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The survival probability for critical spread-out oriented
percolation above 4 + 1 dimensions. I. Induction

Remco van der Hofstad ∗

Frank den Hollander † ‡

Gordon Slade §

September 19, 2005

Abstract

We consider critical spread-out oriented percolation above 4+1 dimensions. Our main
result is that the extinction probability at time n (i.e., the probability for the origin to be
connected to the hyperplane at time n but not to the hyperplane at time n + 1) decays like
1/Bn2 as n →∞, where B is a finite positive constant. This in turn implies that the survival
probability at time n (i.e., the probability that the origin is connected to the hyperplane at
time n) decays like 1/Bn as n →∞. The latter has been shown in an earlier paper to have
consequences for the geometry of large critical clusters and for the incipient infinite cluster.

The present paper is Part I in a series of two papers. In Part II, we derive a lace expansion
for the survival probability, adapted so as to deal with point-to-plane connections. This lace
expansion leads to a nonlinear recursion relation for the survival probability. In Part I, we
use this recursion relation to deduce the asymptotics via induction.

1 Introduction and results

For oriented bond percolation on Zd×Z+ with parameter p, the survival probability θn = θn(p) at
time n ∈ Z+ is the probability that there exists an x ∈ Zd such that (0, 0) is connected to (x, n).
In the oriented setting, it is known that there is no percolation at the critical threshold p = pc

[3, 7], so limn→∞ θn(pc) = 0. In this paper, we study the manner in which θn(pc) tends to zero as
n →∞ when d > 4.
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Our main result is that for sufficiently “spread-out” oriented bond percolation, with the degree
to which connections are spread out in space parameterized by L ∈ N,

lim
n→∞nθn(pc) =

1

B
∈ (0,∞) for d > 4 and for L sufficiently large. (1.1)

In terms of the critical exponent ρ, defined by the conjecture that θn(pc) behaves like n−1/ρ as
n → ∞, (1.1) implies that ρ = 1. Our proof of (1.1) makes use of a result in Part II ([12]),
which consists of an extension of the lace expansion to deal with point-to-plane connections and
which leads to a nonlinear recursion relation for θn(p). In Section 2, we use this recursion relation,
together with bounds on its coefficients that are valid when p = pc, d > 4 and L sufficiently large,
to deduce (1.1) via induction.

The outline of this section is as follows. In Section 1.1, we define spread-out oriented percolation
and recall a few basic facts. In Section 1.2, we formulate our main theorem, a sharp asymptotic
formula for ∆θn(pc) = θn(pc)−θn+1(pc), which is the probability that extinction occurs at time n+1.
In Section 1.3, we explain that (1.1) has interesting consequences for the geometry of large critical
clusters and for the incipient infinite cluster, as shown in an earlier paper [11]. In Section 1.4, we
indicate that our main theorem can be viewed as a perturbation of a sharp asymptotic formula for
the extinction probability of a critical branching process. Finally, in Section 1.5, we list the three
main ingredients that go into the proof of the main theorem, two of which are treated in Part II.

1.1 The model

The spread-out oriented bond percolation model is defined as follows. Consider the graph with
vertices Zd × Z+ and with directed bonds ((x, n), (y, n + 1)), for n ∈ Z+ = {0, 1, 2, . . .} and
x, y ∈ Zd. Let D be a fixed function D : Zd → [0, 1], satisfying

∑

x∈Zd

D(x) = 1. (1.2)

Let p ∈ [0, ‖D‖−1
∞ ], where ‖ · ‖∞ denotes the supremum norm, so that pD(x) ≤ 1 for all x ∈ Zd.

We associate to each directed bond ((x, n), (y, n + 1)) an independent random variable taking the
value 1 with probability pD(y− x) and the value 0 with probability 1− pD(y− x). We say that a
bond is occupied when the corresponding random variable is 1 and vacant when it is 0. Note that
p is not a probability. Rather, p is the average number of occupied bonds from a given vertex.
The joint probability distribution of the bond variables will be denoted by Pp, the corresponding
expectation by E p.

The function D will be assumed to obey the properties of Assumption D in [16, Section 1.2]
(whose precise form is not important for the present paper), together with [17, Equation (1.2)].
This assumption involves a parameter L ∈ N, which serves to spread out the connections and
which will be taken to be large. The assumption implies, in particular, that there exists a finite
positive constant C such that

sup
x∈Zd

D(x) ≤ CL−d. (1.3)

Examples of functions D obeying the assumption are given in [16, Section 1.2]. A simple and basic
example is

D(x) =





(2L + 1)−d if ‖x‖∞ ≤ L,

0 otherwise.
(1.4)
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In this example, the bonds are given by ((x, n), (y, n + 1)) with ‖x − y‖∞ ≤ L, and a bond is
occupied with probability p(2L + 1)−d.

We say that (x, n) is connected to (y, m), and write (x, n) −→ (y,m), if there is an oriented
path from (x, n) to (y,m) consisting of occupied bonds. Note that this is only possible when
m ≥ n. By convention, (x, n) is connected to itself. We write (x, n) −→ m if m ≥ n and there is
a y ∈ Zd such that (x, n) −→ (y, m).

The event {(0, 0) −→ ∞} is the event that {(0, 0) −→ n} occurs for all n. There is a critical
threshold pc > 0 such that the event {(0, 0) −→ ∞} has probability zero for p ≤ pc and has
positive probability for p > pc. The parameterization we have chosen is convenient, since pc is
close to 1 for large L. In fact, it is shown in [14] that there is a finite positive constant c such that

pc = 1 + cL−d +O(L−d−1) as L →∞ for d > 4. (1.5)

The survival probability at time n is defined by

θn(p) = Pp((0, 0) −→ n), (1.6)

and the extinction probability at time n is defined by

∆θn(p) = θn(p)− θn+1(p) = Pp((0, 0) −→ n, (0, 0) −→/ n + 1). (1.7)

General results of [3, 7] imply that limn→∞ θn(pc) = 0. The same conclusion was shown in [2] to
follow from the triangle condition. The triangle condition was verified in [17, 18], for d > 4 and L
sufficiently large, yielding an alternate proof that limn→∞ θn(pc) = 0 in this setting.

1.2 The main theorem

Henceforth we will assume that p = pc and suppress p from the notation.
Our main result is the following theorem. Constants implied by the O notation below are

independent of both L and n. Although only the dimension d = 5 lies in the interval 4 < d < 6,
we indicate the d-dependence of our estimate in this range to display its degeneracy as d ↓ 4.

Theorem 1.1. Let d > 4 and p = pc. There are finite positive constants L0 = L0(d) and
B = B(d, L) = 1

2
+O(L−d) such that, for L ≥ L0,

∆θn =
1

Bn2

[
1 +O(n−1 log n) + L−dO(δn)

]
as n →∞ (1.8)

with

δn =





n−(d−4)/2 log n (4 < d < 6),

n−1 log2 n (d = 6),

n−1 log n (d > 6).

