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Abstract

Consider the Cauchy problem du(z,t)/dt = Hu(z,t) (x € Z%,t > 0) with initial condition
u(z,0) = 1 and with # the Anderson Hamiltonian # = kA +&. Here A is the discrete Laplacian,
% € (0,00) is a diffusion constant, and & = {¢(z): 2 € Z¢} is an i.i.d. random field taking values
in IR. Gértner and Molchanov (1990) have shown that if the law of £(0) is nondegenerate, then
the solution u is asymptotically intermittent. This means that lim;_..(u*(0,¢))/(u(0,¢))? = oo,
where (-) denotes expectation w.r.t. £, and similarly for the higher moments. Qualitatively their
result says that, as ¢ increases, the random field {u(z,t): 2 € Zd} develops sparsely distributed
high peaks, which give the dominant contribution to the moments as they become sparser and
higher.

In the present paper we study the structure of the intermittent peaks for the special case where
the law of £(0) is (in the vicinity of) the double exponential Prob(£(0) > s) = exp[—¢*/%] (s € R).
Here 6 € (0,00) is a parameter that can be thought of as measuring the degree of disorder in
the &field. Our main result is that, for fixed z,y € Z? and t — oo, the correlation coefficient of
u(x,t) and u(y,t) converges to |lw,||z* X, cga wp(x + 2)w,(y + 2). In this expression, p = 6/
while w,: Z* — R* is given by w, = (v,)®? with v,: Z — R* the unique centered ground state
of the 1-dimensional nonlinear equation Av + 2pvlogv = 0 (ground state means the solution in
(2(Z) with minimal [>-norm). Qualitatively our result says that the high peaks of u have a shape
that is a multiple of w, relative to the center of the peak.

It will turn out that if the right tail of the law of £(0) is thicker (or thinner) than the
double exponential, then the correlation coefficient of u(xz,t) and u(y,t) converges to d,, (resp.
the constant function 1). Thus, the double exponential family is the critical class exhibiting a
nondegenerate correlation structure.

1991 Mathematics Subject Classification: 60H25, 82C44 (primary), 60F10, 60J15, 60J55 (secondary).
Key words: random media, intermittency, large deviations, variational problem, nonlinear difference equa-
tion.

Running title: The parabolic Anderson model.

Date: February 20, 1997.



Contents

0

Introduction

0.1 The parabolic Anderson model . . . . . . . .. ... .. 0L,
0.2 Intermittency . . . . . . . . L
0.3 Correlation structure: (*) and Theorems 1-2 . . . . .. .. ... ... ...
0.4 A variational problem: (#*) and Proposition 3 . . . .. ... ... ... ..
0.5 Asymptotics of the 1-st and 2-nd moments: Theorem 3 . . . . . . ... ..
0.6 Discussion . . . . . . . L L e e
0.7 Numerical study of (%) . . . . . .. . L
0.8 Related work . . . . . . . .

Heuristic explanation of Theorem 3
1.1 Expansion for the 1-st moment . . . . . ... ... ... ... .......
1.2 Expansion for the 2-nd moment . . . . . . .. ... ... ... ...

Main propositions

2.1  Clumping of the local times: Proposition 4 . . . . . . . .. ... ... ...
2.2 Centering and truncation of the local times: Proposition 5 . . . . ... ..
2.3 Two time scales: Proposition 6 . . . . . . . . ... ... L.
2.4  Transformation of the random walk: Proposition 7. . . . . . . .. ... ..
2.5  Separation of the time scales: Proposition 8 . . . . .. .. ... ... ...
2.6 Loss of memory: Proof of Proposition 9 . . . . . .. .. .. .. ... ...,
2.7 Completion of the proof of Theorem 3 . . . . . .. .. .. ... .. ....

Proof of Propositions 4—6

3.1 Proof of Proposition 4 . . . . . . . ...
3.2 Proof of Proposition 5 . . . . . . . ...
3.3 Proof of Proposition 6 . . . . . .. ...

Proof of Propositions 7—9

4.1 Proof of Proposition 7 . . . . . .. ...
4.2 Proof of Proposition 8 . . . . . .. ..
4.3 Proof of Proposition 9 . . . . . .. .o

Functional analysis

5.1 Proof of Proposition 3 . . . . . . . .. ..
5.1.1  Amalysisof (#%) . . . . o oo o o
5.1.2  The link between (#*) and (%) . . . . . ... .. ... ...

5.2 Proof of Theorem 2 . . . . . . . . . . . e
5.2.1 Parts (1-2) and (3)(ii—ii) . . . .. .. .
5.2.2 Parts (4) and (5) . . . . .o
5.2.3  Part (3)(Ii1) . . .« . . oo
5.2.4 Parts (6) and (7) . . . . ..o

[,
— O 00 00 =] U ke Lo W

—_

11
13

14
14
15
16
17
17
19
19

21
21
27
33

36
36
38
38



5.3 Finite approximation of (#*) . . . . . . ... L 56

0 Introduction

0.1 The parabolic Anderson model
Consider the Cauchy problem

I _ d
atu(xvt)_— Hu(:z;,t) (l‘ € o1 > 0) (01)
u(z,0) =1
with H the Anderson Hamiltonian
H=rA+E (0.2)

Here A is the discrete Laplacian, k € (0, 00) is a diffusion constant, and

= {&a)e e’} (0.3)

is an i.i.d. random field taking values in IR. As an operator, H only acts on the spatial
variable:
(Au)(w,t) = ¥ [uly,t) —u(z,1)]
yily—zl=1 (0.4)
(Cu)(w,t) = &(x)u(x,1).

Note that H has two competing parts:
(1) a diffusive part kKA, which tends to make u spatially flat;
(2) a multiplicative part £, which tends to make u spatially irregular.

(H is the so-called ‘tight-binding Hamiltonian with diagonal disorder’ considered in An-
derson (1958).)

Depending on k and on the marginal law of £, the equation in (0.1) can be used to
model various physical and chemical phenomena. For instance, t — {u(x,t):x € 7'} may
describe the evolution of the density field of a chemical component in a catalytic reaction
(Zel’dovich (1984)) or the average occupation field in a system of particles that branch
and migrate (Dawson and Ivanoff (1978)). In these examples the role of € is to act as a
spatially inhomogeneous local rate of catalysis resp. branching. Other applications are:
Fisher-Eigen equation in Darwinian evolution (Ebeling et al. (1984)); Burgers’ equation
with a random force in hydrodynamics (Carmona and Molchanov (1994)).

The following result gives a sufficient condition on & to ensure that (0.1) is actually
applicable to such concrete situations. Let (-) denote expectation w.r.t. the ¢{-field. Let
Z ={Z(t):t > 0} denote simple random walk on Z? jumping at rate 2dx (i.e., the Markov
process with generator kA). Write P, F, to denote probability and expectation on path
space given Z(0) = x.



Proposition 1 (Gdrtner and Molchanov (1990)) If

<[%r> < oo with £.(0) = £(0) Ve, (0.5)

then (0.1) has a unique nonnegative solution -a.s. This solution admits the Feynman-Kac
representation

u(x,t) = El(exp [/Ot§(Z(5))ds]). (0.6)

Moreover, for all t > 0 the random field {u(x,t):x € 'Y is stationary and ergodic under
translations.

The proof of Proposition 1, which is based on ideas from percolation, shows that in
dimension d > 2 condition (0.5) is in fact necessary: if (0.5) fails then a.s. there is no
nonnegative solution to (0.1).

0.2 Intermittency

A discussion of some mathematical problems related to (0.1) can be found in the recent
memoir by Carmona and Molchanov (1994). In the present paper we shall be concerned
with one particular aspect of (0.1), namely the occurrence of intermittency.

We shall henceforth assume that the cumulant generating function of the £-field is finite
on the positive half axis:

H(t) = log(e®©) < 0o for all t > 0. (0.7)

It is easily seen from the representation in (0.6) that assumption (0.7) is equivalent to all
moments and correlations of the u-field being finite for all times (see also Lemmas 1 and
2 in Section 1).

Definition Let
Ag(t) = 10g<uk(0,t)> (k=1,2,...). (0.8)

The system (0.1) is said to be intermittent if *

lim{Al—(t)—Ak—(t)}:oo forall 1 >k > 1. (0.9)

t—o00 l k

Qualitatively, (0.9) means that the u-field develops sparsely distributed high peaks as ¢
increases. These peaks give the dominant contribution to the moments as they become
sparser and higher. Thus the landscape formed by w is so irregular that the a.s. growth at
a fixed site differs from the average growth in a large box.

1t is easily checked that (0.9) holds for all l > k > 1 iff it holds for & = 1,1 = 2 (Gartner and Molchanov
(1990) Section 1.1)



As is evident from (0.1-0.2), peaks tend to grow in the vicinity of where the ¢-field is
large (at a rate proportional to the field), but tend to be flattened out by the diffusion.
By analogy with the theory of Anderson localization (see e.g. Frohlich et al. (1985)), one
may expect to find from a spectral analysis of the operator in (0.2) that the effect of the
randomness in the é-field qualitatively dominates the effect of the diffusion term «A. This
is indeed the case, as expressed by the following result.

Proposition 2 (Gdrtner and Molchanov (1990)) If
£(0) # constant, (0.10)
then (0.1) is intermittent.

0.3 Correlation structure: (x) and Theorems 1-2

Our goal in this paper is to show that there is a qualitative change in the structure of the
intermittent peaks when the law of £(0) is (in the vicinity of) the double exponential

Prob(£(0) > s) = exp[—e*?] (s € R). (0.11)

Here 0 € (0,0) is a parameter that can be thought of as measuring the degree of disorder
in the ¢-field, because the density associated with (0.11) rapidly drops to zero outside the
interval [—6,0]. Our main result, Theorem 1 below, gives the correlation coeflicient of
u(z,t) and u(y,t) for z,y € % fixed and t — oo. We shall see that what this result says is
that the intermittent peaks have a particular asymptotic shape that depends on the ratio
0/r (see Section 0.6).

To formulate Theorem 1 we introduce the following 1-dimensional nonlinear difference
equation:

(*) Av+2pvlogv =0,
v: % — R =(0,00), p=0/x.

We shall be interested in the ground states of (*), i.e., the solutions in {*(Z) with minimal
[*-norm.

Theorem 1 Fix k,0 € (0,00) and put p = 0/k. Suppose that the law of £(0) is given by
(0.11). If there exists a v,: # — RY such that

Al. v, is a ground state of (%),

A2. all other ground states are translations of v,,
then for any v,y € %
e tuyt) 1

m = w,(x 4+ 2)w,(y + 2), (0.12)
B T ra00) T el &, e
where w,: 7 — RY is given by
w, = (v,)%". (0.13)



Theorem 1, which will follow from Theorem 3 in Section 0.5, gives us a precise descrip-
tion of the correlation structure of the intermittent peaks provided assumptions A1-A2
are met. However, the verification of these assumptions is a nontrivial problem, due to the
discrete nature of (*). As a partial result we can offer the following theorem, which will
be proved in Section 5.

Theorem 2 Lelt V, = {v,: Z — R*:v, is a ground stale of (x)}.
I. For all p € (0,00):
(1) Al holds, i.e., V, # 0.
(2) V, is compact in the (*-metric modulo shifts. *

(3) For every centered v, € V,: *
(i) either v,(x) < v,(0) for all  # 0 (single-point maximum) or v,(x) <
v,(0) = wv,(1) for all x # 0,1 (double-point maximum);
(ii) v, is strictly unimodal, i.e., strictly monotone left and right of its mazimum;
(tii) v(x 4 1)/v,(x) ~ 1/(2pxlog ) (x — 00), and similarly for + — —oco.
I1. For p sufficiently large:

(4) A2 holds, i.e., V, is a singleton modulo shifts.

(5) The centered v, has a single-point maximum and is symmetric.
HI. For any centered family (v,),e(0,00) With v, € V,:

(6) lim, o v, = &g pointwise.

(7) limyov,([2/\/p)) = exp[3(1 — 2*)] in L*(R) and uniformly on compacts in R
(where | -] denotes the integer part).

Our estimates in Section 5 show that Theorem 2II holds when p > 2/log(1 + e72).
Possibly it holds for all p > 0, but we are unable to prove this. See Section 0.7 for a

description of numerical work. 4
Note that Theorem 2I(3)(iii) implies

vp(a) = exp[—(1L + o(1))|z[log |z[]  (¢] = o). (0.14)

2For v € I*(Z), let [v] = {v(- + x):x € Z} be the equivalence class given by the translations of v. For
V CI2(Z), let [V] = {[v]:v € V} be the set of equivalence classes of V. We equip [I?(Z)] with the metric
[|[] = [v]|lez = infeem ||u(-) — v(- 4+ z)|]¢=. The statement in Theorem 2I(2) means that [V,] is compact in
the topology induced by this metric.

3We call v € I?(Z) centered if v(0) = max, v(z) and v(z) < v(0) for z < 0.

“The continuous version of () is trivial. In fact, v/ +2pvlogv = 0 for v: IR, — IRT has only one solution
in L?(IR) (modulo translations), namely v,(z) = exp[%(l — pr?)]. Indeed, multiply by v’ to see that any
solution satisfies %(v’)2 + pv?(logv — %) = A (A € R). If v € L*(IR), then necessarily A = 0 (compatible
with v(xz),v' () — 0 as |¢] = o0). Substitute v = exp(f) to get %(f’)2 +p(f — %) = 0. The (twice

continuously differentiable) solution is f(z) = 3 — $p(x — B)? (B € R).



So, in particular, w, defined in (0.13) is an element of (*(Z%) C (*(%*).
Remarks

(A) The proof in Sections 24 will show that we do not require the law of £(0) to be
given precisely by (0.11). What we actually need is that H(¢) defined in (0.7) has
the following asymptotic property:

75lim tH"(t) =0 for some 0 € (0,00). (0.15)
—+00

The parameter § in (0.15) takes over the role of § in (0.11). For the double exponential
in (0.11) we have H(t) =log I'(#t 4 1), which indeed satisfies (0.15).

(B) The proof in Sections 2-4 will also show that if lim;. tH"”(f) = 0 or oo, then
the Lh.s. of (0.12) is the constant function 1 resp. 4., (compatible with Theorem
2I11). Thus, the distributions characterized by (0.15) form the eritical class with an
interesting correlation structure.

0.4 A variational problem: (%) and Proposition 3

In view of (0.6), it is no surprise that the proof of Theorem 1 uses large deviation theory
and that the nonlinear equation (%) comes from an associated variational problem. We
shall formulate this variational problem here. In Section 0.5 it will reappear in Theorem
3, which describes the asymptotic behavior of the 1-st and 2-nd moments of the field
{u(z,t): 2 € Z} and which is a refinement of Theorem 1.

Let Py = P(Zd) denote the set of probability measures on Z*. On P, define the
functionals

wo = 2 (Ve o) (0.16)

{z.y}ilo—yl=1

Ja(p) = —>_p(x)logp(x). (0.17)
Define
(ex) x(p) = 57 Inf {a(p) + pJa(p)}-

We have 0 < x(p) < 1 (because Iy, J; > 0 resp. I4(do) = 2d,.J4(d9) = 0). Moreover,
p — x(p) is nondecreasing and concave with limits lim,_o x(p) = 0 resp. lim,. x(p) = 1.
The following proposition will be proved in Section 5.1 and provides the link between

(*) and ().

Proposition 3 For all p € (0,00):

(1) (%) has a minimum.

(2) p is a minimizer of (xx) iff p= @, (v?/||vi]|%) with v; any ground stale of (x).
(3) x(p) = plog |[v]|e with v any ground state of (*).

