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Abstract

We derive a lace expansion for the survival probability for critical spread-out oriented percolation above 4 + 1 dimensions, i.e.,
the probability θn that the origin is connected to the hyperplane at time n, at the critical threshold pc. Our lace expansion leads
to a non-linear recursion relation for θn, with coefficients that we bound via diagrammatic estimates. This lace expansion is for
point-to-plane connections and differs substantially from previous lace expansions for point-to-point connections. In particular, to
be able to deduce the asymptotics of θn for large n, we need to derive the recursion relation up to quadratic order.

The present paper is Part II in a series of two papers. In Part I, we use the recursion relation and the diagrammatic estimates
to prove that limn→∞ nθn = 1/B ∈ (0,∞), and also deduce consequences of this asymptotics for the geometry of large critical
clusters and for the incipient infinite cluster.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction and results

For oriented bond percolation on Zd × Z+ with parameter p, the survival probability θn = θn(p) at time n ∈ Z+ is
the probability that there exists an x ∈ Zd such that (0,0) is connected to (x,n). In the oriented setting, it is known
that there is no percolation at the critical threshold p = pc [2,4], so that limn→∞ θn(pc) = 0. Our goal is to study the
manner in which θn(pc) tends to zero as n → ∞ when d > 4.

In the present paper, we derive a lace expansion for θn(p), valid in all dimensions d � 1 and for quite general
models of oriented percolation. This lace expansion gives a nonlinear recursion relation for θn(p). If the expansion is
to be useful, then the coefficients in the recursion relation need to be estimated. We prove estimates valid at p = pc in
dimensions d > 4, for sufficiently “spread-out” oriented bond percolation (defined below), with the degree to which
connections are spread out in space parameterised by a sufficiently large L ∈ N.

* Corresponding author.
E-mail addresses: rhofstad@win.tue.nl (R. van der Hofstad), denholla@math.leidenuniv.nl (F. den Hollander), slade@math.ubc.ca (G. Slade).
0246-0203/$ – see front matter © 2006 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.anihpb.2006.09.002
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In Part I [7], we have shown how these results can be used in an induction analysis for the recursion relation to
conclude that there is a constant B = B(d,L) such that, as n → ∞,

θn(pc) − θn+1(pc) = 1

Bn2

[
1 + O

(
n−1 logn

) + L−dO(δn)
]

for d > 4 and L sufficiently large, (1.1)

where

δn =
⎧⎨
⎩

n−(d−4)/2 logn (4 < d < 6),

n−1 log2 n (d = 6),

n−1 logn (d > 6).

(1.2)

In other words, the critical extinction probability θn(pc) − θn+1(pc), which is the probability that the cluster of the
origin survives to time n but not to time n + 1, is asymptotic to 1/(Bn2) as n → ∞, with accurate error bounds. By
summing over n, we conclude that

θn(pc) = 1

Bn

[
1 + O

(
n−1 logn

) + L−dO(δn)
]

for d > 4 and L sufficiently large, (1.3)

which is the main conclusion of Part I. In terms of the critical exponent ρ, defined by the conjecture that θn(pc)

behaves like n−1/ρ as n → ∞, (1.3) implies that ρ exists and is equal to 1, for d > 4 and L sufficiently large.
Also in Part I, interesting consequences for the geometry of large critical clusters and for the incipient infinite

cluster were deduced from (1.3), using results from [8]. In particular, (1.3) implies that two constructions for the
incipient infinite cluster coincide and that, conditionally on survival up to time n, the number of vertices to which the
origin is connected at time n scales like n times an exponential random variable.

1.1. The model

The spread-out oriented percolation model is defined as follows. Let Z+ = {n ∈ Z: n � 0}. Consider the graph with
vertices Zd × Z+ and with directed bonds ((x,n), (y,n + 1)), for n ∈ Z+ and x, y ∈ Zd . Let D be a fixed function
D : Zd → [0,1], satisfying∑

x∈Zd

D(x) = 1. (1.4)

The function D will be assumed to be invariant under the symmetries of Zd (permutation and reflection of coor-
dinates). Let p ∈ [0,‖D‖−1∞ ], where ‖ · ‖∞ denotes the supremum norm, so that pD(x) � 1 for all x ∈ Zd . We
associate to each directed bond ((x,n), (y,n + 1)) an independent random variable taking the value 1 with probabil-
ity pD(y −x) and the value 0 with probability 1−pD(y −x). We say that a bond is occupied when the corresponding
random variable is 1 and vacant when it is 0. Note that p is not a probability. Rather, p is the average number of oc-
cupied bonds from a given vertex. The joint probability distribution of the bond variables will be denoted by Pp and
the corresponding expectation by Ep , with the parameter p usually suppressed from the notation.

For the diagrammatic estimates, we need to make further assumptions on D. We will refer to the assumptions on
D in the previous paragraph as the weak assumptions on D. We define the spread-out model of oriented percolation
to be the model in which D obeys the weak assumptions together with Assumption D in [13, Section 1.2] (whose
precise form is not important for the present paper), and [14, Eq. (1.2)]. Assumption D in [13, Section 1.2] involves a
parameter L ∈ N, which serves to spread out the connections and which will be taken to be fixed and large. A simple
and basic example is

D(x) =
{

(2L + 1)−d if ‖x‖∞ � L,

0 otherwise.
(1.5)

In this example, the bonds are given by ((x,n), (y,n+1)) with ‖x−y‖∞ � L, and a bond is occupied with probability
p(2L + 1)−d . Assumption D also allows for certain infinite range models. For the spread-out model, we will use

β = L−d (1.6)

as a small parameter. Assumption D implies that there is a finite positive constant C such that

sup
d

D(x) � Cβ. (1.7)

x∈Z
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We say that (x,n) is connected to (y,m), and write (x,n) → (y,m), if there is an oriented path from (x,n) to
(y,m) consisting of occupied bonds. Note that this is only possible when m � n. By convention, (x,n) is connected
to itself. We write

C(x,n) = {
(y,m) ∈ Zd × Z+: (x,n) → (y,m)

}
(1.8)

to denote the forward cluster of (x,n). We also write (x,n) → m to denote the event that there is a y ∈ Zd such that
(x,n) → (y,m).

The event {(0,0) → ∞} is the event that {(0,0) → n} occurs for all n. There is a critical threshold pc ∈ (0,∞)

such that the event {(0,0) → ∞} has probability zero for p � pc and has positive probability for p > pc. The para-
metrisation we have chosen is convenient, since for the spread-out model it is known that

pc = 1 + cL−d + O
(
L−d−1) as L → ∞, (1.9)

for d > 4, with the positive constant c given explicitly in terms of the Green function for the random walk with step
distribution D [10].

The survival probability at time n is defined by

θn(p) = Pp

(
(0,0) → n

)
. (1.10)

General results of [2,4] imply that limn→∞ θn(pc) = 0. For the spread-out model in dimension d > 4, with L suffi-
ciently large, the same conclusion was shown in [1] to follow from the triangle condition. The triangle condition was
verified under the above hypotheses in [14,16], yielding an alternate proof that limn→∞ θn(pc) = 0 for d > 4, and L

sufficiently large.

1.2. Main theorem

For n ∈ Z+, x ∈ Zd , and p ∈ [0,‖D‖−1∞ ], we define the two-point function

τn(x) = Pp

(
(0,0) → (x,n)

)
. (1.11)

We write

τn =
∑
x∈Zd

τn(x) (1.12)

for the expected number of vertices in C(0,0) at time n. The lace expansion for the two-point function [5] (see
also [14]) yields a recursion relation for τn, which reads

τn =
n−1∑
m=0

πmpτn−m−1 + πn, (1.13)

where (πm) are certain p-dependent coefficients. In fact, (1.13) uniquely defines (πm), but the lace expansion provides
a useful representation for (πm). In [14, Proposition 2.2], this representation was used to prove that π0 = 1,π1 = 0
and that there exists a finite positive constant Cπ such that

|πm| � Cπβ

(m + 1)d/2
(p = pc, m � 2), (1.14)

for the spread-out model in dimensions d > 4, with β of (1.6) sufficiently small. In addition, under the same assump-
tions, it is shown in [14, Eq. (2.11)] that

∞∑
m=0

πmpc = 1. (1.15)

In the present paper, we obtain a lace expansion for the survival probability θn, with good bounds valid for the
spread-out model in dimensions d > 4 at p = pc. Our main result is the following theorem. In its statement, we use
the notation

Δn =
⎧⎨
⎩

n−(d−4)/2 logn (4 < d < 6),

n−1 logn (d = 6),

n−1 (d > 6).

(1.16)
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Theorem 1.1 (Lace expansion and diagrammatic estimates).

(i) For d � 1, p ∈ [0,‖D‖−1∞ ], and n � 1, and under the weak assumption on D,

θn(p) =
n−1∑
m=0

πm(p)pθn−1−m(p) −
�n/2�∑
m1=1

n∑
m2=m1

φm1,m2(p)θn−m1(p)θn−m2(p) + en(p), (1.17)

where (πm) are as in (1.13), and (φm1,m2) and (en) are given by explicit formulas (see Sections 4, 5).
(ii) For the spread-out model in dimensions d > 4, at the critical value p = pc, there are finite positive constants

Cφ , Ce, and β0 such that, for 0 < β � β0, the coefficients (φm1,m2) and the error terms (en) satisfy the following
estimates:
• φ1,1(pc) = 1

2p2
c

∑
x∈Zd D(x)(1 − D(x)) = 1

2 [1 + O(β)] and, for m2 � m1 � 1 such that (m1,m2) 	= (1,1),∣∣φm1,m2(pc)
∣∣ � Cφβ(m1 + 1)−(d−2)/2(m2 − m1 + 1)−(d−2)/2. (1.18)

• If θm(pc) � Cθ(m + 1)−1 for 0 � m � n and some Cθ � 1, then∣∣en+1(pc)
∣∣ � CeC

3
θ (n + 1)−2[(n + 1)−1 + βΔn+1

]
. (1.19)

Note that the diagrammatic estimate (1.19) for en+1, which is the error term in (1.17) for θn+1, assumes a bound
in the recursion relation for θm only for 0 � m � n. This is precisely what opens up the possibility of the inductive
analysis employed in Part I. Namely, in Part I, (1.1) is deduced from Theorem 1.1 by applying an induction analysis
to (1.17), which makes use of the bounds in (1.14), (1.18) and (1.19) in order to moderate the coefficients of the
recursion.

When we derive (1.17) in Sections 2–5, we will fix an arbitrary p ∈ [0,‖D‖−1∞ ] and assume only the weak as-
sumption on D. In Sections 6–8, where we prove the diagrammatic estimates (1.18), (1.19), we will specialise to the
spread-out model with d > 4, p = pc, and small β .

We expect that Theorem 1.1 has implications also for the critical contact process in spatial dimension d > 4. Indeed,
it has been shown in [9] that the lace expansion for the two-point function can be applied to the oriented percolation
model resulting from time discretisation of the contact process. We expect that part (i) of the theorem can be applied
similarly to study the survival probability for the critical contact process, in conjunction with a suitable modification
of part (ii). The extension of our results to the contact process will be taken up in [11,12].

1.3. The constant B

It was shown in [7, Eq. (1.36)] that the constant B in (1.3) is given by

B =
∑∞

m1=1
∑∞

m2=m1
φm1,m2(pc)

1 + pc

∑∞
m=2 mπm(pc)

. (1.20)

It follows from (1.9), (1.14) and (1.18) that B < ∞ for d > 4 and β sufficiently small, with B = 1
2 + O(β) as β ↓ 0.

The survival probability θ̂n of a Galton–Watson branching process whose offspring distribution has mean 1, vari-
ance σ̂ 2, and finite third moment, obeys the simple recursion relation

θ̂n = θ̂n−1 − σ̂ 2

2
θ̂2
n−1 + ên, (1.21)

where en = O(θ̂3
n−1). This leads to the conclusion that limn→∞ nθ̂n = 2σ̂−2. We sketch the proof of these well-

known facts in Part I. Consider the branching process with offspring distribution
∑

x Ix , where the Ix are independent
Bernoulli random variables with parameter D(x). This offspring distribution has mean 1, by the normalisation assump-
tion for D, and has variance σ̂ 2 = ∑

x D(x)(1 − D(x)) = 1 + O(β), as L → ∞ in the spread-out model, by (1.7). We
regard the critical spread-out oriented percolation model in dimensions d > 4 as a small perturbation of this critical
branching process—the former allows at most one particle per vertex, whereas the latter allows multiple occupancy.
The recursion relation (1.17) can be viewed as a perturbation of (1.21). The fact that B = 1 [1 + O(β)] as L → ∞
2
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shows that the solution to (1.17) for the spread-out model remains close to the solution of (1.21), to leading order, for
L large.

Let Nn denote the number of vertices in C(0,0) at time n, when p = pc, and define the constants A and V by

A = lim
n→∞ Epc [Nn], V = lim

n→∞
1

A3n
Epc

[
N2

n

]
. (1.22)

It is part of the results in [14] that these constants exist when d > 4 and L is sufficiently large. It is shown in [8] that,
given nθn(pc) → 1/B (which follows from (1.3)),

B = AV

2
. (1.23)

It is shown in [14, Eqs. (2.12) and (2.49)] that

A = 1

pc + p2
c

∑∞
m=2 mπm(pc)

, V =
∞∑

m1=2

∞∑
m2=2

ψ̂m1,m2(0,0), (1.24)

where (ψ̂m1,m2) are coefficients arising in the lace expansion for the critical three-point function

τn1,n2(x1, x2) = Ppc

(
(0,0) → (x1, n1), (0,0) → (x2, n2)

)
. (1.25)

It follows from (1.20) and (1.23), (1.24) that

V =
∞∑

m1=2

∞∑
m2=2

ψ̂m1,m2(0,0) = 2pc

∞∑
m1=1

∞∑
m2=m1

φm1,m2(pc). (1.26)

This implies that the coefficients (φm1,m2) in our lace expansion for the survival probability are related to those
appearing in the lace expansion for the three-point function. However, our approach does not reveal an explicit relation
between ψ̂m1,m2(0,0) and φm1,m2 for fixed m1,m2. In [11], an alternate expansion for the three-point function is
derived, which is quite different from the expansion of [14] and closer in spirit to the expansion derived here for the
survival probability. The expansion of [11] leads to a direct proof that

V = 2pc

∞∑
m1=1

∞∑
m2=m1

φm1,m2(pc). (1.27)

1.4. Organisation

The remainder of the paper is devoted to the proof of Theorem 1.1. The proof is divided into two main parts:
(a) the derivation of the expansion (1.17) for θn, and (b) the proof of the diagrammatic estimates (1.18), (1.19) for the
expansion coefficients. The basic steps in the proof of each part are as follows.

(a) Derivation of the lace expansion (1.17). The starting point for the expansion is the percolation lace expansion of
[5] for the two-point function. This expansion was applied to oriented percolation in [14], where a derivation of (1.13)
can be found. We will extend this lace expansion for the two-point function (a point-to-point expansion) to a lace
expansion for the survival probability (a point-to-plane expansion). There are alternate expansions for the two-point
function of oriented percolation, due to [16] and [17] (see [18] for a description of all three expansions), but we do
not know how to use these alternate expansions to obtain an expansion for the survival probability.

The expansion of [5] is based on a factorisation lemma, which we isolate in Section 2. In Section 3, we extract the
linear term in (1.17) using a relatively minor extension of the lace expansion for the two-point function. This produces
an equation

θn =
n−1∑
m=0

πmpθn−1−m + χn, (1.28)

where the term χn involves configurations with two connections to the hyperplane at time n. These two connections
lead to the quadratic term in (1.17), but two further expansions are required to obtain the two factors θn−m1θn−m2

in (1.17).
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The first of these expansions for χn is the most delicate and novel part of our method. A crucial role is played by
a random set PA of bonds, which is defined in Section 4 for any fixed subset A of Zd × Z+. Using PA, we extract
a factor θn−m1 from χn in Section 4, completing the first expansion for χn. Then, in Section 5, we perform a second
expansion for χn to extract an additional factor θn−m2 . Our treatment of this second expansion is different in spirit
than the expansion methods used in [6,14], and is simpler due to a careful use of independence that is due to the
orientation.

This part of the argument applies for general p and d , and makes only the weak assumption on D.
(b) The diagrammatic estimates (1.18), (1.19). As is usual in lace expansion analyses, we will prove (1.18), (1.19)

by bounding φm1,m2 and en+1 by diagrams of the same character as the Feynman diagrams of physics, i.e., by sums
of products of two-point functions and survival probabilities. The two-point functions are bounded using estimates
proved in [14], and the survival probabilities are bounded using the assumption on θm(pc) given above (1.19).

The first step in this procedure is carried out in Section 6, where we generalise the bound on πm of [14], stated
above in (1.14), and prove related bounds on χn. The bounds on φm1,m2 and en+1 are in terms of diagrams that are
built from the diagrams encountered in Section 6 using certain diagrammatic constructions. Using these, in Section 7,
we complete the proof of the bound (1.18) on φm1,m2 , and in Section 8, we complete the proof of the bound (1.19)
on en+1.

This part of the argument is for the spread-out model. It relies on d > 4 and small β , and the bounds we obtain
apply at p = pc.

2. The Factorisation Lemma

This section contains some preliminaries that will be crucial in the expansion for the survival probability. The main
result is the Factorisation Lemma stated in Lemma 2.2 below. Throughout the rest of the paper, we write

Λ = Zd × Z+, (2.1)

and we use bold letters such as x,y,z for elements of Λ. To be able to state the Factorisation Lemma, we need some
definitions.

Definition 2.1.

(i) Given a (deterministic or random) set of vertices A and a bond configuration ω, we define ωA, the restriction of
ω to A, to be

ωA

({x,y}) =
{

ω({x,y}) if x,y ∈ A,

0 otherwise,
(2.2)

for every x,y such that {x,y} is a bond. In other words, ωA is obtained from ω by making every bond that does
not have both endpoints in A vacant.

(ii) Given a (deterministic or random) set of vertices A and an event E, we say that E occurs in A, and write
{E in A}, if ωA ∈ E. In other words, {E in A} means that E occurs on the (possibly modified) configuration in
which every bond that does not have both endpoints in A is made vacant. We adopt the convenient convention
that {x → x in A} occurs if and only if x ∈ A.

(iii) Given a bond configuration and x ∈ Λ, we define C(x) to be the set of vertices to which x is connected, i.e.,
C(x) = {y ∈ Λ :x → y}. Given a bond configuration and a bond b, we define C̃b(x) to be the set of vertices
y ∈ C(x) to which x is connected in the (possibly modified) configuration in which b is made vacant.

We will often use the following easily verified rules for occurs in:

{E in B} ∩ {F in B} = {E ∩ F in B}, (2.3)

{E in B} ∪ {F in B} = {E ∪ F in B}, (2.4)

{E in B}c = {Ec in B}. (2.5)

Eqs. (2.3)–(2.5) imply that “occurs in” is well behaved under set operations.
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The following Factorisation Lemma lies at the heart of the expansion method.1 We write I [E] for the indicator
function of an event E. The statement of the Factorisation Lemma is in terms of two independent percolation configu-
rations. The laws of these independent configurations are indicated by subscripts, i.e., E0 denotes the expectation with
respect to the first percolation configuration, and E1 denotes the expectation with respect to the second percolation
configuration. We also use the same subscripts for random variables, to indicate which law describes their distribution.
Thus, the law of C̃

(u,v)
0 (y) is described by E0.

Lemma 2.2 (Factorisation Lemma). Fix p ∈ [0,‖D‖−1∞ ], a bond (u,v), a vertex y, a positive integer n, and events
E,F which depend only on the status of bonds whose vertices have time variables at most n. Then

E
(
I
[
E in C̃(u,v)(y),F in Λ \ C̃(u,v)(y)

]) = E0
(
I
[
E in C̃

(u,v)
0 (y)

]
E1

(
I
[
F in Λ \ C̃

(u,v)
0 (y)

]))
. (2.6)

Moreover, when E ⊆ {u ∈ C̃(u,v)(y),v /∈ C̃(u,v)(y)}, the event on the left-hand side of (2.6) is independent of the
occupation status of (u,v).

Proof. Because of our assumption on the events E and F , we can replace the set C̃(u,v)(y) in (2.6) by its restriction
to vertices which are endpoints of bonds whose vertices have time variables at most n (i.e., we set all other bonds to
be vacant). We denote this restriction by C̃

(u,v)
n (y), and note that this is a finite set with probability 1 by (1.4). The

proof proceeds by conditioning on C̃
(u,v)
n (y). We emphasise that C̃

(u,v)
n (y) is a set of vertices. Thus, C̃

(u,v)
n (y) = S

does not determine the occupation status of all the bonds b with both vertices in S. The left-hand side of (2.6) equals∑
S

P
({E in S} ∩ {F in Λ \ S}∣∣C̃(u,v)

n (y) = S
)
P
(
C̃(u,v)

n (y) = S
)
, (2.7)

where the sum over S is over finite subsets of Λ containing y.
By Definition 2.1(ii), the event {E in S} depends only on bonds with both endpoints in S, while the event {F in

Λ\S} depends only on bonds with both endpoints in Λ\S. The latter is equivalent to saying that {F in Λ\S} depends
only on bonds that have no endpoints in S. Thus, by the independence of the bond variables, we obtain that

P
({E in S} ∩ {F in Λ \ S} ∣∣ C̃(u,v)

n (y) = S
) = P

(
E in S

∣∣ C̃(u,v)
n (y) = S

)
P
(
F in Λ \ S

∣∣C̃(u,v)
n (y) = S

)
. (2.8)

Moreover, the event {C̃(u,v)
n (y) = S} depends only on bonds that have at least one endpoint in S. Therefore, for fixed S,

the events {F in Λ \ S} and {C̃(u,v)
n (y) = S} are independent, and hence

P
(
F in Λ \ S

∣∣ C̃(u,v)
n (y) = S

) = P(F in Λ \ S). (2.9)

Thus, we obtain

P
({E in S} ∩ {F in Λ \ S} ∣∣ C̃(u,v)

n (y) = S
) = P0

(
E in S

∣∣ C̃(u,v)
n (y) = S

)
P1

(
F in Λ \ S

)
, (2.10)

where we have added subscripts to the probabilities on the right-hand side to distinguish the different expectations.
We substitute (2.10) into (2.7), perform the sum over S, and replace C̃n by C̃, to get (2.6).

Finally, when E ⊆ {u ∈ C̃(u,v)(y),v /∈ C̃(u,v)(y)}, the event on the left-hand side of (2.6) is independent of the
occupation status of the bond (u,v). For {E in C̃(u,v)(y)}, this is because v /∈ C̃(u,v)(y), and, for {F in Λ\ C̃(u,v)(y)},
it is because u ∈ C̃(u,v)(y). �

Although we do not need it here, we note that Lemma 2.2 also applies (both for oriented and unoriented percolation)
to arbitrary events E and F , if we replace the assumption that E and F are determined by bonds lying below n by the
assumption that Pp(|C(0)| = ∞) = 0.

We will refer to a bond (u,v) to which we can effectively apply Lemma 2.2 as a cutting bond. In the nested
expectation on the right-hand side of (2.6), the set C̃

(u,v)
0 (y) is random with respect to the outer expectation, but

deterministic with respect to the inner expectation. We have added a subscript “0” to C̃
(u,v)
0 (y) and subscripts “0”

1 Some versions of Lemma 2.2 published previously [5,6,14] contain non-essential errors. However, on each occasion in these papers where the
Factorisation Lemma has been applied, the claimed factorisation does in fact hold.
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and “1” to the expectations on the right-hand side of (2.6) to emphasise this distinction. The inner expectation on the
right-hand side effectively introduces a second percolation model on a second lattice, which is coupled to the first
percolation model via the set C̃

(u,v)
0 (y).

3. The linear term

In this section, we prove (1.28) by expanding the survival probability to linear order. In Section 3.1, we define
pivotal bonds, and rewrite events dealing with pivotal bonds using Definition 2.1. In Section 3.2, we perform a first
expansion step making crucial use of the Factorisation Lemma, Lemma 2.2. The first expansion is virtually identical
to the expansion for the two-point function performed in [5] and [14]. In Section 3.3, we iterate this expansion step
indefinitely to obtain (1.28).

3.1. Pivotal bonds

Definition 3.1.

(i) Given a bond configuration, we say that x is doubly connected to y, written x ⇒ y, if there are at least two bond-
disjoint paths from x to y consisting of occupied bonds. By convention, we say that x ⇒ x for all x. Similarly,
we say that y is doubly connected to n, and write y ⇒ n, if there exist x1, x2 ∈ Zd (possibly equal) and two
bond-disjoint paths from y to (x1, n) and (x2, n).

(ii) Given a bond configuration, we say that a bond is pivotal for x → y if x → y in the (possibly modified) configura-
tion in which the bond is made occupied, whereas x is not connected to y in the (possibly modified) configuration
in which the bond is made vacant. Similarly, we say that a bond is pivotal for y → n if y → n in the (possibly
modified) configuration in which the bond is made occupied, whereas y is not connected to n in the (possibly
modified) configuration in which the bond is made vacant.

The set of pivotal bonds for x → y or y → n is ordered in time, which allows us to speak about the first pivotal
bond having a certain property. We can visualise a configuration where 0 → n as consisting of a string of sausages,
the strings representing the pivotal bonds, and the sausages the parts of the cluster of 0 that are separated by the pivotal
bonds. See Fig. 1 for a schematic representation of the event 0 → n as a string of sausages.

In terms of Definitions 2.1 and 3.1, we have a characterisation of a pivotal bond for v → y as{
(u′,v′) pivotal for v → y

} = {
v → u′ in C̃(u′,v′)(v)

} ∩ {
v′ → y in Λ \ C̃(u′,v′)(v)

}
. (3.1)

Similarly, we have a characterisation of a pivotal bond for v → n as{
(u′,v′) pivotal for v → n

} = {{v → u′} ∩ {v → n}c in C̃(u′,v′)(v)
} ∩ {

v′ → n in Λ \ C̃(u′,v′)(v)
}
. (3.2)

The right-hand sides of (3.1), (3.2) are convenient for application of the Factorisation Lemma 2.2.

3.2. The first expansion step

We will successively expand the survival probability, using the notion of pivotal bonds defined in Section 3.1, the
rewrite in (3.2) and Factorisation Lemma 2.2. It turns out that in the process of deriving the expansion for θn, we

Fig. 1. Schematic representation of the event 0 → n as a string of sausages.
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encounter an adaptation of the survival probability that we denote by the generalised survival probability. Therefore,
it is most convenient to immediately expand the generalised survival probability. We start by defining the generalised
survival probability. This definition will be crucial throughout the expansion.