(1.9)

From (1.8) we obtain

θn =
∞∑

m=n

∆θm =
1

Bn

[
1 +O(n−1 log n) + L−dO(δn)

]
as n →∞, (1.10)
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which proves (1.1).
In Section 1.5, we sketch the main ingredients in the proof of Theorem 1.1. As explained in

Section 1.4, for critical branching processes a result like (1.8) without the second error term is well
known. In [17], the scaling behaviour of the critical oriented percolation r-point functions (r ≥ 2)
was computed, for d > 4 and L sufficiently large. It was shown that all moment measures of critical
oriented percolation converge to the moment measures of the canonical measure of super-Brownian
motion in the scaling limit. The latter shows that the nature of large critical spread-out oriented
percolation clusters is similar to that of large critical spread-out branching random walk clusters,
for d > 4. This intuition will guide our proof of Theorem 1.1.

1.3 Consequences of the main theorem

We formulate four consequences of (1.1), which we have seen is a consequence of Theorem 1.1.
For this, we first recall some results from [17]. Let

τn(x) = P((0, 0) −→ (x, n)), (1.11)

τn1,n2(x1, x2) = P((0, 0) −→ (x1, n1), (0, 0) −→ (x2, n2)) (1.12)

denote the two-point and three-point functions, respectively. It follows from [17, Theorem 1.1 and
Equation (2.52)] (see [10] for a review) that there are finite positive constants A = A(d, L) and
V = V (d, L) such that for p = pc, d > 4 and L sufficiently large,

lim
n→∞

∑

x∈Zd

τn(x) = A, (1.13)

∑

x1,x2∈Zd

τn1,n2(x1, x2) = A3V (n1 ∧ n2)[1 + o(1)] as n1 ∧ n2 →∞. (1.14)

Moreover, A = 1 +O(L−d) and V = 1 +O(L−d) as L →∞.

I. Relation between constants A, V and B. In [11, Theorem 1.5] we proved that, subject to
(1.1),

B =
AV

2
. (1.15)

Thus we can now conclude that this formula is true. It follows that B = 1
2

+O(L−d) as L →∞.
We will provide a direct proof of the latter below, based on the explicit series representation for
B given in (2.2). The identity (1.15) is discussed further in Section 1.3 of Part II.

It is worth noting that for p = pc, d > 4 and L sufficiently large, (1.13)–(1.14) imply the
elementary lower bound

θn ≥ 1

AV n
[1 + o(1)], (1.16)

which gives the correct power of n and only misses the correct constant by a factor 2. To prove
(1.16), we let

Nn = #{x ∈ Zd : (0, 0) −→ (x, n)} (1.17)

denote the number of vertices at time n to which the origin is connected. From the Cauchy–Schwarz
inequality, we obtain

E[Nn] = E
[
NnI[Nn > 0]

]
≤

(
E[N2

n]
)1/2

θ1/2
n . (1.18)
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Since E[Nn] =
∑

x∈Zd τn(x) and E[N2
n] =

∑
x1,x2∈Zd τn,n(x1, x2), it follows from (1.13)–(1.14) that

A[1 + o(1)] ≤
(
A3V n[1 + o(1)]

)1/2
θ1/2

n , (1.19)

which implies (1.16).

II. Incipient infinite cluster. The formula (1.1) has implications for the incipient infinite cluster
(IIC). Let F denote the σ-algebra of events, and let F0 denote the algebra of cylinder events, i.e.,
the events that depend on the occupation status of a finite set of bonds. In [11], we constructed a
measure P∞, the IIC measure, as follows. We defined Pn by

Pn(E) =
1

τn

∑

x∈Zd

P(E ∩ {(0, 0) −→ (x, n)}) (E ∈ F), (1.20)

where τn =
∑

x∈Zd τn(x). In [11, Theorem 1.1], we showed that for p = pc, d > 4 and L sufficiently
large, the limit

P∞(E) = lim
n→∞Pn(E) (E ∈ F0) (1.21)

exists and extends to a measure on F . A second and more natural construction of the IIC arises
when we condition on survival up to time n, as follows. For E ∈ F , letQn(E) = P(E | (0, 0) −→ n).
In [11, Theorem 1.2], we showed that, subject to (1.1), for p = pc, d > 4 and L sufficiently large,
the limit

Q∞(E) = lim
n→∞Qn(E) (E ∈ F0) (1.22)

exists and extends to a measure on F , with Q∞ = P∞. Thus we now have the following corollary.

Corollary 1.2. Let d > 4 and p = pc. There is a finite positive constant L0 = L0(d) such that,
for L ≥ L0, the measure Q∞ exists and equals P∞.

III. Size of survival set. Recall from (1.17) that Nn denotes the number of vertices at time n
to which the origin is connected. The following is a consequence of [11, Theorem 1.5] and (1.1).

Corollary 1.3. Let d > 4 and p = pc. There is a finite positive constant L0 = L0(d) such
that, for L ≥ L0, n−1Nn converges weakly to an exponential random variable with parameter
λ = 2/(A2V ) = 1/(AB), under the measure Qn as n →∞.

We have already used the fact that E[Nn] = A[1 + o(1)] by (1.13). According to (1.1) and
Corollary 1.3, we can understand this statement to correspond to the two statements

P(Nn > 0) =
1

Bn
[1 + o(1)], E[Nn|Nn > 0] = ABn[1 + o(1)]. (1.23)

In other words, clusters rarely survive to time n, but when they do, they are large.

IV. Critical exponent for size of cluster of origin. Let p = pc. Let C(x, n) = {(y,m) ∈
Zd × Z+ : (x, n) −→ (y, m)} denote the forward cluster of (x, n), of cardinality |C(x, n)|. Let

Pn = P(|C(0, 0)| = n), (1.24)
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and let

P≥n =
∞∑

m=n

Pm = P(|C(0, 0)| ≥ n) (1.25)

denote the probability that the size of the cluster of the origin is at least n. For h ≥ 0, let
M(h) = 1−∑∞

n=1 Pne−hn. The critical exponent δ is defined by the conjectured asymptotic relation
M(h) ∼ const·h1/δ as h ↓ 0, or, in a stronger statement, by Pn ∼ const·n−1−1/δ, which implies that
P≥n ∼ const · n−1/δ. It is known quite generally that M(h) ≥ const · h1/2 for h ≥ 0 [1]. For d > 4
and L sufficiently large, it is a consequence of the triangle condition that also M(h) ≤ const · h1/2

[2, 18], so that M(h) ' h1/2 (where “'” denotes upper and lower bounds with possibly different
constants), and thus δ = 2 in this sense. It is also known that dM

dh
=

∑∞
n=1 nPne

−hn ' h−1/2 [2, 18]
for d > 4 and L sufficiently large. The following corollary to (1.1) gives a somewhat different
statement that δ = 2, and is proved directly without invoking the triangle condition.