7



Note that x(p) does not depend on the dimension d. Theorem 2III(7) and Proposition
3(3) imply that x(p) = £[log(1/p) 4+ log(me®) + o(1)] (p — 0). Thus x has infinite slope at
p=0.

0.5 Asymptotics of the 1-st and 2-nd moments: Theorem 3

The x-function appears in the following asymptotic expansions. Recall the definition of H

in (0.7) and of w, in (0.13).

Theorem 3 Fir x,0 € (0,00) and put p = /. Suppose that the law of £(0) satisfies
(0.15) and suppose that A1-A2 in Theorem I hold. Then for x,y € A" fired and t — oo

w(e.t) = { X ot}

X exp [H(t) — \(p)2dxt + Cr(p, st) + 0(1)] (0.18)
() = {2 wole+nyly +2))
X exp [H(Qt) — \(p)ddrt + Calp, i) + 0(1)], (0.19)

where Cy(p, kt), Ca(p, kt) are functions of order o(t) that are independent (!) of x,y.

Theorem 3, which will be proved in Sections 2-4, obviously implies Theorem 1. It
is crucial that the expansions in (0.18-0.19) are independent of x,y up to the error term
o(1). The dependence on z,y sits solely in the prefactors. We shall see in Section 2 that
the functions 4,y are in fact very sensitive to the precise form of the function H, but
that the prefactors only depend on the asymptotic behavior of H assumed in (0.15). It is
beyond the scope of the present paper to identify Cy, C.

0.6 Discussion

The double exponential is nondegenerate and so, according to Proposition 2, the u-field is
intermittent. This means that the k-th moment is controlled by a different class of peaks
for each k. Moreover, as k increases the peaks in the ‘k-class’ become sparser but higher
(recall (0.8-0.9)).

For ¢ large but fixed, the ergodic theorem tells us that the ratio of 2-nd moments
appearing in the Lh.s. of (0.12) essentially counts how often two peaks in the class k = 2
are seen at a relative distance y — x resp. 0 in a large box. In other words, if we think of
the peaks as located on random islands, then the ratio essentially counts the pairs of sites
in a large box that are at distance y — x resp. 0 and both belong to an island. It is in this
sense that the correlation structure established in Theorem 1 is related to the typical size
of the islands.



Peaks grow in the vicinity of where the ¢-field is large, but are not fully localized on
the local maxima of ¢ because the diffusion term «A has a tendency to spread them out.
Now, the double exponential defined in (0.11) makes a sharp drop beyond the value 6.
Therefore, the larger # the larger the local maxima of ¢ and hence the more localized the
peaks. On the other hand, the larger k the faster the diffusion and hence the less localized
the peaks. Theorem 1 shows that, apparently, it is the parameter p = §/k that controls
the size of the islands. More specifically, if ¢,(x,y) denotes the r.h.s. of (0.12), then we see
from Theorem 2I1I that

pli_}rgocp(x,y) = oy (z,y € Z7)
(0.20)
lim e,/ 7], Ly/v/p]) = eI (o,y € RY).

p—0

The second statement says that an island in the class k = 2 has widths in the d lattice
directions that are of order 1/,/p for small p. In other words, the long-time correlation
length of the u-field is of order 1/,/p for small p.

The result in Theorem 3 should be interpreted as follows. Let the highest peaks in
the islands corresponding to the classes & = 1,2 have heights h(t), hao(t) and densities
di(t),dy(t). If 21(t), x2(t) denote the centers of some randomly chosen peaks, then (0.18—
0.19) tell us that

k=1 u(z(t)+a,t)= Zi‘g;hl(t) (0.21)
k=20 ulzs(t)+a,t) = Zi‘g;m(t) (0.22)

and
dy(h(t) = w,(0)exp [H(t) — \(p)2drt + Cr(p, st) + 0(1)] (0.23)
d(DR3(1) = w?(0)exp [H(Qt) — \(p)ddrt + Calp, st) + 0(1)]. (0.24)

In other words, modulo an unknown height and an unknown density, the peaks have a
non-random shape that is given by w, for both classes. (The same result holds for the
classes k > 3, but these will not be considered in the present paper.)

Thus, the results in Theorems 1-3 give us a picture of the correlation structure of
the u-field that is much more detailed than the notion of intermittency. Indeed, while
intermittency tells us that the peaks occur on sparse islands, our result tells us that the
peaks

(1) contract to single points when p = oo;
(2) grow unboundedly when p = 0;

(3) develop an interesting finite structure when p € (0, c0).



0.7 Numerical study of (x)

For each p € (0,00) there are two centered symmetric solutions of (%), one with a single-
point maximum and one with a double-point maximum. Let v(!) and v(? denote these
solutions, respectively. Then

v(l)(()) > v(l)(l) > v(l)(Z) > ... v(l)(—x) = v(l)(:zj) (x € Z)
v(z)(()) = v(z)(l) > v(z)(Z) > .. v(z)(—x) = v(z)(:zj +1) (x €Z).

Now, we may ask which of these two solutions has the smaller />-norm and whether there
exist values of the parameter p for which the norms coincide. We have done high pre-
cision computations with the package Mathematica. These strongly indicate that always
Hv(z)Hp > HU(I)Hp, although for small values of p the difference §* = HU(Q)H?Q — HU(I)H?Q is
extremely small:

(0.25)

p |2 1 0.5 0.25 0.1 0.05
oD% 2.49 4.38 6.58 9.48 15.1 21.5
6 16811071 9581072 1.23107* 6.75 1071* 247 10730 3.69 1073

If there would be no other candidates for the centered solution of (*) with minimal {*-
norm (which we do not know!), then these numerics would lead us to the conclusion that
for all p € (0, 00) the minimal [2-solution of (*) is uniquely given by v*) modulo shifts (i.e.,
Theorem 211 would hold for all p € (0,00)). Therefore, theoretically, the high peaks of the
u-field contributing to the moments have a unique shape determined by "), as explained
in Section 0.6. However, practically, for small p also the peaks with shape v(?) have to be
taken into account, unless the time is extremely large.

Let us briefly explain our numerical algorithm, which is based on the following obser-
vation. The symmetric solutions of (*) corresponding to an initial datum v(0) are: (i) not
strictly decreasing when v©(0) is small, (ii) not everywhere strictly positive when v(0) is
large. The algorithm varies v(0) until both of these failures are removed (as is required
by Theorem 21(3)(i-ii)). Given an initial datum v(0), we compute v(1),...,v(N) (with NV
ranging from 25 to 75 depending on p) by the following rules:

v(1) = v(0)[1 — plogv(0)] for the single-point maximum,

v(l) = v(0) for the double-point maximum,
vin41) = v(n)[2-2plogv(n)] —v(n—1), if v(n) >0,
vin+1) = wv(n), if v(n) <0,

for n = 1,...,N — 1. The correct initial datum v(0) is then computed by using the
following interval approximation. We start with the interval [ag,bo] := [1,2] and take
v(0) := (ag + bo)/2. Then we compute v(1),...,v(N) in accordance with the above rules.
If this sequence of numbers is not strictly decreasing or if v(N) > 0, then we put a; :=
(ap + bo)/2 and by := by. Otherwise we put a; := ap and by := (ag + by)/2. We then take
v(0) := (a1 + b1)/2, etc. This process is iterated m times until b,, — @, becomes less than
10—100‘

10



0.8 Related work

As a further reference to intermittency we mention the following papers. Antal (1995)
studies the survival of simple random walk on Z? in a random field of traps with density
¢ € (0,1). This model is equivalent to (0.1) when £(0) takes the values —oo and 0 with
probability ¢ resp. 1 — ¢ (as can be seen from (0.6)). His analysis shows that at time ¢
the ‘islands’ have a size of order t"/(#+2) Greven and den Hollander (1992) and Sznitman
(1994) study models related to (0.1) when a drift is added to the diffusive part kKA and the
¢-field is bounded. It turns out that in this situation there is a critical value for the drift,
below which the a.s. exponential growth rate and the box-averaged exponential growth
rate are the same but above which they are not. This fact indicates that for a bounded
¢-field the occurrence of intermittency depends on the strength of the drift.

Finally, Bolthausen and Schmock (preprint 1994) study simple random walk on 7’
with a self-attractive interaction inversely proportional to time, which technically leads to
similar questions. They show that this process is localized and has a limit law that can be
identified in terms of a variational problem and an associated nonlinear difference equation
similar in nature to our (%) and (*). We have picked up several ideas from their paper,
although the functionals arising in our context require a modified approach.

The outline of the rest of this paper is as follows. In Section 1 we give a heuristic
explanation of Theorem 3. In Section 2 we formulate the main steps in the proof of
Theorem 3 by listing six key propositions. These propositions are proved in Sections 3—4.
In Section 5 we prove Theorem 2 and Proposition 3. Theorem 1 is implied by Theorem 3,
as was pointed out above.

1 Heuristic explanation of Theorem 3

In this section we explain where (0.18-0.19) come from. We give a heuristic argument show-
ing how the quantity x(p) arises from large deviations of local times associated with our
simple random walk Z = {Z(¢):t > 0}, and how the higher order terms in the expansions
require an analysis of the corrections to large deviations.

1.1 Expansion for the 1-st moment

Return to the Feynman-Kac representation (0.6). Define the local times
t
0(2) :/ L z)enyds (2 € B2t > 0). (1.1)
0
Lemma 1 For all x € Z% and t > 0

(e, 1)) = El(exp [ 3 H(@(Z))D. (1.2)

zeZ?

11



Proof. Use (1.1) to rewrite (0.6) as u(x,t) = E,(exp[>, £(2)0:(z)]). Take the expectation

over £, use Fubini’s theorem, and use (0.7) in combination with the i.i.d. property of £. O

Since Y, li(z) = t, the exponent in (1.2) may be rewritten as

S H{b(2)) = H1) +13 % [H(Mj)t) - Et(z)[—](t)]. (1.3)

t

Now, H has the following scaling property (which is implied by (0.15)):

lim l[H(ci‘) — cH(t)] = fclog ¢ uniformly in ¢ € [0, 1]. (1.4)

t—oo t

It therefore seems plausible from (1.3) that as t — oo

SSH(G(2) = H) + 10 g’f(j) log (ﬁf(j)) +o(h). (1.5)

Let L, denote the occupation time measure associated with 7, i.e.,
_ 40
o

Then, recalling the definition of the functional J; in (0.17), we see that the sum in the
r.h.s. of (1.5) equals —J4(L¢). Substituting (1.5) into (1.2) we thus get

Li()

(1.6)

(@, 1)) = El(exp [H(t) —10J4(L) + o(t)]). (1.7)

Next, according to the Donsker-Varadhan large deviation theory, L; satisfies the weak
large deviation principle on Py with rate function xly, where I, is the functional in (0.16)
(Deuschel and Stroock (1989), Theorem 3.2.17). Thus it seems plausible from (1.7) that

as t — oo
(ula, 1)) = exp (1) =t inf {slulp) + 0.Ju(p)} + o) (1.8)

The infimum in the exponent is precisely y(6/x)2dr, with x defined in (*%). So this
explains the first two terms of the expansion in (0.18).

A rigorous proof of (1.8) is given in Géartner and Molchanov (preprint 1996). The proof
uses a standard compactification method:

i) Pick a large box T = (=N, N|* n Z°.
(i) g ,

(ii) Get an upper bound on (u(x,t)) by wrapping the random walk around T, i.e., define

(Y (2)= Coeanze le(z + 2') (2 € Tiy) and use that 3 cza H({:(2))< T.er,, H(Y (2))
(because H(0) =0 and ¢t — H(t) is convex).

(iii) Get a lower bound on (u(x,t)) by killing the random walk at the boundary of Ty,
i.e., add the indicator of the event that ¢,(z) =0 for all z € (T\, U dT).
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(iv) Use the full large deviation principle for LY (-) = ¢N(-)/t on Tx. This leads to an
expansion as in (1.8), but with an N-dependent upper resp. lower variational problem.
In these variational problems the same functionals as in (0.16-0.17) appear, but now
defined for p € Py(Ty) with periodic resp. Dirichlet boundary condition.

(v) Let N — oo and show that both variational problems converge to (k).

To get the full expansion in (0.18) we need to go one step further and show that the
term explo(?)] in (1.8) is actually {>°, w,(x + z)} exp[Ci(p, kt) + o(1)]. To achieve this we
must analyze the corrections to the large deviation behavior of L;. This will be done in
Sections 2—4 and amounts to studying the local times of a transformed random walk, chosen
in such a way that its occupation time measure performs random fluctuations around the
minimizer w?/||w,||% of our variational problem (#*) (modulo shifts). More precisely, we
consider the random walk

Z,={Z,(s):s >0} (1.9)

whose generator G, is

G =n Y W50~ f) (1.10)

yily—ol=1

S
s
N

8
S—

considered as a self-adjoint operator on ﬁz(Zd; wz/prH?z). The crucial point is that the
invartant probability measure of Z, is precisely wZ/prH?2. The absolute continuous trans-
formation from Z to Z, gives rise to the prefactor in (0.18) and to the first two terms in
the expansion. The higher order terms in the expansion are therefore determined by the
fluctuations of L; under the law of Z,. The details are worked out in Sections 2-4.

Note that 7, has a drift towards 0 that increases rapidly with the distance to 0 (see
(0.13) and Theorem 2I(3)(iii)). Thus it has strong ergodic properties.

1.2 Expansion for the 2-nd moment

The heuristic explanation of (0.19) is in the same spirit. This time the starting point is
the following analogue of Lemma 1.

Lemma 2 For all z,y € Z* and t > 0

(e, uly, 1)) = Em/(exp [ 3 H(Zt(z))]), (1.11)

zeZ?

where B, = E, ©@ E, and
G() =01 + () (1.12)

is the sum of the local times of two independent copies of Z starting at x resp. y.

13



Proof. Same as for Lemma 1. Use (0.6). O

An argument similar to (1.3-1.8) produces the first two terms of the expansion in (0.19).
Namely, the analogue of (1.8) reads

(u(z, huly, 1)) =
(1.13)
exp |H(2t) — 2t ) iglgp {/4;% ([d(pl) + [d(pz)) +0Jy (%(pl + pz))} + o(t)].

PP d
Because p — Jy(p) is strictly concave, the infimum reduces to p' = p* = p with p € Py,
which again equals x(k/8)2dk (see Gartner and Molchanov (preprint 1996) for a rigorous
proof). To get the full expansion will amount to studying the occupation time measure

B = 5 A0 (1.14)

associated with two independent copies of the transformed random walk 7, defined in (1.9-
1.10). The details are worked out in Sections 2-4. Again, the prefactor and the first two
terms in (0.19) arise through the absolute continuous transformation from 7 to Z,, the
higher order terms through the fluctuations of L, under the law of the two copies of Z,.

2 Main propositions

In this section we outline the main steps in the proof of (0.19) in Theorem 3. These
steps are formulated as Propositions 4-9 in Sections 2.1-2.6 below. The proof of these
propositions will be given in Sections 3—4, the proof of (0.19) subject to these propositions
in Section 2.7. It will become clear from the whole construction that (0.18) in Theorem
3 holds too, namely, via a straightforward simplification of the arguments given below to
one instead of two random walks (compare Lemmas 1 and 2).