Definition 3.2. Given a bond configuration and a set A ⊆ Λ, we say that y is connected to x through A, and write
y A−→ x, if every occupied path connecting y to x has at least one bond with an endpoint in A. By convention, x A−→ x

holds if and only if x ∈ A. Similarly, we say that y is connected to n through A, and write y A−→ n, if every occupied
path connecting y to a vertex in Zd × {n} has at least one bond with an endpoint in A, or if y ∈ (Zd × {n}) ∩ A.

As mentioned above it will be convenient to expand not only θn, but also the generalised survival probability
P(v A−→ n) for a fixed vertex v and set of vertices A. We note that, with 0 = (0,0), we have

P
(
0

{0}−−→ n
) = θn. (3.3)

To analyse P(v A−→ n), we define the events

E′(v,x;A) = {
v A−→ x

} ∩ {
� pivotal bond (u′,v′) for v → x such that v A−→ u′}, (3.4)

F ′
n(v;A) = {

v A−→ n
} ∩ {

� pivotal bond (u′,v′) for v → n such that v A−→ u′}, (3.5)

which are depicted schematically in Fig. 2.
Given a configuration in which v A−→ n, the cutting bond (u′,v′) is defined to be the first occupied and pivotal bond

for v → n such that v A−→ u′. It is possible that no such bond exists. By partitioning {v A−→ n} according to the location
of the cutting bond (or the lack of a cutting bond), we obtain the decomposition given in the following lemma. Here
and elsewhere, we write ∪̇ for a disjoint union.

Lemma 3.3 (The partition). For any v ∈ Λ,A ⊆ Λ,n � 0,{
v A−→ n

} = F ′
n(v;A) ∪̇

⋃̇
(u′,v′)

[
E′(v,u′;A) ∩ {

(u′,v′) occupied and pivotal for v → n
}]

. (3.6)

Proof. We decompose the event {v A−→ n} depending on whether there is a cutting bond or not. The event F ′
n(v;A) is

the contribution where such a cutting bond does not exist. Otherwise, let (u′,v′) be the cutting bond. Then, (u′,v′) is
occupied and pivotal for v → n and {v A−→ u′} holds. Moreover, there cannot be a previous pivotal bond satisfying the
same requirements. The latter is equivalent to the statement that, for all b that are occupied and pivotal for v → u′,
the event {v A−→ b} cannot hold. Therefore, E′(v,u′;A) holds. �

Define

γ (0)
n (v;A) = P

(
F ′

n(v;A)
)
. (3.7)

(a) (b)

Fig. 2. (a) Schematic representation of the event E′(v,x;A). The intersection of A with the fourth sausage is optional, while the intersection with
the sixth is required. (b) Schematic representation of the event F ′

n(v;A). The intersection of A with the third sausage is optional, while the other
intersection is required.
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Then (3.6) implies that

P
(
v A−→ n

) = γ (0)
n (v;A) +

∑
(u′,v′)

P
(
E′(v,u′;A) ∩ {

(u′,v′) occupied and pivotal for v → n
})

. (3.8)

We next note that the event that b is pivotal for v → n is independent of the occupation status of the bond b. More-
over, also E′(v,u′;A) is independent of the occupation status of the bond (u′,v′), due to the orientation. Therefore,
(3.8) becomes

P
(
v A−→ n

) =
∑

(u′,v′)
Ju′,v′P

(
E′(v,u′;A) ∩ {

(u′,v′) pivotal for v → n
}) + γ (0)

n (v;A), (3.9)

where we make the abbreviation

J(u,m),(v,n) = pD(v − u)δn,m+1. (3.10)

We note that, by the orientation of the bonds, the event E′(v,u′;A) is independent of the bonds above u′, so that

E′(v,u′;A) = {
E′(v,u′;A) in C̃(u′,v′)(v)

}
. (3.11)

We use (3.2), together with (3.11) and (2.3), to rewrite the event on the right-hand side of (3.9) as

E′(v,u′;A) ∩ {
(u′,v′) pivotal for v → n

}
= {{

E′(v,u′;A) ∩ {v → n}c} in C̃(u′,v′)(v)
} ∩ {

v′ → n in Λ \ C̃(u′,v′)(v)
}
. (3.12)

Using Lemma 2.2, we obtain from (3.9) and (3.12) the important rewrite

P
(
v A−→ n

) =
∑

(u′,v′)
Ju′,v′E0

(
I
[
E′(v,u′;A) ∩ {v → n}c in C̃

(u′,v′)
0 (v)

]
× P1

(
v′ → n in Λ \ C̃

(u′,v′)
0 (v)

)) + γ (0)
n (v;A). (3.13)

We next use the inclusion-exclusion relation

I
[{v → n}c] = 1 − I

[{v → n}], (3.14)

which brings us to

P
(
v A−→ n

) =
∑

(u′,v′)
Ju′,v′E0

(
I
[
E′(v,u′;A)

]
P1

(
v′ → n in Λ \ C̃

(u′,v′)
0 (v)

)) + γ (0)
n (v;A) − ρ(0)

n (v;A), (3.15)

where

ρ(0)
n (v;A) =

∑
(u′,v′)

Ju′,v′E0
(
I
[
E′(v,u′;A) ∩ {v → n} in C̃

(u′,v′)
0 (v)

]
P1

(
v′ → n in Λ \ C̃

(u′,v′)
0 (v)

))
. (3.16)

We have omitted “in C̃
(u′,v′)
0 (v)” in the sum in (3.15), which is possible due to (3.11).

Finally, let θn(v) = P(v → n). Then, for every A ⊆ Λ,

P(v → n in Λ \ A) = θn(v) − P
(
v A−→ n

)
. (3.17)

If we define

π(0)(v,x;A) = P
(
E′(v,x;A)

)
, (3.18)

then (3.15) and (3.17) yield the identity

P
(
v A−→ n

) = γ (0)
n (v;A) − ρ(0)

n (v;A) +
∑

(u′,v′)
Ju′,v′π(0)(v,u′;A)θn(v

′)

−
∑

(u′,v′)
Ju′,v′E0

(
I
[
E′(v,u′;A)

]
P1

(
v′ C̃

(u′,v′)
0 (v)−−−−−−→ n

))
. (3.19)

This completes the first expansion step.
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3.3. Iteration

In the right-hand side of (3.19), we again see a term of the form P1(v
A−→ n), but now with A = C̃

(u′,v′)
0 (v) and with

v replaced by v′. Thus, we can iterate (3.19). To write down this iteration, we first define, for any random variable X,

M
(1)
v,y;A(X) = E0

(
I
[
E′(v,y;A)

]
X

)
. (3.20)

For N � 2, we define M
(N)
v,y;A(X) recursively by

M
(N)
v,y;A(X) =

∑
(uN−2,vN−2)

JuN−2,vN−2M
(N−1)
v,uN−2;A

(
M

(1)

vN−2,y;C̃N−2
(X)

)
, (3.21)

where, for j � 0, we make the abbreviation C̃j = C̃
(uj ,vj )

j (vj−1), with v−1 = v, and where the expectation occurring

in M
(1)

vN−2,y;C̃N−2
(X) is labelled N − 1. For example, when N = 2, X = 1, v = 0, and A = {0},

M
(2)
0,y;{0}(1) =

∑
(u0,v0)

Ju0,v0E0
(
I
[
E′(0,u0; {0})]E1

(
I
[
E′(v0,y; C̃0)

]))
. (3.22)

Note that, by (3.4),

E′(0,u0; {0}) = {0 �⇒ u0}. (3.23)

According to [14, Eq. (3.25)], the coefficients of the lace expansion for the two-point function in (1.13) are given in
terms of the above notation by

πm =
∞∑

N=0

(−1)Nπ(N)
m , (3.24)

with, for N � 0,

π(N)
m =

∑
y∈Zd

π(N)
m (y), π(N)

m (y) = M
(N+1)
0,(y,m);{0}(1). (3.25)

Note that here we adopt the convention that π
(0)
m (y) = P(0 ⇒ (y,m)), rather than the convention π

(0)
m (y) =

P(0 ⇒ (y,m)) − δ0,mδ0,y used in [14].
We define, for N � 1,

γ (N)
n (v;A) =

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
v,uN−1;A

(
γ (0)
n (vN−1; C̃N−1)

)
(3.26)

with γ
(0)
n (v;A) defined in (3.7), and, for N � 1,

π(N)(v,x;A) = M
(N+1)
v,x;A (1), (3.27)

ρ(N)
n (v;A) =

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
v,uN−1;A

(
ρ(0)

n (vN−1; C̃N−1)
)
, (3.28)

with π(0)(v,x;A) and ρ
(0)
n (v;A) defined in (3.18) and (3.16). We let

χ(N)
n (v;A) = γ (N)

n (v;A) − ρ(N)
n (v;A). (3.29)

We omit the superscript “(N)” to denote the alternating sum over N , e.g.,

π(v,x;A) =
∞∑

N=0

(−1)Nπ(N)(v,x;A), (3.30)

χn(v;A) =
∞∑

(−1)Nχ(N)
n (v;A). (3.31)
N=0
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Fig. 3. Schematic representations of π(N)(x) for N = 0,1. For π(1)(x), the bold and thin lines correspond to the different expectations.

Fig. 4. Schematic representation of γ
(N)
n for N = 0,1. For γ

(1)
n , the bold and thin lines correspond to different expectations.

Fig. 5. Schematic representation of ρ
(N)
n for N = 0,1. For ρ

(0)
n there are two distinct expectations, and for ρ

(1)
n there are three.

In the special case v = 0 and A = {0}, we omit the variables v and A and write

π(x) = π
(
0,x; {0}), χn = χn

(
0; {0}), γn = γn

(
0; {0}), ρn = ρn

(
0; {0}), (3.32)

and similarly for π(N)(x),χ
(N)
n , γ

(N)
n and ρ

(N)
n . In particular, γ (0)

n = P(0 ⇒ n). A schematic representation of π(N)(x)

for N = 0,1 is depicted in Fig. 3, and schematic representations of γ
(N)
n and ρ

(N)
n for N = 0,1 are depicted in Figs. 4

and 5.
The result of the first expansion is given in the following proposition. Recall that θn(v) was defined above (3.17).

Proposition 3.4 (The linear term). For all v ∈ Λ, A ⊆ Λ, n � 1,

P
(
v A−→ n

) =
∑

(u′,v′)
π(v,u′;A)Ju′,v′θn(v

′) + χn(v;A). (3.33)

Proof. The identity (3.19) can be rewritten, using (3.20), (3.27), and (3.29), as

P
(
v A−→ n

) =
∑

(u0,v0)

Ju0,v0M
(1)
v,u0;A(1)θn(v0) + χ(0)

n (v;A) −
∑

(u0,v0)

Ju0,v0M
(1)
v,u0;A

(
P1

(
v0

C̃0−→ n
))

. (3.34)

Recalling (3.27), we see that the first line on the right-hand side of (3.34) is equal to the N = 0 contribution to the
right-hand side of (3.33). We will iterate (3.34) to obtain (3.33). For this, it is useful to note that a shift of indices
in (3.21) gives∑

JuN−1,vN−1M
(N)
v,uN−1;A

(
M

(1)

vN−1,uN ;C̃N−1
(X)

) = M
(N+1)
v,uN ;A(X). (3.35)
(uN−1,vN−1)
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For N � 1, it follows from (3.34), (3.35), together with (3.26)–(3.29) and the linearity of X �→ M
(N)
v,uN−1;A(X), that

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
v,uN−1;A

(
PN

(
vN−1

C̃N−1−−−→ n
))

=
∑

(uN ,vN)

JuN ,vN
π(N)

n (v,uN ;A)θn(vN) + χ(N)
n (v;A) −

∑
(uN ,vN)

JuN ,vN
M

(N+1)
v,uN ;A

(
PN+1

(
vN

C̃N−−→ n
))

. (3.36)

We use (3.36) in (3.34) repeatedly until the last term vanishes. This must happen before N = n + 1, because the
time variable of vN is strictly larger than the time variable of vN−1, and the last term in (3.36) is zero when the time
variable of vN exceeds n. �

We complete the proof of (1.28) using Proposition 3.4. According to (3.25) and (3.27), π(y) is equal to the co-
efficient πm(y) of the lace expansion for the two-point function, where y = (y,m). We use the notation πm(y) and
πm = ∑

y πm(y) when we wish to emphasise the role of the time variable. Since θn(y,m) = θn−m for every y ∈ Zd ,
and since

∑
v′ Ju′,v′ = p by (3.10), (3.33) reduces in this special case to

θn =
n−1∑
m=0

πmpθn−1−m + χn. (3.37)

This proves (1.28), and we have extracted the linear term in the expansion for θn.
Finally, for future reference, we prove the recursion relation

M
(N+M)
v,y;A (X) =

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
v,uN−1;A

(
M

(M)

vN−1,y;C̃N−1
(X)

)
, (3.38)

valid for M,N � 1. The proof is by induction on M . We first note that (3.38) holds for all N � 1 when M = 1, since
in this case it is identical to (3.35). We assume as induction hypothesis that

M
(N+M−1)
v,uN ;A (Y ) =

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
v,uN−1;A

(
M

(M−1)

vN−1,uN ;C̃N−1
(Y )

)
, (3.39)

holds for all N � 1. To advance the induction, we substitute

Y =
∑

(uN ,vN)

JuN ,vN
M

(1)

vN ,y;C̃N
(X) (3.40)

into (3.39). By (3.35), the left-hand side equals M
(N+M)
v,y;A (X), while the right-hand side equals the right-hand side

of (3.38). This advances the induction hypothesis, and proves (3.38).

4. The quadratic term: The first expansion for χn

In (3.37), we have established the identity

θn =
n−1∑
m=0

πmpθn−1−m + χn. (4.1)

To prove the identity (1.17) of Theorem 1.1(i), we will show that

χ(N)
n = −

�n/2�∑
m1=1

n∑
m2=m1

φ(N)
m1,m2

θn−m1θn−m2 + e(N)
n , (4.2)

where φ
(N)
m1,m2 are certain expansion coefficients, and e

(N)
n is an error term. The desired result (1.17) then follows from

(4.1), (4.2), with

en =
∞∑

(−1)Ne(N)
n , φm1,m2 =

∞∑
(−1)Nφ(N)

m1,m2
. (4.3)
N=0 N=0
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In this section, we will go part way to proving (4.2), by showing that

χ(N)
n = −

�n/2�∑
m1=1

κ(N)
m1,n

θn−m1 + e(N)
n (1) + e(N)

n (2) + e(N)
n (3). (4.4)

The coefficients κ
(N)
m1,n and the error terms e

(N)
n (1), e

(N)
n (2), e

(N)
n (3) are defined in Section 4.2 below. The proof of (4.2)

will then be completed in Section 5, via an expansion for κ
(N)
m1,n.

Recall from (3.29) that χ
(N)
n = γ

(N)
n − ρ

(N)
n , where γ

(N)
n and ρ

(N)
n are defined in terms of γ

(0)
n and ρ

(0)
n in (3.26)

and (3.28). We begin in Section 4.1 with an analysis of ρ
(N)
n , and continue in Section 4.2 with γ

(N)
n . Section 4.3

contains the proof of a key proposition involving an important set of bonds PA introduced in Section 4.2. Finally, in
Section 4.4, we prepare for an analysis of error terms.

4.1. The first expansion for ρn

For A,B ⊆ Λ, we define

κ(0)
n (v;A,B) =

∑
(u0,v0)

Ju0,v0E0
(
I
[
E′(v,u0;B) ∩ {

v A−→ n
}

in C̃0
](

θn(v0) − P1
(
v0

C̃0−→ n
)))

, (4.5)

where as usual C̃0 = C̃
(u0,v0)
0 (v). By (3.16), (3.17), and the facts that {v {v}−−→ n} = {v → n} and {v′ /∈ C̃

(u′,v′)
0 (v)} =

{{v′ /∈ C̃
(u′,v′)
0 (v)} in C̃

(u′,v′)
0 (v)}, we have

ρ(0)
n (v;A) = κ(0)

n

(
v; {v},A)

. (4.6)

We write mv for the time coordinate of a vertex v, and define

Πm(v;A) = δm,mv − p
∑
y∈Zd

π
(
v, (y,m − 1);A)

, (4.7)

κ(0)
m,n(v;A,B) =

∑
(u0,v0)

Ju0,v0E0
(
I
[
E′(v,u0;B) ∩ {

v A−→ n
}

in C̃0
]
Πm(v0; C̃0)

)
, (4.8)

e(0)
n (v;A,B) = −

∑
(u0,v0)

Ju0,v0E0
(
I
[
E′(v,u0;B) ∩ {

v A−→ n
}

in C̃0
]
χn(v0; C̃0)

)
. (4.9)

Lemma 4.1. For n � 1, v ∈ Λ and A,B ⊆ Λ,

κ(0)
n (v;A,B) =

n∑
m1=1

κ(0)
m1,n

(v;A,B)θn−m1 + e(0)
n (v;A,B). (4.10)

Proof. We use Proposition 3.4 to extract one factor θn−m1 from the factor θn(v0) − P1(v0
C̃0−→ n) in κ

(0)
n (v;A,B).

Explicitly,

θn(v0) − P1
(
v0

C̃0−→ n
) = θn(v0) −

∑
(u1,v1)

Ju1,v1π(v0,u1; C̃0)θn(v1) − χn(v0; C̃0)

=
∑
m1

Πm1(v0; C̃0)θn−m1 − χn(v0; C̃0), (4.11)

using (4.7) in the second equality. Substitution into (4.5) gives (4.10). �
We use the abbreviations

κ(0)
m,n(A) = κ(0)

m,n

(
0;A, {0}), e(0)

n (A) = e(0)
n

(
0;A, {0}), (4.12)

and, for N � 1, we define
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κ(N)
m,n(A) =

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
0,uN−1;{0}

(
κ(0)
m,n(vN−1;A, C̃N−1)

)
, (4.13)

e(N)
n (A) =

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
0,uN−1;{0}

(
e(0)
n (vN−1;A, C̃N−1)

)
. (4.14)

An abuse of notation: It will be convenient in what follows to make an abuse of notation in which we write, e.g.,
κ

(N)
m1,n({vN−1}) to denote the result of setting A = {vN−1} in (4.13). The variable vN−1 is the summation index, so that

κ
(N)
m1,n({vN−1}) does not actually depend on vN−1. Also, we will use the convention

v−1 = 0, C̃−1 = {0}. (4.15)

With the above abuse of notation, the following proposition gives the first expansion for ρ
(N)
n .

Proposition 4.2 (The first expansion for ρn). For n � 1 and N � 0,

ρ(N)
n =

n∑
m1=1

κ(N)
m1,n

({vN−1}
)
θn−m1 + e(N)

n

({vN−1}
)
. (4.16)

Proof. By (4.6) and Lemma 4.1, we obtain

ρ(0)
n (v;A) =

n∑
m1=1

κ(0)
m1,n

(
v; {v},A)

θn−m1 + e(0)
n

(
v; {v},A)

. (4.17)

The identity (4.16) then follows by substitution of (4.17) into (3.28), using (4.13), (4.14) with the abuse of nota-
tion. �

For N � 1, we note for future reference that

κ(N)
m,n(A) =

∑
(uN ,vN)

JuN ,vN
M

(N+1)
0,uN ;{0}

(
I
[
vN−1

A−→ n in C̃N

]
Πm(vN ; C̃N )

)
, (4.18)

e(N)
n (A) = −

∑
(uN ,vN)

JuN ,vN
M

(N+1)
0,uN ;{0}

(
I
[
vN−1

A−→ n in C̃N

]
χn(vN ; C̃N )

)
, (4.19)

where, in the last equality, we have used (4.9) (with (uN,vN) instead of (u0,v0)), (3.20), and (3.35). In addition, we
have repeated our abuse of notation, since the variable vN−1 is summed over in the definition of M

(N+1)
0,uN ;{0} (see (3.21)).

For N = 0, recalling (4.8), (4.9), (4.12), and (3.20), we see that the equalities in (4.18) and (4.19) also hold, using the
convention (4.15).

4.2. The first expansion for γn

In this section, we derive the first expansion for γn. This requires a new concept: the important set PA. We start
by giving an informal explanation of this set by highlighting the analogy and differences of the first expansion to the
expansion extracting the linear term performed in Section 3.

Crucial in the expansion that extracts the linear term is the identification of the cutting bond. In this section, we will
describe the first cutting bond for γ

(0)
n (v;A). In the expansion that extracts the linear term, we have made essential

use of properties of this cutting bond. In particular, it allows for a use of the Factorisation Lemma 2.2, and, when it
exists, it is unique. By the latter property, the union over the cutting bonds can be replaced by a sum, which is then
analysed in detail (see e.g., (3.8)). Finally, the cutting bond is after the connection through the set A has taken place,
so that the dependence on A has been taken care of and does not influence later connections.

In the event F ′
n(v;A) that defines γ

(0)
n (v;A) (recall (3.7) and (3.26)), we have that after the connection through the

set A has taken place, there are at least two connections to n (see (3.5)). Each of these connections should give rise
to a possible cutting bond, so that the cutting bond is not unique. The set PA will consist precisely of all appropriate
cutting bonds. The non-uniqueness makes it harder to go to a sum over cutting bonds, since this number is in fact
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random. However, we will argue now that the main contribution to γ
(0)
n (v;A) comes from configurations where the

number of appropriate cutting bonds is equal to two, and, thus, up to leading order, we can replace the union over
cutting bonds by a sum if we account for the multiplicity by dividing by 2 (see (4.21) below). Indeed, when there are
fewer than two cutting bonds, then one of the disjoint connections to n will in fact have to be a double connection to
a point (x,n) for some x ∈ Zd , which should lead to an error term. When, on the other hand, there are at least three
cutting bonds, then there are three disjoint connections to n, which should also lead to an error term. This explains the
strategy of the proof. We now turn to the details.

Throughout the remainder of the paper, given a bond b = ((x,n), (y,n + 1)), we will write b̄ = (y,n + 1) for its
“top” and b = (x,n) for its “bottom.” Given a vertex v, a non-negative integer n, and a subset A ⊆ Λ, we define the
random set of bonds PA by

PA = {
bonds b

∣∣ the event E′(v, b;A) ∩ {b occupied} ∩ {
b̄ → n in Λ \ C̃b(v)

}
occurs

}
. (4.20)

Thus PA consists of those occupied bonds b such that E′(v, b;A) occurs (see Fig. 2(a)) and the top of b is connected
to n in the complement of C̃b(v). If we compare this definition of the cutting bond to the properties of the cutting
bond in the expansion extracting the linear term in Lemma 3.3 and (3.12), then we see that both definitions have the
occurrence of E′(v, b;A) and the connection b̄ → n in Λ \ C̃b(v) in common. Thus, we can think of the bonds in PA

as generalisations of the cutting bond in the linear expansion. Section 4 is primarily devoted to the investigation of the
set of bonds PA.

By decomposing the event F ′
n(v;A) according to the size of PA, and using (3.7), we obtain

γ (0)
n (v;A) = P

(
F ′

n(v;A)
)

= P
(
F ′

n(v;A) ∩ {PA = ∅}) +
∞∑
l=1

1

l

∑
b

P
(
F ′

n(v;A) ∩ {b ∈PA} ∩ {|PA| = l
})

= 1

2

∑
b

P
(
F ′

n(v;A) ∩ {b ∈PA}) + e(0)
n (v;A), (4.21)

where

e(0)
n (v;A) = P

(
F ′

n(v;A) ∩ {PA = ∅}) +
∞∑
l=1

(
1

l
− 1

2

)∑
b

P
(
F ′

n(v;A) ∩ {b ∈PA} ∩ {|PA| = l
})

. (4.22)

We will show that e
(0)
n (v;A) gives rise to an error term, thus making the claim that the main contribution to γ

(0)
n (v;A)

comes from configurations where |PA| = 2 precise.
We further define, for N � 1,

e(0)
n (1) = e(0)

n

(
0; {0}), (4.23)

e(N)
n (1) =

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
0,uN−1;{0}

(
e(0)
n (vN−1; C̃N−1)

)
. (4.24)

The following proposition, whose proof is deferred to Section 4.3, is a crucial ingredient in the first expansion
for γn. Proposition 4.3 derives its name “the first cutting bond” from the fact that the bond b in PA will serve as the
cutting bond in Proposition 4.4.

Proposition 4.3 (The first cutting bond). For A ⊆ Λ, v ∈ Λ, n � 1 and b,

F ′
n(v;A) ∩ {b ∈ PA} = {

E′(v, b;A) ∩ {
v A−→ n

}
in C̃b(v)

} ∩ {b occ.} ∩ {
b̄ → n in Λ \ C̃b(v)

}
. (4.25)

Proposition 4.3 shows that the definition of the cutting bonds in (4.20) allows us to rewrite the event F ′
n(v;A) ∩

{b ∈ PA} in terms of Definition 2.1, which, in turn, allows us to use the Factorisation Lemma 2.2. Because of this,
Proposition 4.3 is the key to our expansion of the survival probability.

The following proposition, whose proof uses Proposition 4.3, gives the result of the first expansion for γn. On the
right-hand side of (4.26), there is again an abuse of notation: when we put A = C̃N−1 in (4.13), (4.14), the quantities
κ

(N)
m ,n(C̃N−1) and e

(N)
n (C̃N−1) do not actually depend on C̃N−1 (this random set is integrated over).
1
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Proposition 4.4 (The first expansion for γn). For n � 1 and N � 0,

γ (N)
n = 1

2

n∑
m1=1

κ(N)
m1,n

(C̃N−1)θn−m1 + 1

2
e(N)
n (C̃N−1) + e(N)

n (1). (4.26)

Proof. By (4.21), Proposition 4.3, and the independence stated in Lemma 2.2,

γ (0)
n (v;A) = 1

2

∑
(u0,v0)

Ju0,v0E
(
I
[
E′(v,u0;A) ∩ {

v A−→ n
}

in C̃0
]
I [v0 → n in Λ \ C̃0]

) + e(0)
n (v;A). (4.27)

By Lemma 2.2, (3.17), and (4.5), this implies that

γ (0)
n (v;A) = 1

2
κ(0)
n (v;A,A) + e(0)

n (v;A). (4.28)

By Lemma 4.1, (4.15) and (3.32), this proves (4.26) for N = 0. For N � 1, we substitute (4.28) for γ
(0)
n (vN−1; C̃N−1)

in (3.26). The desired result then follows from (4.13), (4.14) and (4.24). �
To combine the expansions for ρn and γn given in Propositions 4.2 and 4.4 into a first expansion for χ

(N)
n , we

introduce the following notation. Let

κ(N)
m,n = κ(N)

m,n

({vN−1}
) − 1

2
κ(N)
m,n(C̃N−1), (4.29)

e(N)
n (2) = 1

2
e(N)
n (C̃N−1) − e(N)

n

({vN−1}
)
, (4.30)

e(N)
n (3) = −

n∑
m1=�n/2�+1

κ(N)
m1,n

θn−m1 . (4.31)

Corollary 4.5 (The first expansion for χn). For n � 0 and N � 0,

χ(N)
n = −

�n/2�∑
m1=1

κ(N)
m1,n

θn−m1 + e(N)
n (1) + e(N)

n (2) + e(N)
n (3). (4.32)

Proof. Since χ
(N)
n = γ

(N)
n − ρ

(N)
n by (3.29), we can combine the conclusions of Propositions 4.2 and 4.4 with (4.29),

(4.30) to arrive at

χ(N)
n = −

n∑
m1=1

κ(N)
m1,n

θn−m1 + e(N)
n (1) + e(N)

n (2). (4.33)

Then (4.32) follows from (4.31). �
4.3. Proof of Proposition 4.3

The proof is divided into 2 steps. See Fig. 6 for a schematic representation of the event F ′
n(v;A) ∩ {b ∈PA}.