Corollary 1.4. Let d > 4 and p = pc. There are finite positive constants L0 = L0(d) and
ci = ci(d, L), i = 1, 2, such that, for L ≥ L0,

c1√
n
≤ P≥n ≤ c2√

n
(n ≥ 1). (1.26)

The proof is given in Section 3. For ordinary (non-oriented) nearest-neighbour bond percolation
in dimensions d À 6, the asymptotic formula P(|C(0)| = n) ∼ const · n−3/2 was proved in [9,
Theorem 1.1], where C(0) denotes the cluster of the origin. Our present methods are not sufficient
to prove the corresponding statement for oriented percolation for d > 4, which would imply an
asymptotic formula in place of (1.26).

1.4 Critical branching processes

Above the critical dimension 4, the connectivity functions of critical oriented percolation have
been shown to have the same scaling as their analogues for critical branching random walk [17].
It is therefore natural to expect that the same will be true for the survival probability, and our
analysis is based on a comparison of the recursion relation (1.37) with its counterpart for critical
branching random walk, or, equivalently, the survival probability for critical branching processes.

In this section, we derive the analogue of (1.8) for critical branching processes. Consider a
branching process with a critical offspring distribution q̂ = (q̂m)∞m=0, i.e.,

µq̂ =
∞∑

m=0

mq̂m = 1. (1.27)

Let σ2
q̂ denote the variance of q̂, which we assume is positive and finite. By (1.27),

σ2
q̂ =

∞∑

m=0

m(m− 1)q̂m. (1.28)

We write P̂ for the law of the critical branching process, Zn for the number of particles alive at
time n, and we let

θ̂n = P̂(Zn > 0) (1.29)
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denote the survival probability at time n. By conditioning on the number of offspring of the initial
particle that survive to time n+1, and assuming for simplicity that the third moment of q̂ is finite
as well, we obtain the recursion relation

θ̂n+1 =
∞∑

m=1

mq̂mθ̂n(1− θ̂n)m−1 +
∞∑

m=2

m(m− 1)

2
q̂mθ̂2

n(1− θ̂n)m−2 +O(θ̂3
n). (1.30)

We expand the power of 1− θ̂n in (1.30) to obtain

θ̂n+1 =
∞∑

m=1

mq̂m[θ̂n − (m− 1)θ̂2
n] +

∞∑

m=2

m(m− 1)

2
q̂mθ̂2

n +O(θ̂3
n)

= θ̂n −
σ2

q̂

2
θ̂2

n +O(θ̂3
n). (1.31)

Note the cancellation that results in a negative coefficient for the quadratic term in (1.31).
From (1.31) it is straightforward to deduce that

θ̂n =
2

σ2
q̂n

[1 +O(n−1 log n)], (1.32)

which is the analogue of (1.10). Indeed, following [5, Section 8.5], we put v̂n = 1/θ̂n and note that
(1.31) yields the recursion relation

v̂n+1 =
v̂n

1− σ2
q̂

2
v̂−1

n +O(v̂−2
n )

= v̂n +
σ2

q̂

2
+O(v̂−1

n ). (1.33)

For later reference (see under (2.28) below), we note also that the constant in the error term of
(1.33) depends only on the third moment of q̂. It is a classical result that θ̂n → 0, and hence
v̂n →∞. Using the latter in the right-hand side of (1.33), we obtain

v̂n+1 =
σ2

q̂n

2
[1 + o(1)]. (1.34)

Inserting this into (1.33), we get the recursion

v̂n+1 = v̂n +
σ2

q̂

2
+O(n−1). (1.35)

From this, in turn, we obtain

v̂n =
σ2

q̂n

2
+O(log n), (1.36)

which proves (1.32).

1.5 Main ingredients in the proof

There are three main ingredients in the proof of Theorem 1.1. The first two are proved in Part II,
and we prove the third here in Part I.
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A. The first ingredient is the derivation of a recursion relation for θn that replaces the simple
recursion (1.31) for branching processes. We do this in Part II by extending the lace expansion
from an expansion for the two-point function (a point-to-point expansion) to an expansion for the
survival probability (a point-to-plane expansion). It turns out that this is not a minor modification
of previous lace expansions. The result of the expansion is that the recursion relation (1.31) for
branching processes is replaced by the following recursion relation for oriented percolation:

θn =
n−1∑

m=0

πmpθn−1−m −
bn/2c∑

m1=1

n∑
m2=m1

φm1,m2θn−m1θn−m2 + en. (1.37)

Here, (πm) are the coefficients appearing in the lace expansion for the two-point function [17, 18]
(in terms of the notation πm(x) of [17, Section 3], we have π0 = 1, π1 = 0, and πm =

∑
x∈Zd πm(x)

for m ≥ 2), (φm1,m2) are certain coefficients similar to those appearing in the lace expansion for the
three-point function [17], while (en) are error terms. The expansion (1.37) holds rather generally,
but to be useful it is necessary to have estimates for the coefficients appearing in its right-hand
side.

B. The second ingredient in the proof consists of estimates on πm, φm1,m2 and en, which we
refer to as diagrammatic estimates. These diagrammatic estimates are valid for p = pc, d > 4 and
L sufficiently large. Diagrammatic estimates for φm1,m2 and en are obtained in Part II, and good
diagrammatic estimates for πm are known already from [17, Proposition 2.2]. Also, it was shown
in [17, Section 2.1.2] that

pc

∞∑

m=0

πm = 1. (1.38)

We may think of (1.38) as an analogue of (1.27). The following theorem summarises the diagram-
matic bounds. Here, and throughout the paper, we use the abbreviation

β = L−d. (1.39)

The dimension d enters our analysis only as a parameter and not with any geometric meaning.
To emphasise this, and to facilitate the possible extension of our analysis to models other than
oriented percolation, we replace the parameter d by

κ =
d

2
, (1.40)

and we assume that κ > 2. We replace (1.9) by

δn =





1
3−κ

n−(κ−2) log n (2 < κ < 3),

n−1 log2 n (κ = 3),

n−1 log n (κ > 3),

(1.41)

and also define

∆n =





n−(κ−2) log n (2 < κ < 3),

n−1 log n (κ = 3),

n−1 (κ > 3).