Our starting point is Lemma 2, which gives us a representation for (u(z,?)u(y,t)) in
terms of H, the cumulant generating function of the ¢-field, and i, = (} + (2, the sum
of the local time functions of two independent simple random walks with step rate 2dx.
Throughout the sequel it will be assumed that H satisfies the condition in (0.15). For ease
of notation we shall abbreviate

S H(ly(z))=Hol,. (2.1)

PT=y/Ad

Throughout Sections 2-4 assumptions A1-A2 in Theorem 1 are in force.

2.1 Clumping of the local times: Proposition 4

Proposition 4 below states that the asymptotic behavior of the 2-nd moments is controlled
by paths whose occupation time measure L; = {;/2t is close to a minimizer of (#%). This
property will allow us in Section 2.2 to truncate %<

14



Let M denote the class of minimizers of (**). By assumptions A1-A2 in Theorem 1 in
combination with Proposition 3(2), M is a singleton modulo shifts.
For € > 0, define

U = {1 € P(ZY): || — v]|o < ¢ for some v € M}, (2.2)

Proposition 4 Fiz x,y € Z*. For every ¢ > 0 there exists a § > 0 such that

o 1 4 o
Ew(exp[ﬂ o zt]1{gzt € u}) > (1 - e—&)Ex,y(exp[H o m) (2.3)
for all t > 0.

The proof of Proposition 4 is in Section 3.1 and is difficult for the following reason. From
the full large deviation principle on the box Ty = (=N, N]* N Z" we know that for large ¢
the periodized occupation time measure, defined by LY (z) = > conzd Li(z+7') (z € Ty),
is close to a minimizer of the periodized variational problem (see Section 1.1). However,
this does not imply that Ly is close to a minimizer of (#*). Essentially, what we must
show is that the main contribution comes from paths whose local times are concentrated
in one large box and not in two or more boxes separated by some distance. Namely, this
precisely guarantees that Ly is close to [Ajiv modulo a shift. We can then use the full large
deviation principle on Ty, and Proposition 4 will follow by showing that the minimizers of
the periodized variational problem are close to the minimizers of () when N is large.

2.2 Centering and truncation of the local times: Proposition 5

For ¢ > 0 and z € Z“, define (see footnote 3)
U(z) = {u € P(Z): ||t — v||o < e for some v € M centered at z}. (2.4)

By Theorems 21(2) and 2I(3)(i), the U.(z)’s for different z’s are disjoint when € is small
enough. Write out

Esy (exp[H o Zt]l{%lz € UE})

_ 5 ELy(eXp[Holft]l{%lzEUE(Z)}) (2.5)

PT=y/Ad

A (exp[H o b]1{ L, € ue(())}).
PIY/A

Proposition 5 below is an estimate on the x,y-dependence of the summand in the r.h.s.

of (2.5). This estimate implies that the summation over z and the limit ¢ — oo may be

interchanged. This will allow us in Sections 2.3-2.7 to first compute the asymptotics of

the summand for fixed @’ = x — 2z, ¥y = y — z and ¢t = oo and afterwards carry out the

summation over z.
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Proposition 5 There exist A, > 0 and to, €9, Ry > 0 such that

(1. )
E%y(exp[H o ﬁt]l{gﬁt € UE(O)}) < Ae_a(|$|+|y|)E07o<eXp[H o Et]) (2.6)
forallt > ty, all 0 < € < ey and all v,y ¢ Tr, (with |x| the lattice norm of x).

The idea behind this estimate is that when the two random walks are forced to build up
their local times in the neighborhood of the origin, then this will be harder to do when
they start far away from the origin then when they start at the origin.

The prefactor in the r.h.s. of (2.6) is summable over x,y ¢ Tg,, showing that the remote
terms in the r.h.s. of (2.5) are negligible uniformly in t.

Let v,: Z — IR™ be the unique centered ground state of (%). Let w,: Z* — IR™ be the
product function w, = (v,)%? in (0.13) and define p, = w? /||w,||7. Then, by assumptions
A1-A2 in Theorem 1 in combination with Proposition 3(2), p, € Py is the unique centered
minimizer of (*%). Henceforth, instead of ¢, (0) we shall write U.(p,), the eneighborhood
of p,. In Sections 2.5-2.6 we shall be able to use Propositions 4 and 5 to expand H o I
around H o (2tp,). But before that we need some preparations.

2.3 Two time scales: Proposition 6

In order to do the expansion we shall need an estimate in the spirit of Proposition 5 but
with two times 0 < ¢ < 7. For R > 0 define

op=inf{s > 0: Z'(s) & Tp or Z*(s) & Tr}. (2.7)

Proposition 6 Fir x,y € Z*. There exist A,a > 0 and Ty, by, €0, Ro > 0 such that

Eoo(exol o it { i € Uip,) f1{6m < 1})
(2.8)
< AtRiremoRE, (exp[[—] o ZT])

for all T'>Toy, all t >0 with t/T < dg, all 0 < ¢ < ¢g and all R > Ry.

Note that T' takes over the role that ¢ was playing in the previous propositions, and that
t is now used as an auxiliary time. We shall henceforth stick to this notation.
Proposition 6 states that the main contribution comes from paths that do not move
out of a large box before time ¢t uniformly in the length 7' of the path.
Incidentally, the restrictions on t,¢,z,y in Proposition 5 resp. T, ¢, e, R in Proposition
6 are partly an artefact of our proofs in Sections 3.2-3.3. However, these restrictions will
not bother us in what follows.
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2.4 Transformation of the random walk: Proposition 7

In order to exploit Propositions 46 we shall make an absolute continuous transformation
from our reference random walk with generator kA to a new random walk whose generator
(7, is chosen as in (1.10). The point is that (7, has precisely p, = w?/||w,||7. as its unique
invariant probability measure (see Section 4.1). Thus, under the law of the random walk
driven by G, and for large T', we have that LY = (/T (i = 1,2) are close to p, with
probability close to 1, and hence so is Ly = lfT/ZT = (Ly + L7)/2. Write P? = P! @ P/
and Ef = E! @ E? to denote the joint probability and expectation for two independent
random walks driven by (G, and starting at  resp. y.

Proposition 7 For all 0 <t <T, all ¢, R > 0 and all z,y € %*

Ev((explt o i1 { elr € U(p) 1 (o > 1))

= /Po(@)p,(y) exp[H (2T) — x(p)4drT] (2.9)

8 Eﬁvy(eXP[FT(LT)]Vppwl(Ti)pp(Z?(T))l{LT € Uelpo) Hion > t})’

where op is defined in (2.7) and

Fr(ig) =Y {H(szT(Z)) — Lr(2)H(2T) — 27017 (=) log pp(z)}. (2.10)

The proof of Proposition 7 is in Section 4.1. Think of Fr as a fluctuation functional:

Fr(p,) = o(T) as T — oo because of (1.4), so in the r.h.s. of (2.9) the contribution of

the expectation is of higher order than the prefactor. The point of Proposition 7 is that

the prefactor has precisely the form we are looking for in (0.19). To complete the proof of

(0.19), we must show that as T — oo the expectation in (2.9) becomes independent of x,y
up to and including order 1. This will be described in Sections 2.5-2.6.

2.5 Separation of the time scales: Proposition 8

Pick 0 < ¢t < T" and split the occupation time measure as

T—1.
L, (2.11)

. t .
Ly ==L
T Tt‘l’ T

where [AJLT is the occupation time measure over the time interval [t,T'). Later we shall let
T — oo followed by ¢t — oo. The first limit will allow us to get [AJLT close to p,, the second
limit will allow us to get rid of the =, y-dependence.

Proposition 8 below separates the contributions from L, and jft,T- We expand

FT(ET) = FT(%ELT‘F%[A#)
(2.12)
= (Tt ) + i de ($h0 DET Lo + €41]),
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Here, (-,-) is the standard inner product and D Fr is the Fréchet derivative of Fr given by
(see (2.10))

DFr[MN(z) =2TH' (2T X(2)) — H(2T) — 2T01og p,(2). (2.13)
Using the identity >, f/t(z) = 1, we may write
t . 1 . A
<—Lt, DFT[)\]> - 2t(H’(2T) —_HE)+ <Lt, Vi A+ 0log —>) (2.14)
T 2T Pp

with V7:IRT — R the potential

Vr(¢) = H'(2T¢) — H'(2T) — flog ¢ = /2

and V- A the composition of Vp with A. (The reason for splitting terms as in (2.14) is
that Vr is small for large T (see (0.15)). Together with the trivial inclusions

{Lex € U (p)}y S {Lr € Uelp,)} S {Lex € Us(py)}

2T
g

T¢ U

— uH"(u)] (2.15)

(2.16)

_ e=24 _e+26 t
fore; =75, o= F5 and 0 < 7 <6

valid when 0 < 6 < £, we obtain the following lower resp. upper bound for the expectation

in the r.h.s. of (2.9).

Proposition 8 Fir 0 <6 < 5. Let 0 <t < T and ¢(d,¢) (1 =1,2) be as in (2.16). Then
for all R > 0 and all x,y € %°

E? Fr(L L 1{L (p,)}1{6 t)

xv@/(eXp[ ) ey L € Uelpa )i HoR > 1)

>(i:1) ) ~ ) ~ ) A

< (i=2) >, Pl(x,2)P/(y,9)Ez (%/)R (l’ay; L5 Y LT—t;th) (2.17)
< Fi€TR

x¢<Zl(T — 1), ZXT — t); Ly_sit, T)l{ﬁT_t c Uqw,e)(Pp)})-

Here P/(-,-) is the transition kernel of the random walk driven by G, in (1.10), while ¥p
and ¢ are the functions given by

e, y; &, 9; 131, T)
- B, (exp [Qt [ de <ﬁt, Vi - (%u + f%ﬁt) +0log ﬂﬁﬂ
< supp(Le) © TR}‘ ZN(1) = &, Z3(1) = y) (2.18)
o, 93151, T)

= exp [Zt (H’(QT) — %H(ZT))] exp

)
T( T 1) Jon@rn®)
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fOTOStST; H E,P(Zd) andx,y,ii,g,ﬁi,ﬁe 7.

The proof of Proposition 8 is in Section 4.2. The point of Proposition 8 is that the
x,y-dependence sits all in the first three factors of the summand in (2.17).

2.6 Loss of memory: Proof of Proposition 9

Our last proposition shows that the first three factors of the summand in (2.17) become
independent of x,y for T' — oo, and hence so does the expectation in the L.h.s. of (2.17).
The reason for this is that the transformed random walk has a drift towards 0 that increases
rapidly with the distance to 0, so it has strong ergodic properties.

Proposition 9 (1) For all t > 0, all R > 0, all 0 < € < eg = inf.er, pp(2) and all
r,y € 7

liminf inf  inf g(e,y; 2,905t T)

T—co #,5€TR uele(py)

210 X
> (1 — i) i*,%relgR P, (supp(Lt) CTr | ZYt)=3,7%) = y)

(2.19)

limsup sup  sup Yr(w,y; 8,958, T)
T—oo Z,9€TR uelc(pp)

2t6
§Q+;).

(2) For all x € i

Ptp(wai')
P{(0,7)

—q:o. (2.20)

lim  sup
770 |3|=0(t/ log )

(3) For all x,y € 7

) ) . o > Ly om 7204y &~
B et 3, Pha(sop(2) € T | 210 =2, 20 =9) =1 22

R=o(t/log t)
The proof of Proposition 9 is in Section 4.3. We have now completed our list of key

propositions.

2.7 Completion of the proof of Theorem 3

Let us finally collect Propositions 4-9 and explain why they prove Theorem 3. For this we
take limits in the following order:

T 00,80, e=s0,R=V1 t— . (2.22)
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The summation in (2.5) is restricted to the box Tx and the limit N — oo is taken last.
The proof comes in 4 steps.

1. Propositions 4-6 and (2.5) can be summarized as follows (the lower indices indicate the
choice of the variables):

B, (exp[H o (7)) = (14 awyr.){l.h-5.(2.3) oy 1e
{l.h.5.(2.3)} sy 1e = ZT: {l.h.5.(2.6)} s ysre
zEL N
b 1. Foo(exp[H o Ir)) (223)
{l.h.5.2.6)}osysre = {Lh5.(2.9)}osysTent A
‘I’cac—z,y—z,T,e,R,tEw—z,y—z (GXP[H © ET])
with
Tlim Ay T,e = 0 forall e>0andall z,y € Z*
—+00
Lim by gyTe = 0 uniformlyinT >{gand 0 <e<e
NS PN T, e = ° (2.24)
for all x,y € Z
tliglo Th_r}{)lo CpyTer=vie = 0 uniformlyin 0 <e<e¢forall z,y€ 7.
2. Propositions 7-9 can be summarized as follows:
{lh.s.(2.9) oz gz R = \/pp(x — 2)pp(y — 2)
x exp[H(2T) — x(p)4drT]|
><{l.h.S.(2.17)}95_271/_271“757]3775
> (i=1)
{l-h-s-(2-17)}x—z,y—Z,T,E,R,t 2(i:2) {T.h.S.(2.17)}1,_2711_277“761.(576)7R7t (225)
{r-h-s-(2-17)}w—z,y—z,T,q(5,5),R,t - (1 + dw—z,y—z,T,S,e,R,t)
><{T.h.S.(2.17)}0707T75i(575)7R7t
with
lim limlim lim d, 75 r_ 7, = 0 foralazye 7. (2.26)

t—=00 e>0 =0T =00

3. Now first pick « = y = 0. Then (2.23-2.24) and (2.25-2.26), together with the identity
E_._.(exp[H o lfT]) = Fopo(exp[H o lfT]) (z € Zd) and the fact that lims_g€(€,0) = ¢
(1 =1,2), yield a closed set of equations for Fyo(exp[H o ZT]) from which the expansion in
(0.19) for = y = 0 easily follows.
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4. Finally, pick z, y arbitrary. Then (2.23-2.24) and (2.25-2.26), together with the identity
Eysy—.(exp[H o l7]) = E; (exp[H o l7]) (z € Zd) and the result in step 3, yield the
expansion in (0.19).

Note that the precise form of the higher order term Cy(p,xT) = o(T') in the exponent in
(0.19) does not come out of the analysis. Clearly, it is sensitive to the precise form of H
beyond the asymptotics assumed in (0.15) (and remains hidden in the last factor in the
r.h.s. of (2.25) after the limits in (2.22) are taken).

3 Proof of Propositions 4—6

3.1 Proof of Proposition 4

The difficulty behind the proof was explained in Section 2.1, as well as the route that is
to be followed. We shall use several ideas from Bolthausen and Schmock (preprint 1994),
where a similar problem is handled.

A key role will be played by the variational problem (%) and its restriction to Ty =
(—N, N]¢ with periodic boundary conditions (see Sections 0.4 and 5.3). Let M resp. MY
denote the sets of minimizers of these variational problems. For ¢ > 0, define

U. = {ueP(Z):||u—v|p < efor some v € M} (3.1)
UY = {peP(Ty): || —v|e < efor some v € MV} '
(see also (2.2)). We shall abbreviate
L 32
E.y(exp[H o 4;])
and
BB) = i) (BCw
. 2€B (3.3)
LY(B) = ¥ Li'(z) (BCTy),

z€EB

where [2,: = l@/% is the occupation time measure of the two random walks and [A/iv is 1its
periodized version. The goal of this section is to prove that

1 A A
lim sup ?log Pryi(Ly ¢ U) <0 forall e >0 and z,y € 7. (3.4)
t—00

This implies Proposition 4.
For ease of notation we shall drop the superscript. Keep in mind though that P, ,.; and
Li, LY refer to two random walks. We now start the proof of (3.4).
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Proof. Fix ¢ > 0 and z,y € Z?. Throughout the proof, N is so large that z,y € Tx.
Define the event

1
z€Z?

i.e., no translate of Ty contains more than mass 1 — ie. We may then split
Pl’,y;t([ft g—f u&)

S Pac,y;t([/t gé uﬁ? Li\f € UN ) —I_ Pl’l/t(LN gé ui\;d ) (36)

< Px,y;t([ft ¢ U, [Ai\ﬂe] ) + nyt(LN S UN ANE) + nyt(LN Qf ui\;de)‘

In what follows we shall show that all three terms are exponentially small, which will prove
(3.4). The proof comes in 7 steps.