Step 1: The left-hand side of (4.25) is a subset of the right-hand side of (4.25). Suppose that the left-hand side
of (4.25) occurs. It is clear from (4.20) that all the events on the right-hand side of (4.25) occur, apart from the event
{v A−→ n in C̃b(v)}. To see that {v A−→ n in C̃b(v)} occurs, note from (3.5) that F ′

n(v;A) implies that {v A−→ n}. Also,
by (4.20), b → b̄ → n on the left-hand side of (4.25). Since F ′

n(v;A) occurs and v A−→ b, it follows from (3.5) that
b cannot be pivotal for v → n. Thus {v → n in C̃b(v)} must occur. Since v A−→ n, every occupied path v → n must
contain an element in A, in particular the paths in C̃b(v). We conclude that {v A−→ n in C̃b(v)} occurs. This proves that
the left-hand side of (4.25) is a subset of the right-hand side.

Step 2: The right-hand side of (4.25) is a subset of the left-hand side of (4.25). Suppose that the right-hand side
of (4.25) occurs. Then b ∈ PA by the definition of PA in (4.20). It remains to check that F ′

n(v;A) occurs. To achieve
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Fig. 6. Schematic representation of the event F ′
n(v;A) ∩ {b ∈ PA}.

this, we need to verify that (a) v A−→ n, and (b) the “no previous pivotal” condition in (3.5) holds (i.e., there does not
exists a b′ which is occupied and pivotal for v → n such that v A−→ b′).

For (a), we note that since v A−→ n in C̃b(v), all connections that do not use the bond b are through A. Thus, we
need only investigate the connections that do use the bond b. But (3.11) implies that v A−→ b, so the connections using
the bond b are indeed through A, and hence v A−→ n.

We are left to check (b). We first note that if b′ is pivotal for v → n on the right-hand side of (4.25), then b′ is also
pivotal for v → b. Indeed, suppose that after removal of b′, the connection v → b still occurs. The bond b′ cannot
equal b since v → n in C̃b(v), so that b is not pivotal for v → n, whereas b′ is. Thus, since b′ is pivotal for v → n,
the removal of b′ must destroy both connections v → n in C̃b(v) and b̄ → n in Λ \ C̃b(v), which is impossible.

To prove (b), we need to show that if b′ is pivotal for v → n, then v is not connected to b′ through A. Let b′
be pivotal for v → n. Then, as noted above, b′ is also pivotal for v → b. By (3.11) and the second event in (3.4),
{v A−→ b′}c must occur. This proves (b) and completes the proof of Proposition 4.3.

4.4. Preparation for bounds on e
(0)
n (v;A)

In this section, we set the stage for the diagrammatic estimates of Section 8, by proving estimates for the error term
e
(0)
n (v;A) of (4.22). We begin by making the decomposition

e(0)
n (v;A) = e(0)

n (v;A;1) + e(0)
n (v;A;2) + e(0)

n (v;A;3), (4.34)

where

e(0)
n (v;A;1) = P

(
F ′

n(v;A) ∩ {PA = ∅}) + 1

2
P
(
F ′

n(v;A) ∩ {|PA| = 1
})

, (4.35)

e(0)
n (v;A;2) =

∑
b��n/2�+1

∞∑
l=3

(
1

l
− 1

2

)
P
(
F ′

n(v;A) ∩ {b ∈PA} ∩ {|PA| = l
})

, (4.36)

e(0)
n (v;A;3) =

∑
b��n/2�

∞∑
l=3

(
1

l
− 1

2

)
P
(
F ′

n(v;A) ∩ {b ∈ PA} ∩ {|PA| = l
})

, (4.37)

and where we abuse notation by writing b � m for the sum over bonds b such that mb � m (recall that mb denotes the
temporal component of b). Then∣∣e(0)

n (v;A;1)
∣∣ � P

(
F ′

n(v;A) ∩ {|PA| � 1
})

, (4.38)∣∣e(0)
n (v;A;2)

∣∣ � 1

2

∑
b��n/2�+1

P
(
E′(v, b;A) ∩ {b → n}), (4.39)

∣∣e(0)
n (v;A;3)

∣∣ � 1

2

∑
b��n/2�

P
(
F ′

n(v;A) ∩ {b ∈PA} ∩ {|PA| � 3
})

, (4.40)

using Proposition 4.3 in (4.39). We consider these three quantities in sequence in Sections 4.4.1–4.4.3.
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4.4.1. Estimate for e
(0)
n (v;A;1)

To prove that e
(0)
n (v;A;1) produces an error term, we will use the following proposition.

Proposition 4.6. For v ∈ Λ, A ⊆ Λ and n � 1,

F ′
n(v;A) ∩ {|PA| � 1

} ⊆
⋃

x∈Zd

E′(v, (x, n);A)
. (4.41)

Proof. By partitioning (3.5) according to the last pivotal bond for the connection v → n, we may write

F ′
n(v;A) = {

v
A�⇒ n

} ∪̇
⋃̇
b

({b occ. and piv. for v → n} ∩ {
v A−→ b

}c ∩ {
b̄

A�⇒ n
})

, (4.42)

where {v A⇒ n} = {v A−→ n} ∩ {v ⇒ n}. We define v′ by setting v′ = v when the first event on the right-hand side
of (4.42) occurs, and v′ = b̄ otherwise.

Suppose that F ′
n(v;A) ∩ {|PA| � 1} occurs. There must be x, y such that v′ is disjointly connected through A to

(x,n) and (y,n). Due to these disjoint connections, no pivotal bond for v′ → (x,n) can also be pivotal for v′ → (y,n).
Since |PA| � 1, we may therefore assume without loss of generality that among the pivotal bonds for v′ → (x,n) (if
there are any) there is no element of PA.

According to (3.4), it suffices to show that there is no pivotal bond b′ for v → (x,n) such that v A−→ b′, since this
implies that E′(v, (x, n);A) occurs. We will establish that this sufficient condition holds, by arguing by contradiction.

Suppose that b′ is pivotal for v → (x,n) and that v A−→ b′. Then there must be a first such pivotal bond, which,
we claim, is an element of PA. Indeed, since b′ is pivotal for v → (x,n), it follows from (3.1) that b′ is occupied,
E′(v, b′;A) occurs, and b̄′ → (x,n) occurs in Λ \ C̃b(v). This shows that b′ ∈PA.

By definition of v′, the pivotal bonds for v → (x,n) include the pivotal bonds for v′ → (x,n). The latter include
no element of PA, so b′ must lie below v′ (and hence v′ 	= v). This then implies that b′ is occupied and pivotal for
v → v′. However, by (4.42), the latter implies that {v A−→ b′}c occurs. This contradicts the assumption that v A−→ b′,
and completes the proof. �
4.4.2. Estimate for e

(0)
n (v;A;2)

The right-hand side of (4.39) is already simple and nothing more is required at this stage.

4.4.3. Estimate for e
(0)
n (v;A;3)

We prove three lemmas, Lemmas 4.7–4.9 below, before proving the main estimate in Proposition 4.10 below.

Lemma 4.7. If b ∈ PA, then there exists an x ∈ Zd such that b is occupied and pivotal for v → (x,n).

Proof. The definition of PA in (4.20) implies that v → b occurs in C̃b(v), while b̄ → n occurs in Λ \ C̃b(v). There-
fore, there exists an x ∈ Zd for which b̄ → (x,n) occurs in Λ \ C̃b(v). By (3.1), this proves the claim. �

For two bonds b and b′, we write b � b′ when their temporal components obey mb � mb′ .

Lemma 4.8. For b′ � b and b′ 	= b,

{b, b′ ∈PA} ⊆ {{b′ ∈ PA} in C̃b(v)
}
. (4.43)

Proof. We first note that if b and b′ are distinct elements of PA, then it is not possible that b̄ = b̄′. Indeed, by
Lemma 4.7 there is an x such that b is pivotal for v → (x,n). But if b̄′ = b̄ then it follows from the fact that b′ ∈ PA

that there is a connection from v to b̄ via b′ that persists after b is made vacant, and this means that b cannot be pivotal
for v → (x,n). Thus we may assume that b̄ 	= b̄′.

Since b′ ∈ PA, we have that (a) {b′ is occupied} occurs, (b) E′(v;b′;A) occurs, and (c) {b̄′ → n in Λ \ C̃b′
(v)}

occurs. The event {b′ is occupied} also occurs in C̃b(v) since b 	= b′, and the event E′(v;b′;A) also occurs in C̃b(v)

since b′ � b and b̄ 	= b̄′. It remains to show that the event{{
b̄′ → n in Λ \ C̃b′

(v)
}

in C̃b(v)
}

(4.44)
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occurs. We show that (4.44) occurs by intersecting with the events (i) {b̄′ → b in Λ \ C̃b′
(v)}c, and (ii) {b̄′ → b in

Λ \ C̃b′
(v)}, which we refer to as cases (i) and (ii).

On the event (i),{{
b̄′ → n in Λ \ C̃b′

(v)
}

in C̃b(v)
} = {

b̄′ → n in Λ \ C̃b′
(v)

}
, (4.45)

since making b vacant does not change C(b̄′) ∩ (Λ \ C̃b′
(v)), and b̄′ → n in Λ \ C̃b′

(v) is determined by C(b̄′) ∩
(Λ \ C̃b′

(v)). But the right-hand side of (4.45) occurs by (c) above, and hence (4.44) occurs.
We complete the proof by showing that case (ii) is empty, arguing by contradiction. Suppose that b, b′ ∈ PA

and that b̄′ → b occurs in Λ \ C̃b′
(v). Then E′(v;b;A) occurs since b ∈ PA, and v A−→ b′ occurs since b′ ∈ PA.

Since E′(v;b;A) ∩ {v A−→ b′} occurs, b′ cannot be pivotal for v → b. Since v → b, we conclude that b ∈ C̃b′
(v).

However, when b̄′ → b in Λ \ C̃b′
(v), either b ∈ Λ \ C̃b′

(v) or b̄′ = b. In the latter case, since b′ ∈ PA, it follows
from Proposition 4.3 that b = b̄′ /∈ C̃b′

(v). Therefore b ∈ Λ \ C̃b′
(v) in either case, which contradicts b ∈ C̃b′

(v) and
completes the proof. �
Lemma 4.9. For v ∈ Λ, A ⊂ Λ, n � 0,{

v A−→ n
} ∩ {|PA| � 2

} ⊆ F ′
n(v;A). (4.46)

Proof. By Lemma 3.3,{
v A−→ n

} ∩ {|PA| � 2
}

= (
F ′

n(v;A) ∩ {|PA| � 2
}) ∪̇

⋃̇
b

[
E′(v, b;A) ∩ {

b occ. and piv. for v → n} ∩ {|PA| � 2
}]

. (4.47)

It suffices to show that the contribution from the union over b is empty. For this, it suffices to show that if E′(v, b;A)∩
{b occ. and piv. for v → n} occurs, then PA = {b}.

To prove the latter statement, assume that E′(v, b;A) ∩ {b occ. and piv. for v → n} occurs. Then clearly b ∈ PA,
since all the events in (4.20) occur by (3.2). Also, if b′ ∈ PA, then the event E′(v, b′;A) occurs, and, by Lemma 4.7,
b′ is occupied and pivotal for v → (x,n) for some x ∈ Zd . Therefore, b′ is the first occupied and pivotal bond for
v → (x,n) for which v A−→ b′. However, since E′(v, b;A) ∩ {b occ. and piv. for v → n} occurs, b is the first occupied
and pivotal bond for v → (x,n) such that v A−→ b for all x ∈ Zd for which v → (x,n). Therefore, b′ = b. �

To formulate the next proposition, we define

P(3)
A = {

b ∈PA: ∃b1, b2 ∈PA \ {b} such that b1 	= b2, b1, b2 � b
}
. (4.48)

In words, P(3)
A is the subset of bonds b ∈ PA for which there are at least two distinct elements in PA with time

variables smaller than or equal to b. Note that if |PA| � 3 then P(3)
A 	= ∅. Therefore, writing b′ � b to mean both

b′ � b and b′ 	= b, we have

{b ∈ PA} ∩ {|PA| � 3
} =

({
b ∈P(3)

A

} ∩
⋃
b′�b

{b′ ∈ PA}
)

∪
( ⋃

b′�b

{
b′ ∈ P(3)

A

} ∩ {b ∈ PA}
)

. (4.49)

We recall (4.40) and conclude from (4.49) that∣∣e(0)
n (v;A;3)

∣∣ �
∑

b′��n/2�

∑
b�b′

P
(
F ′

n(v;A) ∩ {b′ ∈PA} ∩ {
b ∈ P(3)

A

})
, (4.50)

where we replace b � �n
2 � by b′ � �n

2 � for the contribution due to the first event in the right-hand side of (4.49), and
the roles of b and b′ are interchanged for the contribution due to the second event.

The following proposition gives an estimate on the event appearing in the right-hand side of (4.50). In the right-
hand side of (4.51) below, three connections to n are apparent. One is due to {b̄ → n in Λ \ C̃b(v)}, and the other
two are due to the event {F ′

n(v;A) in C̃b(v)}. The advantage of the right-hand side of (4.51) is that it is well suited

for application of the Factorisation Lemma 2.2. In Section 8.7, we will exploit this formula to prove that e
(0)
n (v;A;3)

gives an error term.
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Proposition 4.10 (Factorisation for three cutting bonds). For A ⊆ Λ, v ∈ Λ, n � 1 and b′ � b,

F ′
n(v;A) ∩ {b′ ∈PA} ∩ {

b ∈P(3)
A

}
⊆ {

E′(v, b;A) ∩ F ′
n(v;A) ∩ {b′ ∈PA} in C̃b(v)

} ∩ {b occ.} ∩ {
b̄ → n in Λ \ C̃b(v)

}
. (4.51)

Proof. By Lemma 4.8,

{b′ ∈PA} ∩ {
b ∈ P(3)

A

} = {b ∈ PA} ∩ {b′ ∈ PA} ∩
( ⋃

b′′�b:
b′′ 	=b,b′

{b′′ ∈ PA}
)

⊆ {b ∈ PA} ∩ {{b′ ∈PA} in C̃b(v)
} ∩

( ⋃
b′′�b:

b′′ 	=b,b′

{{b′′ ∈PA} in C̃b(v)
})

= {b ∈ PA} ∩
{{ ⋃

b′′�b:
b′′ 	=b,b′

{b′, b′′ ∈PA}
}

in C̃b(v)

}

⊆ {{b′ ∈PA} ∩ {|PA| � 2
}

in C̃b(v)
}
, (4.52)

where we used (2.3), (2.4) in the third line. Now we use Proposition 4.3, (4.52), (2.3), and Lemma 4.9 to arrive at

F ′
n(v;A) ∩ {b′ ∈PA} ∩ {

b ∈P(3)
A

}
= (

F ′
n(v;A) ∩ {b ∈ PA}) ∩ ({b′ ∈ PA} ∩ {

b ∈P(3)
A

})
⊆ {

E′(v, b;A) ∩ {
v A−→ n

}
in C̃b(v)

} ∩ {b occ.} ∩ {
b̄ → n in Λ \ C̃b(v)

}
∩ {{b′ ∈PA} ∩ {|PA| � 2

}
in C̃b(v)

}
= {

E′(v, b;A) ∩ {
v A−→ n

} ∩ {|PA| � 2
} ∩ {b′ ∈PA} in C̃b(v)

} ∩ {b occ.} ∩ {
b̄ → n in Λ \ C̃b(v)

}
⊆ {

E′(v, b;A) ∩ F ′
n(v;A) ∩ {b′ ∈PA} in C̃b(v)

} ∩ {b occ.} ∩ {
b̄ → n in Λ \ C̃b(v)

}
, (4.53)

which is the desired result. �
5. The quadratic term: The second expansion for χn

In this section, we complete the proof of Theorem 1.1(i) by proving (4.2). To do so, we will determine coefficients
φ

(N)
m1,m2 and d

(N)
m1,n such that

κ(N)
m1,n

=
n∑

m2=m1

φ(N)
m1,m2

θn−m2 − d(N)
m1,n

. (5.1)

Then (4.2) follows from (4.32), with

e(N)
n = e(N)

n (1) + e(N)
n (2) + e(N)

n (3) +
�n/2�∑
m1=1

d(N)
m1,n

θn−m1 . (5.2)

We will also prove the first statement of Theorem 1.1(ii), namely that φ1,1 = 1
2p2

c

∑
x D(x)(1 −D(x)). By (1.4), (1.7)

and (1.9), this implies that φ1,1 = 1
2 + O(β).

5.1. The second cutting bond for χn

To prove (5.1), we will define a second cutting bond for

κ(0)
m,n(vN−1;A, C̃N−1) =

∑
JuN ,vN

EN

(
I
[
E′(vN−1,uN ; C̃N−1) ∩ {

vN−1
A−→ n

}
in C̃N

]
Πm(vN ; C̃N )

)
(5.3)
(uN ,vN )
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(see (4.8)), which is the argument of M
(N)
0,uN−1;{0} appearing in (4.13). The set C̃N−1 can be any deterministic set

in (5.3), but we write it in this form with (4.13) in mind. The definition of the second cutting bond will be simpler
than the definition of the first cutting bond in Proposition 4.3, due to the fact that we have already extracted a factor
of θn−m1 and any remaining contribution with a double connection to n will be an error term.

We first rewrite κ
(0)
m,n(vN−1;A, C̃N−1) in a more convenient form. Let P̃N be the conditional probability PN given

that (uN,vN) is vacant, and let ẼN be expectation with respect to P̃N . Since C̃N = CN(vN−1) holds P̃N -a.s, and since
the event E′(vN−1,uN ; C̃N−1) ∩ {vN−1

A−→ n} only depends on forward connections from vN−1 to later vertices, it
follows that

κ(0)
m,n(vN−1;A, C̃N−1) =

∑
(uN ,vN)

JuN ,vN
ẼN

(
I
[
E′(vN−1,uN ; C̃N−1) ∩ {

vN−1
A−→ n

}]
Πm(vN ; C̃N )

)
. (5.4)

The second cutting bond is defined as follows.

Definition 5.1. (i) For m � 0, the m-cutting bond for vN−1
A−→ n, if it exists, is the first occupied and pivotal bond b

for vN−1 → n for which mb̄ � m and vN−1
A−→ b. Similarly, for y ∈ Λ, the m-cutting bond for vN−1

A−→ y, if it exists,
is the first occupied and pivotal bond b for vN−1 → y for which mb̄ � m and vN−1

A−→ b. We use the abbreviation “b
is m-cutting for vN−1

A−→ n” for the statement that “b is the m-cutting bond for vN−1
A−→ n.”

(ii) The second cutting bond for (5.4) is the m-cutting bond for vN−1
A−→ n.

Note that, under P̃N , the event that b is an m-cutting bond implies that b 	= (uN,vN), since b must be occupied
whereas (uN,vN) is vacant.

Several definitions are required to formulate the result of the second expansion. Let

Hm(v,y;A) = {
v A−→ y

} ∩ {
�m-cutting bond for v A−→ y

}
, (5.5)

Hm,n(v;A) = {
v A−→ n

} ∩ {
�m-cutting bond for v A−→ n

}
. (5.6)

Recall our convention (4.15) that v−1 = 0 and C̃−1 = {0}. For N � 0, let

e(N)
m,n(4;A) = ẼN

(
I
[
E′(vN−1,uN ; C̃N−1) ∩ Hm,n(vN−1;A)

]
Πm(vN ; C̃N )

)
, (5.7)

e(N)
m,n(5;A) = −

∑
b 	=(uN ,vN)

Jb,b̄ẼN

(
I
[
E′(vN−1,uN ; C̃N−1) ∩ Hm(vN−1, b;A)

]
χn

(
b̄; C̃b

N

)
Πm(vN ; C̃N )

)
, (5.8)

where C̃b
N = C̃b

N (vN−1). For j = 4,5 and N � 1, let

d(0)
m1,n

(j ;A) =
∑

(u0,v0)

Ju0,v0e
(0)
m1,n

(j ;A), (5.9)

d(N)
m1,n

(j ;A) =
∑

(uN−1,vN−1)

JuN−1,vN−1

∑
(uN ,vN)

JuN ,vN
M

(N)
0,uN−1;{0}

(
e(N)
m1,n

(j ;A)
)
. (5.10)

For N � 1, we also define

M̃
(1)
(u0,v0)

(X) = Ẽ0
(
I
[{0 ⇒ u0}

]
X

)
, (5.11)

M̃
(N+1)
(uN ,vN)(X) =

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
0,uN−1;{0}

(
ẼN

(
I
[
E′(vN−1,uN ; C̃N−1)

]
X

))
. (5.12)

Finally, for N � 0 we define

φ(N)
m1,m2

(A) =
∑

(uN ,vN)

JuN ,vN

∑
b 	=(uN ,vN)

Jb,b̄M̃
(N+1)
(uN ,vN)

(
I
[
Hm1(vN−1, b;A)

]
Πm2(b̄; C̃b

N)Πm1(vN ; C̃N )
)
. (5.13)

Now we are ready to state the result of the second expansion.
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Proposition 5.2 (The second expansion for χn). For n,m � 0, N � 0 and A ⊆ Λ,

κ(N)
m,n(A) =

n∑
m2=m

φ(N)
m,m2

(A)θn−m2 − [
d(N)
m,n(4;A) + d(N)

m,n(5;A)
]
. (5.14)

The proof of Proposition 5.2 is given below in Section 5.3. Let

d(N)
m,n(A) = d(N)

m,n(4;A) + d(N)
m,n(5;A), (5.15)

d(N)
m,n = −1

2
d(N)
m,n(C̃N−1) + d(N)

m,n

({vN−1}
)
, (5.16)

and

φ(N)
m1,m2

= −1

2
φ(N)

m1,m2
(C̃N−1) + φ(N)

m1,m2

({vN−1}
)
. (5.17)

Then (5.1) follows immediately from Proposition 5.2 and (4.29). As noted below (5.1), this in turn completes the
proof of Theorem 1.1(i).

For j = 4,5, we define

e(N)
n (j) =

�n/2�∑
m1=1

[
−1

2
d(N)
m1,n

(j ; C̃N−1) + d(N)
m1,n

(
j ; {vN−1}

)]
θn−m1 . (5.18)

Then (5.2) can be rewritten as

e(N)
n = e(N)

n (1) + e(N)
n (2) + e(N)

n (3) + e(N)
n (4) + e(N)

n (5). (5.19)

Our proof of (1.19) in Section 8 is based on the decomposition (5.19).

5.2. Identification of φ1,1

We now prove the first statement of Theorem 1.1(ii), namely that φ1,1 = 1
2p2

c

∑
x D(x)(1 − D(x)). By (1.4), (1.7)

and (1.9), it then follows that φ1,1 = 1
2 + O(β). According to (5.13) and (4.15), φ

(N)
1,1 (A) = 0 unless N = 0. Also,

by (5.17) and (4.15), φ1,1 = 1
2φ

(0)
1,1({0}). Thus, it suffices to show that φ

(0)
1,1({0}) = p2

c

∑
x D(x)(1 − D(x)).

For this, we use (5.13). Note that Π1(b̄; C̃b
0 ) = δmb̄,1 and Π1(v0; C̃0) = δmv0 ,1, by (4.7). Therefore, by (4.15), we

have H1(vN−1, b; {0}) = H1(0,0; {0}), which is the trivial event by (5.5). Also, since mv0 = 1, u0 must be 0, so that
{0 ⇒ u0} in (5.11) is trivially satisfied. We conclude that

M̃
(1)
(u0,v0)

(
I
[
Hm1

(
0, b; {0})]Π1

(
b̄; C̃b

0

)
Π1(v0; C̃0)

) = 1. (5.20)

It then follows from (5.13) that

φ
(0)
1,1

({0}) =
∑
v0

J0,v0

∑
b̄ 	=v0

J0,b̄ = p2
c

∑
x

D(x)
(
1 − D(x)

)
, (5.21)

as required.