(1.42)

Part (i) of the following theorem is proved in [17], and parts (ii-iii) are proved in [12].
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Theorem 1.5. (Diagrammatic estimates)
Fix d > 4, κ = d/2, and p = pc. There are positive constants Cπ, Cφ, Ce and β0 such that for
0 < β ≤ β0 the following hold:
(i) π0 = 1, π1 = 0 and

|πm| ≤ Cπβ(m + 1)−κ (m ≥ 2). (1.43)

(ii) φ1,1 = 1
2
p2

c

∑
x∈Zd D(x)(1−D(x)) = 1

2
[1 +O(β)] and

|φm1,m2| ≤ Cφβ(m1 + 1)−(κ−1)(m2 −m1 + 1)−(κ−1) (m2 ≥ m1 ≥ 1, m1 + m2 ≥ 3). (1.44)

(iii) If θm ≤ Cθ(m + 1)−1 for 0 ≤ m ≤ n and some Cθ ≥ 1, then

|en+1| ≤ CeC
3
θ (n + 1)−2

[
(n + 1)−1 + β∆n+1

]
. (1.45)

C. The third ingredient in the proof is an inductive analysis of the recursion relation (1.37),
using the diagrammatic estimates of Theorem 1.5 to bound the coefficients in (1.37). The inductive
analysis is carried out in Section 2 and is the main content of Part I. Note that the diagrammatic
estimate in (1.45) for en+1, which is the error term in (1.37) for θn+1, assumes a bound for θm with
0 ≤ m ≤ n. This is precisely what opens up the possibility of an inductive analysis. The recursion
relation (1.37) is a nonlinear equation for θn. Our induction hypothesis is on vn = 1/θn, as in
Section 1.4. From the induction we will conclude that vn = Bn[1 +O(n−1 log n) + βO(δn)], which
will in turn imply the result (1.8) for ∆θn.

The initialisation of the induction in ingredient C uses specific properties of oriented percola-
tion, but the advancement of the induction uses only the recursion relation (1.37) and the estimates
of Theorem 1.5, and does not otherwise use specific properties of oriented percolation. Because of
this model-independent aspect, our analysis can potentially serve to study the extinction probabil-
ity for other models as well, such as critical unoriented percolation, lattice trees, and the critical
contact process. In particular, a program to apply the lace expansion to the critical spread-out
contact process on Zd for d > 4 was initiated in [19], and extended in [13, 15], via an approxi-
mation by critical spread-out oriented percolation. We expect that it is possible to combine our
methods with those of [15] to prove the analogue of Theorem 1.1, and hence also the analogue
of the asymptotic formula (1.10) for the survival probability, for the critical spread-out contact
process in dimensions d > 4.

For the voter model, the survival probability is the probability that the opinion of the origin
survives to time t when initially all other vertices hold the opposite opinion. Methods quite different
from ours have been used to prove the analogue of (1.1) for the voter model for all dimensions
d ≥ 2 (with a logarithmic correction when d = 2) [4, 6]. However, these methods do not have a
known extension to the critical contact process or critical oriented percolation.

2 The induction analysis

In this section we prove Theorem 1.1, subject to (1.37) and Theorem 1.5. We use the bounds on
the coefficients in the recursion relation (1.37), given in Theorem 1.5, to deduce the asymptotics
in (1.8) via induction on n. The induction is carried out on the quantity

vn =
1

θn

. (2.1)
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Since θn → 0 as n →∞, we know that vn →∞ as n →∞.
The outline of this section is as follows. In Section 2.1, we formulate our induction hypothesis.

In Section 2.2, we initialise the induction by comparing critical oriented percolation with branching
random walk. Finally, in Section 2.3, we advance the induction.

We assume throughout this section that κ > 2, which for oriented percolation is the statement
that d > 4. Also, we fix p = pc throughout this section.

2.1 The induction hypothesis

In the course of the induction, we will show that the constant B in Theorem 1.1 is given by

B =

∑∞
m1=1

∑∞
m2=m1

φm1,m2

1 + pc
∑∞

m=2 mπm

. (2.2)

By Theorem 1.5(i–ii), B < ∞ for d > 4 and L sufficiently large, with

B =
1

2
+O(β) as β ↓ 0. (2.3)

The formula (2.2) can be guessed from the following rough calculation, in which ‘≈’ denotes
an uncontrolled approximation. Let Φ =

∑∞
m1=1

∑∞
m2=m1

φm1,m2 . We first approximate (1.37) by

θn ≈
n−1∑

m=0

πmpcθn−1−m − Φθ2
n. (2.4)

We then replace θj by (Bj)−1, use

1

n− 1−m
=

1

n
+

m + 1

n(n− 1−m)
≈ 1

n
+

m + 1

n2
, (2.5)

and, recalling (1.38) and π1 = 0, use
∑n−1

m=0 πmpc ≈ 1 and
∑n−1

m=0(m + 1)πmpc ≈ 1 +
∑∞

m=2 mπmpc.
This leads to

1

Bn
≈ 1

Bn
+

1

Bn2

(
1 +

∞∑

m=2

mπmpc

)
− Φ

(Bn)2
, (2.6)

and (2.2) results after we solve for B. Note the cancellation of the first-order term in (2.6), due to
(1.38).

Our induction hypothesis is the following analogue of (1.35):

(IH) There are K, K̃ > 0 (independent of β) and β0 > 0 such that

|vj − vj−1 −B| ≤ K(j + 1)−1 + K̃β∆j+1 (1 ≤ j ≤ n, 0 < β ≤ β0), (2.7)

with ∆j+1 given by (1.42), B given by (2.2), and v0 = 1.

Note that
n∑

j=1

∆j+1 ≤ (n + 1)δn+1, (2.8)
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with δn defined in (1.41). It follows from (2.7)–(2.8) that

|vn −Bn| ≤ v0 +
n∑

j=1
|vj − vj−1 −B|

≤ 1 + K log(n + 1) + K̃β
n∑

j=1
∆j+1

≤ 2K log(n + 1) + K̃β(n + 1)δn+1

(2.9)

(when K is not too small). This says that

vn = Bn[1 +O(n−1 log n) + βO(δn)], (2.10)

which is (1.10). Combining (2.7), the inequality ∆n+1 ≤ δn+1 and (2.10) with the relation

∆θn = θn − θn+1 =
1

vnvn+1

(vn+1 − vn) =
1

vnvn+1

[B + (vn+1 − vn −B)], (2.11)

we get (1.8).
Thus, to prove Theorem 1.1, it suffices to initialise and advance the induction hypothesis (IH).

The initialisation is via the following proposition, which is proved in Section 2.2. Proposition 2.1
shows that (IH) holds for 1 ≤ n ≤ N0, for a suitable choice of constants, and with β small enough
(depending on N0).

Proposition 2.1. (Initialisation of the induction)
Fix d > 4 and p = pc. There are constants K0 and β1 such that for every 1 ≤ N0 < ∞ there exists
a K̃0 = K̃0(N0) > 0 such that (IH) holds for all K ≥ K0, K̃ ≥ K̃0, 1 ≤ n ≤ N0 and 0 < β ≤ β1.

Note that to prove Proposition 2.1 it suffices to obtain (IH) with K = K0 and K̃ = K̃0, by the
monotonicity of (2.7) in K and K̃.

It is important to initialise the induction for all 1 ≤ n ≤ N0, with N0 large, for two reasons.
First, for the advancement of the induction, we find it useful to start from n = N0 with N0

large, since this allows us to only keep track of leading order terms in n while being generous
with constants. More importantly, the bound (1.45) on the error term en+1 is not useful unless
n is large compared to Cθ and C3, and indeed unless we have the existence of the constant Cθ of
Theorem 1.5(iii). We will need large n in this regard.