1. Third term: By the full large deviation principle on Ty, there exists a Ny > 1 (depending
on ¢€) such that

hmsup—log nyt(LN ¢ UN ) <0 for N > N,. (3.7)
t—00

Indeed, because of (3.2), this is a statement about a quotient of two terms, which behave
resp. as

exp[H(2t) — ]Ldﬁ( p)ddrt + o(t)] (3.8)
exp[H(2t) — x(p)ddrt + o(t)]. (3.9)

Here x(p) is given by (#*), while
o) = g min Fap) (Fa= Lot p) (3.10)

(compare with (1.11-1.13) in Section 1.2). By Lemmas 16(f-g) in Section 5.3, we have
xN(p) > x(p) for all € > 0 and N sufficiently large (depending on ¢). Together with (3.8~
3.9) this implies (3.7).
2. First term: Note that

(A0 = U LT+ > 1 - ke

zeZ?

(3.11)
U It =10l < 3

(where elements of P(T) are viewed as elements of P(Z") via the canonical embedding).
Hence

{Le ¢ UL AT} CH{LY ¢ Uy} forall N > 1. (3.12)
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Next, by Lemma 16(c) in Section 5.3 there exists a N; > 1 (depending on ¢€) such that

uNd CUy, forall N> N, (3.13)
and hence
(LY guy C Ll ¢l ). (3.14)

So, combining (3.7), (3.12) and (3.14) we get

lim sup —log Pryt(Ls ¢ U, [AN 1) < 0 for all N > Ny V Ni. (3.15)

t—00

3. Second term: We first write

Pl’vi‘/?t(LiV € ui\g_d57 Ai\f7€) S Z Px,y;t([/iv € ui\g_dE(Z), Ai\f’E)

ZETN

. N N N,E
= Z Px—z,y—Z;t(Lt Euﬁe(o)vAt ) (316)

ZETN

< |Tn] HéaX Puvt(LNEUN (0),Aiv’6),

where UN(2) denotes the e-neighborhood of the elements in MY that are centered at z
(recall (3.1)). In the second line of (3.16) we have used that AN# is shift invariant (recall
(3.5)) and in the third line that =,y € Tx. Next, put N =5M and define

1
BM— {Lt Toni + 10Mz) < 1 — Ze} S A3M, (3.17)

PT=y/Ad

The proof of (3.4) will be complete once we show that

1
lim sup — log [ max Puut(LiM ey*M (0), BEM’E)] < 0 for some M > 1. (3.18)
t—oo T Z”Sﬂmo]\;[ 324°

This will be done in steps 4-7 below.
4. We begin with a combinatorial lemma. Define the halfspaces

bt o= {2 €Ttz > (5+10k)M} (3.19)
hy” = {2 €l < (B5+10)M} (k€Z,i=1,....d). '

Lemma 3 B/ C Upeg UL {Li(hyh) > e, Li(hy7) > Le).

Proof. Put 6 = ¢/8d. We prove the inverse inclusion for the complements. Suppose that

there is no (k,4) such that Lt(h;f) > 6, Li(hy”) > 4. Since for every i there exists a k(1)

such that
Ll 1) < 6 < Lolh), (3.20)
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it must be that Lt(h 1) ) < 4, and hence
Ly(hyy_y hy) > 1 =26, (3.21)
Since m?:1[hi}t1 N h™] = Tsy + 10Mz, it follows that

Li(Tsp +10Mz) > 1 —2d6 for z = (k(1),...,k(d)). (3.22)
O

5. Next, the random walks Z', Z? whose local times we are monitoring cannot move far
away in time ¢, namely

hm %log [ max Puvt< 2(3) ¢ T\ for some 0 < s < t)] <0 (i=1,2). (3.23)
meot WS

Indeed, since H o f, < H(2t) = O(tlogt) = o(t?), it suffices to prove the claim under
the free random walk measure, i.e., without the exponential weight factor in (3.2). But
the latter follows from a rough large deviation estimate because the jump times of the
random walk are i.i.d. exponentially distributed with finite mean. The details are omitted.
Combining (3.23) with Lemma 3, we see that in order to prove (3.18) it suffices to show
that

d
lim sup % log [ max S50

t—00 w,v€T10 7 [t2] =1

U—V=T— k<
v W< womm (3.24)

Pao (L7 €200 (0), L") = e L) = )| <0

2d

which in turn is implied by

: 1
lim sup 3 log [ sup
t— 00 uyye%d
U—v=—Yy

(3.25)
P (L7 €20 (0), L(h*) = e, Li(h™) = e | < 0
32d
with At = hgt,h™ = hy™. To go from (3.24) to (3.25) we have used that we may pick
k = 0,7 = 1 because of the shift-invariance and isotropy of the random walk and the
shift-invariance of H o #;; the polynomial factor coming from counting the sum over k.1 is

harmless.
6. Now, by Lemma 16(b) in Section 5.3 there exists a My > 1 such that

(LM e uM (0)} C {L5M(1nt Tv)>1— 16%6} for M > M. (3.26)
32d
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Hence to prove (3.25) it suffices to show that

lim sup % log [ sup

t—00 PRY=/A
(3.27)
P (L) 2 e, Ll = aAMer) 2 e, LM(int Tag) = 1 )] <.

(e1 = (1,0,...,0)). Indeed, by periodization with period 5M the slab between hA* and
h~ —4Me, is mapped entirely inside Tsar\ Tar. On the event in the r.h.s. of (3.26) this slab
e Consequently, on the event {L,;(h™) > e} the half
space h™ — 4Mey carries mass at least 16d . What (3.27) says is that it is exponentially
unlikely to have substantial local times in two halfspaces separated by a slab.

7. To prove (3.27) we shall do a reflection of the random walks w.r.t. the grid of size 2M.
The object of this argument (see below) is to transfer the problem to the finite box Tss.
Define

therefore carries mass at most

g = U U{zez=2k+1)M)

tlgn) = LHO<s<t:71(s) € gu, Z(s—) ¢ gu}| (i=1,2) (3.28)

fi(gm) = i (oar) + 47 (gm),

i.e., t4:(ga) counts the number of times the random walks hit gy during the time interval
[0,]. We may then bound the probability in (3.27) by the sum of two parts, namely for
any 6 > 0

(1) Pu,v;t (th(gM) > 57 Lt(gM) S 11d ) (3 29)
(2) Pu,v;t (th(gM) S 57 Lt(h+) Z 81d 7L (h_ _4M€1) Z 1;5_516)7
where we use that {L{(int Thy) > 1 — 2=e} C {Li(gm) < 17¢} because by periodization

with period 5M the grid gas is mapped entirely outside int Ths. Thus (3.27) will follow
once we have proved Lemmas 4-5 below.

Lemma 4 There exists a Cy; > 0 such that for all ¢ < C16 and all M > 1

1
limsup —log | sup (3.29)(1)] < 0. (3.30)
t—co t umG%d

Proof. By shift-invariance and periodization with period M

1
sup (3.20)(1) = max P,_. y_zt(u (OTnr) > 8, LM (0Tor) < —e) (3.31)
e Ty TV 16d

U—v=T—yY
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Therefore, similarly as in (3.7) and (3.8-3.9), the r.h.s. of (3.31) is a quotient of two terms.
The denominator is the same as (3.9). Because H o {; < H(2t), the numerator can be
bounded above by

1
exp[H(20)] max Po_.., (M@TM) > 5, IM(OTy) < —e), (3.32)
€Ty ' 16d
where in the r.h.s. of (3.32) appears the free random walk measure. Now, the latter
probability equals

exp[—ﬁg\g(p)lldlit + o(t)], (3.33)

where @{(,0) can be made arbitrarily large by picking ¢/§ sufficiently small, uniformly in
M. The reason is that it is unlikely for the random walks to spend a local time on 97T}y
that is much smaller than 1/2dr times the number of times they hit 7Ty;. The details are
omitted. Pick ¢/d so small that ¢}7(p) > x(p) to get the claim. O

Lemma 5 There exists a Cy > 0 such that for all § < Cyelog(1/€) and all M sufficiently
large (depending on 6, ¢)
1
limsupglog sup  (3.29)(2)] < 0. (3.34)

t— 00 ume%d

Proof. The proof comes in 2 steps.

1. Consider the paths of the random walks up to time ¢t. We can fold these paths inside
Tsyr by doing a number a reflections w.r.t. the hypersurfaces of dimension d — 1 that lie
on the grid gas, starting from the outside and working our way inwards to Tsy;. With each
reflection H o /, increases, because H is convex and because the local times of the paths
are stacked on top of each other. Each piece of the paths that is thus folded adds a factor
2 to the counting. Hence we have

sup (3.29)(2)

umG%d
U—v=—Yy

(3.35)
<9 max Py (Lt(TM LAMe) > Lo LTar) > by L(Tonr) = 1).

lere 8d
Indeed, we can fold all the local time in AT into the box Ty + 4Me, all the local time in
h™ —4Me; into the box Ty, and all the remaining local time in the box Th; + 2Me;.
2. We now have an event inside the finite box T5); where substantial local times are carried
by two subboxes separated by a third box. The probability in (3.35) is the quotient of two
terms, which behave resp. as (compare with (3.8-3.9))

explH(21) — (M (p)Adrt + of1)]

exp[H(2t) — x(p)4drt + o(t)], (3.36)
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where

¢'(p) = min Fa(p) (3.37)

p€EC (M e)

with C(M, ¢€) the set fitting the event in (3.35). Now, Lemma 16(h) in Section 5.3 shows
that (M (p) — x(p) > Cyelog(1/c) for some Cy > 0 and M sufficiently large (depending
on €). Thus it suffices to pick § smaller than this difference and the claim follows from

(3.35). 0
By combining Lemmas 4-5, picking € so small that ¢/C; < Cyelog(1/¢), and picking §
somewhere in the middle, we get (3.27). This completes the proof of Proposition 4. O

3.2 Proof of Proposition 5

For s > 0 and A C Zd, let Ps(A) denote the set of all measures concentrated on A with
total mass s. For an arbitrary measure y on Z%, write the abbreviation

How= Y Hiu(=). (3.38)

PT=y/Ad

We recall that (0.15) implies

lim [11°(31) — IT'(41)] = 0log (g) for all 3> 7 > 0. (3.39)

The following lemma, which is an estimate for one random walk, is the key to Proposition

3.

Lemma 6 Fix o > 0 arbitrarily and let 1 > 3 >~ > 0 be such that

0 log (é) > 4ddke”. (3.40)
v
Let A be a finite connected subset of L containing 0. Define
A= Ag(A) = {v e P(Z):v(0) > ﬁaﬂéi[{ll/(z) >y > Hé%)cil/(z)} (3.41)

(a) There exist A > 0 and Ty, Ry > 0 such that
1 1
E, (eH°fT1{T£T c A}) < Ae—amEO(eWm{TzT c A}) (3.42)

for all T > Ty and all x ¢ Thg,.
(b) Let o = inf{s > 0: Z(s) € A} denote the first hitting time of A. Then there exist A > 0
and Ty, Rg > 0 such that

B, (Jo(fﬁvh{%@t +u) € ,4}1{0 <0 f(Z(1), %))
(3.43)
< Ae~oll g, (JO“WM{%(& +v)e A}f(Z (1), %))
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for all T > To, all0 <t <Tp, all x ¢ Tg,, all v € PT_t(Zd), and all measurable functions
[ x Pl(Zd) — Ry satisfying

flz,p) > f(z,q) whenever p > q on A and p < g on A°. (3.44)

Before presenting the proof of Lemma 6, let us give an heuristic explanation for (3.42).
Let Z be our random walk, starting at « ¢ A and hitting A for the first time at time . The
basic idea is to replace (Z(s):s € [0,0]) by a path that starts at 0, stays at 0 during the
time interval [0, 0/2] and moves to Z(o) during the time interval (¢/2, o] without leaving
A. In this way we switch from paths starting at x to paths starting at 0. In terms of local
times this switch means that mass /2 is moved from A¢ to 0 and another mass o /2 from
A° to A. This moving obviously increases the event {{7/T € A}. Moreover, we shall see
that H o {7 increases by at least 2dke®o because of (3.39-3.40). Hence we gain a factor
exp[2dke®o] under the expectation. However, it will turn out that by the restriction to the
new class of paths we loose a factor C;exp[2dro]. Altogether, we therefore gain a factor
exp[2dr(e” — 1)o]/C;. But we shall see that

ClEl,(eXp[—Zd/i(ea — 1)0]) < Clcze_alxl, (3.45)

which yields the desired prefactor in the r.h.s. of the first part of (3.42). The argument for
(3.43) is essentially the same.

Proof. The proof of assertion (a) comes in 7 steps.
1. Choose Tj so large that

H'(BT)— H'(yT) > 4dre® for T > Ty. (3.46)

This is possible because of (3.39-3.40). Throughout the proof, T' > T, and « € 7 are
fixed arbitrarily.
2. The monotonicity of t — H'(t) obviously implies the following two inequalities:

[Hla+A)+ H(b)] — [H(a)+ H(b+ A)]

{ >0 for A>0,a>0b (3.47)
> A[H'(a) — H'(b+ A)] for A>0,a > b+ A.
Using these inequalities we next prove the following statement:

Ho(u+puz+p) <Ho (g% + s + M) — 4d/<;e“§ (3.48)
for all

0<s<T, € P:(A), 2 € Ps(A°), s € Ps(A), pp € Pr_o(%") (3.49)
such that

%(Ml + p2 + 1) € A (3.50)
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Indeed, it follows from (3.50) and the definition of A in (3.41) that
max(p + pe + ) (2) < min(pn + po + p)(2). (3.51)

Hence, moving mass distribution ps from A° into A and distributing it according to us, we
can use the first part of (3.47) to estimate

Hoo(py+pa+p) < Ho(pn+ ps+ p). (3.52)

Moreover, after the move we obviously have

1
b+ s+ 1) € A, (3.53)

SO

#1(0) + 125(0) + p(0) i 5; (3.54)

max(p + i + p1)(2) T

Therefore, now using the second part of (3.47), (3.54) and the monotonicity of ¢t — H'(1),
we may move mass distribution pq from A¢ onto 0, to obtain

S S
H o (o + pis 1) < Ho (S804 s+ 1) = SUH(ST) = H'(5T)) (3.55)
Note that also after the last move
1/s
(S ) e 350

Combining (3.46), (3.52) and (3.55), we arrive at (3.48).
3. We next use (3.48-3.50) to move local times. Let

o=inf{u >0: Z(u) € A} (3.57)

be the first hitting time of A. Clearly, {7/T € A implies ¢ < T because > 0. To estimate
the expectation in the Lh.s. of (3.42) we proceed as follows. Applying the strong Markov
property at time o, we have

E, (ewm{%@ € ,4}) o (¢(a, 2(0), Lo s Uy j20)1{o < T}), (3.58)
where £, 5 denotes the local time over the time interval [a, 5], and we define

ooy i) = By (M0 gy 4 £) € AY) (3.59)
for

0<s<T,ye€ A €P:(A),p2 € Ps(A). (3.60)
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Since {r_, € Pt_s(Zd), we may now recall (3.48-3.50) and (3.56) (for u = l7_5) to estimate