5.3. Proof of Proposition 5.2

To simplify the notation, for N � 0, we write

E′
N = E′(vN−1,uN ; C̃N−1). (5.22)

In particular, according to (3.23) and the convention (4.15), E′
0 = {0 ⇒ u0}. For the second expansion, the following

proposition plays the role that was played for the first expansion by Proposition 4.3.
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Proposition 5.3 (The second cutting bond). For all A ⊆ Λ, N � 0, m � 0, n � 1, and for all bonds b,

E′
N ∩ {

b is m-cutting for vN−1
A−→ n

}
= {

E′
N ∩ Hm(vN−1, b;A) in C̃b

N (vN−1)
} ∩ {b occ.} ∩ {

b̄ → n in Λ \ C̃b
N (vN−1)

}
. (5.23)

Proof. By (3.2), it suffices to prove that

E′
N ∩ {

b is m-cutting for vN−1
A−→ n

}
= {

E′
N ∩ Hm(vN−1, b;A) in C̃b

N (vN−1)
} ∩ {b occ. and piv. for vN−1 → n}. (5.24)

Since mb̄ � m, and since E′
N depends only on the occupation status of bonds below muN

� m − 1, we have

E′
N = {

E′
N in C̃b

N(vN−1)
}
. (5.25)

Also, for b such that mb̄ � m, we have{
b is m-cutting for vN−1

A−→ n
} = {b occ. and piv. for vN−1 → n} ∩ {

vN−1
A−→ b

}
∩ {

� previous m-cutting bond for vN−1
A−→ n

}
. (5.26)

Since the pivotal bonds for vN−1 → n are ordered, any previous m-cutting bond for vN−1
A−→ n must be pivotal for

vN−1 → b. Therefore,{
� previous m-cutting bond for vN−1

A−→ n
} = {

� m-cutting bond for vN−1
A−→ b

}
= {{

� m-cutting bond for vN−1
A−→ b

}
in C̃b

N(vN−1)
}
, (5.27)

where the last equality again follows from the orientation. Since{
vN−1

A−→ b
} = {

vN−1
A−→ b in C̃b

N(vN−1)
}
, (5.28)

we conclude from (5.5) that{
vN−1

A−→ b
} ∩ {

� previous m-cutting bond for vN−1
A−→ n

} = {
Hm(vN−1, b;A) in C̃b

N(vN−1)
}
. (5.29)

Then (5.24) follows from (2.3) and (5.29), and the proof is complete. �
Proof of Proposition 5.2. We will show that

ẼN

(
I
[
E′

N ∩ {
vN−1

A−→ n
}]

Πm(vN ; C̃N )
)

=
n∑

m2=m

∑
b 	=(uN ,vN)

Jb,b̄ẼN

(
I
[
E′

N ∩ Hm(vN−1, b;A)
]
Πm2

(
b̄; C̃b

N

)
Πm(vN ; C̃N )

)
θn−m2

+ e(N)
m,n(4;A) + e(N)

m,n(5;A). (5.30)

This suffices, since substitution of (5.30) into (5.4) gives

κ(0)
m,n(vN−1;A, C̃N−1)

=
∑

(uN ,vN )

JuN ,vN

n∑
m2=m

∑
b 	=(uN ,vN)

Jb,b̄ẼN

(
I
[
E′

N ∩ Hm(vN−1, b;A)
]
Πm2

(
b̄; C̃b

N

)
Πm(vN ; C̃N )

)
θn−m2

+
∑

(uN ,vN)

JuN ,vN

[
e(N)
m,n(4;A) + e(N)

m,n(5;A)
]
, (5.31)

and substitution of (5.31) into (4.13), together with (5.13) and (5.9), (5.10), gives the desired result (5.14).
To prove (5.30), we use the partition{

vN−1
A−→ n

} = Hm,n(vN−1;A) ∪̇
⋃̇({

b is m-cutting for vN−1
A−→ n

})
. (5.32)
b
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By (5.32) and (5.7),

ẼN

(
I
[
E′

N ∩ {
vN−1

A−→ n
}]

Πm(vN ; C̃N )
)

= e(N)
m,n(4;A) +

∑
b

ẼN

(
I
[
E′

N ∩ {
b is m-cutting for vN−1

A−→ n
}]

Πm(vN ; C̃N )
)
. (5.33)

Let

C̃N,m = {x ∈ C̃N : mx � m}. (5.34)

Then

Πm(vN ; C̃N ) = Πm(vN ; C̃N,m−1), (5.35)

since the first term in (4.7) does not depend on C̃N , while the second only depends on C̃N up to time m − 1. Condi-
tioning on the set C̃N,m−1 then gives

ẼN

(
I
[
E′

N ∩ {
vN−1

A−→ n
}]

Πm(vN ; C̃N )
)

= e(N)
m,n(4;A) +

∑
b

∑
C

Πm(vN ;C)P̃N

(
E′

N ∩ {
b is m-cutting for vN−1

A−→ n
} ∩ {C̃N,m−1 = C}). (5.36)

We again write C̃b
N = C̃b

N (vN−1). Since m � mb̄ ,

{C̃N,m−1 = C} = {{C̃N,m−1 = C} in C̃b
N

}
. (5.37)

By Proposition 5.3 and the independence stated in Lemma 2.2, for b 	= (uN,vN), it follows that

P̃N

(
E′

N ∩ {
b is m-cutting for vN−1

A−→ n
} ∩ {C̃N,m−1 = C})

= Jb,b̄P̃N

({
E′

N ∩ Hm(vN−1, b;A) ∩ {C̃N,m−1 = C} in C̃b
N

} ∩ {
b̄ → n in Λ \ C̃b

N

})
. (5.38)

(Note that, according to the comment below Definition 5.1, the left-hand side of (5.38) is zero if b = (uN,vN), but
the right-hand side need not be zero.) Next we apply Lemma 2.2 to the right-hand side to obtain, for b 	= (uN,vN),

P̃N

(
E′

N ∩ {
b is m-cutting for vN−1

A−→ n
} ∩ {C̃N,m−1 = C})

= Jb,b̄ẼN

(
I
[
E′

N ∩ Hm(vN−1, b;A) ∩ {C̃N,m−1 = C}](θn(b̄) − PN,1
(
b̄

C̃b
N−−→ n

)))
, (5.39)

where we have used (3.17) and the fact that{
E′

N ∩ Hm(vN−1, b;A) ∩ {C̃N,m−1 = C} in C̃b
N

} = E′
N ∩ Hm(vN−1, b;A) ∩ {C̃N,m−1 = C},

again due to the orientation. We conclude from (5.36) and (5.39) that

ẼN

(
I
[
E′

N ∩ {
vN−1

A−→ n
}]

Πm(vN ; C̃N )
) − e(N)

m,n(4;A)

=
∑
C

∑
b 	=(uN ,vN )

Jb,b̄Πm(vN ;C)ẼN

(
I
[
E′

N ∩ Hm(vN−1, b;A) ∩ {C̃N,m−1 = C}](θn(b̄) − PN,1
(
b̄

C̃b
N−−→ n

)))

=
∑

b 	=(uN ,vN )

Jb,b̄ẼN

(
I
[
E′

N ∩ Hm(vN−1, b;A)
]
Πm(vN ; C̃N,m−1)

(
θn(b̄) − PN,1

(
b̄

C̃b
N−−→ n

)))
. (5.40)

Finally, we rewrite PN,1(b̄
C̃b

N−−→ n) using Proposition 3.4, as in (4.11). The subscript on PN,1 indicates the arrival of
a new oriented percolation model, coupled to PN via the set C̃b

N . With (5.8) and (5.35), this gives (5.30), and thus
completes the proof. �
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6. Diagrammatic estimates: Bounds for π and χ

In this section, we begin to set the stage for the proof of the bounds on φm1,m2 and en+1 stated in Theorem 1.1(ii).
In Section 6.1, we prove bounds on π(v,y;A), and in Section 6.2, we prove bounds on χn(v;A). These bounds are in
terms of certain Feynman diagrams P (N)(v,y;A), which are closely related to diagrams appearing in [14, Section 4].
These diagrams are defined recursively, which is natural given that π(N) is defined in terms of the recursively defined
M(N+1) (see (3.25)). Later, the recursive nature of the diagrams will be instrumental in bounding the diagrams.

The discussion in this section applies for arbitrary p and d , under the weak assumption on D.

6.1. Bounds on π

In this section, we obtain bounds on the function π(v,y;A) defined in (3.27). For the special case in which v = 0
and A = {0}, the function π(0,y; {0}) is identical to the function π(y) of [14, Eq. (3.25)], apart from the minor change
that we have π(0) = 1 whereas [14] has π(0) = 0 (recall the comment below (3.25)). It is proved in [14, Eq. (4.10)]
and [14, Eq. (4.29)] that for N � 0 and m � 0,

π(N)
m (y) � P (N)

m (y). (6.1)

Here, P
(N)
m (y) = P (N)(y) (for y = (y,m)) is a sum of diagrams which, for p = pc, d > 4 and β sufficiently small,

obey the bound∑
y

P (N)
m (y) � δm,0δN,0 + (Cβ)N∨1(m + 1)−d/2. (6.2)

Together, these estimates give (1.14).
Our goal now is to generalise (6.1) to π(v,y;A). The generalisation is in terms of Feynman diagrams P (N)(v,y;A)

which are defined as follows. We start with N = 0, and, keeping the bond orientation in mind, define

P (0)(v,y;a) =
∑

t

τ(t − v)τ (a − t)τ (y − a)τ (y − t), (6.3)

P (0)(v,y;A) =
∑
a

I [a ∈ A]P (0)(v,y;a). (6.4)

We refer to the two-point functions appearing in the right-hand side of (6.3) as lines. In the diagram P (0)(v,y;a),
we declare the lines τ(t − v) and τ(y − t) appearing in (6.3) to be 0-admissible (below this is generalised to
N -admissibility). We also define

P(u,z,y) =
∑
w,v

τ(w − z)Ju,vP
(0)(v,y;w), (6.5)

where Ju,v is given by (3.10), and where we continue to regard the lines τ(t − v) and τ(y − t) appearing in
P (0)(v,y;w) in (6.5) as 0-admissible. See Fig. 7 for depictions of (6.3) and (6.5).

Definition 6.1.

(i) Given a diagram and any line λ of the diagram, Construction 1λ(y) is the operation in which a new vertex y is
inserted in line λ. Explicitly, this means that the two-point function τ(v − u) corresponding to line λ is replaced
by τ(v − y)τ (y − u).

(ii) Given a diagram F(v,y) with two vertices carrying labels v,y and any line λ of the diagram, we write
F(v,y;1λ(z)) for the diagram where Construction 1λ(z) is performed to the diagram F(v,y).

(iii) Construction 1λ(l) is the operation in which Construction 1λ(y, l) is performed followed by summation over y

with l fixed. Explicitly, this means that τj−i (v − u) corresponding to line λ is replaced by∑
y

τj−l (v − y)τl−i (y − u).

We also write Construction 1(l) for the operation in which Construction 1λ(l) is performed, and then a sum over
all lines λ in the diagram is performed (resulting in a sum of diagrams).
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Fig. 7. Diagrams for P (0)(v,y;a), P(u,z,y), and examples of diagrams that contribute to P (1)(v,y;a), P (2)(v,y;a). The N -admissible lines
are shown in bold.

For N � 1, given P (N−1)(v,y;a) with its set of admissible lines, we define P (N)(v,y;a) with its set of admissible
lines recursively, as follows. First, let P (N−1)(v,y;a,1λ(z)) denote the result of applying Construction 1λ(z) to
P (N−1)(v,y;a). Then, for N � 1, let

P (N)(v,y;a) =
∑
λ

∑
z,w

P (N−1)
(
v,w;a,1λ(z)

)
P(w,z,y), (6.6)

where the sum over λ runs over the (N − 1)-admissible lines, and where the N -admissible lines are by definition the
0-admissible lines in the factor P(w,z,y) appearing in (6.6). See Fig. 7.

We also define, for N � 0,

P (N)(v,y;A) =
∑
a

I [a ∈ A]P (N)(v,y;a), P (N)(y) = P (N)
(
0,y; {0}). (6.7)

The P (N)(y) appearing in (6.7) is identical to the right-hand side of (6.1), when y = (y,m). By (6.5), we can alterna-
tively write, for N � 1,

P (N)(v,y;A) =
∑
λ

∑
z,w

∑
(uN−1,vN−1)

JuN−1,vN−1P
(N−1)

(
v,uN−1;A,1λ(z)

)
τ(w − z)P (0)(vN−1,y;w). (6.8)

An identical formula holds for P (N)(v,y;a), where A on both sides is replaced by a.

Remark 6.2. When P (M)(v,y;a,1λ(z)) appears inside a sum over λ, our convention is that λ is summed over the
M-admissible lines.

The following proposition gives our main bound on π(N)(v,y;A), and generalises (6.1).

Proposition 6.3. For N � 0, v,y ∈ Λ, and A ⊆ Λ,

π(N)(v,y;A) � P (N)(v,y;A). (6.9)

Proof. We will prove the two statements

M
(N+1)
v,y;A (1) � P (N)(v,y;A), (6.10)

M
(N+1)
v,y;A

(
I [w ∈ CN ]) �

∑
λ

∑
z

P (N)
(
v,y;A,1λ(z)

)
τ(w − z), (6.11)

simultaneously, using induction on N (recall Remark 6.2). The first immediately gives (6.9), by (3.27).
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To verify (6.10) for N = 0, we first recall (3.4) and observe that

E′(v,y;A) ⊆ E(v,y;A) ≡
⋃

a∈A,t∈Λ

(v → t) ◦ (t → a) ◦ (a → y) ◦ (t → y), (6.12)

where, for events F and G, F ◦ G denotes disjoint occurrence of F and G. By the BK inequality (see [3]), this gives

M
(1)
v,y;A(1) = P

(
E′(v,y;A)

)
�

∑
a∈A,t∈Λ

τ(t − v)τ (a − t)τ (y − a)τ (y − t)

=
∑
a

I [a ∈ A]P (0)(v,y;a), (6.13)

which is (6.10) for N = 0.
To verify (6.11) for N = 0, we use the standard fact (see [5, Lemma 2.5] or [15, Lemma 5.5.8] for details) that

E
(
I
[
E′(v,y;A)

]
I [w ∈ C0]

)
�

∑
a∈A,z,t∈Λ

τ(w − z)τ (y − a)τ (a − t)
(
τ(t − v)τ (z − t)τ (y − z) + τ(z − v)τ (t − z)τ (y − t)

)
. (6.14)

The right-hand side of (6.14) is the same as the right-hand side of (6.11) for N = 0, where the two terms in (6.14)
correspond to the two terms in the sum over admissible lines in (6.11).

To advance the induction, we fix N � 1 and assume that (6.10), (6.11) hold for N −1. The recursion relation (3.35)
implies that

M
(N+1)
v,y;A (1) =

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
v,uN−1;A

(
M

(1)

vN−1,y;C̃N−1
(1)

)
. (6.15)

Application of (6.13) gives

M
(N+1)
v,y;A (1) �

∑
w

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
v,uN−1;A

(
I [w ∈ C̃N−1]

)
P (0)(vN−1,y;w). (6.16)

We use (6.11) for N − 1 to estimate the right-hand side (using C̃N−1 ⊆ CN−1), and use (6.8) to complete the advance-
ment of (6.10).

Similarly, for (6.11), we have

M
(N+1)
v,y;A

(
I [w ∈ CN ]) =

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
v,uN−1;A

(
M

(1)

vN−1,y;C̃N−1

(
I [w ∈ CN ])). (6.17)

Substitution of the bound (6.11) for N = 0 (again using C̃N−1 ⊆ CN−1) leads to

M
(N+1)
v,y;A

(
I [w ∈ CN ])

�
∑
λ

∑
z,w′

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
v,uN−1;A

(
I [w′ ∈ CN−1]

)
P (0)

(
vN−1,y;w′,1λ(z)

)
τ(w − z), (6.18)

where the sum over λ runs over the 0-admissible lines for P (0)(vN−1,y;w′) (recall Remark 6.2). We use the induction
hypothesis (6.11) for N − 1 to bound M

(N)
v,uN−1;A(I [w′ ∈ CN−1]), and then rewrite the resulting bound noting that

by (6.8),

P (N)
(
v,y;A,1λ(z)

)
=

∑
λ′

∑
z′,w′

∑
(uN−1,vN−1)

JuN−1,vN−1P
(N−1)

(
v,uN−1;A,1λ′

(z′)
)
τ(w′ − z′)P (0)

(
vN−1,y;w′,1λ(z)

)
, (6.19)

where the sum over λ′ runs over the (N − 1)-admissible lines (recall Remark 6.2). This leads to

M
(N+1)
v,y;A

(
I [w ∈ CN ]) �

∑∑
P (N)

(
v,y;A,1λ(z)

)
τ(w − z), (6.20)
λ z
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which completes the advancement of (6.11). �
Later, we will use the recursion formula, for M � 1 and N � 0,∑

λ

∑
w,a

∑
(uN ,vN)

JuN ,vN
P (N)

(
uN ;1λ(w)

)
τ(a − w)P (M−1)(vN,y;a) = P (N+M)(y). (6.21)

To prove (6.21), we apply induction on M . For M = 1, the claim follows from (6.8). To advance the induction, we
note from (6.7), (6.8) that

P (N+M)(y) =
∑
λ′

∑
z,t

∑
(u,v)

Ju,vP
(0)(v,y; t)P (N+M−1)

(
u;1λ′

(z)
)
τ(t − z). (6.22)

An application of the induction hypothesis yields that

P (N+M−1)
(
u;1λ′

(z)
) =

∑
λ

∑
w,a

∑
(uN ,vN )

JuN ,vN
P (N)

(
uN ;1λ(w)

)
τ(a − w)P (M−2)

(
vN,u;a,1λ′

(z)
)
. (6.23)

We substitute (6.23) into (6.22), and use the fact that∑
λ′

∑
z,t

∑
(u,v)

Ju,vP
(0)(v,y; t)P (M−2)

(
vN,u;a,1λ′

(z)
)
τ(t − z) = P (M−1)(vN,y;a). (6.24)

This then advances the induction and proves the claim in (6.21).

6.2. Bounds on χn

In this section, we prove bounds on χn. The proof will use the following lemmas and definition. Recall the defini-
tions of F ′

n(v;A) and PA in (3.5) and (4.20).

Lemma 6.4. For A ⊆ Λ, v ∈ Λ, and n � 0,

F ′
n(v;A) ⊆

⋃
y∈Λ

E′(v,y;A) ∩ (
(v → n) ◦ (y → n)

)
. (6.25)

Proof. Suppose that F ′
n(v;A) occurs. When PA = ∅, the claim follows from Proposition 4.6, which says that then

there exists x for which E′(v, (x, n);A) = E′(v, (x, n);A) ∩ ((v → n) ◦ ((x,n) → n)) holds, and this is a subset of
the event on the right-hand side of (6.25). Thus, we are left to prove that, for every bond b, {b ∈ PA} ∩ F ′

n(v;A) is a
subset of the right-hand side of (6.25). For this we use Proposition 4.3 to see that this event is a subset of the event in
the right-hand side of (6.25) with y = b. �

The following definition introduces a construction that adds a connection to n in a diagram.

Definition 6.5.

(a) Given a diagram F(u) with a vertex carrying label u, Construction θn(u) is the diagram obtained by multiplying
F(u) by θn−mu .

(b) Given a diagram, the result of applying Construction θn is the diagram obtained by Construction 1λ(u) followed
by Construction θn(u) and a summation over u and over all lines λ in the diagram. Explicitly, this means that the
two-point function τ(v −w) associated with line λ is replaced by

∑
u τ(v −u)τ (u−w)θn(u), followed by a sum

over λ.

We write P (N)(v,y;a, θn) for the result of an application of Construction θn to P (N)(v,y;a), and

P (N)(v,y;A,θn) =
∑
a

I [a ∈ A]P (N)(v,y;a, θn).
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Lemma 6.6. For A ⊆ Λ, N � 0, v,uN ∈ Λ and n � 0,

M
(N+1)
v,uN ;A

(
I [vN−1 → n]) � P (N)(v,uN ;A,θn), (6.26)

where we recall the abuse of notation above (4.15), and, for N = 0, we set v−1 = v and C̃−1 = {v}.

Proof. This is a minor modification of the bound on M
(N+1)
v,uN ;A(I [w ∈ C̃N ]) in (6.11), using the inequality

PN

(
E′(vN−1,uN ; C̃N−1) ∩ {vN−1 → n}) � P (0)(vN−1,uN ; C̃N−1, θn) (6.27)

instead of (6.14), and we omit the details. �
The following proposition gives an upper bound for χn(v;A) that is written as a minimum. In its statement, we

write P (N)(v,y;A) = P
(N)
m,k (v, y;A), when v = (v,m) and y = (y, k). Later we will make use of both alternatives in

the minimum, depending on the index k in (6.28).

Proposition 6.7. For A ⊆ Λ, N � 0, v = (v,m) ∈ Λ and n � 0,

∣∣χ(N)
n (v;A)

∣∣ �
n∑

k=m

(( ∑
y∈Zd

P
(N)
m,k (v, y;A,θn)

)
∧

( ∑
y∈Zd

P
(N)
m,k (v, y;A)

))
(1 ∨ p)θn−k−1, (6.28)

where, by convention, we set θ−1 = 1.

Proof. By (3.29), χ
(N)
n (v;A) = γ

(N)
n (v;A) − ρ

(N)
n (v;A). Since these two terms have opposite sign, it suffices to

prove that γ
(N)
n (v;A) and ρ

(N)
n (v;A) are each bounded above by the right-hand side of (6.28).

We start with ρ
(N)
n (v;A), which is defined in (3.28). We write vN = (z, k + 1) and use

PN+1(vN → n in Λ \ C̃N ) � θn−k−1 (6.29)

and

I
[{vN−1 → n} ∩ {vN−1 /∈ C̃N } in C̃N

]
� I [vN−1 → n]. (6.30)

Performing the sum over vN in (3.28), we get (recall also (3.16))

ρ(N)
n (v;A) �

∑
uN

M
(N+1)
v,uN ;A

(
I [vN−1 → n])pθn−muN −1 . (6.31)

One alternative in the upper bound then follows from (6.26). On the other hand, by (6.10),

M
(N+1)
v,uN ;A

(
I [vN−1 → n]) � M

(N+1)
v,uN ;A(1) � P (N)(v,uN ;A), (6.32)

which gives the other alternative and completes the proof for ρ
(N)
n (v;A).

We proceed with γ
(N)
n (v;A), which is defined in (3.26). Since⋃

y∈Λ

E′(v,y;A) ∩ (
(v → n) ◦ (y → n)

) =
⋃
y∈Λ

(
E′(v,y;A) ∩ (v → n)

) ◦ (y → n), (6.33)

it follows from Lemma 6.4 and the BKR inequality (see [3, Theorem 2.19]) that

P
(
F ′

n(v;A)
)
�

∑
y∈Λ

P
(
E′(v,y;A) ∩ (v → n)

)
θn(y). (6.34)

Substitution of the above bound into (3.26) yields (recall also (3.20) and (6.15))

γ (N)
n (v;A) =

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
v,uN−1;A

(
PN

(
F ′

n(vN−1; C̃N−1)
))

�
∑
y∈Λ

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
v,uN−1;A

(
PN

(
E′(vN−1,y; C̃N−1) ∩ (vN−1 → n)

))
θn(y)

=
∑

M
(N+1)
v,y;A

(
I [vN−1 → n])θn−my . (6.35)
y∈Λ
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The right-hand side of (6.35) is identical to the right-hand side of (6.31), apart from the fact that θn−my in (6.35)
is replaced by pθn−my−1 in (6.31). Since θn−my � θn−my−1 (using the convention below (6.28) when my = n), the

desired estimate for γ
(N)
n (v;A) follows. This completes the proof. �

7. Diagrammatic estimates: Bounds for φ

In this section, we prove the bound on φm1,m2 stated in (1.18). We have already proved the statement above (1.18),
that φ1,1(pc) = 1

2p2
c

∑
x∈Zd D(x)(1 − D(x)), in Section 5.2. Henceforth, we simplify the notation by writing

M(N)
y (X) = M

(N)
0,y;{0}(X). (7.1)

7.1. The main estimate

The following proposition gives the main estimate needed to prove (1.18). In its statement, we use the notation

bm1,m2 = I [m1 � m2](m1 + 1)−(d−2)/2(m2 − m1 + 1)−(d−2)/2. (7.2)

Recall from (5.17) that

φ(N)
m1,m2

= φ(N)
m1,m2

({vN−1}
) − 1

2
φ(N)

m1,m2
(C̃N−1), (7.3)

with φ
(N)
m1,m2(A) given by (5.13). Also, according to (4.3),

φm1,m2 =
∞∑

N=0

(−1)Nφ(N)
m1,m2

. (7.4)

Proposition 7.1 (The bounds on φ(N)). Let p = pc, d > 4, for the spread-out model with β sufficiently small. For
m2 � m1 � 1 and N � 1,∣∣φ(N)

m1,m2

({vN−1}
)∣∣ � (Cβ)Nbm1,m2 , (7.5)∣∣φ(N)

m1,m2
(C̃N−1)

∣∣ � (Cβ)Nbm1,m2 . (7.6)

Also, φ
(N)
1,1 ({vN−1}) = φ

(N)
1,1 (C̃N−1) = 0 for N � 1, and

φ(0)
m1,m2

({v−1}
) = φ(0)

m1,m2
(C̃−1) = φ(0)

m1,m2

({0}) =
{

p2
c

∑
x∈Zd D(x)(1 − D(x)) if (m1,m2) = (1,1),

O(βbm1,m2) if (m1,m2) 	= (1,1).
(7.7)

The case (m1,m2) = (1,1) in (7.7) has been proved already in Section 5.2. The remainder of Section 7 is devoted
to the proof of Proposition 7.1. Before proceeding with the proof, we note that it implies (1.18).

Proof of (1.18). By (7.5)–(7.7), the contributions when (m1,m2) 	= (1,1) sum up to O(βbm1,m2). This is precisely
the assertion of (1.18). �

The proof of Proposition 7.1 consists of two main steps: (i) bounds on φ
(N)
m1,m2(A) by certain Feynman diagrams,

and (ii) bounds on the Feynman diagrams. We describe these two steps in the next section, and show that they are
sufficient to prove Proposition 7.1.

7.2. Reduction of proof of the main estimate

We carry out step (i) (mentioned above) in Section 7.2.1 and step (ii) in Section 7.2.2. In Section 7.2.3, we show
that these steps are sufficient to prove Proposition 7.1 subject to Propositions 7.6, 7.7 below. The latter are proved in
Sections 7.3, 7.4.
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7.2.1. Diagrams for φ
(N)
m1,m2

The results of this section apply for general p and d under the weak assumption on D.
We will use several constructions to define the diagrams needed to bound φ

(N)
m1,m2 .

Definition 7.2.

(i) Given a diagram and any line λ of the diagram, Construction �λ(y) is the operation in which a line to y is inserted
into line λ. Explicitly, this means that the two-point function τ(v − u) corresponding to line λ is replaced by∑

z

τ(v − z)τ (z − u)τ (y − z).

We omit the superscript λ, and write Construction �(y), when we perform Construction �λ(y) followed by a sum
over all possible lines λ. We write F(v,y;�(x)) for the diagram where Construction �(x) is performed on the
diagram F(v,y).

(ii) Similarly, for �y = (y1, . . . ,yi ), Construction �(�y) is the repeated application of Constructions �(y1), . . . , �(yi ).
Note that the order of application of the different Constructions �(yj ) is irrelevant.

For example, it follows directly from (6.11) that

M(N+1)
y

(
I [a ∈ C̃N ]) �

∑
λ

P (N)
(
y;�λ(a)

)
, (7.8)

where the sum over λ runs over the N -admissible lines for P (N)(y) (recall Remark 6.2).

