z
V �R�L�
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�
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Rt
�
� ��R� t� � d�� � ��t� r�h�s������� �����

Once again there is a cancellation between the last two terms� so that the error estimate is
the same as before�

� Functional equation� Proof of Theorems ���

Propositions �� are the key to Theorems ��� The proof will rely on the approximation
Lemmas ���� In Section ��� we compute the heat content of the basic k�gon Q� respectively
one of the k�gons Q��� attached to it� In Section ��� we use this information to derive
a functional equation for the heat content EDs�t� of our region Ds� From this functional
equation we shall be able to draw out the expansions in Theorems ��� In Section � we shall
study the periodic function ps that appears in these expansions and prove the claims that
were made about it in Section ��

��



��� Heat content of two building blocks of Ds

We �rst estimate the contribution from the basic k�gon Q��

Lemma � Fix k � � If 	 	 s 
 sk� thenZ
Q�

dx uDs�x� t� 
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� �	��
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� and
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This choice guarantees that the following three conditions are met �see Fig� ���
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�

Rs 
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Partition Q� into the following sets �see Fig� ���

�i� k kites U�k�Rscot�
�k
� ���

�ii� �k rectangles V �Rs� Ls��

�iii� The interior of Q� minus �i� and �ii�� an open polygon with distance �� to �Ds� where

�� 


�
Rs �k � � or k 
 � Rs 
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p
Rs �k 
 � Rs 
 Ls��

�����

�iv� The remainder� which has measure zero�

�� By Lemma � the contribution of �iii� is O�exp�����
�t���
�� In order to estimate the contribution of �i� we may again apply Lemma �� this time with
D 
 Ds� F 
 W�k and E 
 U�k�Rscot�

�k
� ��� Then � in ���� becomes
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Together with Proposition � we therefore get a contribution
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where we use that �Rscot�
�k
� � sin�
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 R�
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� The contribution of �ii� can be estimated via Lemma � after picking D 
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This choice guarantees that G � W�
�k �see Fig� ��� Then � in ���	� becomes
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 ��� ����	�

Together with Proposition  we therefore get a contribution
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�� Putting all the estimates together� we arrive at ����� with

�s 
 min
n�
�
R�
s cos

�
��k
�

�
�
���
�
�
���
�
�
���
�

o
� ������

In the rest of the proof we show that �s satis�es ������
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and hence� by monotonicity� for k � �� Therefore we have proved ����� for k � �� �� It
remains to prove ����� for k 
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Finally� for k 
  we have� by ���� and ������
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For the computation of
R
DsnQ�

dx uDs�x� t� it will be convenient to introduce a �model
solution� that approximates uDs in one of the branches attached to the basic k�gon Q��
Consider the half space H 
 f�x�� x�� � IR� � x� 	 	g� Attach one of the k components of
Ds nQ� to H �recall ������� The resulting set is �see Fig� ��
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Let uHs be the solution of ����� for D 
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Thus we must investigate E�t�� The advantage of working with Hs instead of Ds is that
the iteration scheme below runs more easily� The following lemma is the key ingredient in
the iteration�
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where �s satis�es ���
�

Proof� Partition Q��� into the following sets �see Fig� ���
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�i� k kites U�k�sRscot�
�k
� ���

�ii� ��k � �� rectangles V �sRs� sLs��

�iii� The interior of Q��� minus �i� and �ii�� an open polygon with distance s�� to �Ds�

�iv� The remainder� which has measure zero�

�� By Lemma �� the contribution of �iii� is O�exp��s����
�t���
�� The contribution of �i� has two parts� �a� k � � kites contained in wedges W�k � �b� �
kites contained in wedges W�
�k � For �a� we can use Proposition � and Lemma � to get a
contribution
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The error estimate is the same as in the proof of Lemma �� but now with space scaled by a
factor s� For �b�� on the other hand� we use Proposition � and Lemma � to get
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Addition of ����������� yields the claim �recall ������

��� Derivation of the functional equation for the heat content

We are now in a position to derive a functional equation for the heat contained in Hs nH in
the model solution uHs �

Proposition � Fix k � � If 	 	 s 
 sk� then
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Proof� Split
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Z
Hsn�H	Q����
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The integral over Q��� was computed in Lemma �	 and equals the right hand side of ������
except for the �rst term� To estimate the integral over Hs n �H � Q����� note that this set
consists of k� � copies of Hs nH scaled by a factor s� say A�� � � � � Ak��� Each of these copies
has an edge ei connecting it to Q���� Let HAi be the half space such that �HAi � ei and

