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Abstract

Consider the Cauchy problem �u�x� t���t � Hu�x� t� �x � ZZd� t � �� with initial condition
u�x� �� � � and with H the Anderson Hamiltonian H � ����	 Here � is the discrete Laplacian

� � ����� is a di�usion constant
 and � � f��x�� x � ZZdg is an i	i	d	 random eld taking values
in IR	 G�artner and Molchanov ������ have shown that if the law of ���� is nondegenerate
 then
the solution u is asymptotically intermittent	 This means that limt��hu���� t�i�hu��� t�i� � �

where h�i denotes expectation w	r	t	 �
 and similarly for the higher moments	 Qualitatively their
result says that
 as t increases
 the random eld fu�x� t�� x � ZZdg develops sparsely distributed
high peaks
 which give the dominant contribution to the moments as they become sparser and
higher	

In the present paper we study the structure of the intermittent peaks for the special case where
the law of ���� is �in the vicinity of� the double exponential Prob����� � s� � exp��es��� �s � IR�	
Here � � ����� is a parameter that can be thought of as measuring the degree of disorder in
the ��eld	 Our main result is that
 for xed x� y � ZZd and t � �
 the correlation coe�cient of
u�x� t� and u�y� t� converges to kw�k

��
��
P

z�ZZd w��x � z�w��y � z�	 In this expression
 � � ���

while w�� ZZ
d � IR� is given by w� � �v��

�d with v�� ZZ� IR� the unique centered ground state
of the ��dimensional nonlinear equation �v � ��v log v � � �ground state means the solution in
	��ZZ� with minimal l��norm�	 Qualitatively our result says that the high peaks of u have a shape
that is a multiple of w� relative to the center of the peak	

It will turn out that if the right tail of the law of ���� is thicker �or thinner� than the
double exponential
 then the correlation coe�cient of u�x� t� and u�y� t� converges to 
x�y �resp	
the constant function ��	 Thus
 the double exponential family is the critical class exhibiting a
nondegenerate correlation structure	
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� Introduction

��� The parabolic Anderson model

Consider the Cauchy problem

�
�t
u�x� t� � Hu�x� t� �x � ZZd� t � 	�

u�x� 	� � �
�	���

with H the Anderson Hamiltonian

H � ��� �� �	�
�

Here � is the discrete Laplacian� � � �	��� is a di�usion constant� and
� � f��x��x � ZZdg �	���

is an i�i�d� random �eld taking values in IR� As an operator� H only acts on the spatial
variable�

��u��x� t� �
P

y�jy�xj��
�u�y� t�� u�x� t��

��u��x� t� � ��x�u�x� t��
�	��

Note that H has two competing parts�

��� a di�usive part ��� which tends to make u spatially �at�

�
� a multiplicative part �� which tends to make u spatially irregular�

�H is the so�called �tight�binding Hamiltonian with diagonal disorder� considered in An�
derson ��������

Depending on � and on the marginal law of �� the equation in �	��� can be used to
model various physical and chemical phenomena� For instance� t� fu�x� t��x � ZZdg may
describe the evolution of the density �eld of a chemical component in a catalytic reaction
�Zel�dovich ������ or the average occupation �eld in a system of particles that branch
and migrate �Dawson and Ivano� �������� In these examples the role of � is to act as a
spatially inhomogeneous local rate of catalysis resp� branching� Other applications are�
Fisher�Eigen equation in Darwinian evolution �Ebeling et al� ������� Burgers� equation
with a random force in hydrodynamics �Carmona and Molchanov �������

The following result gives a su�cient condition on � to ensure that �	��� is actually
applicable to such concrete situations� Let h�i denote expectation w�r�t� the ���eld� Let
Z � fZ�t�� t � 	g denote simple random walk on ZZd jumping at rate 
d� �i�e�� the Markov
process with generator ���� Write Px� Ex to denote probability and expectation on path
space given Z�	� � x�

�



Proposition � �G�artner and Molchanov �����		 If

��
���	�

log ���	�

�d�
�� with ���	� � ��	� 	 e� �	���

then ����	 has a unique nonnegative solution �
a�s� This solution admits the Feynman
Kac
representation

u�x� t� � Ex

�
exp

� Z t

�
��Z�s��ds

��
� �	���

Moreover� for all t � 	 the random �eld fu�x� t��x � ZZdg is stationary and ergodic under
translations�

The proof of Proposition �� which is based on ideas from percolation� shows that in
dimension d � 
 condition �	��� is in fact necessary� if �	��� fails then a�s� there is no
nonnegative solution to �	����

��� Intermittency

A discussion of some mathematical problems related to �	��� can be found in the recent
memoir by Carmona and Molchanov ������ In the present paper we shall be concerned
with one particular aspect of �	���� namely the occurrence of intermittency�

We shall henceforth assume that the cumulant generating function of the ���eld is �nite
on the positive half axis�

H�t� � loghet����i �� for all t � 	� �	���

It is easily seen from the representation in �	��� that assumption �	��� is equivalent to all
moments and correlations of the u��eld being �nite for all times �see also Lemmas � and

 in Section ���

De�nition Let

 k�t� � loghuk�	� t�i �k � �� 
� � � ��� �	���

The system ����	 is said to be intermittent if �

lim
t��

�
 l�t�

l
�  k�t�

k

	
�� for all l � k � �� �	���

Qualitatively� �	��� means that the u��eld develops sparsely distributed high peaks as t
increases� These peaks give the dominant contribution to the moments as they become
sparser and higher� Thus the landscape formed by u is so irregular that the a�s� growth at
a �xed site di�ers from the average growth in a large box�

�It is easily checked that ���� holds for all l � k � � i� it holds for k � �� l � � �G�artner and Molchanov
����� Section ���





As is evident from �	���	�
�� peaks tend to grow in the vicinity of where the ���eld is
large �at a rate proportional to the �eld�� but tend to be �attened out by the di�usion�
By analogy with the theory of Anderson localization �see e�g� Fr�ohlich et al� �������� one
may expect to �nd from a spectral analysis of the operator in �	�
� that the e�ect of the
randomness in the ���eld qualitatively dominates the e�ect of the di�usion term ��� This
is indeed the case� as expressed by the following result�

Proposition � �G�artner and Molchanov �����		 If

��	� 
� constant� �	��	�

then ����	 is intermittent�

��� Correlation structure� ��� and Theorems �	�

Our goal in this paper is to show that there is a qualitative change in the structure of the
intermittent peaks when the law of ��	� is �in the vicinity of� the double exponential

Prob���	� � s� � exp��es��� �s � IR�� �	����

Here � � �	��� is a parameter that can be thought of as measuring the degree of disorder
in the ���eld� because the density associated with �	���� rapidly drops to zero outside the
interval ���� ��� Our main result� Theorem � below� gives the correlation coe�cient of
u�x� t� and u�y� t� for x� y � ZZd �xed and t��� We shall see that what this result says is
that the intermittent peaks have a particular asymptotic shape that depends on the ratio
��� �see Section 	����

To formulate Theorem � we introduce the following ��dimensional nonlinear di�erence
equation�

��� �v � 
	v log v � 	�
v� ZZ� IR� � �	���� 	 � ����

We shall be interested in the ground states of ���� i�e�� the solutions in l��ZZ� with minimal
l��norm�

Theorem � Fix �� � � �	��� and put 	 � ���� Suppose that the law of ��	� is given by
�����	� If there exists a v�� ZZ� IR� such that

A�� v� is a ground state of ����
A� all other ground states are translations of v��

then for any x� y � ZZd

lim
t��

hu�x� t�u�y� t�i
hu��	� t�i �

�

kw�k���
X
z�ZZd

w��x� z�w��y � z�� �	��
�

where w�� ZZ
d � IR� is given by

w� � �v��
�d� �	����

�



Theorem �� which will follow from Theorem � in Section 	��� gives us a precise descrip�
tion of the correlation structure of the intermittent peaks provided assumptions A��A

are met� However� the veri�cation of these assumptions is a nontrivial problem� due to the
discrete nature of ���� As a partial result we can o�er the following theorem� which will
be proved in Section ��

Theorem � Let V� � fv�� ZZ� IR�� v� is a ground state of ���g�
I� For all 	 � �	����

��	 A� holds� i�e�� V� 
� ��
�	 V� is compact in the 
�
metric modulo shifts� �

��	 For every centered v� � V�� 	

�i	 either v��x� � v��	� for all x 
� 	 �single
point maximum	 or v��x� �
v��	� � v���� for all x 
� 	� � �double
point maximum	�

�ii	 v� is strictly unimodal� i�e�� strictly monotone left and right of its maximum�

�iii	 v��x� ���v��x� � ���
	x log x� �x���� and similarly for x����

II� For 	 su�ciently large�

��	 A holds� i�e�� V� is a singleton modulo shifts�

��	 The centered v� has a single
point maximum and is symmetric�

III� For any centered family �v��������� with v� � V��
��	 lim��� v� � �� pointwise�

��	 lim��� v��bx�p	c� � exp������ x��� in L��IR� and uniformly on compacts in IR
�where b�c denotes the integer part	�

Our estimates in Section � show that Theorem 
II holds when 	 � 
� log�� � e����
Possibly it holds for all 	 � 	� but we are unable to prove this� See Section 	�� for a
description of numerical work� 


Note that Theorem 
I����iii� implies

v��x� � exp���� � o����jxj log jxj� �jxj � ��� �	���

�For v � l��ZZ	 let �v� � fv�� � x�x � ZZg be the equivalence class given by the translations of v� For
V � l��ZZ	 let �V� � f�v�� v � Vg be the set of equivalence classes of V� We equip �l��ZZ� with the metric
k�u�� �v�k�� � infx�ZZ ku��� v�� � xk�� � The statement in Theorem �I�� means that �V�� is compact in
the topology induced by this metric�

�We call v � l��ZZ centered if v�� � maxx v�x and v�x � v�� for x � ��
�The continuous version of �� is trivial� In fact	 v�����v log v � � for v� IR� IR� has only one solution

in L��IR �modulo translations	 namely v��x � exp��
�
��� �x��� Indeed	 multiply by v� to see that any

solution satis�es �

�
�v�� � �v��log v � �

�
 � A �A � IR� If v � L��IR	 then necessarily A � � �compatible

with v�x� v��x � � as jxj � 	� Substitute v � exp�f to get �

�
�f �� � ��f � �

�
 � �� The �twice

continuously di�erentiable solution is f�x � �

�
� �

�
��x �B� �B � IR�

�



So� in particular� w� de�ned in �	���� is an element of 
��ZZ
d�  
��ZZd��

Remarks

�A� The proof in Sections 
� will show that we do not require the law of ��	� to be
given precisely by �	����� What we actually need is that H�t� de�ned in �	��� has
the following asymptotic property�

lim
t�� tH ���t� � � for some � � �	���� �	����

The parameter � in �	���� takes over the role of � in �	����� For the double exponential
in �	���� we have H�t� � log !��t� ��� which indeed satis�es �	�����

�B� The proof in Sections 
� will also show that if limt�� tH ���t� � 	 or �� then
the l�h�s� of �	��
� is the constant function � resp� �x�y �compatible with Theorem

III�� Thus� the distributions characterized by �	���� form the critical class with an
interesting correlation structure�

��
 A variational problem� ���� and Proposition �

In view of �	���� it is no surprise that the proof of Theorem � uses large deviation theory
and that the nonlinear equation ��� comes from an associated variational problem� We
shall formulate this variational problem here� In Section 	�� it will reappear in Theorem
�� which describes the asymptotic behavior of the ��st and 
�nd moments of the �eld
fu�x� t��x � ZZdg and which is a re�nement of Theorem ��

Let Pd � P�ZZd� denote the set of probability measures on ZZd� On Pd de�ne the
functionals

Id�p� �
X

fx�yg�jx�yj��

�q
p�x��

q
p�y�

��

�	����

Jd�p� � �X
x

p�x� log p�x�� �	����

De�ne

���� ��	� � �
�d infp�Pd

fId�p� � 	Jd�p�g�

We have 	 � ��	� � � �because Id� Jd � 	 resp� Id���� � 
d� Jd���� � 	�� Moreover�
	� ��	� is nondecreasing and concave with limits lim��� ��	� � 	 resp� lim��� ��	� � ��

The following proposition will be proved in Section ��� and provides the link between
��� and �����
Proposition � For all 	 � �	����
��	 ���� has a minimum�
�	 p is a minimizer of ���� i� p � �d

i���v
�
i �kvik���� with vi any ground state of ����

��	 ��	� � 	 log kvk�� with v any ground state of ����

�



Note that ��	� does not depend on the dimension d� Theorem 
III��� and Proposition
���� imply that ��	� � �



�log���	� � log�e�� � o���� �	� 	�� Thus � has in�nite slope at

	 � 	�

��� Asymptotics of the ��st and ��nd moments� Theorem �

The ��function appears in the following asymptotic expansions� Recall the de�nition of H
in �	��� and of w� in �	�����

Theorem � Fix �� � � �	��� and put 	 � ���� Suppose that the law of ��	� satis�es
�����	 and suppose that A��A in Theorem � hold� Then for x� y � ZZd �xed and t��

hu�x� t�i �
� X

z�ZZd
w��x� z�

	

� exp
�
H�t�� ��	�
d�t� C��	� �t� � o���

�
�	����

hu�x� t�u�y� t�i �
� X

z�ZZd
w��x� z�w��y � z�

	

� exp
�
H�
t�� ��	�d�t� C��	� �t� � o���

�
� �	����

where C��	� �t�� C��	� �t� are functions of order o�t� that are independent ��	 of x� y�

Theorem �� which will be proved in Sections 
�� obviously implies Theorem �� It
is crucial that the expansions in �	����	���� are independent of x� y up to the error term
o���� The dependence on x� y sits solely in the prefactors� We shall see in Section 
 that
the functions C�� C� are in fact very sensitive to the precise form of the function H� but
that the prefactors only depend on the asymptotic behavior of H assumed in �	����� It is
beyond the scope of the present paper to identify C�� C��

�� Discussion

The double exponential is nondegenerate and so� according to Proposition 
� the u��eld is
intermittent� This means that the k�th moment is controlled by a di�erent class of peaks
for each k� Moreover� as k increases the peaks in the �k�class� become sparser but higher
�recall �	���	�����

For t large but �xed� the ergodic theorem tells us that the ratio of 
�nd moments
appearing in the l�h�s� of �	��
� essentially counts how often two peaks in the class k � 

are seen at a relative distance y � x resp� 	 in a large box� In other words� if we think of
the peaks as located on random islands� then the ratio essentially counts the pairs of sites
in a large box that are at distance y � x resp� 	 and both belong to an island� It is in this
sense that the correlation structure established in Theorem � is related to the typical size
of the islands�

�



Peaks grow in the vicinity of where the ���eld is large� but are not fully localized on
the local maxima of � because the di�usion term �� has a tendency to spread them out�
Now� the double exponential de�ned in �	���� makes a sharp drop beyond the value ��
Therefore� the larger � the larger the local maxima of � and hence the more localized the
peaks� On the other hand� the larger � the faster the di�usion and hence the less localized
the peaks� Theorem � shows that� apparently� it is the parameter 	 � ��� that controls
the size of the islands� More speci�cally� if c��x� y� denotes the r�h�s� of �	��
�� then we see
from Theorem 
III that

lim
��� c��x� y� � �x�y �x� y � ZZd�

lim
���

c��bx�p	c� by�p	c� � e�
�
� jx�yj� �x� y � IRd��

�	�
	�

The second statement says that an island in the class k � 
 has widths in the d lattice
directions that are of order ��

p
	 for small 	� In other words� the long�time correlation

length of the u��eld is of order ��
p
	 for small 	�

The result in Theorem � should be interpreted as follows� Let the highest peaks in
the islands corresponding to the classes k � �� 
 have heights h��t�� h��t� and densities
d��t�� d��t�� If x��t�� x��t� denote the centers of some randomly chosen peaks� then �	����
	���� tell us that

k � � � u�x��t� � x� t� �
w��x�

w��	�
h��t� �	�
��

k � 
 � u�x��t� � x� t� �
w��x�

w��	�
h��t� �	�

�

and

d��t�h��t� � w��	� exp
�
H�t�� ��	�
d�t� C��	� �t� � o���

�
�	�
��

d��t�h
�
��t� � w�

��	� exp
�
H�
t�� ��	�d�t� C��	� �t� � o���

�
� �	�
�

In other words� modulo an unknown height and an unknown density� the peaks have a
non
random shape that is given by w� for both classes� �The same result holds for the
classes k � �� but these will not be considered in the present paper��

Thus� the results in Theorems ��� give us a picture of the correlation structure of
the u��eld that is much more detailed than the notion of intermittency� Indeed� while
intermittency tells us that the peaks occur on sparse islands� our result tells us that the
peaks

��� contract to single points when 	 ���
�
� grow unboundedly when 	 � 	�

��� develop an interesting �nite structure when 	 � �	����

�



��� Numerical study of ���

For each 	 � �	��� there are two centered symmetric solutions of ���� one with a single�
point maximum and one with a double�point maximum� Let v��� and v��� denote these
solutions� respectively� Then

v����	� � v������ � v����
� � � � � v�����x� � v����x� �x � ZZ�
v����	� � v������ � v����
� � � � � v�����x� � v����x� �� �x � ZZ�� �	�
��

Now� we may ask which of these two solutions has the smaller l��norm and whether there
exist values of the parameter 	 for which the norms coincide� We have done high pre�
cision computations with the package Mathematica� These strongly indicate that always
kv���k�� � kv���k��� although for small values of 	 the di�erence �� � kv���k��� � kv���k��� is
extremely small�

	 
 � 	�� 	�
� 	�� 	�	�
kv���k��� 
�� ��� ���� ��� ���� 
���

�� ���� �	�� ���� �	�� ��
� �	�
 ���� �	��� 
�� �	�	� ���� �	��	

If there would be no other candidates for the centered solution of ��� with minimal l��
norm �which we do not know"�� then these numerics would lead us to the conclusion that
for all 	 � �	��� the minimal l��solution of ��� is uniquely given by v��� modulo shifts �i�e��
Theorem 
II would hold for all 	 � �	����� Therefore� theoretically� the high peaks of the
u��eld contributing to the moments have a unique shape determined by v���� as explained
in Section 	��� However� practically� for small 	 also the peaks with shape v��� have to be
taken into account� unless the time is extremely large�

Let us brie�y explain our numerical algorithm� which is based on the following obser�
vation� The symmetric solutions of ��� corresponding to an initial datum v�	� are� �i� not
strictly decreasing when v�	� is small� �ii� not everywhere strictly positive when v�	� is
large� The algorithm varies v�	� until both of these failures are removed �as is required
by Theorem 
I����i�ii��� Given an initial datum v�	�� we compute v���� � � � � v�N� �with N
ranging from 
� to �� depending on 	� by the following rules�

v��� �� v�	���� 	 log v�	�� for the single�point maximum�

v��� �� v�	� for the double�point maximum�

v�n� �� �� v�n��
� 
	 log v�n��� v�n� ��� if v�n� � 	�

v�n� �� �� v�n�� if v�n� � 	�

for n � �� � � � � N � �� The correct initial datum v�	� is then computed by using the
following interval approximation� We start with the interval �a�� b�� �� ��� 
� and take
v�	� �� �a� � b���
� Then we compute v���� � � � � v�N� in accordance with the above rules�
If this sequence of numbers is not strictly decreasing or if v�N� � 	� then we put a� ��
�a� � b���
 and b� �� b�� Otherwise we put a� �� a� and b� �� �a� � b���
� We then take
v�	� �� �a� � b���
� etc� This process is iterated m times until bm � am becomes less than
�	�����

�	



��� Related work

As a further reference to intermittency we mention the following papers� Antal ������
studies the survival of simple random walk on ZZd in a random �eld of traps with density
c � �	� ��� This model is equivalent to �	��� when ��	� takes the values �� and 	 with
probability c resp� � � c �as can be seen from �	����� His analysis shows that at time t
the �islands� have a size of order t���d���� Greven and den Hollander ����
� and Sznitman
����� study models related to �	��� when a drift is added to the di�usive part �� and the
���eld is bounded� It turns out that in this situation there is a critical value for the drift�
below which the a�s� exponential growth rate and the box�averaged exponential growth
rate are the same but above which they are not� This fact indicates that for a bounded
���eld the occurrence of intermittency depends on the strength of the drift�

Finally� Bolthausen and Schmock �preprint ���� study simple random walk on ZZd

with a self�attractive interaction inversely proportional to time� which technically leads to
similar questions� They show that this process is localized and has a limit law that can be
identi�ed in terms of a variational problem and an associated nonlinear di�erence equation
similar in nature to our ���� and ���� We have picked up several ideas from their paper�
although the functionals arising in our context require a modi�ed approach�

The outline of the rest of this paper is as follows� In Section � we give a heuristic
explanation of Theorem �� In Section 
 we formulate the main steps in the proof of
Theorem � by listing six key propositions� These propositions are proved in Sections ���
In Section � we prove Theorem 
 and Proposition �� Theorem � is implied by Theorem ��
as was pointed out above�

� Heuristic explanation of Theorem �

In this section we explain where �	����	���� come from� We give a heuristic argument show�
ing how the quantity ��	� arises from large deviations of local times associated with our
simple random walk Z � fZ�t�� t � 	g� and how the higher order terms in the expansions
require an analysis of the corrections to large deviations�

��� Expansion for the ��st moment

Return to the Feynman�Kac representation �	���� De�ne the local times


t�z� �
Z t

�
�fZ�s��zgds �z � ZZd� t � 	�� �����

Lemma � For all x � ZZd and t � 	

hu�x� t�i � Ex

�
exp

� X
z�ZZd

H�
t�z��
��
� ���
�

��



Proof Use ����� to rewrite �	��� as u�x� t� � Ex�exp�
P

z ��z�
t�z���� Take the expectation
over �� use Fubini�s theorem� and use �	��� in combination with the i�i�d� property of �� �

Since
P

z 
t�z� � t� the exponent in ���
� may be rewritten as

X
z

H�
t�z�� � H�t� � t
X
z

�

t

�
H
�

t�z�

t
t
�
� 
t�z�

t
H�t�

�
� �����

Now� H has the following scaling property �which is implied by �	������

lim
t��

�

t
�H�ct�� cH�t�� � �c log c uniformly in c � �	� ��� ����

It therefore seems plausible from ����� that as t��
X
z

H�
t�z�� � H�t� � t�
X
z


t�z�

t
log
�

t�z�

t

�
� o�t�� �����

Let Lt denote the occupation time measure associated with Z� i�e��

Lt��� � 
t���
t

� �����

Then� recalling the de�nition of the functional Jd in �	����� we see that the sum in the
r�h�s� of ����� equals �Jd�Lt�� Substituting ����� into ���
� we thus get

hu�x� t�i � Ex

�
exp

�
H�t�� t�Jd�Lt� � o�t�

��
� �����

Next� according to the Donsker�Varadhan large deviation theory� Lt satis�es the weak
large deviation principle on Pd with rate function �Id� where Id is the functional in �	����
�Deuschel and Stroock ������� Theorem ��
����� Thus it seems plausible from ����� that
as t��

hu�x� t�i � exp
�
H�t�� t inf

p�Pd
f�Id�p� � �Jd�p�g� o�t�

�
� �����

The in�mum in the exponent is precisely ������
d�� with � de�ned in ����� So this
explains the �rst two terms of the expansion in �	�����

A rigorous proof of ����� is given in G�artner and Molchanov �preprint ������ The proof
uses a standard compacti�cation method�

�i� Pick a large box TN � ��N�N �d � ZZd�
�ii� Get an upper bound on hu�x� t�i by wrapping the random walk around TN � i�e�� de�ne


Nt �z��
P

z���NZZd 
t�z � z�� �z � TN� and use that
P

z�ZZd H�
t�z���
P

z�TN H�
Nt �z��
�because H�	� � 	 and t� H�t� is convex��

�iii� Get a lower bound on hu�x� t�i by killing the random walk at the boundary of TN �
i�e�� add the indicator of the event that 
t�z� � 	 for all z � �T c

N � �TN��

�




�iv� Use the full large deviation principle for LN
t ��� � 
Nt ����t on TN � This leads to an

expansion as in ������ but with an N �dependent upper resp� lower variational problem�
In these variational problems the same functionals as in �	����	���� appear� but now
de�ned for p � Pd�TN� with periodic resp� Dirichlet boundary condition�

�v� Let N �� and show that both variational problems converge to �����
To get the full expansion in �	���� we need to go one step further and show that the

term exp�o�t�� in ����� is actually fPz w��x� z�g exp�C��	� �t� � o����� To achieve this we
must analyze the corrections to the large deviation behavior of Lt� This will be done in
Sections 
� and amounts to studying the local times of a transformed random walk� chosen
in such a way that its occupation time measure performs random �uctuations around the
minimizer w�

��kw�k��� of our variational problem ���� �modulo shifts�� More precisely� we
consider the random walk

Z� � fZ��s�� s � 	g �����

whose generator G� is

�G�f��x� � �
X

y�jy�xj��

w��y�

w��x�
�f�y�� f�x�� ����	�

considered as a self�adjoint operator on 
��ZZd�w�
��kw�k����� The crucial point is that the

invariant probability measure of Z� is precisely w�
��kw�k��� � The absolute continuous trans�

formation from Z to Z� gives rise to the prefactor in �	���� and to the �rst two terms in
the expansion� The higher order terms in the expansion are therefore determined by the
�uctuations of Lt under the law of Z�� The details are worked out in Sections 
��

Note that Z� has a drift towards 	 that increases rapidly with the distance to 	 �see
�	���� and Theorem 
I����iii��� Thus it has strong ergodic properties�

��� Expansion for the ��nd moment

The heuristic explanation of �	���� is in the same spirit� This time the starting point is
the following analogue of Lemma ��

Lemma � For all x� y � ZZd and t � 	

hu�x� t�u�y� t�i � Ex�y

�
exp

� X
z�ZZd

H�#
t�z��
��
� ������

where Ex�y � Ex � Ey and

#
t��� � 
�t ��� � 
�t ��� ����
�

is the sum of the local times of two independent copies of Z starting at x resp� y�

��



Proof Same as for Lemma �� Use �	���� �

An argument similar to ��������� produces the �rst two terms of the expansion in �	�����
Namely� the analogue of ����� reads

hu�x� t�u�y� t�i �

exp
�
H�
t�� 
t inf

p��p��Pd

�
��
�

�
Id�p�� � Id�p��

�
� �Jd

�
�
�
�p� � p��

�	
� o�t�

�
�
������

Because p � Jd�p� is strictly concave� the in�mum reduces to p� � p� � p with p � Pd�
which again equals ������
d� �see G�artner and Molchanov �preprint ����� for a rigorous
proof�� To get the full expansion will amount to studying the occupation time measure

#Lt��� � �


t
#
t��� �����

associated with two independent copies of the transformed random walk Z� de�ned in �����
���	�� The details are worked out in Sections 
�� Again� the prefactor and the �rst two
terms in �	���� arise through the absolute continuous transformation from Z to Z�� the

higher order terms through the �uctuations of #Lt under the law of the two copies of Z��

� Main propositions

In this section we outline the main steps in the proof of �	���� in Theorem �� These
steps are formulated as Propositions �� in Sections 
���
�� below� The proof of these
propositions will be given in Sections ��� the proof of �	���� subject to these propositions
in Section 
��� It will become clear from the whole construction that �	���� in Theorem
� holds too� namely� via a straightforward simpli�cation of the arguments given below to
one instead of two random walks �compare Lemmas � and 
��

Our starting point is Lemma 
� which gives us a representation for hu�x� t�u�y� t�i in
terms of H� the cumulant generating function of the ���eld� and #
t � 
�t � 
�t � the sum
of the local time functions of two independent simple random walks with step rate 
d��
Throughout the sequel it will be assumed that H satis�es the condition in �	����� For ease
of notation we shall abbreviateX

z�ZZd
H�#
t�z�� � H � #
t� �
���

Throughout Sections 
� assumptions A��A
 in Theorem � are in force�

��� Clumping of the local times� Proposition 


Proposition  below states that the asymptotic behavior of the 
�nd moments is controlled
by paths whose occupation time measure #Lt � #
t�
t is close to a minimizer of ����� This
property will allow us in Section 
�
 to truncate ZZd�

�



LetM denote the class of minimizers of ����� By assumptions A��A
 in Theorem � in
combination with Proposition ��
�� M is a singleton modulo shifts�

For � � 	� de�ne

U	 � f� � P�ZZd�� k�� �k�� � � for some � � Mg� �
�
�

Proposition � Fix x� y � ZZd� For every � � 	 there exists a � � 	 such that

Ex�y

�
exp�H � #
t��

�
�


t
#
t � U	

	�
� ��� e�
t�Ex�y

�
exp�H � #
t�

�
�
���

for all t � 	�

The proof of Proposition  is in Section ��� and is di�cult for the following reason� From
the full large deviation principle on the box TN � ��N�N �d � ZZd we know that for large t
the periodized occupation time measure� de�ned by #LN

t �z� �
P

z���NZZd
#Lt�z� z�� �z � TN��

is close to a minimizer of the periodized variational problem �see Section ����� However�
this does not imply that #Lt is close to a minimizer of ����� Essentially� what we must
show is that the main contribution comes from paths whose local times are concentrated
in one large box and not in two or more boxes separated by some distance� Namely� this
precisely guarantees that #Lt is close to #LN

t modulo a shift� We can then use the full large
deviation principle on TN � and Proposition  will follow by showing that the minimizers of
the periodized variational problem are close to the minimizers of ���� when N is large�

��� Centering and truncation of the local times� Proposition �

For � � 	 and z � ZZd� de�ne �see footnote ��
U	�z� � f� � P�ZZd�� k�� �k�� � � for some � � M centered at zg� �
��

By Theorems 
I�
� and 
I����i�� the U	�z��s for di�erent z�s are disjoint when � is small
enough� Write out

Ex�y

�
exp�H � #
t��f �

�t
#
t � U	g

�

�
P

z�ZZd
Ex�y

�
exp�H � #
t��f �

�t
#
t � U	�z�g

�

�
P

z�ZZd
Ex�z�y�z

�
exp�H � #
t��f �

�t
#
t � U	�	�g

�
�

�
���

Proposition � below is an estimate on the x� y�dependence of the summand in the r�h�s�
of �
���� This estimate implies that the summation over z and the limit t � � may be
interchanged� This will allow us in Sections 
���
�� to �rst compute the asymptotics of
the summand for �xed x� � x � z� y� � y � z and t � � and afterwards carry out the
summation over z�

��



Proposition � There exist A�� � 	 and t�� ��� R� � 	 such that

Ex�y

�
exp�H � #
t��

�
�


t
#
t � U	�	�

	�
� Ae���jxj�jyj�E���

�
exp�H � #
t�

�
�
���

for all t � t�� all 	 � � � �� and all x� y �� TR� �with jxj the lattice norm of x	�

The idea behind this estimate is that when the two random walks are forced to build up
their local times in the neighborhood of the origin� then this will be harder to do when
they start far away from the origin then when they start at the origin�

The prefactor in the r�h�s� of �
��� is summable over x� y �� TR�� showing that the remote
terms in the r�h�s� of �
��� are negligible uniformly in t�

Let v�� ZZ� IR� be the unique centered ground state of ���� Let w�� ZZ
d � IR� be the

product function w� � �v���d in �	���� and de�ne p� � w�
��kw�k���� Then� by assumptions

A��A
 in Theorem � in combination with Proposition ��
�� p� � Pd is the unique centered
minimizer of ����� Henceforth� instead of U	�	� we shall write U	�p��� the ��neighborhood
of p�� In Sections 
���
�� we shall be able to use Propositions  and � to expand H � #
t
around H � �
tp��� But before that we need some preparations�

��� Two time scales� Proposition 

In order to do the expansion we shall need an estimate in the spirit of Proposition � but
with two times 	 � t � T � For R � 	 de�ne

#�R � inffs � 	�Z��s� �� TR or Z
��s� �� TRg� �
���

Proposition � Fix x� y � ZZd� There exist A�� � 	 and T�� ��� ��� R� � 	 such that

Ex�y

�
exp�H � #
T ��

�
�
�T
#
T � U	�p��

	
�f#�R � tg

�

� AtRd��e��REx�y

�
exp�H � #
T �

� �
���

for all T � T�� all t � 	 with t�T � ��� all 	 � � � �� and all R � R��

Note that T takes over the role that t was playing in the previous propositions� and that
t is now used as an auxiliary time� We shall henceforth stick to this notation�

Proposition � states that the main contribution comes from paths that do not move
out of a large box before time t uniformly in the length T of the path�

Incidentally� the restrictions on t� �� x� y in Proposition � resp� T� t� �� R in Proposition
� are partly an artefact of our proofs in Sections ��
����� However� these restrictions will
not bother us in what follows�

��



��
 Transformation of the random walk� Proposition �

In order to exploit Propositions �� we shall make an absolute continuous transformation
from our reference random walk with generator �� to a new random walk whose generator
G� is chosen as in ����	�� The point is that G� has precisely p� � w�

��kw�k��� as its unique
invariant probability measure �see Section ���� Thus� under the law of the random walk
driven by G� and for large T � we have that L

i
T � 
iT�T �i � �� 
� are close to p� with

probability close to �� and hence so is #LT � #
T�
T � �L�
T � L�

T ��
� Write P
�
x�y � P �

x � P �
y

and E�
x�y � E�

x � E�
y to denote the joint probability and expectation for two independent

random walks driven by G� and starting at x resp� y�

Proposition 	 For all 	 � t � T � all ��R � 	 and all x� y � ZZd

Ex�y

�
exp�H � #
T ��

�
�
�T
#
T � U	�p��

	
�f#�R � tg

�

�
q
p��x�p��y� exp�H�
T �� ��	�d�T �

� E�
x�y

�
exp�FT �#LT ��

�p
p��Z��T ��p��Z��T ��

�f#LT � U	�p��g�f#�R � tg
�
�

�
���

where #�R is de�ned in ���	 and

FT �#LT � �
X
z

�
H�
T #LT �z��� #LT �z�H�
T �� 
T�#LT �z� log p��z�

	
� �
��	�

The proof of Proposition � is in Section ��� Think of FT as a �uctuation functional�
FT �p�� � o�T � as T � � because of ����� so in the r�h�s� of �
��� the contribution of
the expectation is of higher order than the prefactor� The point of Proposition � is that
the prefactor has precisely the form we are looking for in �	����� To complete the proof of
�	����� we must show that as T �� the expectation in �
��� becomes independent of x� y
up to and including order �� This will be described in Sections 
���
���

��� Separation of the time scales� Proposition �

Pick 	� t� T and split the occupation time measure as

#LT �
t

T
#Lt �

T � t

T
#Lt�T � �
����

where #Lt�T is the occupation time measure over the time interval �t� T �� Later we shall let

T �� followed by t��� The �rst limit will allow us to get #Lt�T close to p�� the second
limit will allow us to get rid of the x� y�dependence�

Proposition � below separates the contributions from #Lt and #Lt�T � We expand

FT �#LT � � FT

�
T�t
T
#Lt�T �

t
T
#Lt

�

� FT

�
T�t
T
#Lt�T

�
�
R �
� d�

�
t
T
#Lt�DFT �

T�t
T
#Lt�T � � t

T
#Lt�
�
�

�
��
�

��



Here� h�� �i is the standard inner product and DFT is the Fr$echet derivative of FT given by
�see �
��	��

DFT ����z� � 
TH ��
T��z���H�
T �� 
T� log p��z�� �
����

Using the identity
P

z
#Lt�z� � �� we may write�

t

T
#Lt�DFT ���

�
� 
t

�
H ��
T �� �


T
H�
T � �

�
#Lt� VT � � � � log

�

p�

��
�
���

with VT � IR
� � IR the potential

VT ��� � H ��
T���H ��
T �� � log � �
Z �T

�T�

du

u
�� � uH ���u�� �
����

and VT � � the composition of VT with �� �The reason for splitting terms as in �
��� is
that VT is small for large T �see �	������ Together with the trivial inclusions

f#Lt�T � U	��p��g  f#LT � U	�p��g  f#Lt�T � U	��p��g

for �� �
	��

��
 � �� �

	��

��
 and 	 � t

T
� �

�
����

valid when 	 � � � 	
�
� we obtain the following lower resp� upper bound for the expectation

in the r�h�s� of �
����

Proposition � Fix 	 � � � 	
�
� Let 	 � t � T and �i��� �� �i � �� 
	 be as in ����	� Then

for all R � 	 and all x� y � ZZd

E�
x�y

�
exp�FT �#LT ��

�p
p��Z��T ��p��Z��T ��

�f#LT � U	�p��g�f#�R � tg
�

��i���

��i���

P
�x��y�TR

P �
t �x� %x�P

�
t �y� %y�E

�
�x��y

�
�R

�
x� y� %x� %y� #LT�t� t� T

�

��
�
Z��T � t�� Z��T � t�� #LT�t� t� T

�
�f#LT�t � U	i�
�	��p��g

�
�

�
����

Here P �
t ��� �� is the transition kernel of the random walk driven by G� in �����	� while �R

and � are the functions given by

�R�x� y� %x� %y��� t� T �

� E�
x�y

�
exp

�

t
R �
� d�

�
#Lt� VT �

�
T�t
T
�� � t

T
#Lt

�
� � log

T�t
T

�� t
T
Lt

p�

��

��fsupp�#Lt�  TRg




 Z��t� � %x�Z��t� � %y

�

��#x� #y��� t� T �

� exp
�

t
�
H ��
T �� �

�T
H�
T �

��
exp

�
FT

�
T�t
T
�
��

�p
p��x�p��y�

�
����

��



for 	 � t � T � � � P�ZZd� and x� y� %x� %y� #x� #y � ZZd�
The proof of Proposition � is in Section �
� The point of Proposition � is that the

x� y�dependence sits all in the �rst three factors of the summand in �
�����

�� Loss of memory� Proof of Proposition �

Our last proposition shows that the �rst three factors of the summand in �
���� become
independent of x� y for T � �� and hence so does the expectation in the l�h�s� of �
�����
The reason for this is that the transformed random walk has a drift towards 	 that increases
rapidly with the distance to 	� so it has strong ergodic properties�

Proposition 
 ��	 For all t � 	� all R � 	� all 	 � � � �R � infz�TR p��z� and all
x� y � ZZd

lim inf
T��

inf
�x��y�TR

inf
�U��p��

�R�x� y� %x� %y��� t� T �

�
�
�� 	

	R

��t�

inf
�x��y�TR

P �
x�y

�
supp�#Lt�  TR





 Z��t� � %x�Z��t� � %y
�

lim sup
T��

sup
�x��y�TR

sup
�U��p��

�R�x� y� %x� %y��� t� T �

�
�
� � 	

	R

��t�

�

�
����

�	 For all x � ZZd

lim
t�� sup

j�xj�o�t� log t�





P
�
t �x� %x�

P �
t �	� %x�

� �




 � 	� �
�
	�

��	 For all x� y � ZZd

lim
t�� infp

t� log log t�o�R�
R�o�t� log t�

inf
�x��y�TR

P �
x�y

�
supp�#Lt�  TR





 Z��t� � %x�Z��t� � %y
�
� �� �
�
��

The proof of Proposition � is in Section ��� We have now completed our list of key
propositions�

��� Completion of the proof of Theorem �

Let us �nally collect Propositions �� and explain why they prove Theorem �� For this we
take limits in the following order�

T ��� �� 	� �� 	 � R �
p
t� t��� �
�

�

��



The summation in �
��� is restricted to the box TN and the limit N � � is taken last�
The proof comes in  steps�

�� Propositions �� and �
��� can be summarized as follows �the lower indices indicate the
choice of the variables��

Ex�y�exp�H � #
T �� � �� � ax�y�T�	�fl�h�s��
���gx�y�T�	

fl�h�s��
���gx�y�T�	 �
P

z�TN
fl�h�s��
���gx�z�y�z�T�	
�bN�x�y�T�	E����exp�H � #
T ��

fl�h�s��
���gx�z�y�z�T�	 � fl�h�s��
���gx�z�y�z�T�	�R�t
�cx�z�y�z�T�	�R�tEx�z�y�z �exp�H � #
T ��

�
�
��

with

lim
T��

ax�y�T�	 � 	 for all � � 	 and all x� y � ZZd

lim
N��

bN�x�y�T�	 � 	 uniformly in T � t� and 	 � � � ��

for all x� y � ZZd

lim
t�� lim

T��
cx�y�T�	�R�

p
t�t � 	 uniformly in 	 � � � �� for all x� y � ZZd�

�
�
�


� Propositions ��� can be summarized as follows�

fl�h�s��
���gx�z�y�z�T�	�R�t �
q
p��x� z�p��y � z�

� exp�H�
T �� ��	�d�T �
�fl�h�s��
����gx�z�y�z�T�	�R�t

fl�h�s��
����gx�z�y�z�T�	�R�t ��i���

��i��� fr�h�s��
����gx�z�y�z�T�	i�
�	��R�t

fr�h�s��
����gx�z�y�z�T�	i�
�	��R�t � �� � dx�z�y�z�T�
�	�R�t�
�fr�h�s��
����g����T�	i�
�	��R�t

�
�
��

with

lim
t�� lim	��

lim

��

lim
T��

dx�y�T�
�	�R�
p
t�t � 	 for all x� y � ZZd� �
�
��

�� Now �rst pick x � y � 	� Then �
�
��
�
� and �
�
��
�
��� together with the identity
E�z��z �exp�H � #
T �� � E����exp�H � #
T �� �z � ZZd� and the fact that lim
�� �i��� �� � �

�i � �� 
�� yield a closed set of equations for E����exp�H � #
T �� from which the expansion in
�	���� for x � y � 	 easily follows�


	



� Finally� pick x� y arbitrary� Then �
�
��
�
� and �
�
��
�
��� together with the identity
Ex�z�y�z �exp�H � #
T �� � Ex�y�exp�H � #
T �� �z � ZZd� and the result in step �� yield the
expansion in �	�����

Note that the precise form of the higher order term C��	� �T � � o�T � in the exponent in
�	���� does not come out of the analysis� Clearly� it is sensitive to the precise form of H
beyond the asymptotics assumed in �	���� �and remains hidden in the last factor in the
r�h�s� of �
�
�� after the limits in �
�

� are taken��

� Proof of Propositions ���

��� Proof of Proposition 


The di�culty behind the proof was explained in Section 
��� as well as the route that is
to be followed� We shall use several ideas from Bolthausen and Schmock �preprint �����
where a similar problem is handled�

A key role will be played by the variational problem ���� and its restriction to TN �
��N�N �d with periodic boundary conditions �see Sections 	� and ����� LetM resp�MN

denote the sets of minimizers of these variational problems� For � � 	� de�ne

U	 � f� � P�ZZd�� k�� �k�� � � for some � � Mg
UN
	 � f� � P�TN�� k� � �k�� � � for some � � MNg �����

�see also �
�
��� We shall abbreviate

#Px�y�t� � � � Ex�y��f � g exp�H � #
t��
Ex�y�exp�H � #
t��

���
�

and

#Lt�B� �
P
z�B

#Lt�z� �B  ZZd�

#LN
t �B� �

P
z�B

#LN
t �z� �B  TN��

�����

where #Lt � #
t�
t is the occupation time measure of the two random walks and #LN
t is its

periodized version� The goal of this section is to prove that

lim sup
t��

�

t
log #Px�y�t�#Lt �� U	� � 	 for all � � 	 and x� y � ZZd� ����

This implies Proposition �
For ease of notation we shall drop the superscript� Keep in mind though that Px�y�t and

Lt� L
N
t refer to two random walks� We now start the proof of �����


�



Proof Fix � � 	 and x� y � ZZd� Throughout the proof� N is so large that x� y � TN �
De�ne the event