Definition 7.3.

(i) Given a diagram F(u) with two vertices carrying labels 0 and u and with a certain set of admissible lines indexed
by λ, Construction 2(0)

u (w) and 2(1)
u (w), applied to F(u), respectively produce the diagrams

F̃ (0)(w) =
∑
λ

∑
u,z

F
(
u;1λ(z)

)
τ(w − u)τ (w − z), (7.9)

F̃ (1)(w) =
∑
λ

∑
(u,v),z

Ju,vF
(
u;1λ(z)

)
τ(w − z)τ (w − v), (7.10)

where the sum over λ runs over the admissible lines.
(ii) Given a diagram F(v,y) with two vertices carrying labels v and y and with a certain set of admissible lines

indexed by λ, Construction Ey(w) produces the diagram

F̃ (v,w) =
∑
λ

∑
y,z

F
(
v,y;1λ(z)

)
P(u,z,w) =

∑
λ

∑
a

∑
(u0,v0)

Ju0,v0F
(
v,u0;�λ(a)

)
P (0)(v0,w;a), (7.11)

where the sum over λ runs over the admissible lines, and we recall (6.5).

Construction Ey(w) is the same as Construction 2(1)
y (w) followed by Construction 2(0)

w (y), where the unique

admissible line prior to the application of Construction 2(0)
w (y) is the line from v to w added to the diagram in the

application of Construction 2(1)
u (w) in (7.10).

Remark 7.4. By (6.6), the diagram P (N)(v,y;A) is obtained by performing N Constructions E to the diagram
P (0)(v,y;A).

Definition 7.5. Given a diagram F(y1) with two vertices carrying labels 0 and y1, Construction Vm(y2) and Con-
struction Em(y2) produce the diagrams
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F
(
y1;Vm(y2)

) =
∑

v:mv=m

F
(
y1;�(v),1(z)

)
τ(y2 − v)τ (y2 − z), (7.12)

F
(
y1;Em(y2)

) =
∑

z

∑
a:ma�m

F
(
y1;1(z), �(a)

)
P (0)(z,y2;a). (7.13)

Let

Π(0)
m (v;A) = δm,mv , Π(M)

m (v;A) = p
∑
y∈Zd

π(M−1)
(
v, (y,m − 1);A)

, (7.14)

so that, by (4.7),

Πm(v;A) =
∞∑

M=0

(−1)MΠ(M)
m (v;A). (7.15)

Denote by φ
(N,M,K)
m1,m2 (A) the contribution to φ

(N)
m1,m2(A) in (5.13) of Π

(M)
m1 (vN ; C̃N ) and Π

(K)
m2 (b̄; C̃b

N). Then

∣∣φ(N)
m1,m2

(A)
∣∣ �

∞∑
M,K=0

φ(N,M,K)
m1,m2

(A). (7.16)

The lowest order contributions to φ
(N)
m1,m2 , namely, φ(N,M,0)

m1,m2 ({vN−1}) and φ
(N,M,0)
m1,m2 (C̃N−1), are treated in the following

proposition. For its statement, we define

R(N)(y1,y2) = P (N)
(
y1;Vmy1

(y2)
) =

∑
z

∑
v: mv=my1

P (N)
(
y1;�(v),1(z)

)
τ(y2 − v)τ (y2 − z), (7.17)

Q(N)(y1,y2) = P (N)
(
y1;Emy1

(y2)
) =

∑
z

∑
a: ma>my1

P (N)
(
y1;1(z), �(a)

)
P (0)(z,y2;a). (7.18)

See Fig. 8.
We denote by R

(N,M,K)
m1,m2 (y1, y2) the result of K applications of Construction E to the second argument of

R
(N+M)
m1,l

(y1, v) (thus, R(N,M,K) actually only depends on N + M and K). Similarly, we denote by Q
(N,M,K)
m1,m2 (y1, y2)

the result of K applications of Construction E to the second argument of Q
(N+M)
m1,l

(y1, v). The diagrammatic bounds

for φ(N) are given in the following proposition, whose proof is deferred to Section 7.4.

(a) (b)

Fig. 8. Examples of diagrams that contribute to R(2)(y1,y2) and Q(2)(y1,y2).
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Proposition 7.6 (Diagrammatic bounds for φ(N)). Let p and d be arbitrary and assume the weak assumption on D.
For m2 � m1 � 1 and N,M,K � 0,

φ(N,M,K)
m1,m2

({vN−1}
)
� p2

∑
y1,y2

R
(N,M,K)
m1−1,m2−1(y1, y2). (7.19)

For m2 � m1 � 1 and N � 1, M,K � 0,

φ(N,M,K)
m1,m2

(C̃N−1) � p2
∑
y1,y2

R
(N,M,K)
m1−1,m2−1(y1, y2) + p2

∑
y1,y2

Q
(N,M,K)
m1−1,m2−1(y1, y2). (7.20)

Also, for p = pc and d > 4, for the spread-out model with β sufficiently small, if (m1,m2) 	= (1,1), then
φ

(0,0,0)
m1,m2 ({0}) = O(βbm1,m2).

7.2.2. Bounds on diagrams for φ
(N)
m1,m2

The following proposition gives bounds on the Feynman diagrams that were used above to estimate φm1,m2 . Its
proof is deferred to Section 7.3.

Proposition 7.7 (Bounds on R(N,M,K) and Q(N,M,K)). Let p = pc and d > 4, for the spread-out model with β

sufficiently small. For m2 � m1 � 0 and N,M,K � 0,∑
y1,y2

R(N,M,K)
m1,m2

(y1, y2) � C(Cβ)N+M+Kbm1,m2 . (7.21)

For m2 � m1 � 0 and N � 1, M,K � 0,∑
y1,y2

Q(N,M,K)
m1,m2

(y1, y2) � (Cβ)N+M+Kbm1,m2 . (7.22)

7.2.3. Proof of Proposition 7.1
We now prove Proposition 7.1, subject to Propositions 7.6, 7.7. Let p = pc, d > 4, for the spread-out model with

β sufficiently small. Let A denote either {vN−1} or C̃N−1. By (7.16) and Proposition 7.6,

∣∣φ(N)
m1,m2

(A)
∣∣ � p2

c

∞∑
M,K=0

∑
y1,y2

R
(N,M,K)
m1−1,m2−1(y1, y2) + p2

c

∞∑
M,K=0

∑
y1,y2

Q
(N,M,K)
m1−1,m2−1(y1, y2). (7.23)

By Proposition 7.7, each of the sums on the right-hand side of (7.23) is at most C(Cβ)Nbm1−1,m2−1. Since
bm1−1,m2−1 � Cbm1,m2 for m1,m2 � 1, this proves (7.5), (7.6).

The first two equalities in (7.7) follow from the convention (4.15). We have already noted in Section 5.2 that
φ

(0)
1,1({0}) = p2

c

∑
x D(x)(1−D(x)), and that φ

(N)
1,1 (A) = 0 if N � 1, so it remains only to prove (7.7) when (m1,m2) 	=

(1,1). For the remainder of the proof we assume that (m1,m2) 	= (1,1). By (7.21), (7.22), the contributions to
φ

(0,M,K)
m1,m2 ({0}) with M + K � 1 contain at least one factor β , so it suffices to prove that φ

(0,0,0)
m1,m2 ({0}) = O(βbm1,m2).

But this is the final statement of Proposition 7.6. �
7.3. Proof of Proposition 7.7

In this section, we prove Proposition 7.7. We begin in Section 7.3.1 with some general techniques for extending
bounds on simple diagrams to bounds on more complicated ones, and we use these techniques in Section 7.3.2 to
prove the proposition.

7.3.1. Convolution bounds
In this section, we prove three lemmas which provide bounds on a diagram after a Construction has been performed

on it, given a bound on the original diagram. In the proofs of the lemmas, we will use the following bounds on the
two-point function, which follow from [14, Theorem 1.1]:∑

τm(x) � K, ‖τm‖∞ �
{

Kβ(m + 1)−d/2 (m � 1),

K(m + 1)−d/2 (m � 0).
(7.24)
x
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We use the first bound on ‖τm‖∞ when a line is guaranteed to have length m � 1, and use the second bound on ‖τm‖∞
otherwise.

We say that a diagram has at most L lines at any fixed time when, for every m, the number of factors τ(v −u) with
mu � m and mv � m is at most L. For example, it is a simple consequence of the construction of P (N)(y) that it has
at most 4 lines at any fixed time.

Lemma 7.8. Let 0 � l � k with k � 1, and assume (7.24). Let G and Fk(x) be diagrams such that G and
∑

x Fk(x)

can be bounded by B and B(k + 1)−d/2, respectively, by associating l1- and l∞-norms to diagram lines and by using
(7.24) to estimate these norms. Then the following statements hold.

(a) Application of Construction 1λ(l) to G produces a diagram that is bounded by 2(d+2)/2KB , where K is the
constant of (7.24).

(b) Suppose that the diagram Fk(u) has at most L lines at any fixed time, and that all diagram lines have time
variables at most k. If

∑
u Fk(u) � Bβ(k + 1)−d/2, then∑

x,u

Fk

(
u;�(x,m)

)
� CLB(k + 1)−(d−2)/2, (7.25)

with C independent of F , B , k, m and L.

In each of (a), (b), the bound on the new diagram is obtained by associating l1- and l∞-norms to diagram lines
and by using (7.24) to estimate these norms.

Proof. (a) This is [14, Lemma 4.6(a)].
(b) By definition,

Fk

(
u;�(x,m)

) =
∑
(z,l)

Fk(u;1(z,l))τm−l(x − z), (7.26)

and hence

∑
x,u

Fk

(
u;�(x,m)

) =
k∑

l=0

(∑
z,u

Fk(u;1(z,l))

)(∑
x

τm−l(x − z)

)
. (7.27)

The second factor is at most K , by (7.24). The first factor is bounded uniformly in 0 � l � k by CLB(k + 1)−d/2, by
part (a). Finally, the sum over l gives rise to a factor k + 1. �
Lemma 7.9. Let d > 4 and p � C. Suppose that a diagram Fm1,m2(y1, y2) satisfies the inequality∑

y1,y2

Fm1,m2(y1, y2) � CF bm1,m2,

with this bound obtained by associating l1- and l∞-norms to diagram lines and by using (7.24) to estimate these
norms. Then application of Construction 2(i)

(v,k)
(y2,m2) to Fm1,k(y1, v), followed by summation over y1 and y2, pro-

duces a diagram that is bounded by CβiCF bm1,m2 , with C independent of F and CF . The bound on the new diagram
is obtained by associating l1- and l∞-norms to diagram lines and by using (7.24) to estimate these norms. As a conse-
quence, application of Construction E to a diagram which obeys

∑
y1,y2

Fm1,m2(y1, y2) � CF bm1,m2 produces a new
diagram that is bounded by CβCF bm1,m2 , with C independent of F and CF .

Proof. For m � 0, let

τ (0)
m (x) = τm(x), τ (1)

m (x) =
∑

pcD(u)τm−1(x − u)I [m � 1]. (7.28)

u
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Let F
(i)
m1,m2(y1, y2) be the diagram obtained by application of Construction 2(i)

(v,k)(y2,m2) to the diagram Fm1,k(y1, v).
By definition,

∑
y1,y2

F (i)
m1,m2

(y1, y2) �
∑

y1,y2,v,z

m2∑
k=m1

k∑
j=0

Fm1,k(y1, v;1(z,j))τm2−j (y2 − z)τ
(i)
m2−k(y2 − v). (7.29)

It follows from (7.24) that
∑

x τ
(i)
m (x) � pK � CK , and that∑

y2

τm2−j (y2 − z)τ
(i)
m2−k(y2 − v) � Cβi(m2 − j + 1)−d/2, (7.30)

since j < m2 for i = 1. This leads to

∑
y1,y2

F (i)
m1,m2

(u, x) �
∑

y1,v,z

m2∑
k=m1

k∑
j=0

Fm1,k(y1, v;1(z,j))Cβi(m2 − j + 1)−d/2. (7.31)

By Lemma 7.8(a),∑
y1,v,z

Fm1,k(y1, v;1(z,j)) � CCF bm1,k (7.32)

holds uniformly in 0 � j � k. Therefore,

∑
y1,y2

F (i)
m1,m2

(y1, y2) � CCF βi

m2∑
k=m1

bm1,k

k∑
j=0

(m2 − j + 1)−d/2

� CCF βi

m2∑
k=m1

bm1,k(m2 − k + 1)−(d−2)/2

= CCF βi(m1 + 1)−(d−2)/2
m2∑

k=m1

(k − m1 + 1)−(d−2)/2(m2 − k + 1)−(d−2)/2

� CCF βibm1,m2 , (7.33)

where we used [7, Lemma 2.6(i)] and d > 4 in the last step.
The statement concerning Construction E then follows from the comment under Definition 7.3. �

Lemma 7.10. Let d > 2 and assume that m2 > m1. Suppose that the diagram Fm(y) satisfies∑
y

Fm(y) � CF (m + 1)−d/2,

with this bound obtained by associating l1- and l∞-norms to diagram lines and by using (7.24) to estimate these
norms. For m2 > m1, let

F̃m1,m2(y1, y2) =
m1∑

k,j=0

∑
z,w

Fm1

(
y1;1(z, j),1(w, k)

)
τm2−k(y2 − w)τm2−j (y2 − z). (7.34)

Then ∑
y1,y2

F̃m1,m2(y1, y2) � CCF βbm1,m2, (7.35)

with C independent of F and CF , and with the bound obtained by associating l1- and l∞-norms to diagram lines and
by using (7.24) to estimate these norms.
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Proof. By the symmetry between k and j ,

F̃m1,m2(y1, y2) � 2
∑
z,w

m1∑
k=0

m1∑
j=k

τm2−k(y2 − z)τm2−j (y2 − w)Fm1

(
y1;1(z, j),1(w, k)

)
. (7.36)

Therefore, by (7.24) and the fact that m2 > m1 � j ,

∑
y1,y2

F̃m1,m2(y1, y2) � 2
m1∑
k=0

m1∑
j=k

K2β(m2 − k + 1)−d/2
∑
y1

Fm1

(
y1;1(k),1(j)

)
. (7.37)

It follows from Lemma 7.8(a) that∑
y1

Fm1

(
y1;1(k),1(j)

)
� CCF (m1 + 1)−d/2, (7.38)

uniformly in k, j . Since m2 > m1, we conclude that

∑
y1,y2

F̃m1,m2(y1, y2) � CCF β(m1 + 1)−d/2
m1∑
k=0

m1∑
j=k

(m2 − k + 1)−d/2

� CCF β(m1 + 1)−(d−2)/2
m1∑
k=0

(m2 − k + 1)−d/2

� CCF βbm1,m2 . � (7.39)

7.3.2. Proof of Proposition 7.7
Now we prove Proposition 7.7. According to the definitions below (7.18), it suffices to prove that, for N � 0,∑

y1,y2

R(N)
m1,m2

(y1, y2) � C(Cβ)Nbm1,m2, (7.40)

and that for N � 1,∑
y1,y2

Q(N)
m1,m2

(y1, y2) � (Cβ)N+1bm1,m2, (7.41)

since (7.21), (7.22) then follow from Lemma 7.9.
We start with the proof of (7.40). Let

S(N)
m1,m2

(y1, y2) = P (N)
m1

(
y1;�(y2,m1)

)
δm1,m2 . (7.42)

By (7.17), R
(N)
m1,m2(y1, y2) is obtained from S

(N)
m1,k

(y1, v) by applying Construction 2(0)
(v,k)(y2,m2). Therefore, by

Lemma 7.9, to prove (7.40) it suffices to show that∑
y1,y2

S(N)
m1,m2

(y1, y2) � C(Cβ)Nbm1,m2 . (7.43)

Lemma 7.8(b), together with (6.2) and the fact that P (N)(y) has L� 4 (as noted above Lemma 7.8), gives the desired
result that∑

y1,y2

S(N)
m1,m2

(y1, y2) =
∑
y1,y2

P (N)
m1

(
y1;�(y2,m1)

)
δm1,m2

� C(Cβ)N(m1 + 1)−(d−2)/2δm1,m2 = C(Cβ)Nbm1,m2δm1,m2 . (7.44)

Next, we prove (7.41). In (7.18), a factor τ(a − w)P (0)(z,y2;a) arises, where w is the location where Construc-
tion �(a) is applied. We write a = (a,m) and y1 = (y1,m1), and note that (7.18) requires that m > m1. We regard
τ(a − w)P (0)(z,y2;a) as the result of Construction 2(0)

a (y2) applied to τ(a − w)τ (a − z), where the unique admis-
sible line is τ(a − z). Let

S̃(N)
m1,m

(y1, a) =
m1∑

P (N)
m1

(
y1;1(z, j),1(w, k)

)
τm−k(a − w)τm−j (a − z). (7.45)
k,j=0
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Then Q
(N)
m1,m2(y1, y2) arises from an application of Construction 2(0)

a (y2) to the second argument of S̃
(N)
m1,m(y1, a). By

Lemma 7.9, it suffices to prove that if m > m1, then∑
y1,a

S̃(N)
m1,m

(y1, a) � (Cβ)N+1bm1,m. (7.46)

The bound (7.46) follows from Lemma 7.10 and (6.2), and this completes the proof of (7.41).

7.4. Proof of Proposition 7.6

In this section, we prove Proposition 7.6. We begin in Section 7.4.1 with some key estimates for the proof. In
Section 7.4.2, we prove (7.19), (7.20) for the case K = 0, and we extend these inequalities to K � 1 in Section 7.4.3.
In Section 7.4.4, we prove the final statement of Proposition 7.6.

7.4.1. Key estimates for proof of Proposition 7.6
For v, x and m � 0 such that mv � m � mx , let

Vm(v,x) =
⋃

z: mz�m

{v → z �⇒ x}, (7.47)

Em(v,x;A) =
⋃
a∈A

⋃
z: mz�m

(v → z) ◦ (z → x) ◦ (z → a) ◦ (a → x). (7.48)

The events Vm(v,x) and Em(v,x;A) are depicted in Fig. 9. By (6.12),

E(v,x;A) = Emv (v,x;A). (7.49)

Also, for later use, we note that

Vm(v,x) ⊆
⋃

z: mz�m

⋃
t : mt=m

(v → z) ∩ (
(v → t) ◦ (t → x) ◦ (z → x)

)
. (7.50)

To prove (7.50), we observe that if mz � m � mx , then

(z �⇒ x) =
⋃

t : mt=m

(z → t) ◦ (t → x) ◦ (z → x), (7.51)

and hence, by (7.47),

Vm(v,x) =
⋃

z: mz�m

⋃
t : mt=m

(v → z) ∩ (
(z → t) ◦ (t → x) ◦ (z → x)

)
⊆

⋃
z: mz�m

⋃
t : mt=m

(v → z) ∩ (
(v → t) ◦ (t → x) ◦ (z → x)

)
. (7.52)

The following proposition provides the key estimates for the proof of Proposition 7.6.

(a) (b)

Fig. 9. Schematic representations of the events (a) Vm(v,x) and (b) Em(v,x;A).
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Proposition 7.11. Let p and d be arbitrary and assume the weak assumption on D. For N,M � 0, m1 � 1, and
a,y2 ∈ Λ,∑

(uN ,vN)

JuN ,vN
M(N+1)

uN

(
I
[
Vm1−1(vN−1,y2)

]
Π(M)

m1
(vN ; C̃N )

)
� p

∑
y1

R(N+M)
(
(y1,m1 − 1),y2

)
, (7.53)

∑
(uN ,vN)

JuN ,vN
M(N+1)

uN

(
I
[
Vm1−1(vN−1,y2)

]
I [a ∈ C̃N ]Π(M)

m1
(vN ; C̃N )

)
� p

∑
y1

R(N+M)
(
(y1,m1 − 1),y2;�(a)

)
, (7.54)

∑
(uN ,vN)

JuN ,vN
M(N+1)

uN

(
I
[
Em1(vN−1,y2; C̃N−1)

]
Π(M)

m1
(vN ; C̃N )

)
� p

∑
y1

Q(N+M)
(
(y1,m1 − 1),y2

)
, (7.55)

∑
(uN ,vN)

JuN ,vN
M(N+1)

uN

(
I
[
Em1(vN−1,y2; C̃N−1)

]
I [a ∈ C̃N ]Π(M)

m1
(vN ; C̃N )

)
� p

∑
y1

Q(N+M)
(
(y1,m1 − 1),y2;�(a)

)
. (7.56)

The proof of Proposition 7.11 relies on three lemmas which we state and prove before proving the proposition.
Lemmas 7.12–7.13 are used to prove (7.53), (7.54), and Lemma 7.14 is used to prove (7.55), (7.56).

Lemma 7.12. Let p and d be arbitrary and assume the weak assumption on D. For N � 0, m1 � 1, vN−1,uN,y2 ∈ Λ,
and �x with 0, 1 or 2 components in Λ,

PN

(
E′(vN−1,uN ; C̃N−1) ∩ Vm1−1(vN−1,y2) ∩ {�x ∈ C̃N })

�
∑
λ

P (0)
(
vN−1,uN ; C̃N−1, �

λ(�x),Vm1−1(y2)
)
, (7.57)

where Construction �λ(�x) is obtained by performing Construction �λ(x1) followed by Constructions �(xi ) for all
other components xi with i > 1, and the sum over λ follows the convention of Remark 6.2.

Proof. By (6.12) and (6.3), (6.4), the event E′(vN−1,uN ; C̃N−1) implies that the disjoint connections necessary to
obtain an upper bound P (0)(vN−1,uN ; C̃N−1) are present. The additional connections implied by {�x ∈ C̃N } can be
accounted for in an upper bound by an application of Construction �λ(�x) to P (0)(vN−1,uN ; C̃N−1). To understand
the effect of the event Vm1−1(vN−1,y2), we use (7.50). The connection vN−1 → t = (t,m1 − 1) in (7.50) can be
accounted for by an application of Construction �(t), and the remaining connections in (7.50) can then be accounted
for by an application of Construction 2(0)

t (y2). By the equivalent definition of Construction Vm1−1(y2) formulated
below Definition 7.5, this completes the proof. �
Lemma 7.13. Under the same conditions as in Lemma 7.12,

M(N+1)
uN

(
I
[
Vm1−1(vN−1,y2)

]
I [�x ∈ C̃N ]) �

∑
λ

P (N)
(
uN ;�λ(�x),Vm1−1(y2)

)
. (7.58)

Proof. For N = 0, we must bound M
(1)
u0 (I [Vm1−1(0,y2)]I [�x ∈ C̃0]). For N � 1, (3.35) gives

M(N+1)
uN

(
I
[
Vm1−1(vN−1,y2)

]
I [�x ∈ C̃N ])

=
∑

(uN−1,vN−1)

JuN−1,vN−1M
(N)
uN−1

(
M

(1)

vN−1,uN ;C̃N−1

(
I
[
Vm1−1(vN−1,y2)

]
I [�x ∈ C̃N ])). (7.59)

The statement of Lemma 7.12 can be rewritten as

M
(1)

vN−1,uN ;C̃N−1

(
I
[
Vm1−1(vN−1,y2)

]
I [�x ∈ C̃N ]) �

∑
P (0)

(
vN−1,uN ; C̃N−1, �

λ(�x),Vm1−1(y2)
)
. (7.60)
λ
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With (4.15) and (6.4), this proves (7.58) for N = 0. For N � 1, we substitute (7.60) into (7.59) to obtain

M(N+1)
uN

(
I
[
Vm1−1(vN−1,y2)

]
I [�x ∈ C̃N ])

�
∑
λ

∑
w′

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
uN−1

(
I [w′ ∈ C̃N−1]

)
P (0)

(
vN−1,uN ;w′, �λ(�x),Vm1−1(y2)

)
. (7.61)

Application of (6.11) then gives

M(N+1)
uN

(
I
[
Vm1−1(vN−1,y2)

]
I [�x ∈ C̃N ])

�
∑
λ,λ′

∑
w′

∑
(uN−1,vN−1)

JuN−1,vN−1P
(N−1)

(
uN−1;�λ′

(w′)
)
P (0)

(
vN−1,uN ;w′, �λ(�x),Vm1−1(y2)

)
�

∑
λ

P (N)
(
uN ;�λ(�x),Vm1−1(y2)

)
, (7.62)

where we have used a slight extension of (6.21) in the last inequality. This proves (7.58). �
Lemma 7.14. Under the same conditions as in Lemma 7.12, and with the additional assumption that mx1 ,muN

� m1

M(N+1)
uN

(
I
[
Em1(vN−1,y2; C̃N−1)

]
I [�x ∈ C̃N ]) �

∑
λ

P (N)
(
uN ;�λ(x1),Em1(y2), �(x2)

)
. (7.63)

Proof. For N = 0 and m1 � 1, the event Em1(vN−1,y2; C̃N−1) = Em1(0,y2; {0}) is empty, so we may assume that

N � 1. For N = 1, we must bound M
(2)
u1 (I [Em1(v1,y2; C̃0)]I [�x ∈ C̃1]). For N � 2, it follows from (3.38) that

M(N+1)
uN

(
I
[
Em1(vN−1,y2; C̃N−1)

]
I [�x ∈ C̃N ])

=
∑

(uN−2,vN−2)

JuN−2,vN−2M
(N−1)
uN−2

(
M

(2)

vN−2,uN ;C̃N−2

(
I
[
Em1(vN−1,y2; C̃N−1)

]
I [�x ∈ C̃N ])). (7.64)

We will show below that if mx1,muN
� m1, then

M
(2)

vN−2,uN ;C̃N−2

(
I
[
Em1(vN−1,y2; C̃N−1)

]
I [�x ∈ C̃N ])

�
∑
λ

P (1)
(
vN−2,uN ; C̃N−2, �

λ(x1),Em1(y2), �(x2)
)
. (7.65)

Then (7.63) follows from (7.65), as in (7.61), (7.62).
It remains to prove (7.65). For simplicity, we consider in detail the case �x = x1. By (3.35),

M
(2)

vN−2,uN ;C̃N−2

(
I
[
Em1(vN−1,y2; C̃N−1)

]
I [x1 ∈ C̃N ])

=
∑

(uN−1,vN−1)

JuN−1,vN−1M
(1)

vN−2,uN−1;C̃N−2

(
PN

(
E′(vN−1,uN ; C̃N−1)

∩ Em1(vN−1,y2; C̃N−1) ∩ {x1 ∈ C̃N })). (7.66)