The following proposition, which is proved in Section 2.3, makes a choice of N0 and advances
the induction to all n > N0.

Proposition 2.2. (Advancement of the induction)
Fix d > 4 and p = pc. There are constants K, N0 = N0(K), K̃ = K̃(K) and β2 = β2(K, K̃) such
that if (IH) holds for all 1 ≤ j ≤ n, for some n ≥ N0, for all 0 < β ≤ β2 and with the constants
K and K̃, then (IH) holds for n + 1 with the same constants.

Note that we are free also to require that the constants K and K̃ of Proposition 2.2 obey
K ≥ K0 and K̃ ≥ K̃0, with K0 and K̃0 given by Proposition 2.1. The various constants will be
chosen in the following order:

11



(∗) First K ≥ K0 is chosen according to Propositions 2.1–2.2, next N0 is chosen large (depending
on K), next K̃ ≥ K̃0 is chosen large (depending on K and N0), and finally L0 is chosen so
large (depending on K, K̃ and hence on N0) that β = L−d ≤ min{β0, β1, β2} for L ≥ L0,
where the βi are the constants of Theorem 1.5 and Propositions 2.1–2.2.

Together, Propositions 2.1–2.2 imply that (IH) holds for all n, with a suitable choice of con-
stants. Thus our remaining task is to prove Propositions 2.1–2.2. The proof of Proposition 2.1 is
via a comparison of oriented percolation with branching random walk, and is model-dependent.
The advancement of the induction is a model-independent argument that relies only on (1.37) and
Theorem 1.5, provided that κ > 2.

2.2 Initialisation of the induction

In this section, we prove Proposition 2.1 by showing that for any fixed N0, (IH) holds for 1 ≤ n ≤
N0, provided we choose K̃0 depending on N0. For this, we will make use of three related branching
random walk models.

We first define a critical branching random walk, with law P̂ and offspring distribution q̂, as
follows. An initial particle at the origin gives birth to a particle at x with probability D(x), for
each x ∈ Zd, after which it dies. In the next time step, each particle at x gives birth to a particle
at y with probability D(y − x), for each y ∈ Zd, after which it dies, etc. Thus, the number of
offspring per particle is a random variable

X =
∑

x∈Zd

Ix, (2.12)

where Ix (x ∈ Zd) are independent Bernoulli random variables with

P̂(Ix = 1) = D(x). (2.13)

By (1.2)–(1.3),

µq̂ = Ê[X] =
∑

x∈Zd

D(x) = 1, (2.14)

σ2
q̂ = Ê[X2]− (Ê[X])2 =

∑

x∈Zd

D(x)(1−D(x)) = 1 +O(β). (2.15)

Let Zj denote the number of particles alive at time j, and let

θ̂j = P̂(Zj > 0). (2.16)

We next define a supercritical branching random walk, with law P∗ and offspring distribution
q∗, by replacing D(x) by pcD(x) in (2.13), i.e.,

P∗(Ix = 1) = pcD(x). (2.17)

As in (2.14)–(2.15), we have (recall (1.5))

µq∗ =
∑

x∈Zd

pcD(x) = pc = 1 +O(β), σ2
q∗ =

∑

x∈Zd

pcD(x)(1− pcD(x)) = 1 +O(β), (2.18)

12



and, as in (2.16), we define
θ∗j = P∗(Zj > 0). (2.19)

It is an elementary fact (see, e.g., [8, p. 172]) that

E∗[Zj] = µj
q∗ , E∗[Z2

j ]− (E∗[Zj])
2 = σ2

q∗
µj−1

q∗ (µj
q∗ − 1)

µq∗ − 1
, (2.20)

where we use that µq∗ = pc > 1 (recall (1.5)).
The supercritical branching random walk in the previous paragraph is closely related to critical

oriented percolation, but with the important difference that particles can coexist at the same vertex
in the supercritical branching random walk, whereas in oriented percolation each vertex contains at
most one particle. However, we can think of oriented percolation as corresponding to a supercritical
branching random walk with killing, as follows. An initial particle at the origin gives birth to a
particle at x with probability pcD(x), for each x ∈ Zd, after which it dies. In the next time step,
each particle at x gives birth to a particle at y with probability pcD(y − x), for each y ∈ Zd, after
which it dies, but if two or more particles land on the same vertex in Zd then all but one are killed.
Each particle in the resulting configuration generates its offspring and dies, but again at each
vertex all but one of the particles are killed, etc. If P denotes the law of the supercritical branching
random walk with killing that is thus obtained, then by definition the survival probability at time
j of our oriented percolation model is given by

θj = P(Zj > 0). (2.21)

From this representation we immediately obtain the sandwich

P∗(Zj > 0, T > j) ≤ θj ≤ P∗(Zj > 0), (2.22)

where P∗ is the law of the supercritical branching random walk without killing and T denotes the
first time that two particles meet at the same vertex. Note that P∗(T = 1) = 0 because the initial
particle at the origin puts at most one child at a vertex. We will estimate the upper and lower
bounds in (2.22) using the following two lemmas.

Lemma 2.3. The branching random walks with offspring distributions q̂ and q∗ are related by

θ̂j ≤ θ∗j ≤ pj
cθ̂j, j ∈ Z+. (2.23)

Proof. Since pc ≥ 1 by (1.5), the lower bound in (2.23) is trivial (see (2.13) and (2.17)). The upper
bound is proved as follows. For i ∈ Z+, let I(i)

x denote independent copies of Ix (x ∈ Zd) with law
(2.17). For ω : 0 → j an oriented path of length j connecting 0 to level j, let

E(j)(ω) =
j⋂

i=1

{I(i−1)
ω(i)−ω(i−1) = 1},

E(j),<(ω) =
⋂

ω′<ω

[E(j)(ω′)]c, (2.24)
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where ω′ < ω means that ω′ is lexicographically smaller than ω, i.e., ω′(k) < ω(k) when k is the
first time at which the two paths disagree. In terms of these quantities, we have

P∗(Zj > 0) =
∑

ω:0→j

P∗
(
E(j)(ω) ∩ E(j),<(ω)

)

=
∑

ω:0→j

P∗
(
E(j),<(ω) | E(j)(ω)

)
P∗

(
E(j)(ω)

)

=
∑

ω:0→j

P∗
(
E(j),<(ω) | E(j)(ω)

)
pj

c

j∏

i=1

D(ω(i)− ω(i− 1)) (2.25)

≤ ∑

ω:0→j

P̂
(
E(j),<(ω) | E(j)(ω)

)
pj

cP̂
(
E(j)(ω)

)

= pj
cP̂(Zj > 0),

where the inequality comes from the fact that E(j),<(ω) is a decreasing function of each Ix.

Lemma 2.4. For each 1 ≤ N0 < ∞, there is a positive constant C(N0) such that P∗(T ≤ j) ≤
C(N0)β for all 2 ≤ j ≤ N0.