AN�	
t �

�
z�ZZd

�
Lt�TN � z� � �� �


�
	
� �����

i�e�� no translate of TN contains more than mass � � �


�� We may then split

Px�y�t�Lt �� U	�

� Px�y�t�Lt �� U	� LN
t � UN

�
��d 	
� � Px�y�t�LN

t �� UN
�

��d 	
�

� Px�y�t�Lt �� U	� �AN�	
t �c� � Px�y�t�LN

t � UN
�

��d 	
� AN�	

t � � Px�y�t�LN
t �� UN

�
��d 	

��

�����

In what follows we shall show that all three terms are exponentially small� which will prove
����� The proof comes in � steps�
�� Third term� By the full large deviation principle on TN � there exists a N� � � �depending
on �� such that

lim sup
t��

�

t
log Px�y�t�L

N
t �� UN

�
��d 	
� � 	 for N � N�� �����

Indeed� because of ���
�� this is a statement about a quotient of two terms� which behave
resp� as

exp�H�
t�� �N�
��d 	

�	�d�t� o�t�� �����

exp�H�
t�� ��	�d�t� o�t��� �����

Here ��	� is given by ����� while

�N	 �	� �
�


d
min
p��UN�

Fd�p� �Fd � Id � 	Jd� ����	�

�compare with ����������� in Section ��
�� By Lemmas ���f�g� in Section ���� we have
�N	 �	� � ��	� for all � � 	 and N su�ciently large �depending on ��� Together with �����
���� this implies ������

� First term� Note that

�AN�	
t �c �

S
z�ZZd

�
Lt�TN � z� � � � �


�
	

 S
z�ZZd

�
kLt��� z�� LN

t ���k�� � �
��
	 ������

�where elements of P�TN� are viewed as elements of P�ZZd� via the canonical embedding��
Hence

fLt �� U	� �AN�	
t �cg  fLN

t �� U �
� 	
g for all N � �� ����
�







Next� by Lemma ���c� in Section ��� there exists a N� � � �depending on �� such that

UN
�

��d 	
 U �

� 	
for all N � N� ������

and hence

fLN
t �� U �

� 	
g  fLN

t �� UN
�

��d 	
g� �����

So� combining ������ ����
� and ����� we get

lim sup
t��

�

t
log Px�y�t�Lt �� U	� �AN�	

t �c� � 	 for all N � N� 	N�� ������

�� Second term� We �rst write

Px�y�t�L
N
t � UN

�
��d 	

� AN�	
t � � P

z�TN
Px�y�t�L

N
t � UN

�
��d 	
�z�� AN�	

t �

�
P

z�TN
Px�z�y�z�t�LN

t � UN
�

��d 	
�	�� AN�	

t �

� jTN j max
u�v�T�N
u�v�x�y

Pu�v�t�LN
t � UN

�
��d 	
�	�� AN�	

t ��

������

where UN
	 �z� denotes the ��neighborhood of the elements in MN that are centered at z

�recall ������� In the second line of ������ we have used that AN�	
t is shift invariant �recall

������ and in the third line that x� y � TN � Next� put N � �M and de�ne

B�M�	
t �

�
z�ZZd

�
Lt�T�M � �	Mz� � �� �


�
	
� A�M�	

t � ������

The proof of ���� will be complete once we show that

lim sup
t��

�

t
log

�
max

u�v�T��M
u�v�x�y

Pu�v�t�L
�M
t � U�M

�
��d 	
�	�� B�M�	

t �
�
� 	 for some M � �� ������

This will be done in steps �� below�
� We begin with a combinatorial lemma� De�ne the halfspaces

hi��k � fz � ZZd� zi � �� � �	k�Mg
hi��k � fz � ZZd� zi � �� � �	k�Mg �k � ZZ� i � �� � � � � d��

������

Lemma � B�M�	
t  Sk�ZZ

Sd
i��fLt�h

i��
k � � �

�d�� Lt�h
i��
k � � �

�d�g�

Proof Put � � ���d� We prove the inverse inclusion for the complements� Suppose that
there is no �k� i� such that Lt�h

i��
k � � �� Lt�h

i��
k � � �� Since for every i there exists a k�i�

such that

Lt�h
i��
k�i���� � � � Lt�h

i��
k�i��� ���
	�


�



it must be that Lt�h
i��
k�i�� � �� and hence

Lt�h
i��
k�i��� � hi��k�i�� � �� 
�� ���
��

Since �di���h
i��
zi�� � hi��zi � � T�M � �	Mz� it follows that

Lt�T�M � �	Mz� � � � 
d� for z � �k���� � � � � k�d��� ���

�
�

�� Next� the random walks Z�� Z� whose local times we are monitoring cannot move far
away in time t� namely

lim
t��

�

t�
log
�
max

u�v�T��M
u�v�x�y

Pu�v�t

�
Z i�s� �� Tbt�c for some 	 � s � t

��
� 	 �i � �� 
�� ���
��

Indeed� since H � #
t � H�
t� � O�t log t� � o�t��� it su�ces to prove the claim under
the free random walk measure� i�e�� without the exponential weight factor in ���
�� But
the latter follows from a rough large deviation estimate because the jump times of the
random walk are i�i�d� exponentially distributed with �nite mean� The details are omitted�
Combining ���
�� with Lemma �� we see that in order to prove ������ it su�ces to show
that

lim sup
t��

�
t
log
�
max

u�v�T��M
u�v�x�y

P
jkj� bt�c

��M

dP
i��

Pu�v�t

�
L�M
t � U�M

�
��d 	

�	�� Lt�h
i��
k � � �

�d
�� Lt�h

i��
k � � �

�d
�
��

� 	�

���
�

which in turn is implied by

lim sup
t��

�
t
log
�

sup
u�v�ZZd
u�v�x�y

Pu�v�t

�
L�M
t � U�M

�
��d 	

�	�� Lt�h�� � �
�d�� Lt�h�� � �

�d�
��

� 	

���
��

with h� � h���� � h� � h���� � To go from ���
� to ���
�� we have used that we may pick
k � 	� i � � because of the shift�invariance and isotropy of the random walk and the
shift�invariance of H � #
t� the polynomial factor coming from counting the sum over k� i is
harmless�
�� Now� by Lemma ���b� in Section ��� there exists a M� � � such that

fL�M
t � U�M

�
��d

	�	�g 
�
L�M
t �int TM� � �� �

��d
�
	
for M �M�� ���
��






Hence to prove ���
�� it su�ces to show that

lim sup
t��

�
t
log
�

sup
u�v�ZZd
u�v�x�y

Pu�v�t

�
Lt�h

�� � �
�d
�� Lt�h

� � Me�� � �
��d

�� L�M
t �int TM� � �� �

��d
�
��

� 	�

���
��

�e� � ��� 	� � � � � 	��� Indeed� by periodization with period �M the slab between h� and
h��Me� is mapped entirely inside T�M nTM � On the event in the r�h�s� of ���
�� this slab
therefore carries mass at most �

��d�� Consequently� on the event fLt�h�� � �
�d�g the half

space h� � Me� carries mass at least
�

��d
�� What ���
�� says is that it is exponentially

unlikely to have substantial local times in two halfspaces separated by a slab�
�� To prove ���
�� we shall do a re�ection of the random walks w�r�t� the grid of size 
M �
The object of this argument �see below� is to transfer the problem to the �nite box T�M �
De�ne

gM �
S
k�ZZ

dS
i��
fz � ZZd� zi � �
k � ��Mg

�it�gM � � �
t
jf	 � s � t�Z i�s� � gM � Z�s�� �� gMgj �i � �� 
�

�t�gM � � ��t �gM � � ��t �gM ��

���
��

i�e�� t�t�gM � counts the number of times the random walks hit gM during the time interval
�	� t�� We may then bound the probability in ���
�� by the sum of two parts� namely for
any � � 	

��� Pu�v�t

�
�t�gM � � ��Lt�gM � � �

��d�
�

�
� Pu�v�t

�
�t�gM � � �� Lt�h�� � �

�d
�� Lt�h� � Me�� � �

��d
�
�
�

���
��

where we use that fL�M
t �int TM� � �� �

��d
�g  fLt�gM� � �

��d
�g because by periodization

with period �M the grid gM is mapped entirely outside int TM � Thus ���
�� will follow
once we have proved Lemmas �� below�

Lemma � There exists a C� � 	 such that for all � � C�� and all M � �

lim sup
t��

�

t
log

�
sup

u�v�ZZd
u�v�x�y

���
�����
�
� 	� ����	�

Proof By shift�invariance and periodization with period M

sup
u�v�ZZd
u�v�x�y

���
����� � max
z�TM

Px�z�y�z�t
�
�t��TM� � ��LM

t ��TM� �
�

��d
�
�
� ������


�



Therefore� similarly as in ����� and ���������� the r�h�s� of ������ is a quotient of two terms�
The denominator is the same as ������ Because H � #
t � H�
t�� the numerator can be
bounded above by

exp�H�
t�� max
z�TM

Px�z�y�z
�
�t��TM� � ��LM

t ��TM� �
�

��d
�
�
� ����
�

where in the r�h�s� of ����
� appears the free random walk measure� Now� the latter
probability equals

exp���M
�	�	�d�t � o�t��� ������

where �M
�	�	� can be made arbitrarily large by picking ��� su�ciently small� uniformly in
M � The reason is that it is unlikely for the random walks to spend a local time on �TM
that is much smaller than ��
d� times the number of times they hit �TM� The details are
omitted� Pick ��� so small that �M
�	�	� � ��	� to get the claim� �

Lemma � There exists a C� � 	 such that for all � � C�� log����� and all M su�ciently
large �depending on �� �	

lim sup
t��

�

t
log

�
sup

u�v�ZZd
u�v�x�y

���
���
�
�
� 	� �����

Proof The proof comes in 
 steps�
�� Consider the paths of the random walks up to time t� We can fold these paths inside
T�M by doing a number a re�ections w�r�t� the hypersurfaces of dimension d � � that lie
on the grid gM � starting from the outside and working our way inwards to T�M � With each
re�ection H � #
t increases� because H is convex and because the local times of the paths
are stacked on top of each other� Each piece of the paths that is thus folded adds a factor

 to the counting� Hence we have

sup
u�v�ZZd
u�v�x�y

���
���
�

� 

t max
z�T	M

Px�z�y�z�t
�
Lt�TM � Me�� � �

�d�� Lt�TM� � �
��d� Lt�T�M� � �

�
�

������

Indeed� we can fold all the local time in h� into the box TM � Me�� all the local time in
h� � Me� into the box TM � and all the remaining local time in the box TM � 
Me��

� We now have an event inside the �nite box T�M where substantial local times are carried
by two subboxes separated by a third box� The probability in ������ is the quotient of two
terms� which behave resp� as �compare with ����������

exp�H�
t�� �M	 �	�d�t� o�t��
exp�H�
t�� ��	�d�t� o�t���

������


�



where

�M	 �	� � min
p�C�M�	�

Fd�p� ������

with C�M� �� the set �tting the event in ������� Now� Lemma ���h� in Section ��� shows
that �M	 �	� � ��	� � C�� log����� for some C� � 	 and M su�ciently large �depending
on ��� Thus it su�ces to pick � smaller than this di�erence and the claim follows from
������� �

By combining Lemmas ��� picking � so small that ��C� � C�� log������ and picking �
somewhere in the middle� we get ���
��� This completes the proof of Proposition � �

��� Proof of Proposition �

For s � 	 and   ZZd� let Ps� � denote the set of all measures concentrated on  with
total mass s� For an arbitrary measure � on ZZd� write the abbreviation

H � � � X
z�ZZd

H���z��� ������

We recall that �	���� implies

lim
t���H

���t��H ���t�� � � log
�
�

�

�
for all � � � � 	� ������

The following lemma� which is an estimate for one random walk� is the key to Proposition
��

Lemma � Fix � � 	 arbitrarily and let � � � � � � 	 be such that

� log
�
�

�

�
� d�e�� ���	�

Let  be a �nite connected subset of ZZd containing 	� De�ne

A � A���� � � f� � P��ZZ
d�� ��	� � ��min

z��
��z� � � � max

z��c
��z�g� �����

�a	 There exist A � 	 and T�� R� � 	 such that

Ex

�
eH��T�

�
�

T

T � A

	�
� Ae��jxjE�

�
eH��T �

�
�

T

T � A

	�
���
�

for all T � T� and all x �� TR��
�b	 Let � � inffs � 	�Z�s� �  g denote the �rst hitting time of  � Then there exist A � 	
and T�� R� � 	 such that

Ex

�
eH���t����

�
�
T
�
t � �� � A
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for all T � T�� all 	 � t � T�� all x �� TR�� all � � PT�t�ZZd�� and all measurable functions
f � ZZd �P��ZZ

d�� IR� satisfying

f�z� p� � f�z� q� whenever p � q on  and p � q on  c� ����

Before presenting the proof of Lemma �� let us give an heuristic explanation for ���
��
Let Z be our random walk� starting at x ��  and hitting  for the �rst time at time �� The
basic idea is to replace �Z�s�� s � �	� ��� by a path that starts at 	� stays at 	 during the
time interval �	� ��
� and moves to Z��� during the time interval ���
� �� without leaving
 � In this way we switch from paths starting at x to paths starting at 	� In terms of local
times this switch means that mass ��
 is moved from  c to 	 and another mass ��
 from
 c to  � This moving obviously increases the event f
T�T � Ag� Moreover� we shall see
that H � 
T increases by at least 
d�e�� because of ��������	�� Hence we gain a factor
exp�
d�e��� under the expectation� However� it will turn out that by the restriction to the
new class of paths we loose a factor C� exp�
d���� Altogether� we therefore gain a factor
exp�
d��e� � �����C�� But we shall see that

C�Ex

�
exp��
d��e� � ����

�
� C�C�e

��jxj� �����

which yields the desired prefactor in the r�h�s� of the �rst part of ���
�� The argument for
����� is essentially the same�

Proof The proof of assertion �a� comes in � steps�
�� Choose T� so large that

H ���T ��H ���T � � d�e� for T � T�� �����

This is possible because of ��������	�� Throughout the proof� T � T� and x � ZZd are
�xed arbitrarily�

� The monotonicity of t� H ��t� obviously implies the following two inequalities�

�H�a����H�b��� �H�a� �H�b����

� � 	 for � � 	� a � b
� ��H ��a��H ��b���� for � � 	� a � b���

�����

Using these inequalities we next prove the following statement�
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Indeed� it follows from ����	� and the de�nition of A in ����� that

max
z��c

��� � �� � ���z� � min
z��

��� � �� � ���z�� ������

Hence� moving mass distribution �� from  c into  and distributing it according to �	� we
can use the �rst part of ����� to estimate

H � ��� � �� � �� � H � ��� � �	 � ��� ����
�

Moreover� after the move we obviously have

�

T
��� � �	 � �� � A� ������

so

���	� � �	�	� � ��	� � �T
max
z��c

��� � �	 � ���z� � �T� �����

Therefore� now using the second part of ������ ����� and the monotonicity of t� H ��t��
we may move mass distribution �� from  c onto 	� to obtain
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Note that also after the last move
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Combining ������ ����
� and ������� we arrive at ������
�� We next use ��������	� to move local times� Let