By (7.48),

PN

(
E′(vN−1,uN ; C̃N−1) ∩ Em1(vN−1,y2; C̃N−1) ∩ {x1 ∈ C̃N })

�
∑

z: mz�m1

∑
w∈C̃N−1

PN

(
E′(vN−1,uN ; C̃N−1) ∩ {z,x1 ∈ C̃N } ∩ {

(z → w) ◦ (z → y2) ◦ (w → y2)
})

. (7.67)

Using (6.14), the Markov property, the fact that mx1,muN
� mz, and the BK inequality, we obtain

PN

(
E′(vN−1,uN ; C̃N−1) ∩ {z,x1 ∈ C̃N } ∩ {

(z → w) ◦ (z → y2) ◦ (w → y2)
})

= PN

(
E′(vN−1,uN ; C̃N−1) ∩ {z,x1 ∈ C̃N })PN

(
(z → w) ◦ (z → y2) ◦ (w → y2)

)
�

∑
P (0)

(
vN−1,uN ; C̃N−1, �

λ(x1), �(z)
)
τ(w − z)τ (y2 − z)τ (y2 − w). (7.68)
λ
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Also, it is a straightforward extension of (6.14) that

M
(1)
v,y;A

(
I [v → w,v → w′]) �

∑
λ′

P (0)
(
v,y;A,�λ′

(w), �(w′)
)
. (7.69)

We substitute (7.68) into (7.67) and substitute the result into (7.66). This gives

M
(2)

vN−2,uN ;C̃N−2

(
I
[
Em1(vN−1,y2; C̃N−1)

]
I [x1 ∈ C̃N ])

�
∑

(uN−1,vN−1)

JuN−1,vN−1

∑
w,w′,z: mz�m1

M
(1)

vN−2,uN−1;C̃N−2

(
I [w,w′ ∈ C̃N−1]

)

×
∑
λ

P (0)
(
vN−1,uN ;w′, �λ(x1), �(z)

)
τ(w − z)τ (y2 − z)τ (y2 − w)

�
∑
λ,λ′

∑
(uN−1,vN−1)

JuN−1,vN−1

∑
w,w′,z: mz�m1

P (0)
(
vN−2,uN−1; C̃N−2, �

λ′
(w′), �(w)

)
× P (0)

(
vN−1,uN ;w′, �λ(x1), �(z)

)
τ(w − z)τ (y2 − z)τ (y2 − w), (7.70)

where we have used (7.69) in the second inequality. It can then be concluded from (7.13), (6.21) and (6.3), by drawing
the picture, that

M
(2)

vN−2,uN ;C̃N−2

(
I
[
Em1(vN−1,y2; C̃N−1)

]
I [x1 ∈ C̃N ]) �

∑
λ

P (1)
(
vN−2,uN ; C̃N−2, �

λ(x1),Em1(y2)
)
. (7.71)

Finally, if �x has an additional element x2, then this can be accounted for in an upper bound by a final application of
Construction �(x2), leading to (7.65). �
Proof of Proposition 7.11. We first prove (7.53). For M = 0, the left-hand side of (7.53) is equal to∑

(uN ,vN)

JuN ,vN
M(N+1)

uN

(
I
[
Vm1−1(vN−1,y2)

])
δm1,mvN

� p
∑
y1

P (N)
(
(y1,m1 − 1);Vm1−1(y2)

)
= p

∑
y1

R(N)
(
(y1,m1 − 1),y2

)
, (7.72)

with R(N) defined in (7.17). For M � 1, we use (4.7) and (6.9) to obtain

Π(M)
m1

(vN ; C̃N ) �
∑
w

I [w ∈ C̃N ]p
∑
y1

P (M−1)
(
vN, (y1,m1 − 1);w)

. (7.73)

By (7.58), the left-hand side of (7.53) is at most

p
∑
λ

∑
w

∑
(uN ,vN )

JuN ,vN
P (N)

(
uN ;�λ(w),Vm1−1(y2)

)∑
y1

P (M−1)
(
vN, (y1,m1 − 1);w)

� p
∑
y1

P (N+M)
(
(y1,m1 − 1);Vm1−1(y2)

) = p
∑
y1

R(N+M)
(
(y1,m1 − 1),y2

)
, (7.74)

where the inequality has used (6.21) together with the observation that in the application of Construction Vm1−1(y2)

to P (N+M)(y1,m1 − 1) there are more available lines than if Construction Vm1−1(y2) is applied only to the factor
P (N)(uN ;�λ(w),Vm1−1(y2)). This proves (7.53).

The proof for (7.54) is the same as the proof of (7.53), with the observation that in (7.57) the order of application
of the constructions can be interchanged on the right-hand side.

For (7.55), consider first the case M = 0. In this case, the left-hand side of (7.55) is equal to∑
JuN ,vN

M(N+1)
uN

(
I
[
Em1(vN−1,y2; C̃N−1)

])
δm1,mvN

� p
∑
y

Q(N)
(
(y1,m1 − 1),y2

)
, (7.75)
(uN ,vN) 1
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by (7.63) (note that muN
= m1 − 1 � m1 as required), and with R(N) defined in (7.18). For M � 1, by (7.73), the

left-hand side of (7.55) is at most

p
∑
w

∑
(uN ,vN)

JuN ,vN
M(N+1)

uN

(
I
[
Em1(vN−1,y2; C̃N−1)

]
I [w ∈ C̃N ])∑

y1

P (M−1)
(
vN, (y1,m1 − 1);w)

. (7.76)

The factor P (M−1)(vN, (y1,m1 − 1);w) guarantees that m1 − 1 � mw,muN
, and (7.63) can now be applied to com-

plete the proof of (7.55) as in the proof of (7.53). The proof of (7.56) is similar. �
7.4.2. Proof of (7.19), (7.20) for K = 0

We begin with the following lemma. Recall the definitions of the events Hm and Vm in (5.5) and (7.47).

Lemma 7.15. For v,y ∈ Λ with mv < m � my ,

Hm

(
v,y; {v}) ⊆ Vm−1(v,y). (7.77)

Proof. Let b denote the last pivotal bond for v → y, if it exists. The contribution where such a pivotal bond does not
exist is equal to {v ⇒ y} ⊆ Vm−1(v,y), since mv � m − 1. Thus, it suffices to show that

Hm

(
v,y; {v}) ∩ {b last occ. and piv. bond for v → y} (7.78)

is a subset of Vm−1(v,y) for every b. When Hm(v,y; {v}) occurs, b cannot be an m-cutting bond for v → y. There-
fore, mb̄ � m − 1. Since b̄ ⇒ y, this proves that Vm−1(v,y) occurs with z in (7.47) given by z = b̄. �

Recall that P̃N is the conditional law given that (uN,vN) is vacant. We also use the following lemma.

Lemma 7.16. Let F be an increasing event, and let X be a non-negative random variable which is independent of the
occupation status of the bond (uN,vN). Then

ẼN

(
XI [F ]) � EN

(
XI [F ]). (7.79)

Proof. We condition on (uN,vN) to see that

EN

(
XI [F ]) = JvN ,uN

EN

(
XI [F ]|(uN,vN) occupied

) + (1 − JvN ,uN
)EN

(
XI [F ]|(uN,vN) vacant

)
. (7.80)

By assumption,

EN

(
XI [F ]|(uN,vN) occupied

)
� EN

(
XI [F ]|(uN,vN) vacant

)
, (7.81)

and the claim follows. �
Proof of (7.19) for K = 0. To estimate φ

(N,M,0)
m1,m2 ({vN−1}), we first note that by definition (recall (5.13) and (7.14),

(7.15)),

φ(N,M,0)
m1,m2

(A) =
∑

(uN ,vN)

JuN ,vN

∑
b 	=(uN ,vN)

Jb,b̄M̃
(N+1)
(uN ,vN)

(
I
[
Hm1(vN−1, b;A)

]
Π(M)

m1
(vN ; C̃N )

)
δm2,mb̄

. (7.82)

We are concerned here with A = {vN−1}. By Lemma 7.15,

Hm1

(
vN−1, b; {vN−1}

) ⊆ Vm1−1(vN−1, b ). (7.83)

The event Vm1−1(vN−1, b ) is increasing, and the event E′
N = E′(vN−1,uN ; C̃N−1) does not depend on the occupation

status of (uN,vN). Also, the random variable Π
(M)
m1 (vN ; C̃N ) is independent of the occupation status of (uN,vN),

since C̃N = C̃
(uN ,vN )
N (vN−1) is. Therefore, by Lemma 7.16, the ẼN expectation in M̃

(N+1)
(uN ,vN)

implicit in (7.82) can be
bounded above by the corresponding expectation without the tilde, i.e.,

ẼN

(
I
[
E′

N ∩ Vm1−1(vN−1, b )
]
Π(M)

m1
(vN ; C̃N )

)
� EN

(
I
[
E′

N ∩ Vm1−1(vN−1, b )
]
Π(M)

m1
(vN ; C̃N )

)
. (7.84)

Omitting the restriction b 	= (uN,vN), it follows that
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φ(N,M,0)
m1,m2

({vN−1}
)
�

∑
b

Jb,b̄

∑
(uN ,vN )

JuN ,vN
M(N+1)

uN

(
I
[
Vm1−1(vN−1, b )

]
Π(M)

m1
(vN ; C̃N )

)
δm2,mb̄

= p
∑
y2

∑
(uN ,vN)

JuN ,vN
M(N+1)

uN

(
I
[
Vm1−1

(
vN−1, (y2,m2 − 1)

)]
Π(M)

m1
(vN ; C̃N )

)
, (7.85)

where we have written b = (y2,m2 − 1) and have used
∑

b̄ Jb,b̄ = p. The bound (7.19) for K = 0 now follows
from (7.53). �

Next, we prepare for the proof of (7.20) for K = 0. Let N � 1. To partition the event Hm(vN−1, b; C̃N−1) occurring
in (7.82) (for A = C̃N−1), we define

G(1)
m (vN−1, b ) = Hm(vN−1, b; C̃N−1) ∩ Vm−1(vN−1, b ), (7.86)

G(2)
m (vN−1, b ) = Hm(vN−1, b; C̃N−1) ∩ Vm−1(vN−1, b )c. (7.87)

In terms of these events, Hm(vN−1, b; C̃N−1) is given by the disjoint union

Hm(vN−1, b; C̃N−1) = G(1)
m (vN−1, b ) ∪̇ G(2)

m (vN−1, b ). (7.88)

Clearly,

G(1)
m (vN−1, b ) ⊆ Vm−1(vN−1, b ). (7.89)

For G
(2)
m (vN−1, b ), we will use the following lemma. Recall that the event Em was defined in (7.48).

Lemma 7.17. For vN−1,y2 ∈ Λ and m � 1 such that mvN−1 < m � my2 ,

G(2)
m (vN−1,y2) ⊆ Em(vN−1,y2; C̃N−1). (7.90)

Proof. Suppose that G
(2)
m (vN−1,y2) occurs. It cannot be the case that vN−1 ⇒ y2, since this contributes instead to

G
(1)
m (vN−1,y2). Thus there is at least one occupied pivotal bond for vN−1 → y2, and we denote the last such bond

by b. Then {vN−1 → b̄ ⇒ y2}. It must be the case that mb̄ > m − 1, since otherwise G
(1)
m (vN−1,y2) occurs. By the

definition of Hm(vN−1, b; C̃N−1) in (5.5), b cannot be m-cutting for vN−1
C̃N−1−−−→ y2, and hence {vN−1

C̃N−1−−−→ b}c
occurs. Since vN−1

C̃N−1−−−→ y2 occurs by (5.5), we conclude that b̄
C̃N−1−−−→ y2. Therefore, Em(vN−1,y2; C̃N−1) occurs,

with z = b̄ in (7.48). �
Proof of (7.20) for K = 0. Let N � 1. We estimate (7.82) for A = C̃N−1, using the partition (7.88) for the event
Hm(vN−1, b; C̃N−1).

Consider first the contribution due to G
(1)
m1(vN−1, b ). The inclusion (7.89) plays a role identical to the inclusion

(7.83), and the analysis of (7.84), (7.85) then applies in an identical fashion to give the first term on the right-hand
side of (7.20) as an upper bound for this contribution.

It remains to show that the contribution to (7.82) due to G
(2)
m1(vN−1, b ), namely∑

b

Jb,b̄

∑
(uN ,vN)

JuN ,vN
M̃

(N+1)
(uN ,vN)

(
I
[
G(2)

m1
(vN−1, b )

]
Π(M)

m1
(vN ; C̃N )

)
δm2,mb̄

, (7.91)

is bounded by the second term on the right-hand side of (7.20). By Lemma 7.17,

I
[
G(2)

m1
(vN−1, b )

]
� I

[
Em1(vN−1, b; C̃N−1)

]
. (7.92)

Since Em1(vN−1, b; C̃N−1) is increasing, we may apply Lemma 7.16 as before to conclude that the ẼN expectation in

M̃
(N+1)
(uN ,vN ) implicit in (7.91) obeys

ẼN

(
I
[
E′

N ∩ G(2)
m (vN−1, b )

]
Π(M)

m1
(vN ; C̃N )

)
� EN

(
I
[
E′

N ∩ Em1(vN−1, b; C̃N−1)
]
Π(M)

m1
(vN ; C̃N )

)
, (7.93)

and hence

M̃
(N+1) (

I
[
G(2)

m (vN−1, b )
]
Π(M)

m (vN ; C̃N )
)
� M(N+1)

u

(
I
[
Em (vN−1, b; C̃N−1)

]
Π(M)

m (vN ; C̃N )
)
. (7.94)
(uN ,vN) 1 1 N 1 1
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It follows that the contribution to (7.82) due to G(2) is bounded above by∑
b

Jb,b̄

∑
(uN ,vN)

JuN ,vN
M(N+1)

uN

(
I
[
Em1(vN−1, b; C̃N−1)

]
Π(M)

m1
(vN ; C̃N )

)
δm2,mb̄

= p
∑
y2

∑
(uN ,vN)

JuN ,vN
M(N+1)

uN

(
I
[
Em1

(
vN−1, (y2,m2 − 1); C̃N−1

)]
Π(M)

m1
(vN ; C̃N )

)
, (7.95)

where we have written b = (y2,m2 − 1) and have used
∑

b̄ Jb,b̄ = p. The bound (7.20) now follows from Proposi-
tion 7.11. �
7.4.3. Proof of (7.19)–(7.20) for K � 1

We first prove (7.19) for K = 1. For this, we note that

φ(N,M,1)
m1,m2

(A) =
∑

b

Jb,b̄

∑
(uN ,vN)

JuN ,vN
M̃

(N+1)
(uN ,vN)

(
I
[
Hm1(vN−1, b;A)

]
Π(1)

m2

(
b̄; C̃b

N

)
Π(M)

m1
(vN ; C̃N )

)
. (7.96)

By (6.9) and (7.14),

Π(1)
m2

(
b̄; C̃b

N

)
� p

∑
y2

P (0)
m2

(
b̄, (y2,m2 − 1); C̃b

N

) = p
∑
a

I
[
a ∈ C̃b

N

]∑
y2

P (0)
(
b̄, (y2,m2 − 1);a)

. (7.97)

It then follows from (7.83), Lemma 7.16 and (7.54) that

φ(N,M,1)
m1,m2

({vN−1}
)
� p2

∑
y1,y2

∑
a

∑
b

Jb,b̄R
(N+M)

(
(y1,m1 − 1), b;�(a)

)
P (0)

(
b̄, (y2,m2 − 1);a)

. (7.98)

By (7.11), Construction �(a) followed by multiplication by Jb,b̄P
(0)(b̄, (y2,m2 −1);a) and by summation over a and

b is equivalent to Construction E. This shows that

φ(N,M,1)
m1,m2

({vN−1}
)
� p2

∑
y1,y2

R
(N,M,1)
m1−1,m2−1(y1, y2), (7.99)

which proves (7.19) for K = 1.
To extend the proof of (7.19) to K � 1, we estimate Π

(K)
m2 (b̄; C̃b

N) using (6.9) and (7.14). According to Remark 7.4,

the resulting bound on Π
(K)
m2 (b̄; C̃b

N) is the same as K − 1 applications of Construction E to p
∑

x P (0)(b̄, (x,m2 −
1); C̃b

N). Therefore, by definition of R
(N,M,K)
m1,m2 (y1, y2), (7.19) for K � 1 follows from (7.19) for K = 1.

The proof of (7.20) proceeds similarly, with (7.56) used in place of (7.54).

7.4.4. Proof of final statement of Proposition 7.6
Finally, we suppose that (m1,m2) 	= (1,1), and show that in this case φ

(0,0,0)
m1,m2 ({0}) � Cβbm1,m2 .

We have already seen in (7.19) and (7.21) that φ
(0,0,0)
m1,m2 ({0}) � Cbm1,m2 , and the only issue is to establish that a factor

β can be inserted into this upper bound. A factor β arises in diagrammatic estimates when the bound (7.24) is used
to estimate ‖τm‖∞ with m � 1. According to (7.17), the diagrammatic upper bound p2

c

∑
y1,y2

R
(0,0,0)
m1−1,m2−1(y1, y2) on

φ
(0,0,0)
m1,m2 ({0}) given by (7.19) is equal to∑

v

∑
z

P
(0)
m1−1

(
y1;�(v,m1 − 1),1(z)

)
τm2−m1(y2 − v)τm2−1−mz(y2 − z). (7.100)

When (m1,m2) 	= (1,1), there is at least one line with length greater than zero, and a factor β then results from
standard estimates.

8. Diagrammatic estimates: Bounds for en+1

In this section, we prove the bound (1.19) on en+1(pc). We assume throughout that

θm(pc) � Cθ(m + 1)−1 for all 0 � m � n, (8.1)
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which is a hypothesis of Theorem 1.1(ii). Throughout this section, we fix d > 4, p = pc, and consider the spread-out
model with β sufficiently small, although some of our arguments apply more generally. Note that we can extend (8.1)
to m = n + 1 by conditioning on a vertex at time 1 and using the Markov property and (1.9) to obtain

θn+1(pc) �
∑
v∈Zd

pcD(v)θn(pc) = pcθn(pc) � 2Cθ(n + 1)−1 � 4Cθ(n + 2)−1. (8.2)

We absorb the constant 4 into Cθ and regard (8.1) as applying also when m = n + 1 in what follows.
In Section 8.1, we reduce (1.19) to bounds on e

(N)
n+1(1), . . . , e

(N)
n+1(5). In Section 8.2, we provide some preliminary

convolution bounds. Then we estimate the five error terms in order of increasing difficulty, namely e
(N)
n+1(3), e

(N)
n+1(5),

e
(N)
n+1(2), e

(N)
n+1(4), e

(N)
n+1(1), in Sections 8.3–8.7, respectively.

8.1. Reduction of proof of (1.19)

Let

Δ′
n =

⎧⎨
⎩

(n + 1)(6−d)/2 (4 < d < 6),

logn (d = 6),

1 (d > 6).

(8.3)

The following proposition will be proved in Sections 8.3–8.7.

Proposition 8.1 (Bounds on error terms). Let d > 4, p = pc , for the spread-out model with β sufficiently small. Let
n � 1 and N � 0, and assume that θm(pc) � Cθ(m + 1)−1 for all 0 � m � n. Then∣∣e(N)

n+1(1)
∣∣ � CC3

θ (n + 1)−3δN,0 + C3
θ (Cβ)N∨1[(n + 1)−d/2 logn + (n + 1)−3Δ′

n+1

]
, (8.4)∣∣e(N)

n+1(2)
∣∣ � CC3

θ (n + 1)−3δN,0 + C3
θ (Cβ)N∨1[(n + 1)−d/2 logn + (n + 1)−3Δ′

n+1

]
, (8.5)∣∣e(N)

n+1(3)
∣∣ � CCθ(Cβ)N∨1(n + 1)−d/2 logn, (8.6)∣∣e(N)

n+1(4)
∣∣ � CC3

θ (n + 1)−3δN,0 + C3
θ (Cβ)N∨1[(n + 1)−d/2 logn + (n + 1)−3Δ′

n+1

]
, (8.7)∣∣e(N)

n+1(5)
∣∣ � CC3

θ (n + 1)−3δN,0 + C3
θ (Cβ)N∨1[(n + 1)−d/2 logn + (n + 1)−3Δ′

n+1

]
. (8.8)

Proof of (1.19) subject to Proposition 8.1. It follows from (5.19) that |en+1| is bounded above by the sum of the
right-hand sides of (8.4)–(8.8). The elementary inequalities (n+1)−3Δ′

n+1 � (n+1)−2Δn+1 and (n+1)−d/2 logn �
(n + 1)−2Δn+1 then yield (1.19) (recall (1.16)). �
8.2. Convolution bounds

This section contains several convolution bounds to be used in Sections 8.3–8.7.

Lemma 8.2. Let d � 1 and suppose that Fm obeys Fm � CF (m + 1)−d/2. If (8.1) holds, then

n+1∑
m=�(n+1)/2�+1

Fmθn+1−m � CCθCF (n + 1)−d/2 logn, (8.9)

where C is a constant that only depends on d .

Proof. We use the two assumptions to obtain the upper bound

n+1∑
m=�(n+1)/2�+1

CF (m + 1)−d/2Cθ(n − m + 2)−1 � CCθCF (n + 1)−d/2
n+1∑

m=�(n+1)/2�+1

(n − m + 2)−1

� CCθCF (n + 1)−d/2 logn. � (8.10)
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Let Fm(θn+1, θn+1) denote the result of two applications of Construction θn+1 to Fm. (According to Definition 6.5,
each of the two added connections to n is added to lines originally in Fm, i.e., the second added connection to n cannot
be attached to the first added connection to n.)

Lemma 8.3. Let d > 4 and suppose that Fm is a diagram such that Fm � CF (m + 1)−d/2. Suppose that Fm contains
at most L lines at any fixed time, that the largest time coordinate of a vertex in Fm is m, and assume (8.1). Then

�n/2�∑
m=0

Fm(θn+1, θn+1)θn−m � CC3
θ CFL2(n + 1)−3Δ′

n+1, (8.11)

where C is a constant that only depends on d .

Proof. Each factor θ appearing in Fm(θn+1, θn+1)θn−m has subscript at least n − �n/2�. Therefore, by (8.1),

�n/2�∑
m=0

Fm(θn+1, θn+1)θn−m � CC3
θ (n + 1)−3

�n/2�∑
m=0

m∑
l1,l2=0

Fm

(
1(l1),1(l2)

)
. (8.12)

By Lemma 7.8(a), for each l1, l2, we have

Fm

(
1(l1),1(l2)

)
� CCFL2(m + 1)−d/2. (8.13)

Therefore,

�n/2�∑
m=0

Fm(θn+1, θn+1)θn−m � CC3
θ CFL2(n + 1)−3

�n/2�∑
m=0

(m + 1)−(d−4)/2. (8.14)

Performing the sum gives

�n/2�∑
m=0

(m + 1)−(d−4)/2 � CΔ′
n+1, (8.15)

and this completes the proof. �
Corollary 8.4. Let d > 4 and suppose that Fm is a diagram such that Fm � CF (m+1)−d/2. Suppose that Fm contains
at most L lines at any fixed time, that the largest time coordinate of a vertex in Fm is m, and assume (8.1). Then

n∑
m=0

[
Fm(θn+1, θn+1) ∧ Fm

]
θn−m � CC3

θ CF

[
L2(n + 1)−3Δ′

n+1 + (n + 1)−d/2 logn
]
, (8.16)

where C is a constant that only depends on d .

Proof. For m � �n
2 � we use Lemma 8.3, and for m � �n

2 � + 1 we use Lemma 8.2. Adding the two contributions
proves the claim (we assume that Cθ � 1). �

Let Fm(θn+1) denote the result of an application of Construction θn+1 to Fm.

Lemma 8.5. Let d > 4 and suppose that Fm is a diagram such that Fm � CF (m + 1)−d/2. Suppose that Fm contains
at most L lines at any fixed time, that the largest time coordinate of a vertex in Fm is m, and assume (8.1). Then

�n/2�∑
m=0

Fm(θn+1)θ
2
n−m � CC3

θ CFL(n + 1)−3, (8.17)

where C is a constant that only depends on d .

Proof. The proof is a straightforward adaptation of the proof of Lemma 8.3. Each factor θ appearing in Fm(θn+1)θ
2
n−m

has subscript at least n − �n/2�. Therefore, by (8.1),
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�n/2�∑
m=0

Fm(θn+1)θ
2
n−m � CC3

θ (n + 1)−3
�n/2�∑
m=0

m∑
l1=0

Fm

(
1(l1)

)
. (8.18)

By Lemma 7.8(a),

m∑
l1=0

Fm

(
1(l1)

)
� CCFL(m + 1)−(d−2)/2, (8.19)

and the claim follows from (8.15). �
Lemma 8.6. Let d > 4 and suppose that Fm1,m2 is a diagram such that Fm1,m2 � CF bm1,m2 . Suppose that Fm1,m2

contains at most L lines at any fixed time, that the largest time coordinate of a vertex in Fm1,m2 is m1 ∨ m2, and
assume (8.1). Then

�(n+1)/2�∑
m1=0

n+1∑
m2=m1

[
Fm1,m2 ∧ Fm1,m2(θn+1)

]
θn+1−m1θn+1−m2

� CC3
θ CFL

[
(n + 1)−d/2 logn + (n + 1)−3Δ′

n+1

]
, (8.20)

where C is a constant that only depends on d .

Proof. Since m1 � �(n + 1)/2�, (8.1) implies that θn+1−m1 � CCθ(n + 1)−1. We divide the sum over m2 according
to whether �3n/4� + 1 � m2 � n + 1 or m1 � m2 � �3n/4�.