Proof. Let Sj denote the set of vertices where particles live at time j. Then

P∗(T ≤ j) =
j∑

k=2

P∗(T = k) =
j∑

k=2

∑

A6=∅
P∗(Sk−1 = A, T = k)

=
j∑

k=2

∑

A 6=∅
P∗(Sk−1 = A, T > k − 1) P∗(T = k | Sk−1 = A, T > k − 1)

≤
j∑

k=2

∑

A6=∅
P∗(Sk−1 = A)

∑

x1,x2∈A,x1 6=x2

∑

y∈Zd

pcD(y − x1)pcD(y − x2) (2.26)

≤
j∑

k=2

∑

A6=∅
P∗(Sk−1 = A) C2p2

cβ |A|(|A| − 1)

= C2p2
cβ

j∑

k=2

E∗(Zk−1(Zk−1 − 1)),

where the last inequality uses (1.3). Substituting (2.18)–(2.20) into (2.26) and using the inequality
(µl

q − 1)/(µq − 1) =
∑l−1

i=0 µi
q ≤ lµl−1

q , we arrive at P∗(T ≤ j) ≤ Cβj2 for some C > 0. This proves
the lemma with C(N0) = CN2

0 .

With the above preliminaries, we are now able to prove Proposition 2.1.

Proof of Proposition 2.1. Recall from (2.1) that vj = 1/θj, and let

v̂j =
1

θ̂j

. (2.27)

By the triangle inequality,

|vj − vj−1 −B| ≤ |vj − v̂j|+ |vj−1 − v̂j−1|+ |B − σ2
q̂

2
|+ |v̂j − v̂j−1 − σ2

q̂

2
|. (2.28)
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For the fourth term, we first observe that it is easily verified that the third moment of q̂ is
bounded by a universal constant. By (1.33)–(1.35) (and the comment below (1.33)), the fourth
term is therefore at most K0(j + 1)−1 for j ≥ 1 and some 0 < K0 < ∞, where K0 is a universal
constant. Hence it is also at most K(j + 1)−1 for any K ≥ K0.

The third term on the right-hand side is at most C ′β for some C ′ > 0, since σ2
q̂ = 1 + O(β)

and B = 1
2

+O(β). For the first and second terms, we fix 1 ≤ N0 < ∞, let 1 ≤ j ≤ N0, and write

vj − v̂j = (θ̂j − θj)/θj θ̂j. It can be seen from (2.22) and Lemmas 2.3–2.4 that

θj ≥ θ̂j − C(N0)β. (2.29)

In addition, it follows from (1.32) that, for small β, θ̂n is eventually close to a β-independent
constant multiplied by n−1. By the monotonicity of θ̂j in j, this implies that θ̂j is bounded below
by an N0-dependent positive constant, uniformly in 0 < β ≤ β1 with β1 small enough, and in
1 ≤ j ≤ N0. Therefore, θj θ̂j ≥ 1/C(N0) for 1 ≤ j ≤ N0 and some C(N0) > 0, and hence, once we
prove that

|θj − θ̂j| ≤ C(N0)β (1 ≤ j ≤ N0), (2.30)

(2.7) follows if K̃ ≥ K̃0 = (C ′ + 2C(N0)
2)∆−1

N0+1. To prove (2.30), we combine (2.29) with (2.22)–
(2.23) to obtain

θ̂j − C(N0)β ≤ θj ≤ pj
cθ̂j. (2.31)

Since pc = 1 +O(β), (2.30) now follows.

2.3 Advancement of the induction

In this section, we prove Proposition 2.2 by showing that the induction hypothesis (IH) can be
advanced from n = N0 onwards when N0 is chosen large enough. In the proof, we assume that
κ > 2, and make use of (1.37) and Theorem 1.5, but we not otherwise use specific properties of
oriented percolation.

To begin, we recall the definition of B in (2.2), and define

Bn+1 =

∑b(n+1)/2c
m1=1

∑n+1
m2=m1

φm1,m2

1 + pc
∑n+1

m=2 mπm

, ∂Bn+1 = B −Bn+1. (2.32)

We also define

un+1 =
θn − θn+1

θn

, (2.33)

and we write
vn+1 − vn = vn

un+1

1− un+1

. (2.34)

The main step in the advancement of (IH) will be to prove the following proposition.

Proposition 2.5. (Key estimate for advancement of the induction)
Let K and K̃ be the constants of (IH). For every N0 sufficiently large depending on K, there exists
a β3 = β3(K̃) such that if (IH) holds for some n ≥ N0 and for all 0 < β ≤ β3, with these constants
K and K̃, then

|vnun+1 −Bn+1| ≤ 600B2Ce(n + 1)−1 + C(K)β∆n+1, (2.35)

where the constant C(K) depends only on K, and where Ce is the constant of (1.45).
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Before proving Proposition 2.5, we first show how it can be used to prove Proposition 2.2.
Recall that our choice of constants is taken in the order indicated in item (∗) in Section 2.1. The
constants Cπ, Cφ, Ce, Cθ are the constants of Theorem 1.5. We use C to denote a generic constant
whose value may change from line to line. If C depends on variables such as K or N0, then we
make this explicit by writing C = C(K,N0). Otherwise, C denotes a constant that is independent
of K, K̃, N0 and β.

Note that it follows from (2.9), and hence from (IH), that

|vn −Bn| ≤ Bn

[
2K

Bn
log(n + 1) +

K̃β

B

(
1 +

1

n

)
δn+1

]
. (2.36)

Thus, if we choose n ≥ N0(K) sufficiently large, and β sufficiently small depending on N0(K),
then

1

2
Bn ≤ vn ≤ 2Bn. (2.37)

Proof of Proposition 2.2. (Advancement of (IH)). Suppose that (2.7) holds for all 1 ≤ j ≤ n. By
(2.32) and (2.34),

vn+1 − vn −B =
1

1− un+1

{−∂Bn+1 + (vnun+1 −Bn+1) + Bun+1} . (2.38)

From (1.43)–(1.44), (2.2) and (2.32), it is easily deduced that

|∂Bn+1| ≤ C(Cπ + Cφ)β(n + 1)−(κ−2). (2.39)

This term is of smaller order in n than the second term on the right-hand side of (2.7). The middle
term of (2.38) is handled using Proposition 2.5. To control the denominator and last term on the
right-hand side of (2.38), we first note that by (2.32),

un+1 − 1

n
=

1

vn

{
− 1

n
(vn −Bn)− ∂Bn+1 + (vnun+1 −Bn+1)

}
. (2.40)

It follows from (1.42), (2.8)–(2.9), (2.35), (2.37) and (2.39) that
∣∣∣∣un+1 − 1

n

∣∣∣∣ ≤ C(K,Ce)(n + 1)−2 log(n + 1) + C(K, K̃, Cπ, Cφ)β(n + 1)−1δn+1. (2.41)

In particular, |un+1| ≤ 2/n, and hence (1 − un+1)
−1 ≤ 2, if we choose n ≥ N0(K, Ce) large and

β ≤ β2(K, K̃, Cπ, Cφ) small, as indicated in (∗). It then follows from (2.35) and (2.38)–(2.39) that

|vn+1 − vn −B| ≤ 2
(
600B2Ce + 2B

)
(n + 1)−1 + C(K, Cπ, Cφ)β∆n+1. (2.42)

This proves (IH) for j = n+1, provided we take K ≥ 2(600B2Ce+2B) and K̃ ≥ C(K,Cπ, Cφ).