� � inffu � 	�Z�u� �  g ������

be the �rst hitting time of  � Clearly� 
T�T � A implies � � T because � � 	� To estimate
the expectation in the l�h�s� of ���
� we proceed as follows� Applying the strong Markov
property at time �� we have
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where 
a�b denotes the local time over the time interval �a� b�� and we de�ne
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Since 
T�s � Pt�s�ZZd�� we may now recall ��������	� and ������ �for � � 
T�s� to estimate
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Combining ���������
� we arrive at the bound
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� The l�h�s� of ������ equals the l�h�s� of ���
�� We next derive a lower bound for the r�h�s�
of ���
� that will be combined with ������ to yield ���
�� Let

� � inffu � 	�Z�u� 
� 	g �����

be the �rst exit time from 	� For y �  � de�ne the set of paths
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Fix 	 � s � T and y �  arbitrarily� We may then apply the Markov property at time s
to write
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Here we have used that 
�� s� �
s
��� on the event f� � s

�g and 
 s
� �s
� P s

�
� � on the event

fZ� s� � �� � B
s
�
y g �recall ����
��� Since P��� �

s
�� � exp��d�s�� we thus �nd that
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for all 	 � s � T and y �  � Combining ������ and ������ we arrive at
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Thus� to complete the proof of ���
� we must show that K�x� � A exp���jxj� for x �� TR�

for some A�R� � 	�

�� We next estimate miny��� P��B
�
�
y � from below� Let ��� ��� � � � be the jump times of the

random walk� i�i�d� exponentially distributed with mean ��
d�� Fix y � � and letD � Dy

be the length of the shortest path from 	 to y inside  � Obviously�

P��Bs
y� � �

��d�DP ��� � � � �� �D � s � �� � � � �� �D � �D���
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��d�D

��d�s�D

D�
exp��
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From ����	� it follows that there exists a C� � 	 such that
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P��B
s
y��

�� � C� exp�
d�s�f� � �
s��D�g �s � 	�� ������

where D� � supy��Dy � Substitution into ������ gives

K�x� � C�Ex
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�g exp��
d��e� � ����
�
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�

We shall estimate the two terms in ����
� separately�
�� Second term� To reach  from x� the random walk Z has to make at least D�� � dist�x� �
jumps� Hence � � ��� � � �� �D�� � Since 
d����� � � �� �D��� has a Gamma distribution with
parameter D��� we can estimate for D�� � D�
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� uD

�����D�
exp��e�u�du

� �
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for some C� ��� Clearly� D�� � jxj � C	 for some C	 ���
�� First term� The same estimate with D� replaced by 	� Combine steps � and � to get the
bound on K�x� claimed below ������� This completes the proof of assertion �a��

The proof of assertion �b� goes along the same lines� All we have to do is replace �
by � � � � PT�s�ZZd� and 
T�s by 
t�s � � � PT�s�ZZd�� Since �

T
�
t � �� � A does not

automatically imply � � t� we need to include the indicator of the latter in the l�h�s� of
������ The property of the function f stated in ���� ensures that f�Z�t�� �

t

t� can only

increase when the path �Z�s�� s � �	� ��� is redistributed inside  � �

The next lemma is the analogue of Lemma � for two random walks�

��



Lemma 	 Let the assumptions of Lemma � hold� Let ��� �� denote the �rst hitting times
of  � Then there exist A � 	 and T�� R� � 	 such that
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for all T � T� and all x� y �� TR��

Proof This is an easy consequence of ������ Namely� �rst condition on Z����� take the
expectation over Z���� by applying ����� with 
t � 
�t and � � 
�T � and then take the
expectation over Z����� After that� interchange the order of the expectations �Fubini� and
apply ����� with 
t � 
�t and � � 
�T � Recall that Ex�y � Ex � Ey� �

We can now formulate the tightness result that implies Proposition �� For � � P��ZZ
d��

let

U	��� � f� � P��ZZ
d�� k� � �k�� � �g ������

be the ��neighborhood of � in the 
��metric�

Lemma � Let � � P��ZZ
d� be such that

�i� ��	� � max
z�ZZd

��z�

�ii�  � � fz � ZZd���z� � �g is connected for all � su�ciently small�
������

Fix � � 	 arbitrarily� Then there exist A � 	 and ��� T�� R� � 	 �depending on �� �	 such
that
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for all 	 � � � ��� all T � T� and all x� y �� TR��

Proof Choose �� � 	 so small that �� ��� �
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and
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�ii��  �  � is connected and contains 	 for all 	 � � � ���
������

Next choose � � � � � � 	 such that assumption ���	� of Lemma � is satis�ed and

��	� � ��min
z��

��z� � � � max
z��c

��z�� ������

�Because of �������i�ii�� the latter can be done by picking � � ��	� close to ��	� and � � ��
close to ���� Now� because of ������ there exists �� � 	 such that for all 	 � � � �� and all
%� � U	���

%��	� � ��min
z��

%��z� � � � max
z��c
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Hence U	���  A for 	 � � � ��� where A � A���� � with  �  � the set de�ned in
Lemma �� Moreover� �

�T
�
�T � 
�T � � U	��� implies �

�T
�
�T � � � 
�T � �� �

�
�
� which in turn

implies 
�T � � � 	 and 
�T � � � 	� hence �� � T and �� � T � We may therefore apply
Lemma � �compare ����� with ����	�� to obtain ������� �

The proof of Proposition � is now complete� Indeed� we know from Theorem 
I����ii�
that the minimizer of ���� centered at 	 is unimodal in all directions� which guarantees
that conditions �������i�ii� in Lemma � are ful�lled for � � p� � w�

��kw�k��� �recall Section
	����

��� Proof of Proposition 

The proof uses ideas from Section ��
� The following lemma is an estimate for one random
walk� De�ne

�R � inffs � 	�Z�s� �� TRg� ������

Let ��TR denote the exterior boundary of TR�

Lemma 
 Fix x � ZZd� Let the assumptions of Lemma � hold with x �  � Let �R denote
the �rst hitting time of  after �R� Then there exist A � 	 and T�� R�� �� � 	 such that
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for all t � 	� all R � R�� all T � t 	 T� with t�T � �� and all � � PT �ZZ
d��

Proof Throughout the proof we pick R so large that   TR and x � TR� We also pick
�� � � and t�T � ��� If 
T�T � A and �R � t� then the latter guarantees that the random
walk must hit 	 in the time interval ��R� T � �recall ������� We choose T� to be the same
as in Lemma �� The proof of ����
� comes in � steps�
�� First we use the strong Markov property at time s write
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for 	 � s � t� z � ��TR and � � Ps�TR�� Our choice of �� guarantees that
�
T
���
T�s� � A

implies � � T � s for s � �	� t�� where � again denotes the �rst hitting time of  �

� By assertion �b� in Lemma � with f � � we know that

��s� z� �� � Ae��jzj��s� 	� �� for all 	 � s � t and � � Ps�TR�� ������

Combining this with ����� we have
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�� Now apply Fubini to write
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 �R � s� Z�s� � z
�
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for 	 � s � t� z � ��TR and � � PT�s�ZZd��
� Next� do a time reversal on the random walk over the time interval �	� s�� Let z� be the
unique site in TR that neighbors z � ��TR� Then
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�d
Ez�

�
eH����s��
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T
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s� � A

	



 �R � s�Z�s� � x�Z�s�� 
� x
�

Px��R � ds� Z�s� � z�

� �
�dPz���R � s�Z�s� � x� 
d� ds�

����	�

Here the jump away from z to z� at time s is replaced by a jump away from x at time s in
the time reversed random walk� The factor 
d counts the number of ways this last jump
can occur� The local times are invariant under the time reversal�
�� Combining ���������	� we obtain
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�� Again apply Fubini� After that we can write
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�� Next� Z�s� � x implies � � s because x �  � We may therefore apply assertion �b� in
Lemma � with f�z� p� � �x�z��fp�TR� � �g� to obtain

��s� x� z�� �� � Ae��R��s� x� 	� ��� �����

Combining ���������� we arrive at
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However� using the strong Markov property at time s and doing once more a time reversal
of the random walk over the time interval �	� s�� we may write
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�� Finally� drop the last indicator to get
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This completes the proof of ����
��
The proof of ������ goes along the same lines� �Compare with the proof of assertion

�b� in Lemma ��� �

The analogue of Lemma � for two random walks is similar� Namely� using ������ we
get the estimate

Ex�y

�
eH����T���T ��

�
�
�T
�
�T � 
�T � � A

	

�
�
�f��

R � tg�f� �R � Tg� �f��
R � tg�f� �R � Tg

��

� 
A�e���Rj��TRjtEx�y

�
eH����T���T ��

�
�
�T �


�
T � 
�T � � A

	�
������

�compare with the proof of Lemma ���

��



For the �nal step in the proof of Proposition �� we recall that U	�p��  A for 	 � � � ��
�see the proof of Lemma �� and that #� � minf��

R� �
�
Rg is the stopping time de�ned in �
����

We choose �� so large that

p�� ��� �
�



�� � ��� ������

�recall that �� � � � ��� Then the same inequality holds for all measures in U	�p���
provided � � �� and �� is su�ciently small� But now we note that

�
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�T � � U	�p���

t

T
� ��� �

i
R � t �� � iR � T �i � �� 
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Hence we can apply ������ and get the claim in Proposition ��

� Proof of Propositions 	�



�� Proof of Proposition �

Let u�� � p� � w�
��kw�k��� � �v��kv�k����d be the unique centered minimizer of ���� in

Section 	�� To ease the notation we shall write u instead of u��

Lemma �� The semigroup S� � �S��t�� t � 	� associated with the generator G� in �����	
is given by

�S��t�f��x� �
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u�x�
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and is a strongly continuous contraction semigroup on 
��ZZd�u���

Proof Elementary� The r�h�s� of ���� is well de�ned because u is strictly positive every�
where �see Lemma �� in Section ���� and ��u��u is bounded from below �see ���� below��
The semigroup S � �S�t�� t � 	� associated with �� �the generator of our reference ran�
dom walk� is given by �S�t�f��x� � Ex�f�Z�t��� and is a strongly continuous contraction
semigroup on 
��ZZd�� We compute with the help of ����
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t	�

�
t

�
S��t�f � f

�
�x�

� �
u�x�

�
� ���u��x�f�x� � lim

t	�
�
t

�
S�t��uf �� �uf �

�
�x�
	

� �
u�x�

�
� ���u��x�f�x� � ���uf��x�

	

� �
u�x��

P
y�jy�xj��

�
� �u�y�� u�x��f�x� � �u�y�f�y�� u�x�f�x��

	

� �
u�x��

P
y�jy�xj��

u�y��f�y�� f�x���

��
�

��



Indeed� this coincides with ����	�� Next� the semigroup property S��s � t� � S��s�S��t�
follows from ���� by using the Markov property of the reference random walk at time s�
The strong continuity of S� follows from the strong continuity of S and the boundedness
of the exponential in ����� The contraction property of S� follows from the inequality

hf�G�fi���ZZd�u�� � � X
fx�yg�jx�yj��

u�x�u�y��f�x�� f�y��� � 	� ����

�

The above representation leads us to the following�

Lemma �� Let Px�y � Px � Py and P �
x�y � P �

x � P �
y � Then for any T � 	

dP �
x�y

dPx�y

�
�Z��s�� Z��s��s����T �

�

� u�Z��T ��u�Z��T ��
u�x�u�y� exp

�
� R T� ds �

�
�u
u
�Z��s�� � �u

u
�Z��s��

	�
�

���

Proof Immediate from ����� �

Using Lemma �� we can now do the absolute continuous transformation in the expec�
tation appearing in the l�h�s� of �
��� in Proposition �� Indeed� recalling that 
iT �x� �R T
� ds�fZi�s��xg �i � �� 
�� we obtain

Ex�y

�
exp�H � #
T ��

�
�
�T
#
T � U	�p��

	
�f#�R � tg

�

� u�x�u�y�E�
x�y

�
exp�H � #
T � exp

�P
z
#
T �z�f��u

u
�z�g

�

� �
u�Z��T ��u�Z��T ���

�
�
�T
#
T � U	�p��

	
�f#�R � tg

�
�

����

To complete the proof of Proposition �� we simply note that

�u

u
�z� � �
	 log u�z�� 
d��	�� ����

as follows from ��� in Section 	�� and Proposition � via the relation u � �v��kv�k����d�
After substituting ���� into the r�h�s� of ���� and using the relations u� � p�� 	 � ����
#LT � #
T�
T and

P
z
#LT �z� � �� we obtain the r�h�s� of �
����

We conclude this section with the following observation�

Lemma �� The random walk driven by G� is ergodic with u� as the reversible equilibrium�

��



Proof Elementary� To prove that u� is a reversible equilibrium� we compute for any f� g
with the help of ����	�

P
x
�u�x���f�x��G�g��x� �

P
x

P
y�jy�xj��

�u�x�u�y�f�x��g�y�� g�x��

�
P
y

P
x�jx�yj��

�u�x�u�y�g�y��f�x�� f�y��

�
P
y
�u�y���g�y��G�f��y��

����

�

The ergodicity of the transition probabilities immediately follows from ���	� and ���
�
below� which makes that u� is the unique equilibrium�


�� Proof of Proposition �

Proof Consider the l�h�s� of �
����� First bound �f#LT � U	�p��g from below and above

by �f#Lt�T � U	��
�	��p��g resp� �f#Lt�T � U	��
�	��p��g using �
����� Next substitute �
��
�� as
well as �
��� with � � T�t

T
� � t

T
#Lt and � � #Lt�T � and write f#�R � tg� fsupp�#Lt�  TRg�

Next� let Ft�T denote the ���eld generated by the two random walks on the time interval
�t� T �� We can take the conditional expectation over the two random walks on the time
interval �	� t� given Ft�T � Since #Lt�T is Ft�T �measurable� this produces the two transition
kernels as well as the product under the expectation in the r�h�s� of �
����� Finally� take the
expectation over Ft�T using the Markov property at time t and shift �t� T � to �	� T � t�� �


�� Proof of Proposition �

Proof ��� Fix t � 	 and R � 	� Note �rst that �R � 	 because p� � 	 everywhere �see
Lemma �� in Section ����� Next� we have limT�� VT ��T � � 	 as long as �T is bounded
away from 	 and �� This easily follows from �	���� and �
����� Next� if 	 � � � �R then
� � U	�p�� guarantees that infz�TR ��z� � 	� Together with supp�#Lt�  TR we therefore
have that� for t �xed and T � �� the �rst part of the inner product in the de�nition of
�R�x� y� %x� %y��� t� T � in �
���� vanishes uniformly in %x� %y � TR and � � U	�p��� The bounds
in �
���� are now easily obtained from the second part of the inner product by using that
j��z�� p��z�j � � for all z � ZZd when � � U	�p���
�
� By ���� and ����

P �
t �x� %x� � �S��t���x��x�

� u��x�
u�x�Ex

�
exp

�
� R t� ��u

u
�Z�s��ds

�
�fZ�t� � %xg

�

� u��x�
u�x�

Ex

�
exp

�
� R t� V �Z�s��ds

�
�fZ�t� � %xg

�
����

��



with V � ZZd � IR the potential �recall ���� and Proposition ��

V �x� � 
� log u�x� � 
d���	� � 
�
dX

i��

log v��x
i�� ����

Now� let �SV �t�� t � 	� be the semigroup associated with the generator GV � �� � V �
Then� using the Feynman�Kac formula� we have

P �
t �x� %x� �

u�%x�

u�x�
�SV �t���x��x� �

u�%x�

u�x�
h�x� SV �t���xi� ���	�

and so

P �
t �x� %x�

P �
t �y� %x�

�

�
u�x�

h�x� SV �t���xi
�

u�y�
h�y� SV �t���xi �����

with h�� �i the standard inner product�
The generator GV is self�adjoint and GV u � 	� Because V is bounded from above and

limjxj�� V �x� � ��� we know that GV has a compact resolvent R��� � �� � GV ��� in

��ZZd�� From the semigroup representation of R��� �which holds for � su�ciently large�
it is also clear that R��� is a positive operator� Therefore� by the strict positivity of u�
we see that 	 is the largest eigenvalue of GV and that this eigenvalue is simple� Moreover�
the compactness of R��� tells us that the rest of the spectrum lies in �������� for some
�� � 	� the spectral gap�

Next� let & denote the projection onto u� i�e�� &f � hu� fiu�hu� ui� Then� by the
spectral theorem� we have

h�x� SV �t���xi � h�x�&��xi � h�x� �SV �t��&���xi

� u�x�u��x�
hu�ui �O�e���t� �t����

���
�

Combining �������
� we �nd

P �
t �x� %x�

P �
t �y� %x�

�
� � hu�ui

u�x�O�
�

u��x�e
���t�

� � hu�ui
u�y� O�

�
u��x�e

���t�
�t���� �����

Thus the ratio tends to � when the order term tends to zero� But� by �	��� and the fact
that u�%x� � �

Qd
i�� v��%xi��� exp�d��	��	� �recall Proposition ��� this will be the case when

j%xij log j%xij � o�t� for i � �� � � � � d� Hence we have proved the claim in �
�
	��
��� Because of the product property of the transition kernel

P ��d
t �x� y� �

dY
i��

P ���
t �xi� yi� for all x� y � ZZd� ����

��



it su�ces to give the proof of �
�
�� for d � �� Moreover� because the two random walks
are independent� it su�ces to prove the analogue statement for one random walk� Thus�
letting

�R � inffs � 	�Z�s� �� ��R�R�g� �����

we must show that

lim
t�� infp

t� log log t�o�R�
R�o�t� log t�

inf
�x���R�R�

P �
x ��R � t j Z�t� � %x� � �� �����

Fix x � ZZ and %x � ��R�R�� By time reversal we have

P �
x ��R � t j Z�t� � %x� � P �

�x ��R � t j Z�t� � x� �
P �
�x ��R � t� Z�t� � x�

P �
�x �Z�t� � x�

� �����

The numerator equals

P �
�x ��R � t� Z�t� � x� � E�

�x

�
�f�R � tgP �

Z��R�
�Z�t� s� � x�js��R

�
� �����

Since

P �
z �Z�t� � x� � P �

z �Z�t� s� � x�P �
x �Z�s� � x� for all z � ZZ and 	 � s � t� �����

and since by ergodicity

inf
s
�

P �
x �Z�s� � x� � c � 	� ��
	�

we obtain via ����� that

P �
�x ��R � t j Z�t� � x� � �

c
P �
�x ��R � t�

PR���Z�t� � x� � P�R���Z�t� � x�

P �
�x �Z�t� � x�

� ��
��

The quotient in the r�h�s� of ��
�� tends to � uniformly in %x � ��R�R� when t�� and

R logR � o�t�� ��

�

as can be seen from ����� �use that u is unimodal and centered at 	�� Hence� to prove the
claim in ����� it remains to show that P �

�x ��R � t� tends to zero uniformly in %x � ��R�R��
For this we shall want to let R grow su�ciently fast with t� but it will turn out that ��

�
can still be met�

Let

�z � inffs � 	�Z�s� � zg� ��
��

Then

P �
�x ��R � t� � P �

�x ��R�� � t� � P �
�x ���R�� � t�

� P �
R��R�� � t� � P �

�R���R�� � t� �%x � ��R�R���
��
�

	



We shall only give the argument for the �rst term in the r�h�s� of ��
�� the second term
being similar�

For 	 � n � R� de�ne the event

AR�n � the �rst R � n steps of the random walk go to the left� ��
��

Then we can estimate

P �
R��R�� � t� � P �

R��AR�n�
c� � P �

R��R�� � t� AR�n�� ��
��

We begin by looking at the �rst term in the r�h�s� of ��
��� Let r�x� be the probability
that a step from x goes to the right� Then� by Theorem 
I����iii��

r�x� �
v�x� ��

v�x�

�
v�x� ��
v�x�

�
v�x� ��

v�x�

���
� �

�
	x log x��
�x���� ��
��

�Recall that u and v are linked as u � v�kvk��� the 	�dependence is suppressed from the
notation�� Therefore for n��

P �
R�AR�n� �

RY
x�n��

�� � r�x�� � exp
�
� �

	�
�� � o����

RX
x�n��

�

�x log x��

�
��
��

and it follows that

lim
n�� inf

R
n
P �
R�AR�n� � �� ��
��

Thus we have proved that the �rst term in the r�h�s� of ��
�� tends to zero as n � �
uniformly in R � n�

Let us now turn to the second term in the r�h�s� of ��
��� Because

P �
R��R�� � t j AR�n� � P �

n ��R�� � t�� ���	�

we see from ��
�� that it su�ces to show that the r�h�s� of ���	� tends to zero� By
Markov�s inequality

P �
n ��R�� � t� � inf

���
e�t

RY
x�n

E�
x

�
e���x
�

�
� �����

Next� starting from x the time �x�� to reach x� � is bounded from below by

�x�� �
�xX
k��

�x�k� ���
�

where �x�k is the sojourn time at x prior to the k�th jump from x and �x is the number of
jumps from x going to the left before hitting x� �� Now� the �x�k�s are i�i�d� exponentially

�



distributed with mean given by the second factor in the r�h�s� of ��
��� while �x is geomet�
rically distributed with mean ��r�x�� Hence the r�h�s� of ���
� is exponentially distributed
with mean v�x��v�x� ��� Therefore

E�
x

�
e���x
�

�
� �

� � � v�x�
v�x���

� �

�

v�x� ��

v�x�
� �����

Substitute ����� into ������ pick � � ��R and n � bR�
c� and use that v�x� ���v�x� �

	x log x �x���� to arrive at

P �
bR��c��R�� � t� � exp

�
t

R
� �� � o����

R



log logR

�
� ����

where o��� holds for R�� uniformly in t� The r�h�s� tends to zero as R�� when

t � o�R� log logR�� �����

Combining ��
�� ��
��� ��
����	� and ����� we have proved that the l�h�s� of ��
�
tends to zero� provided ��

� and ����� are met� The latter are exactly what determines
the restrictions on R and t in ������ �

� Functional analysis

In this section we analyze the variational problem ���� of Section 	� and its relation to
the nonlinear di�erence equation ��� of Section 	��� Proposition � will be proved in Section
���� Theorem 
 in Section ��
� Section ��� contains Lemma �� and its proof� This lemma
was already used in Section ���� Throughout most of this section 	 will be suppressed from
the notation�

��� Proof of Proposition �

Fix 	 � �	��� and let Fd�Pd � �	��� be the functional
Fd�p� � Id�p� � 	Jd�p� �����

with Id� Jd de�ned in �	����	���� and Pd � P�ZZd�� Then ���� reads

��	� �
�


d
inf
p�Pd

Fd�p�� ���
�

Fd is lower semicontinuous in the weak topology� Pd is not compact in the weak topology�
but with an easy argument we shall be able to show existence of a minimum� However�
the trouble with ���
� is that Fd is the sum of a convex part� Id� and a concave part� 	Jd�
Therefore uniqueness of the minimum is a more subtle problem�






��� Analysis of ����
Lemma �� �a	 infp�Pd Fd�p� � d infp�P� F��p��
�b	 Let Md  Pd denote the set of minimizers of Fd� Then M� 
� � and Md � �M���d�
�c	 All p � M� are strictly positive�

Proof �a� The proof is by induction on the dimension d� The claim is obviously true for
d � �� Suppose that it holds for all dimensions � d� Pick any p � Pd��� Let pd � Pd and
p� � P� be the marginals of p on the coordinates numbered �� � � � � d resp� d � �� i�e��

pd�x� �
P
z�ZZ

p�x� z� �x � ZZd�
p��z� �

P
x�ZZd

p�x� z� �z � ZZ�� �����

De�ne the conditional probability measures

q��zjx� � p�x� z��pd�x�
qd�xjz� � p�x� z��p��z��

����

�If pd�x� � 	 then set q��zjx� � 	 for all z� etc�� One easily checks from �	����	���� that

Id���p���� �
P
x
pd�x�I��q���jx�� �P

z
p��z�Id�qd��jz��

Jd���p���� �
P
x
pd�x�J��q���jx�� �P

z
p��z�Jd�qd��jz��

�
�P

x
pd�x�

�P
z
q��zjx� log q��zjx�

�
�P

z
p��z� log p��z�

	
�

�����

Because q� q log q �q � 	� is strictly convex and
P

x pd�x�q��zjx� � p��z�� it follows from
Jensen�s inequality that the term between braces in ����� is � 	 with equality i� q��zjx� is
constant in x for all z� i�e��

p � pd � p�� �����

By combining ����� and ����� we get

Fd���p� �
X
x

pd�x�F��q���jx�� �
X
z

p��z�Fd�qd��jz��� �����

Varying over p we obtain

inf
p�Pd
�

Fd���p� � inf
p�P�

F��p� � inf
p�Pd

Fd�p�� �����

Since Fd���p� � F��p�� � Fd�pd� for all p of the form ������ we have proved that the claim
holds for dimension d� � and therefore completed the induction step�
�b� The argument in �a� shows that Md � �M���d� We next prove that M� 
� �� For
ease of notation we shall henceforth suppress the dimension index �� The proof comes in

 Steps�

�



Step �� For every p � P with F �p� �� there exists a %p � P such that�
�i	 F �%p� � F �p�� with strict inequality when p is not unimodal�
�ii	 %p is unimodal�
�iii	 %p is a permutation of p �i�e�� %p�x� � p��x�� for some permutation  of ZZ	�

Proof The proof is by induction� We shall show how to construct a sequence �pn�n
� in
P satisfying p� � p and the following properties�

�i�� F �pn��� � F �pn� �n � ���

�i'� For every n � � and � � m � n� the positions of the �rst m �record values� �i�e��
largest values� of pn form a cluster�

�iii�� For every n � �� pn�� is a permutation of pn attaching the �n� ���st record value of
pn to the cluster consisting of the previous record values�

The construction goes as follows� Pick any sequence �xn�n
� along which the values of p are
arranged in decreasing order� Given pn� let �un� vn� be the cluster consisting of the positions
of the �rst n record values� Without loss of generality we may assume that xn�� � vn �the
case xn�� � un being similar�� If xn�� � vn � � then put pn�� � pn� Otherwise put

pn���y� � pn�y� for y � vn and y � xn��

� pn�xn��� for y � vn � �
� pn�y � �� for vn � y � xn���

�����

i�e�� attach the �n� ���st record value to the cluster �un� vn� and close up the hole it leaves
behind� It is clear from ����� that the sequence �pn�n
� constructed in this way satis�es
�ii�� and �iii��� To prove �i�� we recall that F � I�	J with I� J given by �	����	����� Now�
J�pn��� � J�pn� �n � �� because J is invariant under permutations� Thus it su�ces to
show that I�pn��� � I�pn� �n � ���

Recall that I sums the square of the increments of
p
p along the bonds of ZZ� The only

bonds where something changes in ����� are �vn� vn���� �xn����� xn��� and �xn��� xn������
Abbreviate

a �
q
pn�vn�� b �

q
pn�xn���� c �

q
pn�vn � ���

d �
q
pn�xn�� � ��� e �

q
pn�xn�� � ��

�a � b � c� d� e��

����	�

Then we easily compute

I�pn�� I�pn���
� f�a� c�� � �d� b�� � �b� e��g � f�a� b�� � �b� c�� � �d � e��g
� 
�a� b��b� c� � 
�b� d��b� e� � 	�

������

Thus we have proved �i��� It is easily checked that if p is not unimodal� then in �i�� strict
inequality holds for at least one n � � in the above iterative construction�

Finally� �pn�n
� is obviously pointwise convergent� The limit we call %p� which obviously
satis�es the claims because of �i��iii�� �recall that F is lower semicontinuous�� �





Step 
� inf F � minF �

Proof Let �qn� be a minimizing sequence in P� i�e�� limn�� F �qn�� infp�P F �p�� Let %qn
be the permutation of qn obtained as in Step �� Then also �%qn� is a minimizing sequence�
We shall prove that this sequence is tight modulo shifts� For ease of notation we drop the
tilde�

Without loss of generality we may assume that the �rst record value of qn sits at x � 	
for all n� Since qn has the cluster property �see Step ��ii��� its �rst m record values lie
inside the interval ��m�m�� Since there can be at most m record values larger than ��m�
it follows that

sup
x����m�m�

qn�x� � �

m
for all n�m� ����
�

Now� there exists some K �� such that F �qn� � K for all n su�ciently large� Therefore�
since all summands of F are nonnegative �recall �	����	������ we must have

�	 X
x����m�m�

qn�x� log qn�x� � K� ������

But from ����
� follows

�	 X
x����m�m�

qn�x� log qn�x� � 	 logm
X

x ����m�m�

qn�x�� �����

Combining ���������� we obtain

X
x����m�m�

qn�x� � K

	 logm
� ������

Since this bound is uniform in n� we have proved tightness�
Thus qn converges to some q � P along some subsequence� Now note that F �q��

limn�� F �qn� � inf F because F is lower semicontinuous and �qn� is a minimizing sequence�
Hence q is a minimizer� �

�c� The proof is by contradiction� Suppose that p � P is not strictly positive� Then there
exists some x� such that p�x�� � 	 and p�x� � �� � p�x� � �� � 	� For � � �	� ��� de�ne
p	 � P as

p	�x� �

�
�� � ��p�x� x 
� x�
� x � x��

������

One easily deduces from �	����	���� and ����� that

F �p	� � ��� ��F �p� � 

�
��

q
���� ��

�q
p�x� � �� �

q
p�x� � ��

�	
�	f� log �� �� � �� log��� ��g�

������

As �� 	� the term with
q
��� � �� is dominant� Hence F �p	� � F �p� for all � su�ciently

small� so p is not a minimizer�
This completes the proof of Lemma ��� �

�



��� The link between ���� and ���
Let

V � fv� ZZ� IR�� v solves ���g� ������

Lemma �� �a	 V 
� � and infv�V kvk�� � minv�V kvk���
�b	 Let V be the set of minimizers in �a	� Then

M � fv��kvk���� v � Vg ������

F �v��kvk���� � 
	 log kvk�� �v � V�� ���
	�

Proof �a�b� Let p � M be any minimizer of F � Since p is strictly positive by Lemma
���c�� we can do a standard variational argument� Indeed� pick any h� ZZ� IR with �nite
support and

P
z h�z� � 	� Since p��h � P� for � small enough� we compute from �	����	����

and �����

	 � lim
	��

�
	
�F �p� �h�� F �p��

�
P
z
�
q
p�z � ���

q
p�z��

�
h�z���p
p�z���

� h�z�p
p�z�

�
� 	

P
z
h�z��� � log p�z��

�
P
z
h�z�

�
�
r

p�z���
p�z�

�
r

p�z���
p�z�

� 
� 	 log p�z�
	
�

���
��

Hence� h being arbitrary� there exists a constant � such that

�
�
vuutp�z � ��

p�z�
�
vuutp�z � ��

p�z�
� 
� 	 log p�z�

	
� � �z � ZZ�� ���

�

Put

v�z� � e����
q
p�z�� ���
��

Then ���

� transforms into

v�z � ��

v�z�
�
v�z � ��
v�z�

� 
 � 
	 log v�z� � 	� ���
�

which is ���� Moreover� via ���

���
�� and the de�nition of F �
F �p� �

P
z
�
q
p�z � �� �

q
p�z��� � 	

P
z
p�z� log p�z�

�
P
z
�p�z� � � � 
	 log kvk���

���
��

Thus� with each p � M corresponds a solution of ��� given by v� � p exp�minF�	� �or
minF � 
	 log kvk���� HenceM fv��kvk��� � v � Vg� Since we know from Lemma ���b�
that M 
� �� this implies that V 
� ��

Reversely� given any v � V� one easily checks that p de�ned by p � v��kvk��� satis�es
F �p� � 
	 log kvk��� Hence� only the solutions v � V correspond to the minimizers p �
M� �

Lemmas ���� prove Proposition ��

�



��� Proof of Theorem �

��� Parts ����� and ����ii�iii�

We already know from Lemmas ���� that ��� has a ground state� so Part ��� is covered�
Part �
� is immediate from Lemma ��b� and the fact that v��kvk��� satis�es the tightness
property of �������

Lemma �� Any v � V satis�es�
�a	 � � kvk�� � exp���	��
�b	 If v�x� � v�y� for y � x � �� x � � with at most equality at one point� then v�x� � ��
Similarly with both inequalities reversed�

Proof �a� By Lemma ��b�


	 log kvk�� � inf
p�P�

F �p�� ���
��

The lower bound follows because F � 	� The upper bound follows by picking the trial
function p � ��� for which F ���� � I���� � 	J���� � 
 � 	 � 	 � 
�
�b� If x is a local maximum of v then �v�x� � 	� Hence 
	v�x� log v�x� � 	� Similarly for
a local minimum� �

We know from Step � in the proof of Lemma �� that v has the cluster property� i�e�� v
is unimodal� A maximum of three or more points is not possible� since ���� would give
that v � C � 	� which is not in l��ZZ�� Thus we have proved Part ����i�� Part ����ii�
now follows from Lemma ���b�� Indeed� if there were an x such that v�x� � v�x� �� �
v�x� 
� � v�x� ��� then this would contradict v�x� �� � � � v�x� 
�� Similarly with
the inequalities reversed�

��� Parts ��� and ���

We shall prove Part �� for large 	 by contradiction� Suppose that ��� has two ground
states� v�� v� � V� which are not translates of each other� By shifting them we can always
arrange that vi�	� � maxx vi�x� � � �i � �� 
�� Without loss of generality we may assume
v��	� � v��	��

De�ne w and v��� by

w � v� � v�
� � log v��� � v� log v��v� log v�

v��v� �
���
��

Since v�� v� both solve ���� we have
�w � 
	w�� � log v���� � 	� ���
��

Next note the following properties�

�i�� v��� lies everywhere inbetween v� and v��

�



�ii�� v����	� � ��

�iii�� if 	 � 
� log�� � e��� then v����x� � e�� for all x 
� 	�

Indeed� �i�� follows from the mean value theorem� �ii�� follows from �i�� and vi�	� � � �i �
�� 
�� while �iii�� follows from �i��ii�� and Lemma ���a� giving

P
x ��� v

�
i �x� � exp�
�	��v�i �	�

� exp�
�	� � � � ��e� �i � �� 
��
Now argue as follows� From �iii�� together with ���
�� we get

w�x� and �w�x� have the same sign for all x 
� 	� ���
��

At x � 	� on the other hand� ���
�� can be written as

w��� � w���� � 
w�	�
�
� � 	�� � log v����	��

	
� ����	�

Suppose that w�	� � 	 �the case w�	� � 	 will be handled later�� Then ����	� and �ii��
imply w��� � w���� � 	 �note that 	 � 
� log�� � e��� � ��� Without loss of generality
we may assume w��� � 	� Writing rw�x� � w�x��w�x� �� and using ���
��� we deduce�rw�	� � 	

w��� � 	
��

�rw��� � rw�	� � 	
w�
� � w��� � 	�

������

This implication can be iterated to yield that x�rw�x� is strictly increasing for all x � 	�
This in turn implies that w�x� � w�	� � xrw�	� �x � 
� and hence limx�� w�x� � ���
But now we have a contradiction because v�� v� � l��ZZ��

Finally� if w�	� � 	 then ����	� gives w��� � w���� � 	� It is not possible that
w��� � w���� � 	� Namely� this would imply v��x� � v��x� for x � �� 	��� and hence
v� � v� because ��� is second order� Again� without loss of generality we may assume
w��� � 	� and the argument proceeds as before� This completes the proof of Part ���

If v solves ��� then so does �v� Hence the uniqueness of the ground state� proved above�
implies that v is symmetric about its maximum at 	� This completes the proof of Part ����

��� Part ����iii�

De�ne r�x� � v�x��v�x� ��� This ratio satis�es the equation

�

r�x�
� 
 � r�x� �� � �
	 log v�x�� ����
�

which can be rewritten in the forward form

�

r�x�
� K � r�x � �� � 
	 log

� x��Y
y��

r�y�
�

�x � �� ������

with K � 
� 
	 log v��	�� The unimodality of v� �Part ����ii�� implies that r�x� � � �x �
	�� It therefore follows from ������ that

�K � �� � 
	
x��X
y��

log r�y� � r�x� �� � K � 
	
x��X
y��

log r�y�� �����

�



By combining upper and lower bound we get

�� � 
	 log r�x� � r�x�� r�x� �� � � � 
	 log r�x�� ������

We must show that ������ implies r�x� � 
	x log x �x���� as claimed� We shall do this
via a comparison with the continuous equation f � � 
	 log f �

Lower bound� Let f � �x����� IR� be the solution of the di�erential equation

f � � �� � 
	 log f
f�x�� � r�x���

������

where the starting point x� is to be chosen large enough so that r�x�� � 
	 	 exp���
	��
Note that such an x� always exists because limx�� r�x��� �as is easily seen from ����
�
using that limx�� v�x� � 	 and r�x� � ��� We shall �rst show that r�x� � f�x� for all
x � x� and then that f�x� � 
	x log x �x����

Since f�x�� � exp���
	�� it follows from ������ that f is increasing� Hence

f�x�� f�x� �� �
R x
x�� dyf

��y�
�

R x
x�� dy ��� � 
	 log f�y��

� �� � 
	 log f�x� �x � x� � ���
������

De�ne g� IR� � IR by g�u� � u � ��� � 
	 log u�� Then ������ can be rewritten as
f�x � �� � g�f�x��� From the lower bound in ������� on the other hand� we know that
r�x� �� � g�r�x��� Therefore we obtain

g���f�x� ��� � f�x�
g���r�x� ��� � r�x� �x � x� � ���

������

Here we have used that g� g�� are strictly increasing on �
	��� and that f� r � 
	 on
�x����� The latter holds because f�x�� � r�x�� � 
	 and because f� r are both increasing
�for r this follows easily from the lower bound in ������ because r�x�� � exp���
	���
From ������ we get the implication� r�x � �� � f�x � ���� r�x� � f�x�� which proves
r�x� � f�x� �x � x���

De�ne h� IR� � IR by h�u� �
R u dv���� � 
	 log v�� Then ������ gives h��f�f � � ��

Hence

h�f�x��� h�f�x��� � x� x� �x � x��� ������

Since h�u� � u�
	 log u �u���� it follows that f�x��
	 log f�x� � x �x���� which is
the same as f�x� � 
	x log x �x����
Upper bound� By a similar argument� First rewrite the upper bound in ������ as r�x��� �
(g�r�x�� with (g�u� � u� �� � 
	 log u�� Next� de�ne (f to be the solution of the di�erential
equation

f � � (g���f�� f
f�x�� � r�x���

���	�

�



Since u� (g���u�� u is asymptotically increasing and positive� we have

(f�x�� (f�x� �� �
R x
x�� dy (f

��y�
�

R x
x�� dy �(g

��� (f�y��� (f �y��
� (g��� (f�x� ���� (f�x� �� �x � x� � ���

�����

provided x� is again chosen large enough so that r�x�� falls in the asymptotic regime� Thus�
we get precisely the reverse of ������� namely

(g��� (f�x� ��� � (f�x�
(g���r�x� ��� � r�x��

���
�

Hence r�x� � f�x� �x � x��� Finally� let (h �
R u dv��(g���v�� v�� Then again (h�� (f � (f �� ��

Since (g���v�� v � 
	 log v �v ���� we again �nd (f �x� � 
	x log x �x����

��� Parts ��� and �	�

Part ��� is immediate from Lemma ���
We shall henceforth write F�� p�� v� instead of F� p� v in order to display the 	�dependence�

According to Lemma ��b�� the minimizers p� of F� and the ground states v� of ��� are
related as p� � v���kv�k��� and v�� � p�exp�F��p���	�� The behavior of these quantities as
	 � 	 comes in � steps� The argument below is valid for any minimizer p� resp� ground
state v� assumed to be centered at 	�

De�ne

#p��x� �
�p
	
p��bx�p	c� �x � IR�� �����

which is an element of P�IR�� the set of probability measures on IR�

Step �� The family �#p��������� is�
�i	 equicontinuous on compacts�
�ii	 uniformly integrable�
�iii	 uniformly bounded from above�

Proof �i� Let #F��P�IR�� �	��� be the functional de�ned by �compare with F� de�ned
in ������

#F� � #I� � #J

#I��p� �
R
IR dx

�
�p
�

�q
p�x�

p
	��

q
p�x�

���

#J�p� � � RIR dx p�x� log p�x��

����

�	



�Note that #J � 	 by Jensen�s inequality� even though the integrand in #J is not negative
everywhere�� Then we have the relation �recall �	����	�����

#F��#p�� �
�

	
�F��p�� � 	 log

p
	�� �����

Because p� is a minimizer of F�� we have F��p�� � F��q�� for any trial function q� � P�ZZ��
Pick q��x� � ��� c�cjxj��� � c� �x � ZZ� with c � ��p	� Then an easy computation gives
F��q��� �	 logp	��	� � log 
�	�O�		��� �	 � 	�� Hence we conclude� using ������ that
there exists some K �� such that

	 � #F��#p�� � K for all 	 � �	� ��� �����

This� in turn� yields that for any x� y � p	ZZ with x � y

K
x�y � �

x�y
R x
y dz

�
�p
�

�q
#p��z �

p
	��

q
#p��z�

���

�
�

�
x�y

R x
y dz

�p
�

�q
#p��z �

p
	��

q
#p��z�

���

�
�

�
x�y

�q
#p��x��

q
#p��y�

���

�

�����

The �rst inequality follows from ���� and ������ the second inequality from Cauchy�
Schwarz� the third equality from the fact that #p� is constant between the points of

p
	ZZ�

The estimate in ����� says that

j
q
#p��x��

q
#p��y�j �

q
Kjx� yj for all x� y � p	ZZ� �����

which proves the claim�
�ii� By Jensen�s inequality�

�
Z
jxj�R

dx #p��x� log #p��x� � �
�Z

jxj�R
dx #p��x�

�
log
�Z

jxj�R
dx #p��x�

�
� �

e
� �����

Since #I�� #J � 	� it now follows from ���� and ����� that

�
Z
jxj�R

dx #p��x� log #p��x� � K �
�

e
� ����	�

Next� p� being unimodal� we have the same bound as in ����
�� namely supjxj�m p��x� �
��m for all m � IN� 	 � 	� In terms of #p� this bound translates into �pick m � R�

p
	�

sup
jxj�R

#p��x� � �

R
for all R � p	IN� 	 � 	� ������

Combining ����	������ we getZ
jxj�R

dx #p��x� �
�
K �

�

e

�
�

logR
for all R � p	IN� ����
�

��



proving the claim�
�iii� Since

R
IR dx #p��x� � � for all 	� it immediately follows from �i� that #p� is bounded from

above uniformly in 	 � �	� ��� �

De�ne

#v��x� � v��bx�p	c� �x � IR�� ������

which is an element of L��IR��

Step 
� The family �#v��������� is�
�i	 equicontinuous on compacts�
�ii	 uniformly square integrable�
�iii	 uniformly bounded from above�
�iv	 uniformly bounded from below on compacts�

Proof �i�iii� By ������� ����� and ����� we have the relation

#v���x� � #p� exp� #F �#p���� �����

Therefore the claims follow from Step � via ������
�iv� The proof of the uniform lower bound on compacts is more subtle and requires some
work� We shall prove the claim on IR�� The proof for IR� is similar�

Pick 	 � �	� �� and let v� be any centered solution of ���� We have
�i�� ��v���x� � 
	v��x� log v��x� � 	 �x � ZZ�
�ii�� v��	� � maxx�ZZ v��x� � �
�iii�� v� decreasing on ZZ��

������

Multiply �������i�� by v��x� �� � v��x� �� to obtain

	 � �v��x� ��� v��x� ������v���x� � 
	v��x� log v��x��

� �v��x� ��� v��x��
� � �v��x�� v��x� ���

�

�
	�v��x� ��v��x� log v��x�� v��x� ��v��x� log v��x���

������

De�ne x� � ZZ� to be the unique point where

v��x� � �� � �

e
� v��x��� ������

Then� because v � v log v is decreasing on the interval �	� ��e�� it follows from �������iii��
that

v��x� log v��x� � v��x� �� log v��x� ��
v��x� log v��x� � v��x� �� log v��x� ���

������

�




Substitution into ������ gives

	 � �v��x� ��� v��x��� � �v��x�� v��x� ����

�
	�v���x� �� log v��x� ��� v���x� �� log v��x� ��� �x � x� � ���
������

Next� pick y � x� � � and sum ������ over all x � y� Then we get

	 � �v��y � ��� v��y���

�
	�v���y � �� log v��y � �� � v���y� log v��y�� �y � x� � ���
����	�

where we use that limx�� v��x� � 	� Bring the 
 under the logarithm and use once more
the monotonicity� to obtain

	 � �v��y � �� � v��y��
� � 
	v���y � �� log v���y � ��� ������

Putting y � x� � we thus arrive at

v��x� �� � v��x�
�
� � 


s
	 log

�
�

v��x�

��
�x � x��� ����
�

This is a forward iterative inequality�
We shall iterate ����
� until v��x� drops below a threshold � � 	� Later we shall see

how to manipulate �� As part of the argument we shall need the following property�

inf
�������

v��x�� � � � 	� ������

The proof of ������ comes at the end�
As long as v��x� � �� the term between square brackets in ����
� is bounded from below

by �� 

q
	 log������ Hence� by �������

v��x� � �
�
� � 


s
	 log

�
�

�

��x�x�
�����

for all x � x� such that the r�h�s� is � �� Now� since � � u � e��u for u � �	� ��
�� we
obtain �recall �������iii�� and �������

v��x� � � exp
�
� 

s
	 log

�
�

�

�
x
�

������

for all x � x� such that the r�h�s� is � �� provided




s
	 log

�
�

�

�
� �



� ������

Next� ������ is trivially true for 	 � x � x� by �������iii��� ������ and ������� Therefore
we can now scale x to bx�p	c to arrive at the lower bound

v��bx�p	c� � � exp
�
� 

s
log
�
�

�

�
x
�

������

��



for x � 	� still subject to ������ and to the requirement that the r�h�s� be � �� Now�
for any � � 	 the r�h�s� of ������ is bounded from below on compacts� Thus� all we have
to check is that it is � � on an interval �	� x���� with lim
�� x��� � �� But we in fact
have x��� � log������

q
log����� and so this is indeed the case �irrespective of � � 	��

The condition ������ holds for any � � 	 when 	 is su�ciently small� so our proof of the
uniform lower bound on compacts is complete�

It remains to check ������� For this we shall need the following fact� which follows from
Step 
�iii� already proved�

sup
�������

v��	� � c ��� ������

It follows from �������ii��iii�� and ������ that 
v��x� log v��x� � C uniformly in x with
C � 
c log c� Hence

v��x� �� � v��x� � v��x�� v��x� ��� 	C� ������

Iteration from x � 	 to x � x� gives �recall �������ii���

	 � v����� � v��	� � v��x� � �� � v��x��� x�	C ����	�

or

x� � �

	C
�v��x� � ��� v��x���� ������

Now� suppose that there exists a � � 	 and a sequence �	k� tending to zero such that

v�k�x�k � �� � v�k�x�k� � � for all k� ����
�

Then x�k � b��	kCc� It follows from ����
� and iteration of ������ that

v�k�x� �� � v�k�x� � � � �x�k � x�	kC �x � x�k� ������

and hence

v�k�x�k � l � �� � v�k�x�k � �� �
lX

m��

�� �m	kC� �l � 	�� �����

Using �������ii�� and picking l � b��	kCc � �� we arrive at

v�k�	� � v�k

�
x�k � b

�

	kC
c
�
� �




�
b �

	kC
c � �

�
� ������

But clearly this contradicts ������� Hence ����
� must fail and so we conclude that

lim
���

�v��x� � ��� v��x��� � 	� ������

But� because of ������� this implies that

lim
���

v��x�� �
�

e
� 	� ������

which in turn implies ������� �

�



De�ne

#V � f#v � L��IR�� #v is a weak limit point of #v� as 	� 	g� ������

Step �� �i	 #V 
� ��
�ii	 For each #v � #V the convergence is uniform on compacts in IR�
�iii	 All #v � #V are solutions of the di�erential equation #v��� 
#v log #v � 	�

Proof �i� Step 
�i� implies that �#v��������� is relatively compact �in the set of continuous
functions on ��R�R� for arbitrary R � 	��
�ii� Arzela�Ascoli�
�iii� Substitution of ������ into ��� shows that #v� satis�es the equation

�p
�#v� � 
#v� log #v� � 	 ������

with �p
� de�ned by

��p
�f��x� �

�

	
�f�x�

p
	�� 
f�x� � f�x �p	�� �x � IR�� ����	�

Now� �p
� is the generator of simple random walk on

p
	ZZ with jump rate 
�	� Let us

write #Z� � f #Z��t�� t � 	g to denote this process and P
�p

�
x � E

�p
�

x to denote its probability
law and expectation� Then� using the Feynman�Kac formula� we have the representation

#v��x� � E
�p

�
x

�
exp

� R ���R
� dt log #v�� #Z��t��

�
#v�� #Z�����R��

�

�x � p	ZZ� R � p	IN� jxj � R��

������

where

���R � infft � 	 � j #Z��t�j � Rg �R � p	ZZ�� ����
�

Next� let B � fB�t�� t � 	g be standard Brownian motion on IR� which is the Markov
process with generator � �the Laplacian on IR�� Then it is well known that there exists a
coupling of � #Z��������� and B such that

lim
���

sup
t����T �

j #Z��t��B�t�j � 	 in probability for any T � 	� ������

Combining ����������� with Step � we �nd that any #v � #V must satisfy

#v�x� � E�
x

�
exp

� Z �R

�
dt log #v�B�t��

�
#v�B��R��

�
�x � IR� R � IR�� jxj � R�� �����

where

�R � infft � 	 � jB�t�j � Rg �R � IR�� ������

To derive ����� from ������ we have used the following facts�

��



�i�� #v� � #v uniformly on ��R�R� as 	� 	 �by Step ��ii���

�ii�� x � 
 log #v��x� is bounded away from 	 and � on ��R�R� uniformly in 	 � �	� ��
�by Step 
�iii�iv���

�iii�� j���R � �Rj � 	 as 	� 	 in probability �by ����
�����������������

But ����� is the Feynman�Kac representation for the solution of #v�� � 
#v log #v � 	� �

To conclude the proof of Part ���� all that we need to do is recall footnote � which
says that the solution of the limiting equation in Step ��iii� is unique �modulo shifts� and
is given by the Gaussian #v�x� � exp��

�
�� � x���� Thus #V is a singleton� and any centered

ground state of ��� converges to this Gaussian�

��� Finite approximation of ����

Lemma �� below compares the variational problem ���� on ZZd with its restriction to
TN � ��N�N �d � ZZd �with periodic boundary conditions�� Recall Section 	�� Let I� J be
the functionals on P�ZZd� de�ned in �	����	����� Let IN � JN be their analogues on P�TN��
Put F � I � 	J and FN � IN � 	JN � Write E�P�TN �� P�ZZd� to denote the canonical
embedding de�ned by Ep � p on TN and Ep � 	 on ZZd n TN �

Let MN  P�TN� and M  P�ZZd� be the sets of minimizers of FN rsp� F � By
compactness�MN is non�empty� By assumptions A��A
 in Theorem �� M is non�empty
and is a singleton modulo shifts� In the following we shall write (pN to denote an arbitrary
centered element of MN and (p to denote the unique centered element of M� Let UN

	 �U	
be the ��neighborhoods ofMN �M in the 
��metric� De�ne

�N	 �	� � min
pN ��UN�

FN�pN � ������

�	�	� � inf
p��U�

F �p� ������

and write �N �	�� ��	� when � � 	�

Lemma �� Fix 	 � �	����
�a	 limN�� �N �	� � ��	��
�b	 limN�� kE (pN � (pk�� � 	 for any �(pN �N
��
�c	 EUN

	�  U	 for all 	 � �� � � and N � N���� ����
�d	 E�UN

	�� �
c  �U	�c for all 	 � � � ��� and N � N����� � ���

�e	 lim supN�� �N	� �	� � �	�	� for all 	 � �� � ��
�f	 lim infN�� �N	���	� � �	�	� for all 	 � � � ����
�g	 �	�	� � ��	� for all � � 	�
�h	 For p � P�ZZd� and S  ZZd� de�ne p�S� �

P
z�S p�z�� Then for an arbitrary partition

fA�Bg of ZZd

F �p� � ��	�� 
dp��A � �B�� 	�p�A� log p�A� � p�B� log p�B��� ������

Similarly on TN for any N � ��

��



Proof Suppress 	 from the notation�
�a� �N � � for all N � For p � P�ZZd� let Np � P�TN� denote the periodization of p w�r�t�
TN � Then JN�Np� � J�p� by concavity� Moreover� by the contraction principle�

IN�Np� � inf
q�P�ZZd���N q��N p

I�q�� ������

Hence

�N � inf
p�P�ZZd�

�IN�Np� � 	JN�Np�� � inf
p�P�ZZd�

�I�p� � 	J�p�� � �� ����	�

lim infN�� �N � �� For all pN � P�TN� we have
	 � I�EpN �� IN�pN � � d

P
z��TN pN �z�

J�EpN � � JN�pN ��
������

as is easily deduced from �	����	����� �The upper bound estimates the sum of p�x� � p�y�
over all x� y connected by a bond that is �cut open��� Hence

	 � F �EpN �� FN�pN � � d
X

z��TN
pN �z�� ����
�

We have proved in Section ����� that (p is a product measure with all its marginals unimodal�
The same argument works for (pN without modi�cation� Thus we know� in particular� thatX

z��TN
(pN �z� � j�TNj�jTN j� ������

It therefore follows that

�N � FN�(pN � � F �E (pN �� dj�TN j�jTN j � �� dj�TN j�jTN j� �����

Take the limit N �� to get the claim�
�b� The unimodality of (pN implies that �E (pN �N
� is tight� Let �Nk� be any subsequence
such that E (pNk � %p in 
� for some %p � P�ZZd� as k ��� With the help of ����
������ and
the lower semicontinuity of F � we get

lim inf
k��

FNk�(pNk� � lim inf
k��

F �E (pNk � � F �%p�� ������

Since the l�h�s� is � by �a�� it follows that %p is a minimizer of F � Hence %p � (p� proving the
claim�
�c� For x � ZZd� let �x�P�ZZd�� P�ZZd� denote the x�shift de�ned by ��xp��y� � p�x � y��
For every p � P�ZZd� we have

k�xp� (pk�� � k�xp � E (pNk�� � kE (pN � (pk�� � ������

Take the in�mum over x on both sides to obtain that p �� U	 �� p �� EUN
	�
N with

�N � kE (pN � (pk�� � The claim now follows from �b��

��



�d� For x � ZZd� let �Nx �P�TN� � P�TN� and #�Nx �P�ZZd� � P�ZZd� denote the N �periodic
x�shifts de�ned by

��Nx p
N ��y� � pN �x� y �mod TN��

�#�Nx p��y� �

�
p�x� y �mod TN�� y � TN
p�y� y � ZZd n TN

������

We obviously have

E � �Nx � #�Nx � E on P�TN�� ������

Moreover� it is easy to see that for any x � ZZd and for any p� q � P�ZZd� with support in
TN

k�xp� qk�� � k#�Nx p � qk��� ������

Combining ������������ we get that for any pN � P�TN�
k�xEpN � E (pNk�� � k#�Nx EpN � E (pNk�� � kE�Nx pN � E (pNk�� ����		�

and hence

k�xEpN � (pk�� � kE�Nx pN � E (pNk�� � �N ����	��

with �N � kE (pN � (pk�� � Take the in�mum over x on both sides to obtain that EpN �
E�UN

	�� �
c �� EpN � �U	���
N �c� The claim now follows from �b��

�e� From �c� and the inequality FN�pN � � F �EpN � �recall ����
�� we get
�N	� � min

pN ��UN
��
FN�pN � � min

pN ��UN
��
F �EpN � � inf

p��U�
F �p� � �	� ����	
�

�f� Let (pN	�� denote an arbitrary centered minimizer for �
N
	�� � minpN ��UN

���
FN�pN � �which

exists by compactness�� Then there exists some y � y�(pN	��� � TN such thatX
z��TN

��Ny (p
N
	����z� � j�TN j�jTN j ����	��

and hence

�N	�� � FN�(pN	��� � FN��Ny (p
N
	��� � F �E�Ny (pN	���� dj�TN j�jTN j ����	�

�compare with ������������ Because �Ny (p
N
	�� �� UN

	�� � it follows from �d� that for N su�ciently
large

F �E�Ny (pN	��� � �	� ����	��

Now combine ����	����	�� and let N ��� to get the claim�
�g� We shall need the following property� which will be proved at the end�

Any centered minimizing sequence for � � min
p�P�ZZd�

F �p� is tight� ����	��

��



Suppose that � � �	 for some � � 	� Let �p	�n� be any centered minimizing sequence for
������� Then� by ����	��� this sequence is tight� Hence p	�n converges to some p	 �� U	 along
some subsequence� Because F is lower semicontinuous� it follows that � � �	 � F �p	��
But this in turn implies that p	 is some shift of (p� which contradicts p	 �� U	� Thus we must
have �	 � � for all � � 	� as claimed�

It remains to prove ����	��� Let �pn� be any centered sequence that is not tight� Then
there exist sequences �nk�� �Nk� and some � � 	 such that

P
z�TNk

pnk �z� � ak � � for all k

P
z�ZZdnTNk

pnk �z� � bk � � for all k

P
z��TNk���ZZdnTNk�

pnk �z� � ck � 	 as k ���

����	��

De�ne

p�k � �
ak
pnk�TNk

p��k � �
bk
pnk�ZZdnTNk �

����	��

Then we have �compare with �������

I�p�nk � � I�akp�k � bkp
��
k� � akI�p�k� � bkI�p��k�� dck

J�p�nk � � J�akp�k � bkp
��
k� � akJ�p�k� � bkJ�p��k�� ak log ak � bk log bk�

����	��

Hence

F �pnk� � I�p�nk� � 	J�p�nk �

� akF �p�k� � bkF �p��k�� dck � 	�ak log ak � bk log bk�

� �� dck � 	�ak log ak � bk log bk�

�����	�

�ak � bk � ��� But ck � 	 and both ak and bk are bounded away from 	 and �� Therefore
lim infk�� F �pnk � � �� and so we conclude that �pn� is not minimizing�
�h� Same as the argument in ����	������	�� �
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