05,y pnsgia) < exp | — Adne” S o(sy. ) or all s € P(A), (3.61)
where we define
S 1
¢(S7 Y, MS) _ Ey <6H0(550+M3+5T_s)1{f (%50 + s + gT_s) - A}) . (362)

Combining (3.58-3.62) we arrive at the bound

(e 30r < )

< El(exp [— 4d/<;ea%] ( min ¢(o, Z(0), 1/))1{0 < T})

UGP% (A)

(3.63)

4. The Lh.s. of (3.63) equals the Lh.s. of (3.42). We next derive a lower bound for the r.h.s.
of (3.42) that will be combined with (3.63) to yield (3.42). Let

7 =inf{u > 0: Z(u) # 0} (3.64)
be the first exit time from 0. For y € A, define the set of paths
B; = {Z(-): Z(0) =0, Z(%) =y, Z(u) € Afor u € [0, g] } (3.65)

Fix 0 < s < T and y € A arbitrarily. We may then apply the Markov property at time s
to write

Eo(eor{ber e AY) 2 Bo(147 > 5, 7(3 + ) € Bi}en1{ dtr € A})
(3.66)
= EO (1{T > %7Z(% + ) € Bg}qb(svyvg%,s))‘

Here we have used that 5075: = 5dg on the event {r > %} and 55:75 € 7751(/\) on the event
{Z(;+-) € B2} (recall (3.62)). Since Py(7 > 5) = exp[—drs], we thus find that

£y (eHole{%ﬁT € A}) > eXp[—dKJS]Po(By%) rginA) o(s,y,v) (3.67)

ve

forall 0 < s < T and y € A. Combining (3.63) and (3.67) we arrive at

B, (J“m{%@ € A}) < [x’(x)E()(eH“Tl{%ET c A}). (3.68)
with
K(z)=FE, ([;IG%I[{ Po(By%)]_l exp [ — 2dr(2e” — 1)%]) (3.69)
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Thus, to complete the proof of (3.42) we must show that K (x) < Aexp(—alz|) for ¢ Tg,
for some A, Ry > 0. )

5. We next estimate mingesn Po( B¢ ) from below. Let 7y, 7,... be the jump times of the
random walk: i.i.d. exponentially distributed with mean 1/2dxk. Fixy € A and let D = D,
be the length of the shortest path from 0 to y inside A. Obviously,

PO(B;) > zi)DP(Tl‘F-..—FTD§S<Tl—|—..._|_TD_|_TD+1)

—_

(3.70)
KRS D
= (2;)17 (2le) exp[—2dks].

From (3.70) it follows that there exists a C'; > 0 such that

[ngé% Po(B:)]™! < Crexpl2drs{1 + (25)7P"Y (s > 0), (3.71)

v
where D' = sup ¢, D,. Substitution into (3.69) gives

K(z) < C\E, ({1 + 0P} exp|—2dr(e” — 1)0]). (3.72)

We shall estimate the two terms in (3.72) separately.

6. Second term: To reach A from z, the random walk Z has to make at least D" = dist(x, A)
jumps. Hence o0 > 71 4+ 7pn. Since 2dk(71 + -+ -+ 7pr) has a Gamma distribution with
parameter D", we can estimate for D" > D’

E, (U_D/ exp|—2dr(e” — 1)0])

< (lei)D/ﬁ 2 P 10" expl—e®u]du

(3.73)

= (2d)P" B exp[—a(D" — D))

< Cyexpl—a(D" - D))

for some Cy < oo. Clearly, D" > |z| — C5 for some C3 < oo.
7. First term: The same estimate with D’ replaced by 0. Combine steps 6 and 7 to get the
bound on K (x) claimed below (3.69). This completes the proof of assertion (a).

The proof of assertion (b) goes along the same lines. All we have to do is replace u
by u+v € PT_S(Zd) and (p_, by li_s +v € PT_S(Zd). Since %(ﬁt +v) € A does not
automatically imply o < t, we need to include the indicator of the latter in the l.h.s. of
(3.43). The property of the function f stated in (3.44) ensures that f(Z(t),+(;) can only
increase when the path (Z(s):s € [0, 0]) is redistributed inside A. 0

The next lemma is the analogue of Lemma 6 for two random walks.
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Lemma 7 Let the assumptions of Lemma 6 hold. Let o', 0% denote the first hitling times
of A. Then there exist A > 0 and Ty, Ry > 0 such that

B, (eﬂowﬁé%n{%(@ LB e ,4}1{01 < }1{o? < t})
(3.74)
< A2e—a(|x|+|y|)EO70(eHo(élTJré?T)l{%(ng +2) e A})

for all' T > Ty and all x,y ¢ Tg,.

Proof. This is an easy consequence of (3.43). Namely, first condition on Z%(-), take the
expectation over Z'(-) by applying (3.43) with ¢, = /} and v = (3, and then take the
expectation over Z2(-). After that, interchange the order of the expectations (Fubini) and
apply (3.43) with ¢, = (7 and v = (}.. Recall that E,, = E, @ E,. O

We can now formulate the tightness result that implies Proposition 5. For u € Pl(Zd),
let

Ud(p) = [ € P v — o < e} (3.75)
be the e-neighborhood of x in the -metric.
Lemma 8 Let i € Py(Z%) be such that

(1) p(0) = max u(z)

3.76
(i1) A, = {z € B u(2) >~} is connected for all y sufficiently small. (3.76)

Fiz a > 0 arbitrarily. Then there exist A > 0 and ey, Ty, Ry > 0 (depending on w,a) such
that

2R (eHO(flTH?) 1 { L
Y 2T

for all0 < e < eg, all T > Ty and all z,y ¢ Tg,.

(th+ ) €thip)}) < A2t gy (o)) ()

Proof. Choose 7o > 0 so small that p(A,)) > £ and

(1) Olog (ﬂ) > 4dke”

n
%
(1¢") A = A, is connected and contains 0 for all 0 < v < 5.

(3.78)

Next choose 1 > 3 > 4 > 0 such that assumption (3.40) of Lemma 6 is satisfied and
p(0) > B.minp(z) > 5 > maxp(z). (3.79)

(Because of (3.76)(i—ii), the latter can be done by picking 5 < 1(0) close to u(0) and v < 7o
close to vo.) Now, because of (3.79) there exists ¢y > 0 such that for all 0 < € < ¢y and all

fi € Ue(p1)

(3.80)

[N

A(0) > B, minf(z) > v > max ji(z) and f(Ay,) >
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Hence U.(n) € A for 0 < € < ¢, where A = A (A = A, the set defined in

) with A
Lemma 6. Moreover, 5=(( + (F) € U.(p) implies 55 ((3(A) + (3(A)) > 3, which in turn
2

implies £3:(A) > 0 and (3(A) > 0, hence ¢! < T and ¢® < T. We may therefore apply
Lemma 7 (compare (3.41) with (3.80)) to obtain (3.77). O

The proof of Proposition 5 is now complete. Indeed, we know from Theorem 21(3)(ii)
that the minimizer of (#%) centered at 0 is unimodal in all directions, which guarantees
that conditions (3.76)(i-ii) in Lemma 8 are fulfilled for u = p, = w?/|Jw,||? (recall Section
0.5).

3.3 Proof of Proposition 6

The proof uses ideas from Section 3.2. The following lemma is an estimate for one random

walk. Define
orp =inf{s > 0: Z(s) ¢ Tr}. (3.81)
Let 0t Tg denote the exterior boundary of Tk.

Lemma 9 Fiz x € Z*. Let the assumptions of Lemma 6 hold with « € A. Let Tp denote
the first hitting time of A after or. Then there exist A > 0 and Ty, Rg, dg > 0 such that

1 1
B, (J“m{# c A}l{aR < t}) < A2 R 9T TR|tE, (J“m{# € A}) (3.82)

and

£, (eH°<fT+v>1{%(zT tu) e ,4}1{0R < )1 {rp < T})
(3.83)
< AQe‘QaR|8+TR|tEl,(eH"(ZTJf”)l{%(ﬁT b€ A})

forallt >0, all R> Ry, all T >tV Ty with t)T < & and all v € Pr(Z?).

Proof. Throughout the proof we pick R so large that A C T and = € Tr. We also pick
do=Fand t/T < §. i b7 /T € A and or <, then the latter guarantees that the random
walk must hit 0 in the time interval (og,T') (recall (3.41)). We choose Tj to be the same
as in Lemma 6. The proof of (3.82) comes in 8 steps.

1. First we use the strong Markov property at time s write

E, (J“ﬂ{%@ e A}l{aR < t})
(3.84)
= Y [iP(op€ds, Z(s)=2)E, (;/)(S,Z,Es) ‘ oR=38,7(s) = Z),

Z€8+TR
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where we define

(s, 2 p) = E. (eHowT—s)l{%(,,L +lry) € A}) (3.85)

for 0 < s<t,z€ 0% and u € Ps(Tr). Our choice of &y guarantees that %(M+£T_5) cA
implies ¢ < T — s for s € [0,1], where ¢ again denotes the first hitting time of A.
2. By assertion (b) in Lemma 6 with f =1 we know that

(s, z,p) < Ae_a|z|;/)(3,0,/,c) for all 0 < s <t and pu € Py(Tg). (3.86)
Combining this with (3.84) we have

[.h.5.(3.84) < Ae™@R Y [ P.(or€ds, Z(s) = z)

Z€8+7h
(3.87)
X I, (;/)(5,0,55) ‘ oR=38,7(s) = Z)
3. Now apply Fubini to write
E, (;/)(5,0,55) ‘ oR=38,7(s) = Z) = Fy (qb(s,x,z,ﬁT_s)), (3.88)
where we define
— HO(M‘I—ZS) 1 _ _
o(s,x,z,p1) = Exle 1 f(/i +l)EeEAr |op=35,7(s)=z]. (3.89)

for 0 <s<t,z€dtTgrand pu € PT_S(Zd).
4. Next, do a time reversal on the random walk over the time interval [0, s]. Let z~ be the
unique site in Tx that neighbors z € 9 Tg. Then

qb(S?x?Z?ILL)

- LB (eHO(“-MS)l{%(/,L +14,) € AH or > s, Z(s) =z, Z(s+) # l‘)
(3.90)

P.(or € ds, Z(s) = z)

= 5P (op>s,Z(s) =) 2dr ds.

Here the jump away from z to z~ at time s is replaced by a jump away from x at time s in
the time reversed random walk. The factor 2d counts the number of ways this last jump
can occur. The local times are invariant under the time reversal.

5. Combining (3.87-3.90) we obtain

¢
[.h.5.(3.84) < Ae~F Z / 2dk ds P~(op > s,7(s) = x) (3.91)
0

Z€8+TR
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x Eg (EZ— (eHO(“"'ZS)l{%(/«L +45) € A} ‘ or> 8, 4(8) =x,Z(s+) # :1;)

M:ZT—S)

6. Again apply Fubini. After that we can write

r.h.s.(3.91) = Ae™*H > /Ot ds Ey (f(s,x,z_,ﬁT_s)), (3.92)

Z€8+7h

where we define
1
E(s,x, 27, ) = F - (eHO(“HS)l{T(/,L +45) € A}I{UR > 5, 7(s8) = :1;}) (3.93)

7. Next, Z(s) = x implies o < s because @ € A. We may therefore apply assertion (b) in
Lemma 6 with f(z,p) = é.(2)1{p(Tr) = 1}, to obtain

f(svxvz_vﬂ) < Ae_aRf(vavovﬂ)' (394)

Combining (3.91-3.94) we arrive at

Lh.s.(3.84) < A%e~R 3 /Otds EO<§(5,J;,O,€T_S)). (3.95)

Z€8+7h

However, using the strong Markov property at time s and doing once more a time reversal
of the random walk over the time interval [0, s], we may write

o <§(S,x,0,€T_S)) =L, (J“m{%@ € A}l{aR > 5, 7(s) = 0}). (3.96)
8. Finally, drop the last indicator to get
Lh.s.(3.84) < A2~ TRt E, (ewm{%@ e A}). (3.97)
This completes the proof of (3.82).
The proof of (3.83) goes along the same lines. (Compare with the proof of assertion

(b) in Lemma 6.) O

The analogue of Lemma 9 for two random walks is similar. Namely, using (3.83) we
get the estimate

E., (eH°<flT+f%>1{%(£1T b2)e A}
x [1{0}% <Ok <T) 4 1{o% < 1} 1{r2 < T}D (3.98)
< 24262 R\ TR E, (eH°<flT+f%>1{%(le +2)e A})
(compare with the proof of Lemma 7).
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For the final step in the proof of Proposition 6, we recall that ¢ (p,) C Afor 0 < € < ¢
(see the proof of Lemma 8) and that & = min{o}, o4} is the stopping time defined in (2.7).
We choose v so large that

1
Po(eg) > (1 + o) (3.99)
(recall that o = # < 1). Then the same inequality holds for all measures in U.(p,),

provided ¢ < ¢y and ¢ is sufficiently small. But now we note that
1

27

Hence we can apply (3.83) and get the claim in Proposition 6.

t : ,
(0 + (1) €UAp,), 75 S do, op St = < T (i =1,2). (3.100)

4 Proof of Propositions 7-9

4.1 Proof of Proposition 7

Let u? = p, = w2/||w,||Z = (v,/|[v,|l2)®* be the unique centered minimizer of (**) in
Section 0.4. To ease the notation we shall write u instead of wu,.

Lemma 10 The semigroup S, = (S,(t):t > 0) associated with the generator G, in (1.10)
is given by

(S,(1).)() = ﬁ&(exp [ [ s s= )]z f2))) (4.1)

. . . . d
and is a strongly continuous contraction semigroup on EZ(Z ;uz).

Proof. Elementary. The r.h.s. of (4.1) is well defined because u is strictly positive every-
where (see Lemma 13 in Section 5.1) and (Au)/u is bounded from below (see (4.6) below).
The semigroup S = (S(t):¢t > 0) associated with kA (the generator of our reference ran-
dom walk) is given by (S(¢)f)(x) = E.(f(Z(t))) and is a strongly continuous contraction
semigroup on (*(Z%). We compute with the help of (4.1)

(Gof)(a) = lim H(S,00] = 1) (@)

~ w(Au)(e)f(z) +lim L (SOuf] - [uf])(0)}

to ¢



Indeed, this coincides with (1.10). Next, the semigroup property S,(s + 1) = S,(s)S,(t)
follows from (4.1) by using the Markov property of the reference random walk at time s.
The strong continuity of S, follows from the strong continuity of S and the boundedness
of the exponential in (4.1). The contraction property of S, follows from the inequality

(.G e@eey=— 2. ulz)u@)lf(z)—fly)]* <0 (4.3)

{zy}ilz—yl=1

O
The above representation leads us to the following.
Lemma 11 Let P, = P, @ P, and P! = P! @ Py. Then for any T >0
Py,
S ((2(5), 22(3)ctom)
(4.4)
— w(ZH(T)w(Z*(T)) Au Au
= ALIRAPID oy | — (T a5 nf 82(2(s)) + 22(2%(5) .
Proof. Immediate from (4.1). 0

Using Lemma 11 we can now do the absolute continuous transformation in the expec-
tation appearing in the Lh.s. of (2.9) in Proposition 7. Indeed, recalling that (% (x) =
fOT dslyzi(s)=sy (1 = 1,2), we obtain

Ew(exp[ﬂ o ET]1{%ZT € ue(pp)}u&R > t})
= u(wpuly) B2, (explH o frlesp [ lr(2) (w2} (4.5

X u(21(T))1u(z2(T))1{%€T = Ue(pp)}l{&R > t})-
To complete the proof of Proposition 7, we simply note that
Au

[

(2) = —2plog u(z) — 2dx(p), (1.6)

as follows from (*) in Section 0.3 and Proposition 3 via the relation u = (v,/[|v,|/=)®".
After substituting (4.6) into the r.h.s. of (4.5) and using the relations u* = p,, p = 0/x,
Ly =07/2T and Y, Ly(z) = 1, we obtain the r.h.s. of (2.9).