Proof of Proposition 2.5. To prove (2.35), we first use the recursion relation (1.37) and the identity
(1.38) to write

vnun+1 −Bn+1 = v2
n(θn − θn+1)−Bn+1

= v2
n

{ n∑

m=0

πmpc(θn − θn−m) + θn

∞∑

m=n+1

πmpc

+
b(n+1)/2c∑

m1=1

n+1∑
m2=m1

φm1,m2θn+1−m1θn+1−m2 − en+1

}
−Bn+1. (2.43)
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The first equation in (2.32) can be rewritten as

Bn+1 = −Bn+1

n+1∑

m=2

mπmpc +
b(n+1)/2c∑

m1=1

n+1∑
m2=m1

φm1,m2 . (2.44)

Thus we may rewrite (2.43) as

vnun+1 −Bn+1 = −v2
nen+1 + vn

∞∑

m=n+1

πmpc −Xn + Yn, (2.45)

with

Xn =
n∑

m=0

πmpc

[
vn

vn−m

(vn − vn−m)−Bn+1m

]
, (2.46)

Yn =
b(n+1)/2c∑

m1=1

n+1∑
m2=m1

φm1,m2

[
v2

n

vn+1−m1vn+1−m2

− 1

]
. (2.47)

Note that the terms with m = 0, 1 and m1 = m2 = 1 vanish (recall that π1 = 0). Thus, by
(1.43)–(1.44), Xn and Yn are both of order β.

For the first term on the right-hand side of (2.45), we note that (2.37) supplies the hypothesis
of Theorem 1.5(iii) with Cθ = 5 > 2/B (by (2.3)). It then follows from (1.45) that

|v2
nen+1| ≤ 4B2CeC

3
θ [(n + 1)−1 + β∆n+1]. (2.48)

The right-hand side of (2.48) has precisely the form of the right-hand side of (2.35). Similarly, the
second term on the right-hand side of (2.45) can be estimated with the help of (1.43) as

vn

∣∣∣
∞∑

m=n+1

πmpc

∣∣∣ ≤ 2Bnpc

∞∑

m=n+1

|πm| ≤ CCπβ(n + 1)−(κ−2), (2.49)

which is of smaller order in n than the last term in (2.48) (recall (1.42)).
To estimate |Xn|, we first rewrite the expression in square brackets in (2.46) as

vn

vn−m

(vn − vn−m)−Bn+1m

=
vn

vn−m

[vn − vn−m −Bm]
(
1 +

Bm

vn

)
+

vn

vn−m

B2m2

vn

+ ∂Bn+1m. (2.50)

Hence, using the lower bound vn ≥ 1
2
Bn of (2.37), we have

|Xn| ≤ I + II + III (2.51)

with

I = 3pc

n∑

m=2

|πm| vn

vn−m

|vn − vn−m −Bm|,

II =
2B

n
pc

n∑

m=2

m2|πm| vn

vn−m

, (2.52)

III = |∂Bn+1|pc

n∑

m=2

m|πm|.
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The easiest to estimate is III, for which we use (1.43) and (2.39) to obtain

III ≤ C(Cπ + Cφ)β
2(n + 1)−(κ−2), (2.53)

which is of smaller order, both in n and in β, than the right-hand side of (2.35).
To estimate I and II, we first consider the factor vn/vn−m. Since vn−m ≥ 1, given any `0 ≥ 1,

it follows from (2.37) that

vn

vn−m

≤ vn ≤ 2Bn ≤ 2B`0n

n + 1−m
(n + 1−m ≤ `0). (2.54)

On the other hand, if we choose `0 ≥ N0(K), then it follows from (2.37) that vn−m ≥ B(n−m)/2
when n + 1−m > `0. Therefore,

vn

vn−m

≤ C(K)n

n + 1−m
(2 ≤ m ≤ n). (2.55)

It follows from (IH) that

|vn − vn−m −Bm| ≤
n∑

j=n+1−m

|vj − vj−1 −B| ≤ m
[

K

n + 2−m
+ CK̃β∆n+2−m

]
, (2.56)

where we use that ∆j+1 is decreasing in j for j large. From (1.43) and (2.55)–(2.56) we obtain

I ≤ 3pcCπβ
n∑

m=2

(m + 1)−κ C(K)nm

n + 1−m

[
K

n + 2−m
+ CK̃β∆n+2−m

]

≤ CC(K)Cπ[Kβ + K̃β2]∆n+1, (2.57)

where we use (1.42) and the convolution bounds (2.65)–(2.66) stated in Lemma 2.6 below (with
a = κ− 1, b = 2, c = 0). Similarly, we obtain

II ≤ C(K)Cπβ∆n+1. (2.58)

Note that I carries an extra factor β compared to the second term on the right-hand side of (2.35),
while II does not.

To estimate |Yn|, we make the decomposition

v2
n

vn+1−m1vn+1−m2

− 1 =
vn − vn+1−m1

vn+1−m1

+
vn − vn+1−m2

vn+1−m2

+
vn − vn+1−m1

vn+1−m1

vn − vn+1−m2

vn+1−m2

. (2.59)

We use (2.37) and (2.55)–(2.56) to estimate

0 ≤ vn − vn+1−m

vn+1−m

=
1

vn

vn

vn+1−m

(vn − vn+1−m)

≤ 2

Bn

C(K)n

n + 2−m
(m− 1)

[
B +

K

n + 3−m
+ CK̃β∆n+3−m

]
(2.60)

≤ m− 1

n + 2−m
C(K)

[
1 + K̃β

]
.

18



Note that when m1 ≤ m2 ≤ n + 1 we have

m1 − 1

n + 2−m1

≤ m2 − 1

n + 2−m2

, (2.61)

and when m1 ≤ b(n + 1)/2c we have

m1 − 1

n + 2−m1

≤ C. (2.62)

Combining (1.44), (2.47) and (2.59)–(2.62), we find that

|Yn| ≤ C(K)
[
1 + K̃β

]
Cφβ

b(n+1)/2c∑

m1=1

n+1∑
m2=m1

(m1 + 1)−(κ−1)(m2 −m1 + 1)−(κ−1) m2 − 1

n + 2−m2

. (2.63)

With the bound (2.67) stated in Lemma 2.6 below, this implies that

|Yn| ≤ C(K)
[
1 + K̃β

]
Cφβ∆n+1. (2.64)

This is of the same order as the estimate for I in (2.57).
Finally, recalling (2.45) and collecting the estimates in (2.48)–(2.49), (2.51), (2.53), (2.57)–

(2.58) and (2.63), we see that we have proved the claim in (2.35), provided we take β3 sufficiently
small depending on K̃.