Suppose first that �3n/4� + 1 � m2 � n + 1. In this case,

bm1,m2 � C(m1 + 1)−(d−2)/2(n + 1)−(d−2)/2. (8.21)

We bound the minimum in (8.20) by Fm1,m2 to see that this case contributes at most

CC2
θ CF (n + 1)−d/2

�(n+1)/2�∑
m1=0

(m1 + 1)−(d−2)/2
n+1∑

m2=�3n/4�+1

(n + 2 − m2)
−1 � CC2

θ CF (n + 1)−d/2 logn (8.22)

to the left-hand side of (8.20).
In the remaining case, we have m1 � m2 � �3n/4�, and hence θn+1−m2 � CCθ(n + 1)−1. We bound the minimum

in (8.20) by Fm1,m2(θn+1) to see that this case contributes at most

�(n+1)/2�∑
m1=0

�3n/4�∑
m2=m1

Fm1,m2(θn+1)θn+1−m1θn+1−m2 � CC2
θ (n + 1)−2

�(n+1)/2�∑
m1=0

�3n/4�∑
m2=m1

Fm1,m2(θn+1). (8.23)

By Lemma 7.8(a) and the fact that m2 � �3n/4�,

Fm1,m2(θn+1) =
m2∑
l=0

Fm1,m2

(
1(l)

)
θn+1−l � CCθ(n + 1)−1L(m2 + 1)CF bm1,m2 . (8.24)

Therefore,

�(n+1)/2�∑
m1=0

�3n/4�∑
m2=m1

Fm1,m2(θn+1)θn+1−m1θn+1−m2 � CC3
θ CFL(n + 1)−3

�(n+1)/2�∑
m1=0

�3n/4�∑
m2=m1

(m2 + 1)bm1,m2 . (8.25)

It follows from (8.15) that

�(n+1)/2�∑
m1=0

�3n/4�∑
m2=m1

(m2 + 1)bm1,m2 �
�(n+1)/2�∑

m1=0

�3n/4�∑
m2=m1

[
(m1 + 1) + (m2 − m1 + 1)

]
bm1,m2 � CΔ′

n+1, (8.26)

and this completes the proof. �
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It is a consequence of their definitions in (7.17), (7.18) and the fact that P (N)(y) has at most 4 lines at any fixed time
that the diagrams R(N)(y1,y2) and Q(N)(y1,y2) have at most L= 6 lines at any fixed time. Also, R(N,M,K)(y1,y2)

and Q(N,M,K)(y1,y2) have L = 7. For this reason, factors of L will be unimportant in our applications of the above
lemmas.

8.3. Bound on e
(N)
n+1(3)

Proof of (8.6). Fix N � 0. It is an immediate consequence of (4.31) and (4.29) that

∣∣e(N)
n+1(3)

∣∣ �
n+1∑

m1=�(n+1)/2�+1

[∣∣κ(N)
m1,n+1

({vN−1}
)∣∣ + ∣∣κ(N)

m1,n+1(C̃N−1)
∣∣]pcθn+1−m1 . (8.27)

In the definition (4.18) of κ
(N)
m1,n+1(A), we estimate the indicator function by 1 to obtain

∣∣κ(N)
m1,n+1(A)

∣∣ �
∞∑

M=0

∑
(uN ,vN )

JuN ,vN
M(N+1)

uN

(
Π(M)

m1
(vN ; C̃N )

)
, (8.28)

for all A ⊆ Λ. For M = 0, it follows from (7.14) that∑
vN

JuN ,vN
Π(0)

m1
(vN ; C̃N ) = pcδmuN

,m1−1. (8.29)

For M � 1, we use (3.27), (7.14) and (3.38) to rewrite the right-hand side of (8.28). This gives

∣∣κ(N)
m1,n+1(A)

∣∣ � pc

∞∑
M=0

∑
y

π
(N+M)
m1−1 (y). (8.30)

The combination of (8.27), (8.30) and (6.9) gives

∣∣e(N)
n+1(3)

∣∣ � 2p2
c

∞∑
M=0

n+1∑
m1=�(n+1)/2�+1

∑
y

P
(N+M)
m1−1 (y)θn+1−m1 . (8.31)

It now follows from Lemma 8.2 and (6.2) that if β is sufficiently small, then

∣∣e(N)
n+1(3)

∣∣ � CCθ

∞∑
M=0

(Cβ)(N+M)∨1(n + 1)−d/2 logn � CCθ(Cβ)N∨1(n + 1)−d/2 logn, (8.32)

as required. �
8.4. Bound on e

(N)
n+1(5)

Proof of (8.8). The error term e
(N)
n+1(5) is defined in (5.18) in terms of the quantities given in (5.8)–(5.10). Let

e
(N,M,K)
n+1 (5) denote the contribution to e

(N)
n+1(5) due to Π

(M)
m1 (vN ; C̃N ) and χ

(K)
n+1(b̄; C̃b

N) in (5.8), so that

e
(N)
n+1(5) �

∞∑
M,K=0

∣∣e(N,M,K)
n+1 (5)

∣∣. (8.33)

Apart from the sum over m1 and factor θn+1−m1 in (5.18), e
(N)
n+1(5) has the same form as φ

(N)
m1,m2 (defined in (5.17)

and (5.13)), except that the factor χn+1 in (5.8) for e
(N)
n+1(5) is replaced by Πm2 in (5.13) for φ

(N)
m1,m2 . We will estimate

e
(N,M,K)
n+1 (5) by determining the effect of this replacement. Let

T (N,M,K)
m ,m (y1, y2) = R(N,M,K)

m ,m (y1, y2) + Q(N,M,K)
m ,m (y1, y2) (8.34)
1 2 1 2 1 2
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and

T (N)
m1,m2

= p2
c

∞∑
K,M=0

∑
y1,y2

T
(N,M,K)
m1−1,m2−1(y1, y2). (8.35)

For N � 0, it follows from (7.16) and Propositions 7.6, 7.7 that∣∣φ(N)
m1,m2

∣∣ � T (N)
m1,m2

� C(Cβ)Nbm1,m2 . (8.36)

If the factor χ
(K)
n+1(b̄; C̃b

N) appearing in (5.9), (5.10) were replaced by Π
(K)
m2 (b̄; C̃b

N), then we would have as upper
bound

�(n+1)/2�∑
m1=1

T (N,M,K)
m1,m2

pcθn+1−m1 . (8.37)

The upper bound on χ
(K)
n+1(b̄; C̃b

N) in Proposition 6.7 is given explicitly in terms of the diagrams used to bound

Π
(K)
m2 (b̄; C̃b

N). The appropriate modification for e
(N)
n+1(5) is thus

∣∣e(N)
n+1(5)

∣∣ � p2
c

�(n+1)/2�∑
m1=1

n+1∑
m2=m1

(
T (N)

m1,m2
(θn+1) ∧ T (N)

m1,m2

)
θn+1−m1θn+1−m2 . (8.38)

It then follows from (8.36) and Lemma 8.6 that∣∣e(N)
n+1(5)

∣∣ � CC3
θ (Cβ)N(n + 1)−3[Δ′

n+1 + (n + 1)(6−d)/2 logn
]
. (8.39)

When N = 0, the only contribution without a positive power of β arises when m1 = m2 = 1 in (8.38), and this
contribution is bounded above by CC3

θ (n + 1)−3. Therefore,∣∣e(N)
n+1(5)

∣∣ � CC3
θ (n + 1)−3[δN,0 + (Cβ)N∨1[Δ′

n+1 + (n + 1)(6−d)/2 logn
]]

, (8.40)

which completes the proof of (8.8). �
8.5. Bound on e

(N)
n+1(2)

We prove a lemma before proving the bound (8.5) on e
(N)
n+1(2). The lemma generalises (6.21). Note that

the order in which constructions are applied can be important, since, e.g., P (N)(y;�λ(a), θn+1) is not equal to
P (N)(y; θn+1, �

λ(a)).

Lemma 8.7. For N,M � 0, y ∈ Λ, and n � 0,∑
λ

∑
a

∑
(uN ,vN)

JuN ,vN
P (N)

(
uN ;�λ(a), θn+1

)
P (M)(vN,y;a, θn+1) � P (N+M+1)(y; θn+1, θn+1), (8.41)

where the sum over λ is over the N -admissible lines for P (N).

Proof. Eq. (8.41) is similar to (6.21), but now with two extra Constructions θn+1 performed. The equality in (6.21) is
replaced by an upper bound in (8.41), since on the right-hand side there are more possibilities for the lines on which
the two Constructions θn+1 can be performed. �
Proof of (8.5). The error term e

(N)
n+1(2) is defined in (4.30) and (4.19). For A = C̃N−1 or A = {vN−1}, we use

I
[
v A−→ n + 1 in C̃N

]
� I [v → n + 1] (8.42)

to obtain
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∣∣e(N)
n+1(2)

∣∣ � 2
∑

(uN ,vN)

JuN ,vN
M(N+1)

uN

(
I [vN−1 → n + 1]∣∣χn+1(vN ; C̃N )

∣∣)

� 2
∞∑

M=0

∑
(uN ,vN)

JuN ,vN
M(N+1)

uN

(
I [vN−1 → n + 1]∣∣χ(M)

n+1(vN ; C̃N )
∣∣). (8.43)

We use Proposition 6.7 to bound |χ(M)
n+1(vN ; C̃N )|, using the second alternative for the minimum in (6.28) when

k � �n/2� + 1, and the first alternative in (6.28) when k � �n/2�. Denote the contribution due to k � �n/2� + 1 by
e
(N)
n+1(2,1), and the contribution due to k � �n/2� by e

(N)
n+1(2,2), so that∣∣e(N)

n+1(2)
∣∣ � 2

(
e
(N)
n+1(2,1) + e

(N)
n+1(2,2)

)
. (8.44)

For e
(N)
n+1(2,1), we use (6.28) and (7.8) to obtain

e
(N)
n+1(2,1) �

∞∑
M=0

∑
a

∑
(uN ,vN)

JuN ,vN
M(N+1)

uN

(
I [a ∈ C̃N ]) n+1∑

k=�n/2�+1

∑
y∈Zd

P (M)
(
vN, (y, k);a)

pcθn−k

�
∞∑

M=0

n+1∑
k=�n/2�+1

∑
y∈Zd

∑
λ

∑
a

∑
(uN ,vN )

JuN ,vN
P (N)

(
uN ;�λ(a)

)
P (M)

(
vN, (y, k);a)

pcθn−k, (8.45)

where we recall Remark 6.2. By (6.21), (6.2) and Lemma 8.2,

e
(N)
n+1(2,1) �

∞∑
M=0

n+1∑
k=�n/2�+1

∑
y∈Zd

P
(N+M)
k (y)pcθn−k � CCθ

∞∑
M=0

(Cβ)(N+M)∨1(n + 1)−d/2 logn

� CCθ(Cβ)N∨1(n + 1)−d/2 logn. (8.46)

For e
(N)
n+1(2,2), we use the minor extension of (7.8) that, for N � 0, a,y ∈ Λ and n � 0,

M(N+1)
y

(
I [a ∈ C̃N ,vN−1 → n + 1]) �

∑
λ

P (N)
(
y;�λ(a), θn+1

)
. (8.47)

By (8.47) and (6.28),

e
(N)
n+1(2,2)

�
∞∑

M=0

�n/2�∑
k=0

∑
λ

∑
a

∑
(uN ,vN)

JuN ,vN
P (N)

(
uN ;�λ(a), θn+1

) ∑
y∈Zd

P (M)
(
vN, (y, k);a, θn+1

)
pcθn−k. (8.48)

It then follows from Lemma 8.7, Lemma 8.3 and (6.2) that

e
(N)
n+1(2,2) �

∞∑
M=0

�n/2�∑
k=0

∑
y∈Zd

P
(N+M)
k (y; θn+1, θn+1)pcθn−k

� CC3
θ

∞∑
M=0

(Cβ)N+M(n + 1)−3Δ′
n+1 � CC3

θ (Cβ)N(n + 1)−3Δ′
n+1. (8.49)

When N = 0, the only contribution without a positive power of β arises when k = 0 in (8.49). This requires that y = 0
and M = 0, and contributes at most CC3

θ (n + 1)−3. With this observation, we can improve (8.49) to

e
(N)
n+1(2,2) � CC3

θ (n + 1)−3[δN,0 + (Cβ)N∨1Δ′
n+1

]
. (8.50)

Substitution of (8.46) and (8.50) into (8.44) then gives (8.5). �
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8.6. Bound on e
(N)
n+1(4)

In this section, we prove the bound (8.7) on the error term e
(N)
n+1(4). By (5.18),

e
(N)
n+1(4) �

�(n+1)/2�∑
m1=1

[∣∣d(N)
m1,n+1

(
4; {vN−1}

)∣∣ + 1

2

∣∣d(N)
m1,n+1(4; C̃N−1)

∣∣]θn+1−m1 . (8.51)

We denote the contribution due to d
(N)
m1,n+1(4; {vN−1}) by e

(N)
n+1(4,1) and the contribution due to d

(N)
m1,n+1(4; C̃N−1)

by e
(N)
n+1(4,2). We prove bounds on e

(N)
n+1(4,1) in Sections 8.6.1, 8.6.2, and on e

(N)
n+1(4,2) in Section 8.6.3. The proof

of (8.7) is completed at the end of Section 8.6.3.

8.6.1. Preliminaries for e
(N)
n+1(4,1)

Our bound on e
(N)
n+1(4,1) uses the following two lemmas.

Lemma 8.8. Let vN−1,y ∈ Λ and let m1 < my � n. Let F = F(y) be an event that depends only on bonds with time
variables at most my . Then

EN

(
I
[
F(y)

]
I
[
(vN−1 → n) ◦ (y → n)

]
Π(M)

m1
(vN ; C̃N )

)
� EN

(
I
[
F(y)

]
I
[
(vN−1 → n)

]
Π(M)

m1
(vN ; C̃N )

)
θn(y). (8.52)

Proof. Let Cy(v) = {x ∈ C(v): mx = my}. By the Markov property,

EN

(
I
[
F(y)

]
I
[
(vN−1 → n) ◦ (y → n)

]
Π(M)

m1
(vN ; C̃N )

)
=

∑
C 	=∅

EN

(
I
[
F(y)

]
I
[
Cy(vN−1) = C

])
Π(M)

m1
(vN ; C̃N )

)
PN

(
(C → n) ◦ (y → n)

)
, (8.53)

since Π
(M)
m1 (vN ; C̃N ) is independent of bonds with time variables exceeding my because my � m1 − 1. By the BK

inequality,

PN

(
(C → n) ◦ (y → n)

)
� PN(C → n)θn(y). (8.54)

The inequality (8.52) can then be concluded from substitution of (8.54) into (8.53) followed by summation over C. �
For mv � m � n, we define

Vm,n(v) =
⋃

z: mz�m

{v → z �⇒ n}. (8.55)

For later use, we note that it follows from (8.55) that

Vm,n(v) =
⋃

y: my=m

{v → y} ∩ {
(y → n) ◦ (v → n)

}
. (8.56)

The following lemma is reminiscent of Lemma 7.15.

Lemma 8.9. For vN−1 ∈ Λ and m,n � 1 such that mvN−1 < m � n,

Hm,n

(
vN−1; {vN−1}

) ⊆ Vm−1,n(vN−1). (8.57)

Proof. When Hm,n(vN−1; {vN−1}) occurs, there is no m-cutting bond for vN−1 → n. Let b be the last pivotal bond
for vN−1 → n, if it exists. If such a bond does not exist, then vN−1 ⇒ n, which is a subset of Vm−1,n(vN−1). On the
other hand, if there is such a bond b, then b̄ ⇒ n, and therefore mb̄ � m− 1, since otherwise b would be the m-cutting
bond for vN−1 → n. Thus, Vm−1,n(vN−1) occurs. �
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We also use the minor modification of (8.47) that for every a,y ∈ Λ, N � 0, and n � 0,

M(N+1)
uN

(
I
[
(vN−1 → a) ∩ (vN−1 → y) ∩ (vN−1 → n)

])
�

∑
λ

P (N)
(
uN ;�λ(a), �(y), θn

)
, (8.58)

where the sum over λ again runs over the N -admissible lines for P (N)(uN).

8.6.2. Bound on e
(N)
n+1(4,1)

In this section, we prove that∣∣e(N)
n+1(4,1)

∣∣ � C3
θ (Cβ)N(n + 1)−3. (8.59)

The definitions (5.9), (5.10) and (5.7) imply that

d
(0)
m1,n+1(4;A) =

∑
(u0,v0)

Ju0,v0ẼN

(
I
[{0 ⇒ u0} ∩ Hm1,n(0;A)

]
Πm1(v0; C̃0)

)
, (8.60)

while, for N � 1,

d
(N)
m1,n+1(4;A) =

∑
(uN−1,vN−1)

JuN−1,vN−1

∑
(uN ,vN)

JuN ,vN

× M(N)
uN−1

(
ẼN

(
I
[
E′(vN−1,uN ; C̃N−1) ∩ Hm1,n(vN−1;A)

]
Πm1(vN ; C̃N )

))
. (8.61)

We denote by d
(N,M)
m1,n+1(4;A) the contribution due to Π

(M)
m1 (vN ; C̃N ) in (8.60), (8.61), so that

∣∣d(N)
m1,n+1(4;A)

∣∣ �
∞∑

M=0

d
(N,M)
m1,n+1(4;A). (8.62)

Using Lemma 8.9, (8.56) and Lemmas 7.16 and 8.8, we obtain

ẼN

(
I
[
E′(vN−1,uN ; C̃N−1) ∩ Hm1,n(vN−1;A)

]
Π(M)

m1
(vN ; C̃N )

)
�

∑
y2: my2 =m1−1

ẼN

(
I
[
E′(vN−1,uN ; C̃N−1)

]
I
[
(vN−1 → y2)

]
I
[
(vN−1 → n) ◦ (y2 → n)

]
Π(M)

m1
(vN ; C̃N )

)

�
∑

y2: my2 =m1−1

EN

(
I
[
E′(vN−1,uN ; C̃N−1)

]
I
[
(vN−1 → y2) ∩ (vN−1 → n)

]
Π(M)

m1
(vN ; C̃N )

)
θn(y2). (8.63)

Using (7.14) and (6.9), it follows that, for M � 1,

EN

(
I
[
E′(vN−1,uN ; C̃N−1) ∩ Hm1,n(vN−1;A)

]
Π(M)

m1
(vN ; C̃N )

)
�

∑
y2

∑
a

EN

(
I
[
E′(vN−1,uN ; C̃N−1) ∩ {vN−1 → a} ∩ {

vN−1 → (y2,m1 − 1)
} ∩ {vN−1 → n}])

×
∑
y1

pcP
(M−1)

(
vN, (y1,m1 − 1);a)

θn(y2). (8.64)

When M = 0, a similar bound holds with both the sum over a and the indicator that vN−1 → a removed, and with
pcP

(M−1)(vN, (y1,m1 − 1);a) replaced by δm1,mvN
. This causes only minor modifications, and in the remainder of

the proof of (8.59) we consider only the case M � 1 explicitly.
Now we specialise to A = {vN−1}, as in the definition of e

(N)
n+1(4,1). For N = 0, we use the convention (4.15) and

apply (8.64) and (8.58) to obtain

d
(0,M)
m1,n+1

(
4; {0}) �

∑
y2

∑
λ

∑
(u0,v0)

Ju0,v0

∑
a

P (0)
(
u0;�λ(a), �(y2,m1 − 1), θn+1

)
×

∑
pcP

(M−1)
(
v0, (y1,m1 − 1);a)

θn+1(y2,m1 − 1). (8.65)

y1
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For N � 1, we substitute (8.64) into (8.61), use the recursion (3.35) in the form∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
uN−1

(
EN

(
I
[
E′(vN−1,uN ; C̃N−1) ∩ {

(vN−1 → a) ∩ (vN−1 → y2) ∩ (vN−1 → n)
}]))

= M(N+1)
uN

(
I
[
(vN−1 → a) ∩ (vN−1 → y2) ∩ (vN−1 → n)

])
(8.66)

and apply (8.58), to obtain

d
(N,M)
m1,n+1

(
4; {vN−1}

)
�

∑
y2

∑
λ

∑
(uN ,vN)

JuN ,vN

∑
a

P (N)
(
uN ;�λ(a), �(y2,m1 − 1), θn+1

)
×

∑
y1

pcP
(M−1)

(
vN, (y1,m1 − 1);a)

θn+1(y2,m1 − 1). (8.67)

Thus, the bounds for N = 0 and N � 1 in (8.65) and (8.67) agree, and we can henceforth treat all N � 0 simultane-
ously.

By (8.67) and a slight generalisation of (6.21) (similar to Lemma 8.7),

d
(N,M)
m1,n+1

(
4; {vN−1}

)
� pc

∑
y1,y2

P
(N+M)
m1−1

(
y1;�(y2,m1 − 1), θn+1

)
θn+1(y2,m1 − 1). (8.68)

Let

B(N+M)
m =

∑
y1,y2

P (N+M)
m

(
y1;�(y2,m)

)
. (8.69)

By the definition of e
(N)
n+1(4,1) below (8.51), we therefore obtain

∣∣e(N)
n+1(4,1)

∣∣ � pc

∞∑
M=0

�(n+1)/2�∑
m1=1

B
(N+M)
m1−1 (θn+1)θ

2
n−m1

. (8.70)

By (6.2) and Lemma 7.8(b),

B(N+M)
m � (Cβ)N+M(m + 1)−(d−2)/2, (8.71)

so it follows from (8.70) and Lemma 8.5 that

∣∣e(N)
n+1(4,1)

∣∣ �
∞∑

M=0

C3
θ (Cβ)N+M(n + 1)−3 = C3

θ (Cβ)N(n + 1)−3. (8.72)

This proves (8.59).

8.6.3. Bound on e
(N)
n+1(4,2)

In this section, we prove that∣∣e(N)
n+1(4,2)

∣∣ � CC3
θ (n + 1)−3δN,0 + C3

θ (Cβ)N∨1[(n + 1)−d/2 logn + (n + 1)−3Δ′
n+1

]
. (8.73)

Similarly to (7.86)–(7.88), we define

G(1)
m,n(vN−1) = Hm,n(vN−1; C̃N−1) ∩ Vm−1,n(vN−1), (8.74)

G(2)
m,n(vN−1) = Hm,n(vN−1; C̃N−1) ∩ Vm−1,n(vN−1)

c, (8.75)

so that

Hm,n(vN−1; C̃N−1) = G(1)
m,n(vN−1) ∪̇ G(2)

m,n(vN−1). (8.76)

For the contribution due to G
(1)
n,1(vN−1,uN), we recall the argument beginning with (8.63) to see that the inclusion

G
(1)
m,n(vN−1) ⊆ Vm−1,n(vN−1) implies that this term obeys the same bound as |e(N)

(4,1)|. Thus, it remains to bound
n+1
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the contribution due to G
(2)
m,n(vN−1). Note that, by (4.15), C̃−1 = {v−1} = {0}, so that, by Lemma 8.9 and (8.75),

G
(2)
m,n(v−1) = ∅. Thus, we consider only N � 1 in the following.
Let e

(N)
n+1(4,3) denote the contribution to e

(N)
n+1(4,2) (defined below (8.51)) due to G

(2)
m,n+1(vN−1), i.e.,

e
(N)
n+1(4,3) = 1

2

�(n+1)/2�∑
m1=1

d
(N)
m1,n+1(4; C̃N−1,3)pcθn+1−m1, (8.77)

where, as in (8.61), for N � 1,

d
(N)
m1,n+1(4; C̃N−1,3) =

∑
(uN−1,vN−1)

JuN−1,vN−1

∑
(uN ,vN)

JuN ,vN

× M(N)
uN−1

(
ẼN

(
I
[
E′(vN−1,uN ; C̃N−1) ∩ G(2)

m1,n
(vN−1)

]
Πm1(vN ; C̃N )

))
. (8.78)

It remains to estimate e
(N)
n+1(4,3) for N � 1. The following analogue of Lemma 7.17 will be useful for this. Recall that

the event Em was defined in (7.48).

Lemma 8.10. For vN−1 ∈ Λ and m,n � 1,

G(2)
m,n(vN−1) ⊆

⋃
y2

(
Em(vN−1,y2; C̃N−1) ∩ (

(y2 → n) ◦ (vN−1 → n)
))

. (8.79)

Proof. Suppose that G
(2)
m,n(vN−1) occurs. It cannot be the case that vN−1 ⇒ n, since this contributes instead to

G
(1)
m,n(vN−1). Thus there is at least one occupied pivotal bond for vN−1 → n, and we denote the last such bond by b.

Then {vN−1 → b̄ ⇒ n} occurs. It must be the case that mb̄ > m− 1, since otherwise G
(1)
m,n(vN−1) occurs. By the defi-

nition of Hm,n(vN−1; C̃N−1) in (5.6), b cannot be an m-cutting bond for vN−1
C̃N−1−−−→ n, and hence {vN−1

C̃N−1−−−→ b }c
occurs. Since vN−1

C̃N−1−−−→ n occurs by (5.6), we conclude that b̄
C̃N−1−−−→ n.

Fix w such that b → (w,n) (such a w must exist since b → n). Let b′ be the first occupied pivotal bond for

b → (w,n), if it exists, such that b
C̃N−1−−−→ b′. If b′ does not exist, then Em(vN−1, (w,n); C̃N−1) occurs, which is

contained in the right-hand side of (8.79) with y2 = (w,n). On the other hand, if b′ does exist, then, since mb̄ > m−1,
the event

(vN−1 → b̄) ∩ E′(b̄, b′; C̃N−1) ∩ (
( b′ → n) ◦ (vN−1 → n)

)
(8.80)

occurs, which implies that the event on the right-hand side of (8.79) occurs with y2 = b′. �
In view of Lemma 8.10 and (8.78), it is useful to estimate, for N � 1 and M � 0,∑

y2

ẼN

(
I
[
E′(vN−1,uN ; C̃N−1) ∩ Em1(vN−1,y2; C̃N−1) ∩ (

(y2 → n) ◦ (vN−1 → n)
)]

Π(M)
m1

(vN ; C̃N )
)
. (8.81)

By Lemmas 7.16 and 8.8,

ẼN

(
I
[
E′

N ∩ Em1(vN−1,y2; C̃N−1)
]
I
[
(y2 → n) ◦ (vN−1 → n)

]
Π(M)

m1
(vN ; C̃N )

)
� EN

(
I
[
E′

N ∩ Em1(vN−1,y2; C̃N−1) ∩ (vN−1 → n)
]
Π(M)

m1
(vN ; C̃N )

)
θn(y2). (8.82)

The recursion relation (3.38) implies that∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
uN−1

(
EN

(
I
[
E′

N ∩ Em1(vN−1,y2; C̃N−1) ∩ (vN−1 → n)
]
Π(M)

m1
(vN ; C̃N )

))
= M(N+1)

uN

(
I
[
Em1(vN−1,y2; C̃N−1) ∩ (vN−1 → n)

]
Π(M)

m1
(vN ; C̃N )

)
. (8.83)

Let

Q(N+M)
m1,m2

=
∑

Q(N+M)
(
(y1,m1), (y2,m2)

)
. (8.84)
y1,y2



R. van der Hofstad et al. / Ann. I. H. Poincaré – PR 43 (2007) 509–570 563
If we simply ignore the indicator that vN−1 → n, then it follows from Proposition 7.11 that∑
(uN ,vN)

JuN ,vN
M(N+1)

uN

(
I
[
Em1(vN−1,y; C̃N−1)

]
I
[
(vN−1 → n)

]
Π(M)

m1
(vN ; C̃N )

)
� pc

∑
y1

Q(N+M)
(
(y1,m1 − 1),y

)
. (8.85)

On the other hand, it is a minor extension of Proposition 7.11 that the extra connection to n can be accounted for by
an application of Construction θn, so that the upper bound of (8.85) can alternately be replaced by the upper bound
pc

∑
y1

Q(N+M)((y1,m1 − 1),y; θn). Therefore, replacing n by n + 1,

∣∣e(N)
n+1(4,3)

∣∣ � 1

2
pc

∞∑
M=0

�(n+1)/2�∑
m1=1

n∑
m2=m1

(
Q

(N+M)
m1−1,m2−1(θn+1)

∧
Q

(N+M)
m1−1,m2−1

)
θn+1−m1θn+1−m2 . (8.86)

By (7.41),

Q
(N+M)
m1−1,m2−1 � (Cβ)N+Mbm1−1,m2−1 � C(Cβ)N+Mbm1,m2 . (8.87)

Finally, by Lemma 8.6, for N � 1 we have∣∣e(N)
n+1(4,3)

∣∣ � C3
θ (Cβ)N

[
(n + 1)−d/2 logn + (n + 1)−3Δ′

n+1

]
. (8.88)

The combination of (8.59) and (8.88) then gives the bound (8.73) on e
(N)
n+1(4,2).