��



HAi � Q���� Put Fi 
 Ai �HAi � ei� Then Fi is a copy of Hs scaled by a factor s� Therefore
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Next� de�ne �see Fig� ��
Gi 
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with �� as in ������� This choice guarantees that G� nA� 	 Q���� We may now apply Lemma
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Now use ������ and Lemma �	 to get the claim�

��� Proof of the asymptotic expansion for the heat content

Proposition � allows us to derive the expansions formulated in Propositions � and � below�
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Proposition � Fix k 
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Proof� The same argument as in the proof of Proposition �� Because of the log�term one
needs to calculate one order further�

Combining Lemma �� Proposition � and ������� we obtain the expansions in Theorems �
and � Similarly for Theorem � via Proposition �� The terms with c��k� and d����k� cancel
and only those with c����k� remain� Moreover� ps 
 k�ps and the error terms are dominated
by the largest one carrying s��s
t in the exponent�

	 Study of ps

In this section we prove the properties of ps claimed in Section ��

��



��� Continuity

Proposition � For all k �  and 	 	 s 
 sk the function ps is continuous�
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Since the �rst two terms constitute a continuous function� we have by the same argument as
in �������� that
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Since x� was arbitrary� we have proved that d � 	�

��� Upper bound

In the following we abbreviate E��t� 
 EQ��t�� i�e�� the heat content at time t when D 
 Q�

in ������
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Proposition  Fix k 
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Proof� To prove ���������� recall the disjoint composition of Ds in ������ By �xing the
temperature at � on all the edges between the constituent k�gons� we get an upper bound
on the heat content� But in doing so we make all the k�gons heat up independently� In a
formula�

EDs�t� 
 E��t� �
�X
j��

k�k � ��j��s�jE�

� t

s�j

�
� ����	�

where s�jE��t
s
�j� is the heat content at time t of Q� scaled by a factor sj � We want to

extend the sum to all j � ZZ� This goes as follows�

Since

jfx � Q� � d�x� �Q�� 
 �gj 
 k
�
� � �� tan

��
k

��
�	 
 � 
 �

�
cot
��
k

�
�� ������

it follows from ��� Theorem ��� that

E��t� 
 minfjQ�j� �k���t� �� g �t � 	�� ������

Hence we have

�X
j���

k�k � ��j��s�jE�

� t

s�j

�

 �k����t�

�
�

�k � ��

�X
j��

�k � ���js�j 

�k�s���t�

�
�

�k � ��s� �
� �����

Combining this with ����	� we �nd� using that t�
ds
� 
 �k � ���y �

EDs�t� 
 E��t� � t��
ds
�

k

k � �

X
j�ZZ

��k� ��s��j
yE��s
��y��j� � O�t

�
� �� ������

Since E��t� 
 o�t��
ds
� �� the claim in ����� now follows with the help of the expansion in

Theorem ��

To prove ������ we let y � �	� �� be arbitrary and partition the sum in ����� into two parts�

k
k��

P�
j����k � ��s��j
yE��s��j��y� 
 k

k��

P�
j����k� ��s��j
y jQ�j 
 k

k��
jQ�j

���k���s�

k
k��

P�
j����k � ��s���j
yE��s�j��y� 
 �����

�
� k�s

s�k�����

������
�use that �
�k � �� 	 s 
 sk 	 �


p
k � ��� The last inequality uses �������

��



��� Lower bound

The derivation of a lower bound for ps requires some further notation� Suppose that D 	 IR�

is open and bounded� Suppose that �D� is a relatively open subset of �D and put �D�

�Dn�D�� Let w � �D��D�� �	���� IR be the unique �weak� solution of the heat equation

�w
�t 
 �w �x � D� t � 	�

w�x� 	� 
 	 �x � D�
w�x� t� 
 � �x � �D�� t � 	�
w�x� t� 
 	 �x � �D�� t � 	��

������

Then we have the following representation of w�

w�x� t� 
 Px�TD 
 t� B�TD� � �D��� ������

with �B�t� � t � 	� and TD as in Section �� De�ne the heat content

MD�t� 


Z
D
dx w�x� t�� ������

�Note that ������� is a special case of ������������ if �D� 
 �� then u 
 w andMD 
 ED��

Consider now the basic k�gon Q�� We choose �D� to be the subset of �Q� consisting of�
�a� � �closed� edge of �Q�� �b� the �closed� middle parts of length s of the remaining k � �
edges of Q� �i�e�� the parts of Q� where the k�gons of the next generation stick on�� For
D 
 Q� and this choice of �D�� �D�� abbreviate

M��t� 
MQ��t�� ������

Proposition � Fix k 
 � � � � � �� If �
�k� �� 	 s 
 sk� then

ps�log t� � k

k � �

X
j�ZZ

��k � ��s��j
yM��s
��j��y�� ����	�

where y 
 y�s� t� is de�ned as in ����
� Moreover�

ps � k��� s��

�����k � ��s��k� ��s� ��
� 	� ������

Proof� To prove ����	�� we keep the temperature at 	 on all the edges of the constituent
k�gons of Ds� This way we get a lower bound on the heat content and we again decouple the
heat conduction in the di�erent k�gons� In a formula�

EDs�t� �
�X
j��

k�k � ��j��s�jM�

� t

s�j

�
� ������

where s�jM��t
s�j� is the heat content at time t of Q� scaled by a factor sj �with the boundary
conditions as prescribed above�� Next note that M� 
 E�� We can therefore use the bound
in ������ to extend the sum in ������ to minus in�nity� Namely�

EDs�t� � t��
ds
�

k

k � �

X
j�ZZ

��k � ��s��j
yM��s
��y��j� � O�t

�
� �� �����

	



Comparing this with the expansion in Theorem �� we conclude that ps satis�es ����	��

To prove ������� we need a lower bound on M��t�� For this we use that

Px�TD 
 t� B�TD� � �D�� � Px�TD 
 t�� Px���D� 
 t�� ������

leading to
w�x� t� � uQ��x� t�� Px���D� 
 t� ������

and hence

M��t� � E��t��
Z
D
dx Px���D� 
 t�� ������

Since Q� is convex� we have

uQ��x� t� �
�

��t�
�
�

Z �

d�x��Q��
dq e�

q�

�t � ������

So� the �rst term in the right hand side of ������ can be estimated with the help of �������

E��t� � R
�� �

� cot�
�
k
�� djfx � Q� � d�x� �Q�� 
 �gj �

��t�
�
�

R�
 dq e�

q�

�t

� R
���� d� k

�
� � �� tan��k �

�
�

��t�
�
�
e�

��

�t


 �

�
�
�
kt

�
� � � tan��k �kt�

������

To estimate the second term in the right hand side of ������� we denote the k line segments
of �D� by �D��i �i 
 �� � � � � k�� where the numbering is such that j�D��ij 
 s �i 
 �� � � � � k���
and j�D��kj 
 �� Let x� be the orthogonal projection of x onto the line through �D��i� Then
we have

Px���D��i 
 t� 

���
��

�e�
jx�x� j�

�t �x� 
� �D��i�

�

��t�
�
�

R�
jx�x�j dq e

� q�

�t �x� � �D��i��
������

Integrating this over x � D� we obtainZ
D
dx Px���D��i 
 t� 
 �

�
�
�

j�D��ijt �� � ���t� ���	�

Putting ������� ������ and ���	� together� we arrive at

M��t� � �

�
�
�
�k � ����� s�t

�
� � �

�
�� � tan

�
�
k

��
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� �

�
�
�
�k � ����� s�t

�
� � ����k� ��t

�����

�the last inequality uses that k �  and tan��k � 

p
 	 ��
�� Note here that only �D�

contributes to the heat content M��t�� and that j�D�j 
 �k� ����� s��

Let t� 
 ���� s��
���
�
� ��� Then

M��t� � �

�
�
�

�k � ����� s�t
�
� �	 	 t 
 t��� �����

�



It now follows from ����� and ����� that

ps � k��� s�

�
�
�

X
fj�ZZ� sj���t

� �
�

� g

��k� ��s�j� ����

Let J be the unique integer such that sJ
� � t
� �

�
� � sJ
�� Evaluating the geometric series in

����� we obtain

ps � k���s�
�
�
�

��k���s�J��

�k���s��

� k���s�
�
�
� �k���s

t
ds��
�

�
�k���s��

� k���s�
�
�
� �k���s

t
�
�
�

�k���s��

�����

�recall ����� and note that 	 	 t� 	 ��� But the right hand side is precisely the bound
claimed�

Propositions ��� prove the claims about ps made in Theorems ��� since we have already
proved that ps is log��
s���periodic�


 Partition function� Theorems 	��

In this section we list some results for the partition function of our region Ds that are the
direct analogues of Theorems �� for the heat content� Proofs will be omitted�

Let �D be the Dirichlet Laplace operator for an open set D 	 IRm �m � ��� The partition
function for D is de�ned by

ZD�t� 

Z
D
dx pD�x� x� t�� �����

where pD�x� y� t� is the corresponding heat kernel� The asymptotic behaviour of ZD�t� as t � 	
is well understood if D is bounded and �D is smooth� Moreover� if m 
 �� D is bounded and
connected� and �D is a �nite polygon� then

ZD�t� 

jDj
��t

� j�Dj
���t�

�
�

�
NX
i��

�� � ��i
����i

�O�e�
r
t �� �����

where ��� � � � � �N are the interior angles at the vertices of �D� and r is some strictly positive
constant depending on D �see ����� ��	� p� ��� and ����� This is to be compared with �����

In the three theorems below� ds is the similarity dimension de�ned in ����� and rs is the
error exponent given by ������� Recall also ����� and ����	��

Theorem 
 Let k 
 � � � � � � and �
�k � �� 	 s 
 sk� Then

ZDs�t� 

jDsj
��t

� qs�log t�
�

t
ds
�

� k��� s�

�� �k � ��s

�

���t�
�
�

� k � �

�k � ���
�O�e�

rs
t �� ����

with qs a log��
s���periodic� continuous and strictly positive function�

�



Theorem � Let k 
 � � � � � � and s 
 �
�k � ��� Then

ZD �
k��

�t� 


			D �
k��

			
��t � k�k���

�k��� log�k���
�

����t�
�
�
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�
�
t

�
� q �
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�log t� �

t
�
�
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�O�e�
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with q �
k��

a log��k � �����periodic and continuous function�

Theorem � Let k 
 � � � � � � and 	 	 s 	 �
�k� �� or k 
 �� �	� � � � and 	 	 s 
 sk� Then

ZDs�t� 

jDsj
��t

� k��� s�

�� �k � ��s

�

���t�
�
�

� qs�log t�
�

t
ds
�

� k � �

�k � ���
�O�e�
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t �� �����

with qs a log��
s���periodic and continuous function�

The interpretation of the various terms is similar as in Theorems ��� The proof of Theorems
��� follows the line of Sections ��� The positivity of qs in Theorem � follows directly from
the results in ����

A basic tool in the proof is the following� For t � 	� let �Ct�s� � s � �	� t�� be the standard
Brownian bridge on IR� de�ned by

Ct�s� 
 B�s� � s

t
B�t� �s � �	� t��� �����

Let P t
xx denote its probability law given C�	� 
 x� Then the analogue of ���� reads

pD�x� x� t� 

�

��t
P t
xx�fCt�s� � s � �	� t�g � �D 
 �� �x � D�� �����

For example� Lemma � has the following analogue�

Lemma �� For 	 	 � 	 � and R � 	�

�
��t

R
W��R� dx P t

xx�fCt�s� � s � �	� t�g � �W�
� �
 ��


 R�

��t

R �
� dw ��� w��

�
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�Rw��

t �
h
�����
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����
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	��
��cot

�
��

�
�

�i
�O

�
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	R sin�
�
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�

�t

�
�

�����

The computations again rely on the Kontorovich�Lebedev representation of the Dirichlet heat
kernel in polar coordinates �see �����
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Fig� �� Three iterations in the construction of Ds for k 
  �see ����� and �������
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Fig� �� The kite U��R� de�ned in �����
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Fig� � The sets C

� �R� and C

�
� �R� de�ned in �����

O

γ/
2 γ/

2

R

R

�



Fig� �� The sets D
�R�L� and D��R�L� de�ned in ������
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Fig� �� Partition of Q� for k 
 � �and for the special case Rs 

s
�� in the proof of Lemma �

in Section ����
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Fig� �� The set Hs for k 
 � de�ned in ������ �two iterations��
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