We conclude this section with the following observation.

Lemma 12 The random walk driven by G, is ergodic with u? as the reversible equilibrium.
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Proof. Elementary. To prove that u? is a reversible equilibrium, we compute for any f, ¢

with the help of (1.10)
Clu@)Pf()(Gog)(z) = £ 8 wul@)uly)f(@)lg(y) — g(x)]

T yly—al=1
= %gx'xg':lﬁU(x)U(y)g(y)[f(x)—f(y)] (4.7)
= %[U(y)]zg(y)(pr)(y)-

O

The ergodicity of the transition probabilities immediately follows from (4.10) and (4.12)
below, which makes that «? is the unique equilibrium.

4.2 Proof of Proposition 8

Proof. Consider the 1.h.s. of (2. 17) First bound 1{L; € U.(p,)} from below and above
by 1{LtT €U\ 5,0(po) } resp 1{LtT € Uey(s,6) (pp)} using (2.16). Next substitute (2.12), as
well as (2.14) with A = T =+ Lt and u = L, 1, and write {6p > t}= {supp( +) € Tr}.
Next, let F; v denote the o- ﬁeld generated by the two random walks on the time interval
[t T]. We can take the conditional expectation over the two random walks on the time
interval [0,¢] given F;r. Since f/tT is Fir-measurable, this produces the two transition
kernels as well as the product under the expectation in the r.h.s. of (2.17). Finally, take the
expectation over F; 1 using the Markov property at time ¢ and shift [¢,7] to [0,T —t]. O

4.3 Proof of Proposition 9

Proof. (1) Fix ¢t > 0 and R > 0. Note first that eg > 0 because p, > 0 everywhere (see
Lemma 13 in Section 5.1). Next, we have limr_., Vr((r) = 0 as long as (7 is bounded
away from 0 and co. This easily follows from (0.15) and (2.15). Next, if 0 < € < eg then
p € Ue(p,) guarantees that inf.cr, p(z) > 0. Together with supp(ﬁt) C Tr we therefore
have that, for ¢ fixed and T" — oo, the first part of the inner product in the definition of
Yr(x,y; & 7, p;t, T) in (2.18) vanishes uniformly in &,y € Tr and u € U.(p,). The bounds
in (2.19) are now easily obtained from the second part of the inner product by using that
l1(2) = p,(2)| < e for all z € Z* when pu € U(p,).

(2) By (4.1) and (4.6)

Pi(e, ) = (S,(t)d)(x)
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with V:Z* — IR the potential (recall (4.6) and Proposition 3)

V(z) = 20log u(z) + 2drx(p) = 20> logv,(z"). (4.9)

=1

Now, let (Sy(t):t > 0) be the semigroup associated with the generator Gy = kA + V.
Then, using the Feynman-Kac formula, we have

PE(e. ) = SRSV 05) ) = S 6. Su(0)5) (1.10)

(
Py, &) (8, Sv(1)55) (4.11)
)

with (-,-) the standard inner product.

The generator Gy is self-adjoint and Gyu = 0. Because V' is bounded from above and
lim|z o0 V(2) = —o0, we know that Gy has a compact resolvent R(A) = (A — Gy)™! in
(7). From the semigroup representation of R(\) (which holds for A sufficiently large)
it is also clear that R(A) is a positive operator. Therefore, by the strict positivity of w,
we see that 0 is the largest eigenvalue of GGy and that this eigenvalue is simple. Moreover,
the compactness of R(A) tells us that the rest of the spectrum lies in (—oo, —Ag] for some
Ao > 0, the spectral gap.

Next, let II denote the projection onto w, i.e., IIf = (u, f)u/(u,u). Then, by the
spectral theorem, we have

(0a, Sv(1)dz) = (00, 110z) + (do, [Sv(t) — 11]dz)
~ (4.12)
= ﬂ%u%ﬂ + O(e™") (¢t — o0).

Combining (4.11-4.12) we find

= u(2) (t — o). (4.13)

Thus the ratio tends to 1 when the order term tends to zero. But, by (0.14) and the fact
that u(#) = [[1°, v,(#:)]/ exp[dx(p)/p] (recall Proposition 3), this will be the case when
|7°| log |7'| = o(t) for s = 1,...,d. Hence we have proved the claim in (2.20).

(3) Because of the product property of the transition kernel

Ptpd (x,y) H PPty for all z,y € -, (4.14)
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it suffices to give the proof of (2.21) for d = 1. Moreover, because the two random walks
are independent, it suffices to prove the analogue statement for one random walk. Thus,
letting

orp =inf{s > 0: Z(s) ¢ [ R, R]}, (4.15)

we must show that

lim inf inf Pllop>t|Z(t)=2)=1. (4.16)
t—oo \t/loglog t=0o(R) i’E[—R,R]
R=o(t/log t)

Fix @ € Z and & € [—R, R]. By time reversal we have

. Pllop <t,Z(1) = 2)
Pllop <t | Z(t)=3)=Plor<t| Z(t)=2)=— = : (4.17)
PE(Z(1) = x)
The numerator equals
Plon <1, 7(1) = ¢) = Eg(1{aR <14Py, (Z(t—s) = x)|5:C,R). (4.18)

Since

PIZ({)=a) > P Z(t—s)=a)Pl(Z(s)=a) forall z € Zand 0 < s <t, (4.19)

z

and since by ergodicity
inf PP(Z(s) =a) =c>0, (4.20)

520

we obtain via (4.18) that

Pllop <t | Z(t)=2) < —PL(or < 1)

c - PY(Z(t) = x) (4:21)

The quotient in the r.h.s. of (4.21) tends to 1 uniformly in & € [— R, R] when t — oo and

Rlog R = o(t), (4.22)

as can be seen from (4.13) (use that v is unimodal and centered at 0). Hence, to prove the
claim in (4.16) it remains to show that Pf(or < t) tends to zero uniformly in & € [— R, R].
For this we shall want to let R grow sufficiently fast with ¢, but it will turn out that (4.22)
can still be met.

Let

n, = inf{s > 0: Z(s) = z}. (4.23)

Pilop <t) < Pi(nry1 <)+ PP(n-p-1 <t)
(4.24)
< Ph(npsr <)+ PPp(n-r1 <t) (& € [-R,R]).
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We shall only give the argument for the first term in the r.h.s. of (4.24), the second term
being similar.
For 0 <n < R, define the event

Apg,, = the first R —n steps of the random walk go to the left. (4.25)
Then we can estimate
Pr(nrer 1) = PR([Ara]) + Pr(Mrr < 1, ARy). (4.26)

We begin by looking at the first term in the r.h.s. of (4.26). Let r(x) be the probability
that a step from x goes to the right. Then, by Theorem 21(3)(iii),

v+ 1) [v@e—-1) v@+1)]7? N 1
v(x) [ v(x) + v(x) ] (2pxlog x)?

(Recall that « and v are linked as u = v/||v||2; the p-dependence is suppressed from the
notation.) Therefore for n — oo

r(x) = (x — 00). (4.27)

R 1 R 1
Ph(ARy) = 1 —r(x :exp[——l—l—ol 7] 4.28
fitn) = II (1=r(e) o) X (4.25)
and it follows that
lim inf PA(AR,) = 1. (4.29)

n—00 R>n

Thus we have proved that the first term in the r.h.s. of (4.26) tends to zero as n — oo
uniformly in R > n.
Let us now turn to the second term in the r.h.s. of (4.26). Because

Pr(nrer S| Arp) < P(nra < 1), (4.30)
we see from (4.29) that it suffices to show that the r.h.s. of (4.30) tends to zero. By
Markov’s inequality

R
Prlms < 1) < inf o T B (ees), (4.31)

r=n

Next, starting from z the time 7,11 to reach x 4+ 1 is bounded from below by

Net1 Z Z fx,kv (432)
k=1

where &, i, is the sojourn time at z prior to the k-th jump from « and v, is the number of
jumps from z going to the left before hitting x + 1. Now, the £, ;’s are i.i.d. exponentially

41



distributed with mean given by the second factor in the r.h.s. of (4.27), while v, is geomet-
rically distributed with mean 1/r(x). Hence the r.h.s. of (4.32) is exponentially distributed
with mean v(a)/v(x + 1). Therefore

E? (e—wmﬂ) < 1 < lv(:z; + 1)_
vz =y p(x)

1 + Vv(x—l—l)
Substitute (4.33) into (4.31), pick v = 1/R and n = | R/2], and use that v(x + 1)/v(z) ~

2pxlogx (¥ — 00), to arrive at

(4.33)

l R
Plryo) ey < 1) < exp [E —(L+o(1))7 loglog R/, (4.34)
where o(1) holds for R — oo uniformly in ¢. The r.h.s. tends to zero as R — oo when
t = o( R*loglog R). (4.35)

Combining (4.24), (4.26), (4.29-4.30) and (4.34), we have proved that the Lh.s. of (4.24)
tends to zero, provided (4.22) and (4.35) are met. The latter are exactly what determines
the restrictions on R and ¢ in (4.16). O

5 Functional analysis

In this section we analyze the variational problem (#%) of Section 0.4 and its relation to
the nonlinear difference equation (*) of Section 0.3. Proposition 3 will be proved in Section
5.1, Theorem 2 in Section 5.2. Section 5.3 contains Lemma 16 and its proof. This lemma
was already used in Section 3.1. Throughout most of this section p will be suppressed from
the notation.

5.1 Proof of Proposition 3
Fix p € (0,00) and let Fy;: Py — [0, 00] be the functional

Fu(p) = La(p) + pJa(p) (5.1)
with Iy, J; defined in (0.16-0.17) and Py = P(Zd). Then (**) reads
1.
X(p) = 5 inf Fu(p). (5.2)

F; is lower semicontinuous in the weak topology. P, is not compact in the weak topology,
but with an easy argument we shall be able to show existence of a minimum. However,
the trouble with (5.2) is that Fy is the sum of a convex part, I, and a concave part, p.Jy.
Therefore uniqueness of the minimum is a more subtle problem.
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5.1.1 Analysis of (x%)

Lemma 13 (a) inf,cp, Fu(p) = dinf,ep, Fi(p).
(b) Let My C Py denote the set of minimizers of Fy. Then My # 0 and M, = (M1)®d.
(¢) All p € My are strictly positive.

Proof. (a) The proof is by induction on the dimension d. The claim is obviously true for
d = 1. Suppose that it holds for all dimensions < d. Pick any p € Pyy1. Let pg € Py and
p1 € P1 be the marginals of p on the coordinates numbered 1,...,d resp. d + 1, i.e.,

pa(z) = Z%:Zp(x,z) (:L'GZd)

5.3
p(z) = X ple,z) (2 €Z). (5.3)
T/ Al
Define the conditional probability measures
alzle) = ple.2)/pl) -

qa(z]z) = pla,z)/pi(z).
(If pa(x) = 0 then set ¢1(z|x) = 0 for all z, etc.) One easily checks from (0.16-0.17) that

L (p()) = Zpale)li(aa(-2) + T pi(2) Lalqa-]2))
Jap(p(+)) = ;pd(w)tfl((h('m)+§p1(Z)Jd(Qd('|z)) (5.5)

H )| Sl og o ele)| = Sin(=)log (2)}-

Because ¢ — ¢logq (¢ > 0) is strictly convex and Y, pa(x)qi(z|x) = p1(z), it follows from
Jensen’s inequality that the term between braces in (5.5) is > 0 with equality iff ¢;(z|z) is
constant in x for all z, i.e.,

P = Ppa @ pr1. (5.6)
By combining (5.1) and (5.5) we get
Fai(p) > Zpd VL (qu(+]x)) + Zpl JFa(qa(-|2)). (5.7)

Varying over p we obtain

yobl Fapi(p) = inf Fi(p) + inf Fulp). (5.8)
Since Fyi1(p) = Fi(p1) + Fa(pa) for all p of the form (5.6), we have proved that the claim
holds for dimension d + 1 and therefore completed the induction step.

(b) The argument in (a) shows that My = (M;)®?. We next prove that M; # (). For

ease of notation we shall henceforth suppress the dimension index 1. The proof comes in
2 Steps.
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Step 1: For every p € P with F(p) < oo there exists a p € P such that:

(i) F(p) < F(p), with strict inequality when p is not unimodal.

(ii) p is unimodal.

(ii1) p is a permutation of p (i.e., p(x) = p(n(x)) for some permutation © of #).

Proof. The proof is by induction. We shall show how to construct a sequence (p,),>1 in
P satisfying p; = p and the following properties:

() Fpont) < Flpa) (n > 1),

(i”) For every n > 1 and 1 < m < n: the positions of the first m ‘record values’ (i.e.,
largest values) of p, form a cluster.

(iii’) For every n > 1: p,11 is a permutation of p, attaching the (n + 1)-st record value of
prn, to the cluster consisting of the previous record values.

The construction goes as follows. Pick any sequence (z,),>1 along which the values of p are
arranged in decreasing order. Given p,, let [u,,v,] be the cluster consisting of the positions
of the first n record values. Without loss of generality we may assume that x,4; > v, (the
case ;41 < U, being similar). If z,41 = v, + 1 then put p,41 = p,. Otherwise put

Prt1(y) = paly) for y <w, and y > 2,41
= pu(®pyr) fory=v,+1 (5.9)
= puly+1) forv, <y <41,

i.e., attach the (n + 1)-st record value to the cluster [u,,v,] and close up the hole it leaves
behind. It is clear from (5.9) that the sequence (p,),>1 constructed in this way satisfies
(ii”) and (iii’). To prove (i’) we recall that F' = I+ pJ with [, J given by (0.16-0.17). Now,
J(pug1) = J(p,) (n > 1) because J is invariant under permutations. Thus it suffices to
show that I(put1) < I(pn) (n > 1).

Recall that I sums the square of the increments of |/p along the bonds of Z. The only
bonds where something changes in (5.9) are (v, vy +1), (¥p41—1, Tpg1) and (g1, Tppr+1).
Abbreviate

= /pa(v), b= /(@) e = /pa(on + 1),

a
d = pn(xn-l—l - 1)7 € = pn(:lin_|_1 + 1) (510)

Then we easily compute

I(pn) = I(pni1)
={(a—c)’+(d=0+(b—¢)’} —{(a =b)* + (b—c)* + (d — €)*} (5.11)
= 2(a—b)(b—c) +2(b—d)(b—¢) > 0.

Thus we have proved (i). It is easily checked that if p is not unimodal, then in (i’) strict
inequality holds for at least one n > 1 in the above iterative construction.

Finally, (ps)n>1 is obviously pointwise convergent. The limit we call p, which obviously
satisfies the claims because of (i™-iii’) (recall that F' is lower semicontinuous). O

44



Step 2: inf F' = min F'.