Proof of (8.7). This immediately follows from summation of (8.59) and (8.73). �
8.7. Bound on e

(N)
n+1(1)

In this section, we prove the bound (8.4) on the error term e
(N)
n+1(1), which is defined in (4.22)–(4.24). Recall (4.35)–

(4.37). For j = 1,2,3, let

e
(0)
n+1(1, j) = e

(0)
n+1

(
0; {0}; j)

, (8.89)

and, for N � 1,

e(N)
n (1, j) =

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
uN−1

(
e(0)
n (vN−1; C̃N−1; j)

)
. (8.90)

It follows from (4.34) and (4.23), (4.24) that

e
(N)
n+1(1) = e

(N)
n+1(1,1) + e

(N)
n+1(1,2) + e

(N)
n+1(1,3). (8.91)

We estimate e
(N)
n+1(1,1) and e

(N)
n+1(1,2) in Sections 8.7.1 and 8.7.2. The more delicate e

(N)
n (1,3) is estimated in Sec-

tion 8.7.3. The proof of (8.4) is given at the beginning of Section 8.7.3.

8.7.1. Bound on e
(N)
n+1(1,1)

The error term e
(N)
n+1(1,1) is non-negative by definition. For N = 0,

e
(0)
n+1(1,1) � P

(
F ′

n

(
0; {0}) ∩ {|P{0}| � 1

})
�

∑
x

P
(
E′(0, (x, n + 1); {0}))

=
∑
x

π
(0)
n+1(x) �

∑
x

P
(0)
n+1(x) � Cβ(n + 1)−d/2, (8.92)

by (4.38), Proposition 4.6, (6.9) and (6.2). For N � 1,
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e
(N)
n+1(1,1) �

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
uN−1

(∑
x

P
(
E′(vN−1, (x, n + 1); C̃N−1

)))

= M
(N+1)
(x,n+1)(1) =

∑
x

π
(N)
n+1(x) �

∑
x

P
(N)
n+1(x) � (Cβ)N(n + 1)−d/2, (8.93)

by (8.90), Proposition 4.6, (6.9) and (6.2).

8.7.2. Bound on e
(N)
n+1(1,2)

For N = 0, we use (4.39) to see that∣∣e(0)
n+1(1,2)

∣∣ �
∑

y: my��n/2�+1

P
(
E′(0,y; {0}))θn+1(y). (8.94)

Therefore,

∣∣e(0)
n+1(1,2)

∣∣ �
n+1∑

m=�n/2�+1

∑
y

π(0)
m (y)θn+1−m �

n+1∑
m=�n/2�+1

∑
y

P (0)
m (y)θn+1−m � Cβ(n + 1)−d/2 logn, (8.95)

by (6.9), (6.2), and Lemma 8.2. For N � 1,

∣∣e(N)
n+1(1,2)

∣∣ �
∑

(uN−1,vN−1)

JuN−1,vN−1M
(N)
uN−1

( ∑
y: my��n/2�+1

P
(
E′(vN−1,y; C̃N−1)

))
θn+1(y)

=
∑

y: my��n/2�+1

M(N+1)
y (1)θn+1(y) =

n+1∑
m=�n/2�+1

∑
y

π(N)
m (y)θn+1−m

�
n+1∑

m=�n/2�+1

∑
y

P (N)
m (y)θn+1−m � (Cβ)N(n + 1)−d/2 logn, (8.96)

by (8.90), (4.39), (6.9), (6.2) and Lemma 8.2.

8.7.3. Bound on e
(N)
n+1(1,3)

In this section, we prove that, for N � 1,∣∣e(0)
n+1(1,3)

∣∣ � CC3
θ

[
(n + 1)−3 + β(n + 1)−d/2 logn + β(n + 1)−3Δ′

n+1

]
, (8.97)∣∣e(N)

n+1(1,3)
∣∣ � CC3

θ (Cβ)N
[
(n + 1)−d/2 logn + (n + 1)−3Δ′

n+1

]
. (8.98)

Proof of (8.4). For N = 0, (8.4) follows from (8.91), (8.92), (8.95) and (8.97). For N � 1, (8.4) follows from (8.91)–
(8.93), (8.96) and (8.98). �

To prove (8.97), (8.98), in view of (8.89), (8.90) and (4.15), we start with e
(0)
n (vN−1; C̃N−1;3). According to (4.50),∣∣e(0)

n+1(v;A;3)
∣∣ �

∑
b′��(n+1)/2�

∑
b�b′

P
(
F ′

n+1(v;A) ∩ {b′ ∈ PA} ∩ {
b ∈P(3)

A

})
. (8.99)

Let

F ′
n+1(v,x, b′;A) = E′(v,x;A) ∩ F ′

n+1(v;A) ∩ {b′ ∈ PA}. (8.100)

It follows from (8.99), Proposition 4.10, Lemma 2.2, and the inequality

P
(
b̄ → n + 1 in Λ \ C̃b(b̄)

)
� θn+1(b̄) (8.101)

that
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∣∣e(0)
n+1(v;A;3)

∣∣ �
∑

b′��(n+1)/2�

∑
b�b′

Jb,b̄P
(
F ′

n+1(v, b, b′;A) in C̃b(v)
)
θn+1(b̄)

=
∑

b′��(n+1)/2�

∑
b�b′

Jb,b̄P̃b
(
F ′

n+1(v, b, b′;A)
)
θn+1(b̄), (8.102)

where P̃b denotes P conditioned on b being vacant. By Proposition 4.3,

F ′
n+1(v;A) ∩ {b′ ∈PA} ⊆ E′(v, b′;A) ∩ {

(v → n + 1) ◦ ({b′ occ.} ∩ (b̄′ → n + 1)
)}

, (8.103)

since, on the right-hand side of (4.25), (v → n + 1) occurs in C̃b′
(v), and therefore (v → n + 1) occurs disjointly

from {b′ occ.} ∩ (b̄′ → n + 1). Then (6.12), (8.100) and (8.103) imply that

F ′
n+1(v, b, b′;A) ⊆ E′(v, b′;A) ∩ E(v, b;A) ∩ {

(v → n + 1) ◦ ({b′ occ.} ∩ (b̄′ → n + 1)
)}

. (8.104)

The event E(v, b;A)∩ {(v → n + 1) ◦ ({b′ occ.} ∩ (b̄′ → n + 1))} is increasing, and, for b′ � b, the event E′(v, b′;A)

is independent of the occupation status of b. Therefore, by Lemma 7.16,∣∣e(0)
n+1(v;A;3)

∣∣ �
∑

b′��(n+1)/2�

∑
b�b′

Jb,b̄P
(
E′(v, b′;A) ∩ E(v, b;A)

∩ {
(v → n + 1) ◦ ({b′ occ.} ∩ (b̄′ → n + 1)

)})
θn+1(b̄). (8.105)

In particular, by (8.89) and (3.20),∣∣e(0)
n+1(1,3)

∣∣ �
∑

b′��(n+1)/2�

∑
b�b′

Jb,b̄M
(1)

b′
(
I
[
E
(
0, b; {0})

∩ {
(0 → n + 1) ◦ ({b′ occ.} ∩ (b̄′ → n + 1)

)}])
θn+1(b̄). (8.106)

Also, by (8.90), (8.105), (3.20) and (3.35), for N � 1,∣∣e(N)
n+1(1,3)

∣∣ �
∑

b′��(n+1)/2�

∑
b�b′

∑
(uN−1,vN−1)

JuN−1,vN−1Jb,b̄M
(N)
uN−1

(
P
(
E′(vN−1, b

′; C̃N−1)

∩ E(vN−1, b; C̃N−1) ∩ {
(vN−1 → n + 1) ◦ ({b′ occ.} ∩ (b̄′ → n + 1)

)}))
θn+1(b̄)

=
∑

b′��(n+1)/2�

∑
b�b′

Jb,b̄M
(N+1)

b′
(
I
[
E(vN−1, b; C̃N−1)

∩ {
(vN−1 → n + 1) ◦ ({b′ occ.} ∩ (b̄′ → n + 1)

)}])
θn+1(b̄). (8.107)

We insert

1 = I
[
(b̄′ → b )c

] + I
[
(b̄′ → b )

]
(8.108)

in the right-hand sides of (8.106), (8.107). We denote the contribution to (8.106) due to the first and second terms
of (8.108) by e

(0)
n+1(1,3,1) and e

(0)
n+1(1,3,2), respectively. Similarly, for N � 1, we denote the contribution to (8.107)

due to the first and second terms of (8.108) by e
(N)
n+1(1,3,1) and e

(N)
n+1(1,3,2), respectively.

To estimate M
(1)

b′ and M
(N+1)

b′ in (8.106), (8.107), we will use the following proposition, whose proof is deferred

to the end of the section. Its statement involves a small modification of P
(N)
m (y), in which the last Construction E

can be applied to all diagram lines rather than only to the (N − 1)-admissible lines. We denote this modification by
P̃

(N)
m (y). The methods in [14] easily adapt to show that the bound (6.2) extends to P̃

(N)
m (y), namely∑

y

P̃ (N)
m (y) � δm,0δN,0 + (Cβ)N∨1(m + 1)−d/2. (8.109)

Proposition 8.11.

(a) For all bonds b, y ∈ Λ with my � mb , N � 0, and n � 0,
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M
(N+1)
b

(
I
[
E(vN−1,y; C̃N−1) ∩ (b̄ → y)c ∩ (

(vN−1 → n) ◦ ({b occ.} ∩ (b̄ → n)
))])

�
([

R(N)( b,y) + Q(N)( b,y)
] ∧ [

R(N)( b,y; θn) + Q(N)( b,y; θn)
])

Jb,b̄θn(b̄), (8.110)

where, by convention, Q(0) = 0.
(b) For y ∈ Λ, N � 0, and n � 0,∑

b

M
(N+1)
b

(
I
[
E(vN−1,y; C̃N−1) ∩ (b̄ → y) ∩ (

(vN−1 → n) ◦ ({b occ.} ∩ (b̄ → n)
))])

� P̃ (N+1)(y) ∧ P̃ (N+1)(y; θn, θn). (8.111)

Before proving Proposition 8.11, we first prove (8.97), (8.98).

Proof of (8.97). By the definition below (8.108), e
(0)
n+1(1,3) = e

(0)
n+1(1,3,1) + e

(0)
n+1(1,3,2). By (8.106) and Proposi-

tion 8.11(a) (with N = 0, and y and b in (8.110) equal to b and b′ in (8.106)),∣∣e(0)
n+1(1,3,1)

∣∣ �
∑

b′��(n+1)/2�

∑
b�b′

Jb,b̄Jb′,b̄′
[
R(0)( b′, b ) ∧ R(0)( b′, b; θn+1)

]
θn+1(b̄)θn+1(b̄

′)

= p2
c

�n/2�∑
m1=0

n∑
m2=m1

[
R(0)

m1,m2
∧ R(0)

m1,m2
(θn+1)

]
θn−m1θn−m2, (8.112)

where R
(0)
m1,m2 = ∑

y1,y2
R

(0)
m1,m2(y1, y2). By Proposition 7.7 (with additional attention paid to the power of β),

R(0)
m1,m2

� Cδm1,0δm2,0 + Cβbm1,m2 . (8.113)

The contribution due to (m1,m2) = (0,0) gives rise to at most CC3
θ (n+ 1)−3. For the contribution due to (m1,m2) 	=

(0,0), we apply Lemma 8.6 to obtain a bound

CC3
θ β

[
(n + 1)−d/2 logn + (n + 1)−3Δ′

n+1

]
. (8.114)

Adding the two contributions yields∣∣e(0)
n+1(1,3,1)

∣∣ � CC3
θ

[
(n + 1)−3 + β(n + 1)−d/2 logn + β(n + 1)−3Δ′

n+1

]
. (8.115)

Similarly, by Proposition 8.11(b) (with N = 0, y = b = (y2,m2), and the summation index b in (8.111) equal to b′
in (8.106)),∣∣e(0)

n+1(1,3,2)
∣∣ �

∑
b

Jb,b̄

[
P̃ (1)( b ) ∧ P̃ (1)( b; θn+1, θn+1)

]
θn+1(b̄)

= pc

n∑
m2=0

[
P̃ (1)

m2
∧ P̃ (1)

m2
(θn+1, θn+1)

]
θn−m2, (8.116)

where we write P̃
(1)
m2 = ∑

y2
P̃

(1)
m2 (y2). By (8.109) and Corollary 8.4, we therefore obtain∣∣e(0)

n+1(1,3,2)
∣∣ � CC3

θ β
[
(n + 1)−3Δ′

n+1 + β(n + 1)−d/2 logn
]
. (8.117)

Addition of (8.115) and (8.117) gives (8.97). �
Proof of (8.98). By (8.107) and Proposition 8.11(a),

∣∣e(N)
n+1(1,3,1)

∣∣ � p2
c

�n/2�∑
m1=0

n∑
m2=m1

([
R(N)

m1,m2
+ Q(N)

m1,m2

] ∧ [
R(N)

m1,m2
(θn+1) + Q(N)

m1,m2
(θn+1)

])
θn−m1θn−m2 . (8.118)

By Proposition 7.7 and Lemma 8.6, it follows that∣∣e(N)
(1,3,1)

∣∣ � CC3(Cβ)N
[
(n + 1)−d/2 logn + (n + 1)−3Δ′ ]

. (8.119)
n+1 θ n+1
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Similarly, by Proposition 8.11(b) (with y = b = (y2,m2), and the summation index b in (8.111) equal to b′ in (8.107)),

∣∣e(N)
n+1(1,3,2)

∣∣ � pc

n∑
m2=0

[
P̃ (N+1)

m2
∧ P̃ (N+1)

m2
(θn+1, θn+1)

]
θn−m2 . (8.120)

It then follows from (8.109) and Corollary 8.4 that∣∣e(N)
n+1(1,3,2)

∣∣ � CC3
θ (Cβ)N

[
(n + 1)−d/2 logn + (n + 1)−3Δ′

n+1

]
. (8.121)

Addition of (8.119) and (8.121) gives (8.98). �
It remains to prove Proposition 8.11. For this, we will use the following lemma.

Lemma 8.12. For any bond b, v,y ∈ Λ, A ⊆ Λ, n � 0,

E(v,y;A) ∩ (b̄ → y)c ∩ (
(v → n) ◦ ({b occ.} ∩ (b̄ → n)

))
⊆ (

E(v,y;A) ∩ (v → n)
) ◦ ({b occ.} ∩ (b̄ → n)

)
, (8.122)

E(v,y;A) ∩ (b̄ → y) ∩ {b occ.} ⊆ (({b occ.} ∩ (b̄ → y)
) ◦ (v → y)

) ∪ ({b occ.} ∩ E(b̄,y;A)
)
. (8.123)

Proof. To prove (8.122), we note that

E(v,y;A) ∩ (b̄ → y)c ∩ {b occ.} ∩ (b̄ → n) ⊆ E(v,y;A) ◦ ({b occ.} ∩ (b̄ → n)
)
, (8.124)

since, when (b̄ → y)c occurs, b and the connections from b̄ cannot be required in the event E(v,y;A). Therefore,

E(v,y;A) ∩ (b̄ → y)c ∩ (
(v → n) ◦ ({b occ.} ∩ (b̄ → n)

))
= (

E(v,y;A) ∩ (b̄ → y)c ∩ {b occ.} ∩ (b̄ → n)
) ∩ (

(v → n) ◦ ({b occ.} ∩ (b̄ → n)
))

⊆ (
E(v,y;A) ◦ ({b occ.} ∩ (b̄ → n)

)) ∩ (
(v → n) ◦ ({b occ.} ∩ (b̄ → n)

)) ∩ (b̄ → y)c

⊆ (
E(v,y;A) ∩ (v → n)

) ◦ ({b occ.} ∩ (b̄ → n)
)
, (8.125)

where, in the last step, we used (b̄ → y)c to conclude that the occupied path from b̄ to n that is disjoint from (v → n)

is also disjoint from a set of paths realising E(v,y;A). This proves (8.122).
Next, we prove (8.123). If there is no pivotal bond for v → y, then v ⇒ y, and thus ({b occ.}∩ (b̄ → y))◦ (v → y)

occurs. This leaves the case where there is a pivotal bond for v → y, and in this case, we let b′ denote the last pivotal
bond. If the left-hand side of (8.123) occurs and b̄ → b′, then b is occupied and E(b̄,y;A) occurs (since there is
a vertex in A on one of the paths from b̄′ to y). If, on the other hand, the left-hand side of (8.123) and (b̄ → b′)c
both occur, then ({b occ.} ∩ (b̄ → y)) ◦ (v → y) occurs, since ({b occ.} ∩ (b̄ → y)) ◦ (b̄′ → y) occurs as in the
case of no pivotal bond and since the connection from v to b̄′ must also be disjoint from ({b occ.} ∩ (b̄ → y)). This
proves (8.123). �
Proof of Proposition 8.11. (a) By (8.122) and (3.35),

M
(N+1)
b

(
I
[
E(vN−1,y; C̃N−1) ∩ (b̄ → y)c ∩ (

(vN−1 → n) ◦ ({b occ.} ∩ b̄ → n
))])

� M
(N+1)
b

(
I
[(
E(vN−1,y; C̃N−1) ∩ (v → n)

) ◦ ({b occ.} ∩ (b̄ → n)
)])

=
∑

(uN−1,vN−1)

JuN−1,vN−1M
(N)
uN−1

(
P
(
E′(vN−2, b; C̃N−2)

∩ ((
E(vN−1,y; C̃N−1) ∩ (vN−1 → n)

) ◦ ({b occ.} ∩ (b̄ → n)
))))

, (8.126)

where we assume for convenience in this paragraph that N � 1 (the case N = 0 is similar). Due to the orientation of
the bonds, the events on the right-hand side of (8.126) can be rewritten as

E′(vN−2, b; C̃N−2) ∩ (
E(vN−1,y; C̃N−1) ∩ (vN−1 → n)

) ◦ ({b occ.} ∩ (b̄ → n)
)

= (
E′(vN−2, b; C̃N−2) ∩ E(vN−1,y; C̃N−1) ∩ (vN−1 → n)

) ◦ ({b occ.} ∩ (b̄ → n)
)
. (8.127)
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By the BKR inequality,

P
((

E′(vN−2, b; C̃N−2) ∩ E(vN−1,y; C̃N−1) ∩ (vN−1 → n)
) ◦ ({b occ.} ∩ (b̄ → n)

))
� P

(
E′(vN−2, b; C̃N−2) ∩ E(vN−1,y; C̃N−1) ∩ (vN−1 → n)

)
Jb,b̄θn(b̄). (8.128)

We then substitute (8.128) into (8.126), and again use (3.35), to see that

M
(N+1)
b

(
I
[
E(vN−1,y; C̃N−1) ∩ (b̄ → y)c ∩ (

(vN−1 → n) ◦ ({b occ.} ∩ b̄ → n)
)])

� M
(N+1)
b

(
I
[
E(vN−1,y; C̃N−1) ∩ (vN−1 → n)

])
Jb,b̄θn(b̄). (8.129)

Since my � mb , we can use the definitions in (6.12) and (7.47), (7.48) to see that

I
[
E(vN−1,y; C̃N−1)

]
� I

[
Vmb

(vN−1,y)
] + I

[
Emb+1(vN−1,y; C̃N−1)

]
, (8.130)

where, for N = 0, the second contribution is identically zero. If we bound I [(vN−1 → n)] by 1 in (8.129), it then fol-
lows from Lemma 7.13 that the contribution due to I [Vmb

(vN−1,y)] is bounded by P (N)( b;Vmb
(y)) = R(N)( b,y).

Also, by Lemma 7.14, the contribution due to I [Emb+1(vN−1,y; C̃N−1)] is bounded by P (N)( b;Emb+1(y)) =
Q(N)( b,y). Adding these, we obtain

M
(N+1)
b

(
I
[
E(vN−1,y; C̃N−1)

])
� R(N)( b,y) + Q(N)( b,y), (8.131)

which gives the upper bound [R(N)( b,y) + Q(N)( b,y)]Jb,b̄θn(b̄) of (8.110). Also, the bounds

M
(N+1)
b

(
I
[
Vmb

(vN−1,y; C̃N−1) ∩ (vN−1 → n)
])

� R(N)( b,y; θn), (8.132)

M
(N+1)
b

(
I
[
Emb+1(vN−1,y; C̃N−1) ∩ (vN−1 → n)

])
� Q(N)( b,y; θn) (8.133)

are minor adaptations of (7.58) and (7.63). This proves (a).
(b) We bound the contributions to (8.111) due to both terms in (8.123) separately. Using (3.35), the contribution

to (8.111) due to the first term on the right-hand side of (8.123) is

M
(N+1)
b

(
I
[(({b occ.} ∩ (b̄ → y)

) ◦ (vN−1 → y)
) ∩ (

(vN−1 → n) ◦ (b̄ → n)
)])

=
∑

(uN−1,vN−1)

JuN−1,vN−1M
(N)
uN−1

(
M

(1)

vN−1,b;C̃N−1

(
I
[(({b occ.} ∩ (b̄ → y)

) ◦ (vN−1 → y)
)

∩ (
(vN−1 → n) ◦ (b̄ → n)

)]))
. (8.134)

We temporarily omit the two connections to n inside the above expression, and observe that∑
b

M
(1)

vN−1,b;C̃N−1

(
I
[({b occ.} ∩ (b̄ → y)

) ◦ (vN−1 → y)
])

� P (0)
(
vN−1, b; C̃N−1,2(1)

b (y)
)
� P (1)(vN−1,y; C̃N−1). (8.135)

Thus, once we take into account the two connections to n, we obtain∑
b

M
(1)

vN−1,b;C̃N−1

(
I
[(({b occ.} ∩ (b̄ → y)

) ◦ (vN−1 → y)
) ∩ (

(vN−1 → n) ◦ (b̄ → n)
)])

� P (1)(vN−1,y; C̃N−1, θn, θn) ∧ P (1)(vN−1,y; C̃N−1). (8.136)

We substitute (8.136) into the summation of Eq. (8.134) over b. With (6.11) and (6.21), this gives∑
b

M
(N+1)
b

(
I
[
E(vN−1,y; C̃N−1) ∩ {b occ.} ∩ (b̄ → y) ∩ (

(vN−1 → n) ◦ (b̄ → n)
)])

�
∑

(uN−1,vN−1)

JuN−1,vN−1M
(N)
uN−1

(
P (1)(vN−1,y; C̃N−1, θn, θn) ∧ P (1)(vN−1,y; C̃N−1)

)
� P (N+1)(y; θn, θn) ∧ P (N+1)(y). (8.137)
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The obvious inequality P (N+1) � P̃ (N+1) completes the analysis for the first term in (8.123).
For the contribution to (8.111) due to second term in (8.123), (3.35) gives

M
(N+1)
b

(
I
[
E(b̄,y; C̃N−1) ∩ {b occ.} ∩ (

(vN−1 → n) ◦ (b̄ → n)
)])

=
∑

(uN−1,vN−1)

JuN−1,vN−1

× M(N)
uN−1

(
M

(1)

vN−1,b;C̃N−1

(
I
[
E(b̄,y; C̃N−1) ∩ {b occ.} ∩ (

(vN−1 → n) ◦ (b̄ → n)
)]))

. (8.138)

By (6.13),

M
(1)

vN−1,b;C̃N−1

(
I
[
E(b̄,y; C̃N−1) ∩ {b occ.} ∩ (

(vN−1 → n) ◦ (b̄ → n)
)])

� P
(
E(vN−1, b; C̃N−1) ∩ {b occ.} ∩ E(b̄,y; C̃N−1) ∩ (

(vN−1 → n) ◦ (b̄ → n)
))

. (8.139)

We again temporarily omit the two connections to n inside the above expression, and observe that, by the Markov
property,

P
(
E(v, b;A) ∩ {b occ.} ∩ E(b̄,y;A)

) = Jb,b̄P
(0)(v, b;A)P (0)(b̄,y;A), (8.140)

which leads to an upper bound∑
b

∑
(uN−1,vN−1)

JuN−1,vN−1M
(N)
uN−1

(
PN

(
E(vN−1, b; C̃N−1) ∩ {b occ.} ∩ E(b̄,y; C̃N−1)

))
� P̃ (N+1)(y). (8.141)

Note that P̃ (N+1) occurs, rather than P (N+1), due to the fact that the two events E(vN−1, b; C̃N−1) and E(b̄,y; C̃N−1)

depend on the same set of vertices C̃N−1, whereas, for P (N+1), the event E(b̄,y; C̃N−1) would be replaced by
E(b̄,y; C̃b(vN−1)). This change can be bounded by letting the last Construction E be applied to all lines, rather
than only the N -admissible lines. It is not difficult to see that if we now take into account the two connections to n,
then we obtain∑

b

M
(N+1)
b

(
I
[
E(vN−1,y; C̃N−1) ∩ {b occ.} ∩ (b̄ → y) ∩ (

(vN−1 → n) ◦ (b̄ → n)
)])

� P̃ (N+1)(y; θn, θn) ∧ P̃ (N+1)(y). (8.142)

Together, (8.137) and (8.142) prove (8.111). �
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