The following elementary lemma was used in the proof of Proposition 2.5.

Lemma 2.6. (i) For a, b > 1 and c ≥ 0,

n∑

m=2

(m + 1)−a(n + 2−m)−b[log (n + 2−m)]c ≤ C(n + 1)−a∧b[log (n + 1)]c. (2.65)

(ii) For κ > 2,

n∑

m=2

(m + 1)−(κ−1)(n + 1−m)−1∆n+2−m ≤ C

n + 1
∆n+1. (2.66)

(iii) For κ > 2,

b(n+1)/2c∑

m1=1

n+1∑
m2=m1

(m1 + 1)−(κ−1)(m2 −m1 + 1)−(κ−1) m2 − 1

n + 2−m2

≤ C∆n+1. (2.67)

Proof. (i) The inequality (2.65) is obtained by estimating the logarithmic factor on the left side by
the logarithmic factor on the right-hand side, and then considering separately the cases m ≤ n/2
(for which (n + 2−m)−b ≤ C(n + 1)−b) and m > n/2 (for which (m + 1)−a ≤ C(n + 1)−a).

(ii) The inequality (2.66) follows from (2.65) and the definition of ∆n in (1.42).

(iii) For the inequality (2.67), the contribution to the sum due to m2 ≥ b(n + 1)/2c is at most

C
b(n+1)/2c∑

m1=1

(m1 + 1)−(κ−1)(b(n + 1)/2c −m1 + 1)−(κ−1)
n+1∑

m2=b(n+1)/2c

n

n + 2−m2

≤ C(n + 1)−(κ−2) log(n + 1) ≤ C∆n+1, (2.68)
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where we use (2.65) to perform the sum over m1. The contribution due to m2 < b(n + 1)/2c is at
most

C
b(n+1)/2c∑

m1=1

b(n+1)/2c∑
m2=m1

(m1 + 1)−(κ−1)(m2 −m1 + 1)−(κ−1)m2 − 1

n + 1
. (2.69)

Since m2 − 1 ≤ (m1 + 1) + (m2 −m1 + 1), this is at most

C

n + 1

b(n+1)/2c∑

m1=1

(m1 + 1)−(κ−2)
b(n+1)/2c∑
m2=m1

(m2 −m1 + 1)−(κ−1)

+
C

n + 1

b(n+1)/2c∑

m1=1

(m1 + 1)−(κ−1)
b(n+1)/2c∑
m2=m1

(m2 −m1 + 1)−(κ−2). (2.70)

In the first term, the sum over m2 is bounded by C, and the sum over m1 together with the factor
(n + 1)−1 is at most C∆n+1. The second term is similar.

3 Critical exponent for size of cluster of origin

Proof of Corollary 1.4. For the upper bound, we write

P≥n ≤ P((0, 0) −→ √
n) + P(|C(0, 0)| ≥ n, (0, 0) −→/ √

n). (3.1)

By (1.1), the first term on the right-hand side decays like (B
√

n)−1[1 + o(1)]. By the Markov
inequality and (1.13), the second term can be bounded by

P(|C(0, 0)| ≥ n, (0, 0) −→/ √
n) ≤ n−1E(|C(0, 0)|I[(0, 0) −→/ √

n])

≤ n−1

√
n∑

m=0

∑

x∈Zd

τm(x) =
A√
n

[1 + o(1)]. (3.2)

This proves the upper bound.
For the lower bound, given C1 > 0, we define

Xn = #{(x,m) ∈ C(0, 0) : C1

√
n ≤ m ≤ 2C1

√
n}. (3.3)

Then, for C2 ≥ 1,

P≥n ≥ P
(
n ≤ Xn ≤ C2n

)
≥ (C2n)−1E

(
XnI[n ≤ Xn ≤ C2n]

)

= (C2n)−1
[
E(Xn)− E

(
XnI[1 ≤ Xn < n]

)
− E

(
XnI[Xn > C2n]

)]
. (3.4)

The first term on the right-hand side is

E(Xn) =
2C1

√
n∑

m=C1
√

n

∑

x∈Zd

τm(x) = AC1

√
n[1 + o(1)]. (3.5)
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The second term can be bounded by

E
(
XnI[1 ≤ Xn < n]

)
≤ nP(Xn ≥ 1) = nθC1

√
n =

√
n

BC1

[1 + o(1)]. (3.6)

The third term can be bounded, using (1.14), by

E
(
XnI[Xn > C2n]

)
≤ (C2n)−1E(X2

n) = (C2n)−1
2C1

√
n∑

m1=C1
√

n

2C1
√

n∑

m2=C1
√

n

∑

x1,x2∈Zd

τ (3)

m1,m2
(x1, x2)

≤ (C2n)−1(C1

√
n)2A3V (2C1

√
n)[1 + o(1)] =

2A3V C3
1

C2

√
n[1 + o(1)]. (3.7)

Combining (3.4)–(3.7), we arrive at

P≥n ≥ 1

C2

(
C1A− 1

BC1

− 2A3V C3
1

C2

) 1√
n

[1 + o(1)]. (3.8)

The desired lower bound now follows if we first choose C1 large and then choose C2 large compared
to C1.
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[11] R. van der Hofstad, F. den Hollander, and G. Slade. Construction of the incipient infinite
cluster for spread-out oriented percolation above 4 + 1 dimensions. Commun. Math. Phys.,
231:435–461, (2002).

[12] R. van der Hofstad, F. den Hollander, and G. Slade. The survival probability for critical
spread-out oriented percolation above 4 + 1 dimensions. II. Expansion. Preprint, (2005).

[13] R. van der Hofstad and A. Sakai. Gaussian scaling for the critical spread-out contact process
above the upper critical dimension. Electron. J. Probab., 9:710–769, (2004).

[14] R. van der Hofstad and A. Sakai. Critical points for spread-out contact processes and oriented
percolation. Probab. Th. Rel. Fields, 132:438–470, (2005).

[15] R. van der Hofstad and A. Sakai. Convergence of the critical finite-range contact process to
super-Brownian motion above the upper critical dimension. In preparation.

[16] R. van der Hofstad and G. Slade. A generalised inductive approach to the lace expansion.
Probab. Th. Rel. Fields, 122:389–430, (2002).

[17] R. van der Hofstad and G. Slade. Convergence of critical oriented percolation to super-
Brownian motion above 4+1 dimensions. Ann. Inst. H. Poincaré Probab. Statist., 39:415–485,
(2003).

[18] B.G. Nguyen and W-S. Yang. Triangle condition for oriented percolation in high dimensions.
Ann. Probab., 21:1809–1844, (1993).

[19] A. Sakai. Mean-field critical behavior for the contact process. J. Stat. Phys., 104:111–143,
(2001).

22