Proof. Let (¢,) be a minimizing sequence in P, i.e., lim,_ F(g,)= inf,ep F(p). Let ¢,
be the permutation of ¢, obtained as in Step 1. Then also (§,) is a minimizing sequence.
We shall prove that this sequence is tight modulo shifts. For ease of notation we drop the
tilde.

Without loss of generality we may assume that the first record value of ¢, sits at + =0
for all n. Since g, has the cluster property (see Step 1(ii)), its first m record values lie
inside the interval [—m,m]. Since there can be at most m record values larger than 1/m,
it follows that
up () <

m

rE[—m,m]

for all n, m. (5.12)

Now, there exists some K < oo such that F(¢,) < K for all n sufficiently large. Therefore,
since all summands of I are nonnegative (recall (0.16-0.17)), we must have

—p Z gn(2)log g, () < K. (5.13)
rE[—m,m]
But from (5.12) follows
—p Y au(@)logga(x) = plogm Y7 qu(w). (5.14)
rE[—m,m] rE[—m,m]
Combining (5.13-5.14) we obtain
K
(1) < , 1
2 anlw) < o (5.15)

rE[—m,m]

Since this bound is uniform in n, we have proved tightness.

Thus ¢, converges to some ¢ € P along some subsequence. Now note that F(g)<
limy, 00 F/(gn) = inf F because F is lower semicontinuous and (¢, ) is a minimizing sequence.
Hence ¢ is a minimizer. a

(c¢) The proof is by contradiction. Suppose that p € P is not strictly positive. Then there
exists some x¢ such that p(ag) = 0 and p(ao + 1) + p(xo — 1) > 0. For € € (0,1), define
pe € P as

pe() = { (L =epla) o7 20 (5.16)

One easily deduces from (0.16-0.17) and (5.1) that
F(p) = (1= 9F(p)+2{c = Je(l=9|plro =D+ oz + D]} 1o
—pleloge+ (1 —€)log(l —€)}.

As € — 0, the term with /¢(1 — €) is dominant. Hence F'(p.) < F(p) for all € sufficiently
small, so p is not a minimizer.

This completes the proof of Lemma 13. O
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5.1.2 The link between (xx) and (%)

Let
V = {v:Z — R*:v solves (x)}. (5.18)

Lemma 14 (a) V # (0 and inf,ey ||v]|e = mingey |[v]]e.
(b) Let V be the set of minimizers in (a). Then

M = {V¥/|v]|n:v €V} (5.19)

PO i) = 2plogllolle (v € V). (5.20)
Proof. (a-b) Let p € M be any minimizer of F. Since p is strictly positive by Lemma
13(c), we can do a standard variational argument. Indeed, pick any h: Z — IR with finite

support and Y, h(z) = 0. Since p+eh € Py for € small enough, we compute from (0.16-0.17)
and (5.1)

0 < limi[F(p+eh)— F(p)]

e—0

= (D = ) (S - 2L < pShEI0 +logn()  (5.1)

p(z) z

= Shix){ -l - JE 42— plog p(z) .

Hence, h being arbitrary, there exists a constant A such that

pz+1)  |p(z—1) (s
{—J e —J e —I—Q—plogp(z)}—)\ (= € 7). (5.22)
Put
v(z) = M /p(z). (5.23)
Then (5.22) transforms into
(z+1) U(Z—l)_ or () —
T ey Rt les(s) =0, (5.24)

which is (x). Moreover, via (5.22-5.23) and the definition of F,

F(p) = S(Yple+ 1) = /o) = pZple) ogp(2)
= L Ap(z) = A =2plogv]e.

Thus, with each p € M corresponds a solution of (*) given by v* = pexp(min F'/p) (or
min I = 2plog ||v||e). Hence M C {v?/|[v]|% : v € V}. Since we know from Lemma 13(b)
that M # (), this implies that V # (.

Reversely, given any v € V, one easily checks that p defined by p = v?/||v]|%, satisfies
F(p) = 2plog||v]|,2. Hence, only the solutions v € V correspond to the minimizers p €
M. 0

Lemmas 13-14 prove Proposition 3.

(5.25)
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5.2 Proof of Theorem 2
5.2.1 Parts (1-2) and (3)(ii—iii

We already know from Lemmas 13-14 that (*) has a ground state, so Part (1) is covered.
Part (2) is immediate from Lemma 14(b) and the fact that UQ/HUHEQ satisfies the tightness
property of (5.15).

Lemma 15 Any v € V satisfies:

() 1< olle < exp(1/p).

(b) If v(z) > v(y) fory=a + 1,2 — 1 with at most equality at one point, then v(x) > 1.
Stmilarly with both inequalities reversed.

Proof. (a) By Lemma 14(b)
2plog ||v||2 = inf F(p). (5.26)
pEPL

The lower bound follows because ' > 0. The upper bound follows by picking the trial
function p = o, for which F(do) = I(8o) + pJ(do) =2+ p -0 =2.

(b) If & is a local maximum of v then Av(z) < 0. Hence 2pv(x)logwv(x) > 0. Similarly for
a local minimum. O

We know from Step 1 in the proof of Lemma 13 that v has the cluster property, i.e., v
is unimodal. A maximum of three or more points is not possible, since (%) would give
that v = C' > 0, which is not in {*(Z). Thus we have proved Part (3)(i). Part (3)(ii)
now follows from Lemma 15(b). Indeed, if there were an a such that v(z) < v(z+1) =
v(x 4 2) < v(x + 3), then this would contradict v(z + 1) > 1 > v(a + 2). Similarly with
the inequalities reversed.

5.2.2 Parts (4) and (5)

We shall prove Part (4) for large p by contradiction. Suppose that (%) has two ground
states, vy, vy € V, which are not translates of each other. By shifting them we can always
arrange that v;(0) = max, v;(x) > 1 (: = 1,2). Without loss of generality we may assume
v1(0) > vy(0).

Define w and v; 5 by

w = U1 — Uy
1+ log v —  ulogui—vplogus (527)
V12 = v —v2 )

Since vy, vy both solve (), we have
Aw + 2pw(l + logvy ) = 0. (5.28)
Next note the following properties:

(i) v12 lies everywhere inbetween vy and vs.
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(117) ULQ(O) > 1.
(i) if p > 2/log(1 + e7?) then vy s(x) < e~ for all @ # 0.

Indeed, (i’) follows from the mean value theorem, (ii’) follows from (i’) and v;(0) > 1 (i =
1,2), while (iii’) follows from (i’-ii’) and Lemma 15(a) giving >°, .o vi(x) < exp(2/p)—vF(0
<exp(2/p) —1<1/e? (i =1,2).

Now argue as follows. From (iii’) together with (5.28) we get

w(x) and Aw(z) have the same sign for all  # 0. (5.29)
At x = 0, on the other hand, (5.28) can be written as

w(1) + w(—1) = Qw(()){l — (1 + log vm(()))}. (5.30)

Suppose that w(0) > 0 (the case w(0) = 0 will be handled later). Then (5.30) and (ii’)
imply w(1) +w(—1) < 0 (note that p > 2/log(l + e7?) > 1). Without loss of generality
we may assume w(1) < 0. Writing Vw(z) = w(a) — w(x + 1) and using (5.29), we deduce

{Vw(()) >0 . {Vw(l) > Vw(0) >0

w(l) <0 w(2) < w(1) < 0. (5.31)

This implication can be iterated to yield that @ — Vw(x) is strictly increasing for all > 0.
This in turn implies that w(z) < w(0) — 2Vw(0) (« > 2) and hence lim, ., w(z) = —oc.
But now we have a contradiction because vy, vy € I*(Z).

Finally, if w(0) = 0 then (5.30) gives w(1) + w(—1) = 0. It is not possible that
w(l) = w(—=1) = 0. Namely, this would imply v1(x) = ve(x) for # = 1,0, —1 and hence
v1 = vg because (*) is second order. Again, without loss of generality we may assume
w(1) < 0, and the argument proceeds as before. This completes the proof of Part (4).

If v solves (*) then so does —v. Hence the uniqueness of the ground state, proved above,
implies that v is symmetric about its maximum at 0. This completes the proof of Part (5).

5.2.3 Part (3)(iii)
Define () = v(x)/v(x 4+ 1). This ratio satisfies the equation

i 24+ r(x—1)=—=2plogv(x), (5.32)

which can be rewritten in the forward form

r(lx) =K —r(z—1)+2plog [xljl r(y)] (x >1) (5.33)

with K =2 —2plogv,(0). The unimodality of v, (Part (3)(ii)) implies that r(z) > 1 (« >
0). It therefore follows from (5.33) that

r—1 -1
(K=1)+2pY logr(y) <r(x—1) < K +2p Y logr(y). (5.34)
y=0 y=0
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By combining upper and lower bound we get
—142plogr(x) <r(x)—r(z—1) <1+ 2plogr(x). (5.35)

We must show that (5.35) implies r(z) ~ 2pxlog & (v — 00), as claimed. We shall do this
via a comparison with the continuous equation f' = 2plog f.

Lower bound: Let f:[zg,00) — IR* be the solution of the differential equation

J'=—1+2plog f
f(@o) = r(z0),

where the starting point ¢ is to be chosen large enough so that r(xg) > 2p V exp(1/2p).
Note that such an xg always exists because lim, . ()= oo (as is easily seen from (5.32)
using that lim,_ v(x) = 0 and r(x) > 1). We shall first show that r(z) > f(x) for all
x > xg and then that f(z) ~ 2pxlogax (@ — o0).

Since f(xq) > exp(1/2p), it follows from (5.36) that f is increasing. Hence

flx) = fle=1) e dyf'(y)
= Joady [=1+2plog f(y)] (5.37)
< —1+4+2plog f(x) (x>ax0+1).

(5.36)

Define ¢: Rt — R by g(u) = u — (=1 + 2plogu). Then (5.37) can be rewritten as
fl@ —1) > g(f(x)). From the lower bound in (5.35), on the other hand, we know that
r(z — 1) < g(r(xz)). Therefore we obtain

Hfla-1) = fla)
1) < M) (2204 D) 3%

Here we have used that ¢,¢7!

are strictly increasing on [2p,00) and that f,r > 2p on
[€0,00). The latter holds because f(x¢) = r(xo) > 2p and because f,r are both increasing
(for r this follows easily from the lower bound in (5.35) because r(xo) > exp(1/2p)).
From (5.38) we get the implication: r(x — 1) > f(x — 1)= r(x) > f(x), which proves
'(2) > fla) (2> o)

Define h: R* — R by h(u) = [“dv/(—1 + 2plogv). Then (5.36) gives A'(f)f = 1.

Hence

h(f(@) = h(f(z0) = v — 20 (2 > wa). (5.39)

Since h(u) ~ u/2plogu (u — o0), it follows that f(x)/2plog f(x) ~ & (x — o0), which is
the same as f(x) ~ 2pzlogx (z — o00).

Upper bound: By a similar argument. First rewrite the upper bound in (5.35) as r(z—1) >
g(r(x)) with g(u) = u— (14 2plogu). Next, define f to be the solution of the differential
equation

(5.40)
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Since u — g~ '(u) — u is asymptotically increasing and positive, we have

flo)=flz=1) = [ ldyf’(y>
= oy dy [g7Y(
> g‘( (x—1>

provided ¢ is again chosen large enough so that r(x¢) falls in the asymptotic regime. Thus,

we get precisely the reverse of (5.38), namely

1) < f(x)
1) > r(a), (5.42)

Hence r(z) < f(z) (z > o). Finally, let h = " dv/(g~"(v) —v). Then again R(F)f'=1.
Since g7 (v) — v ~ 2plog v (v — o0), we again find f(z) ~ 2pxlogz (z — o).

Fy) = f(y)] (5.41)
)= fle—1) (z=x0+1),

(z -
(z -

Q\ Q\

N
—(

IV IA

7

5.2.4 Parts (6) and (7)

Part (6) is immediate from Lemma 15.

We shall henceforth write F,, p,, v, instead of F|, p, v in order to display the p-dependence.
According to Lemma 14(b), the minimizers p, of F, and the ground states v, of () are
related as p, = v2/||v,||7 and v} = p,exp[F,(p,)/p]. The behavior of these quantities as
p — 0 comes in 3 steps. The argument below is valid for any minimizer p, resp. ground
state v, assumed to be centered at 0.

Define

1

pp(z) = ﬁpp(tl‘/\/ﬂ) (z € R), (5.43)

which is an element of P(IR), the set of probability measures on R.

Step 1: The family (p,),c0.1 is:
(i) equicontinuous on compacts;
(ii) uniformly integrable;

(ti1) uniformly bounded from above.

Proof. (i) Let FP:P(]R) — [0, 00) be the functional defined by (compare with F, defined
n (5.1))

N A

F,o= I,+J

L(p) = fpdo (ﬁ; [\/p(x +P) — \/p(fL‘)D2 (5.44)

J(p) = — Jrdx p(x)logp(x).
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(Note that J>0 by Jensen’s inequality, even though the integrand in J is not negative
everywhere.) Then we have the relation (recall (0.16-0.17))

i) = =[F () + plog VL. (5.45)

Because p, is a minimizer of F,, we have F,(p,) < F,(q,) for any trial function ¢, € P(Z).
Pick g,(z) = (1 — )l /(1 +¢) (z € %) with e =1 — \/P- Then an easy computation gives
Fo(q,)= —plog \/p+(2 + log 2)p+0(p*?) (p — 0). Hence we conclude, using (5.45), that

there exists some K < oo such that
0< F(p,) <K forall pe(0,1). (5.46)
This, in turn, yields that for any @,y € \/pZ with >y

iy 2 ﬁf;dz(ﬁ[ﬁAHﬁ)—WW)DZ

> (& v - ao ]) (5.47)

2
- (S[ve@-vhw )
The first inequality follows from (5.44) and (5.46), the second inequality from Cauchy-

Schwarz, the third equality from the fact that j, is constant between the points of | /pZ.
The estimate in (5.47) says that

VB () = /Bo(y)] < /K |z —yl for all 2,y € /P, (5.48)

which proves the claim.
(ii) By Jensen’s inequality,

1
- dA1A<—/dA)1</dA)<—. A
[ pdep@ogp @) < —( [ i ))iog ([ i) <C (549)
Since fp, J >0, it now follows from (5.44) and (5.46) that
1
— de p,(x)logp,(z) < K + —. (5.50)
|z|>R €

Next, p, being unimodal, we have the same bound as in (5.12), namely sup,, ., p,(z) <
1/m for all m € IN,p > 0. In terms of p, this bound translates into (pick m = R//p)

1
sup py(r) < = forall R € \/pIN,p > 0. (5.51)
o[> R R
Combining (5.50-5.51) we get
1 1
dx p < (K + - for all IN 52
/|x|>R :I;pp(:zj)_<&—|—e)logR or all R € /pIN, (5.52)
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proving the claim.
(iii) Since [ dx p,(x) = 1 for all p, it immediately follows from (i) that p, is bounded from
above uniformly in p € (0,1). O

Define
bp(x) = vo(lx/v/p]) (v €R), (5.53)

which is an element of L*(IR).

Step 2: The family (9,),e(0.1) is:

(i) equicontinuous on compacts;

(ii) uniformly square integrable;

(ti1) uniformly bounded from above;

(tv) uniformly bounded from below on compacts.

Proof. (i-ii) By (5.19), (5.43) and (5.45) we have the relation

N

ﬁi(:z;) = ppexplF(p,)]. (5.54)

Therefore the claims follow from Step 1 via (5.46).
(iv) The proof of the uniform lower bound on compacts is more subtle and requires some
work. We shall prove the claim on IR;. The proof for IR_ is similar.

Pick p € (0,1) and let v, be any centered solution of (*). We have

(7) (Av,)(2) + 200, (2) ogo,(2) =0 (x € )
(17") v,(0) = maxzez v,(x) > 1 (5.55)

(121") v, decreasing on Z.

Multiply (5.55)(i") by v,(x — 1) — v,(x + 1) to obtain

0 = [op(e — 1) = 0y(e + DI[(Av,) (&) + 200, (x) log 0,()]
= [op(x — 1) — vy(2)]* = [v,(x) — vy(e + 1)]? (5.56)
+2p[v(x — Dvy(x)log vp(x) — v,y(x + L)v,(x) log v,(w)].
Define x, € Z4 to be the unique point where
vy(x, —1) > ! > v,(x,). (5.57)

€

Then, because v — vlogv is decreasing on the interval [0, 1/¢], it follows from (5.55)(iii’)
that

vy(x — 1) logv,(x —1)
vy(x+ 1) logv,(x + 1).

vp(@)logv,(x)

vp(x)log vy(x) (5.58)

>
<
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Substitution into (5.56) gives

0 2 [on(e — 1) = v, (2)] — o) — v, + 1))

—|—2,0[UZ(:1; — logv,(x — 1) — UZ(J} + Dlogv,(x4+1)] (z>a,+1). (5.59)
Next, pick y > @, + 1 and sum (5.59) over all @ > y. Then we get
0 > [o,(y—1) —v(y))? (5.60)

£2p[02(y — 1)log v,y — 1)+ v2(y) log va(y)] (v = 2, + 1),

where we use that lim,_ v,(x) = 0. Bring the 2 under the logarithm and use once more
the monotonicity, to obtain

0> [o,(y — 1) — 0,(y)]? + 200%(y — 1) log v2(y — 1). (5.61)

Putting y = x + 1 we thus arrive at

vy(x+1) > wv,(x) [1 —2y/plog (vix))] (x > x,). (5.62)

This is a forward iterative inequality.
We shall iterate (5.62) until v,(z) drops below a threshold 6 > 0. Later we shall see
how to manipulate §. As part of the argument we shall need the following property:

inf v,(x,) =¢€>0. (5.63)

p€(0,1)

The proof of (5.63) comes at the end.
As long as v,(a) > 4, the term between square brackets in (5.62) is bounded from below

by 1 —2¢/plog(1/4). Hence, by (5.63),

vy(x) > 6[1 — 2¢/plog (%)rﬂp (5.64)

for all # > x, such that the r.h.s. is > 6. Now, since 1 —u > e7?* for u € [0,1/2], we
obtain (recall (5.55)(iii’) and (5.63))

v,(x) > eexp [— 44/ plog (%) :1;] (5.65)

for all > x, such that the r.h.s. is > §, provided

2y/plog (%) < % (5.66)

Next, (5.65) is trivially true for 0 < < z, by (5.55)(iii’), (5.57) and (5.63). Therefore

we can now scale x to [x/,/p] to arrive at the lower bound

v,(|x//p]) > eexp [— 44/log (%) :1;] (5.67)
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for & > 0, still subject to (5.66) and to the requirement that the r.h.s. be > 4. Now,
for any ¢ > 0 the r.h.s. of (5.67) is bounded from below on compacts. Thus, all we have
to check is that it is > ¢ on an interval [0, x(d)] with lims_o2(d) = oo. But we in fact
have x(8) = log(e/d)/44/log(1/d) and so this is indeed the case (irrespective of € > 0).
The condition (5.66) holds for any > 0 when p is sufficiently small, so our proof of the
uniform lower bound on compacts is complete.
[t remains to check (5.63). For this we shall need the following fact, which follows from

Step 2(iii) already proved:

sup v,(0) = ¢ < 0. (5.68)

p€(0,1)
It follows from (5.55)(ii’—ii’) and (5.68) that 2v,(x)logv,(x) < C uniformly in & with
C' = 2clog c. Hence

vo(x— 1) —wv,(x) > v,(x) —v,(x 4+ 1) — pC. (5.69)
[teration from x = 0 to x = x, gives (recall (5.55)(ii’))

02 v,(=1) = v,(0) Z vy, — 1) = wy(x,) = x,pC (5.70)
or

1

Tp = p_C[Up(xp — 1) = v,(xy)]- (5.71)
Now, suppose that there exists a ¢ > 0 and a sequence (p;) tending to zero such that

vy (2, — 1) — v, (2, ) > 0 for all k. (5.72)
Then x,, > [§/prC]. It follows from (5.72) and iteration of (5.69) that

U/)k(x - 1) - Upk(x) >4 - (x/)k - l’)pkc (l‘ < xl)k) (573)
and hence

!
U/)k(x/)k —1— 1) > U/)k(x/)k - 1) + Z (5 - mka) (l > 0) (574)
m=1
Using (5.55)(ii") and picking [ = |§/prC| — 1, we arrive at
5 5 5
> ) = 2 =), .

0al0) 2 vy (2 = o) 2 5(Lm 0 - 1) (575)
But clearly this contradicts (5.68). Hence (5.72) must fail and so we conclude that

y_ﬁ%[%(mp —1) = v,(x,)] = 0. (5.76)
But, because of (5.57), this implies that

) 1

ll)g%vp(xp) =-> 0, (5.77)
which in turn implies (5.63). O
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Define
Y= {6 € L*(R): 9 is a weak limit point of 9, as p — 0}. (5.78)

Step 3: (i) V £ 0.
(ii) For each ¢ € V the convergence is uniform on compacts in R.
(tii) All 0 €V are solutions of the differential equation 0" + 20log v = 0.

Proof. (i) Step 2(i) implies that (0,),e(0,1) is relatively compact (in the set of continuous
functions on [— R, R] for arbitrary R > 0).

(ii) Arzela-Ascoli.

(iii) Substitution of (5.53) into (%) shows that 0, satisfies the equation

A 70, +20,logt, =0 (5.79)
with A 7 defined by

(Apfie) = =[Fle+ Vi) = 2f(@) + fle = 7)€ R) (5.50)

Now, A 5 is the generator of simple random walk on /pZ with jump rate 2/p. Let us

A . ) A A . o
write Z, = {Z,(1):1 > 0} to denote this process and Py ¥7, E; " to denote its probability
law and expectation. Then, using the Feynman-Kac formula, we have the representation

o) = B2 exp [ 5% aitog 0, 2,(0)] (2 )

(v € \/pZ,R € \/pIN, |z| < R),
where
Tor =nf{t >0:|Z,(1)) =R} (Re JpX). (5.82)

Next, let B = {B(t):t > 0} be standard Brownian motion on IR, which is the Markov
process with generator A (the Laplacian on IR). Then it is well known that there exists a

S

coupling of (Z,),e(0,1) and B such that

lim sup |Zp(t) — B(t)| =0 in probability for any T > 0. (5.83)

=0 tefo0,1]
Combining (5.81-5.83) with Step 3 we find that any & € V must satisfy

Ba) = Eﬁ(exp [/OR dt log ﬁ(B(t))]@(B(m))) (e € R, Re R, |z| < R), (5.84)
where

rr=nf{t>0:|B(t) = R} (ReR) (5.85)
To derive (5.84) from (5.83) we have used the following facts:
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(i’) v, — 0 uniformly on [—R, R] as p — 0 (by Step 3(ii)).

(ii’) @ — 2log v,(x) is bounded away from 0 and oo on [—R, R] uniformly in p € (0,1)
(by Step 2(iii-iv)).

(iii’) |7p,r — TR| = 0 as p — 0 in probability (by (5.82),(5.83),(5.85)).
But (5.84) is the Feynman-Kac representation for the solution of ¢” 4+ 20 log v = 0. O

To conclude the proof of Part (7), all that we need to do is recall footnote 4, which
says that the solution of the limiting equation in Step 3(iii) is unique (modulo shifts) and
is given by the Gaussian 0(x) = exp[3(1 — #?)]. Thus Visa singleton, and any centered
ground state of (*) converges to this Gaussian.

5.3 Finite approximation of (xx)

Lemma 16 below compares the variational problem () on Z¢ with its restriction to
Ty = (=N, N]* N Z* (with periodic boundary conditions). Recall Section 0.4. Let I,.J be
the functionals on P(Z") defined in (0.16-0.17). Let IV, JN be their analogues on P (7).
Put F' =1+ pJ and FN = IV + pJVN. Write EP(Tn) — P(Zd) to denote the canonical
embedding defined by €p = p on Ty and Ep = 0 on Z* \ Th.

Let MY C P(Ty) and M C P(Zd) be the sets of minimizers of F'V rsp. F. By
compactness, M” is non-empty. By assumptions A1-A2 in Theorem 1, M is non-empty
and is a singleton modulo shifts. In the following we shall write pVV to denote an arbitrary
centered element of MY and p to denote the unigue centered element of M. Let UN U,
be the e-neighborhoods of MY, M in the (*-metric. Define

xe(p) = min FY(p") (5.86)
Xelp) = inf I'(p) (5.87)

and write Y™ (p), x(p) when ¢ = 0.

Lemma 16 Fiz p € (0,00).

(a) limyseo XV (p) = X(p)-

(b) imy o0 [|EPY = Plla =0 for any (P )n>1.

(¢c) EUN C U, for all 0 < € < e and N > No(e — ¢).

(d) E[UNT C U] for all 0 < ¢ < " and N > Ny(e" — ¢).

(e) limsupy . xN(p) < xe(p) for all 0 < € < c.

(f) iminfy_ oo XN(p) > xe(p) for all 0 < e < €.

(9) xe(p) > x(p) for all ¢ > 0.

(h) For p € P(Z) and S C %*, define p(S) = ¥ ,cs p(2). Then for an arbitrary partition
{A, BY of 7

F(p) = x(p) — 2dp(0A U IB) — p[p(A)log p(A) + p(B) log p(B)]. (5.88)
Sitmilarly on Ty for any N > 1.
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Proof. Suppress p from the notation.
(a) X < x for all N: For p € P(Zd) let #Vp € P(Ty) denote the periodization of p w.r.t.
Tx. Then JN(7%¥p) < J(p) by concavity. Moreover, by the contraction principle,

N (7Vp) = inf I(q). (5.89)

qEP(Zd):WNq:WNp

Hence

N— inf [INVp) 4+ oIV @Vp) < inf [I(p) + pJ(p)] = x. 5.90
X pegtm)[ (7" p) + pJ ¥ (7 p)]_peg}m[ (p) +pJ(p)] = x (5.90)

liminfy e ¥ > x: For all pV¥ € P(Ty) we have

0 < I(EPN) — IN(PN) < dYcor, PV ()

(5.91)
J(EPN) = TN (PN,

as is easily deduced from (0.17-0.18). (The upper bound estimates the sum of p(z) + p(y)
over all z,y connected by a bond that is ‘cut open’.) Hence

0< F(EYN) - FN(PY) <d Z PN (2). (5.92)

We have proved in Section 5.1.1 that p is a product measure with all its marginals unimodal.
The same argument works for p’¥ without modification. Thus we know, in particular, that

> pV(z) < 0Tw|/|Tw|. (5.93)

It therefore follows that
XY= FNN) > F(EPY) — d|0Tw|/|Tx| > x — d|0Tx|/|Tn]. (5.94)

Take the limit N — oo to get the claim.

(b) The unimodality of p" implies that (£p")n»1 is tight. Let (Nj) be any subsequence
such that Ep¥ — pin ' for some p € P(Z") as k — co. With the help of (5.92-5.93) and
the lower semicontinuity of F', we get

lim inf FVs (pM) = lim inf F(EF™*) > F(p). (5.95)
—+00

k—oc0

Since the Lh.s. is y by (a), it follows that p is a minimizer of F'. Hence p = p, proving the
claim.

(¢) For x € 7%, let 0,: P(ZY) — P(Z") denote the z-shift defined by (0,.p)(y) = p(z + y).
For every p € P(Z?) we have
10up = pllo < 102 — EP" [l + [[EPY = plar. (5.96)

Take the infimum over z on both sides to obtain that p ¢ U, = p ¢ UV

Y. with
Sy = ||EPN — pllpn. The claim now follows from (b). !
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(d) For x € Z?, let 0Y:P(Ty) — P(Tx) and ég:?(%d) — P(Z") denote the N-periodic
x-shifts defined by

OXp")(y) = pM(x+y (mod Ty))

5.97
(éNp)(y) _ { plr +y (mod Ty)) y € T]Zlf ( )
’ p(y) y €4\ 1Ty
We obviously have
E-0N =Y. & on P(Ty). (5.98)

Moreover, it is easy to see that for any = € Z¢ and for any p, ¢ € P(Zd) with support in
Tn

102 = qlla > 10X p — gl| . (5.99)

Combining (5.98-5.99), we get that for any p¥ € P(Ty)

HGprN — EﬁNH@ > HéiVEpN — EﬁNH@ = HE@iva — EﬁNH@ (5.100)
and hence
18,60 — plla = 1055 — €5 ln — b (5.101)

with oy = [|EPY — p|ln. Take the infimum over x on both sides to obtain that £p" €
EUN = Ep € [Un_5,]°. The claim now follows from (b).

€

(e) From (c) and the inequality F'N(p") < F(EpY) (recall (5.92)) we get

= i FY(pY) < i, P(ep™) < inf Fp) = xe. (5.102)

(f) Let pY denote an arbitrary centered minimizer for y% = N~ g FN(pN) (which

exists by compactness). Then there exists some y = y(pJ) € T such that

> (05 pn)(2) < 0T/ |Tw] (5.103)

z€0TN

and hence
O = PG = FNOY ) 2 F(£0)9) — doTy] /[T (5.104)

(compare with (5.93-5.94)). Because 05}5?[, ¢ U, it follows from (d) that for N sufficiently
large

F(E0Y D) = X (5.105)

Now combine (5.104-5.105) and let N — oo, to get the claim.
(g) We shall need the following property, which will be proved at the end:

Any centered minimizing sequence for y = min F(p) is tight. (5.106)
pEP(Z)
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Suppose that xy = x. for some ¢ > 0. Let (p.,) be any centered minimizing sequence for
(5.87). Then, by (5.106), this sequence is tight. Hence p,,, converges to some p, ¢ U, along
some subsequence. Because F' is lower semicontinuous, it follows that x = y. > F(p.).
But this in turn implies that p. is some shift of p, which contradicts p, ¢ U,. Thus we must
have y. > y for all ¢ > 0, as claimed.

It remains to prove (5.106). Let (p,) be any centered sequence that is not tight. Then
there exist sequences (ny), (Ni) and some § > 0 such that

> Pug(2) = qr>4¢ forall k
ZGTNk
> pa (2 = b, >¢ forall k
> P (2) = =0 ask — .
2€0T N, WI(Z\Ty,)
Define
pr = ipnk 1TNk
(5.108)
p% = épnk 1Zd\TNk .
Then we have (compare with (5.91))
1(p},,,) = 1(arpy, + bepi) = ard(py) + bl (py) — dey,
(5.109)
J(pr,) = Jarp) + bipy) = ard (py,) + beJ (py) — axlog ay — by log by.
Hence
Flpa,) = 1(p,,) +pJ(p,)
> apF(p)) + b F(p}) — dex, — plaglog ag + by log by] (5.110)

> x — deg — plag log ay, + by log by

(ar + by = 1). But ¢, — 0 and both aj and by, are bounded away from 0 and 1. Therefore
lim infy—eo F(pn,) > X, and so we conclude that (p,) is not minimizing.
(h) Same as the argument in (5.107-5.110). O
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