
How T-cells use large deviations to recognize foreign antigens
Zint, N.; Baake, E.; Hollander, W.T.F. den

Citation
Zint, N., Baake, E., & Hollander, W. T. F. den. (2008). How T-cells use large deviations to
recognize foreign antigens. Journal Of Mathematical Biology, 57(6), 841-861.
doi:10.1007/s00285-008-0191-1
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/61896
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/61896


ar
X

iv
:q

-b
io

/0
60

50
16

v2
  [

q-
bi

o.
SC

] 
 1

5 
M

ay
 2

00
8

Journal of Mathematical Biology manuscript No.
(will be inserted by the editor)

How T-cells use large deviations to recognize foreign antigens

Natali Zint · Ellen Baake · Frank den Hollander

Received: date / Accepted: date

Abstract A stochastic model for the activation of T-cells is analysed. T-cells are part of the immune

system and recognize foreign antigens against a background of the body’s own molecules. The model under

consideration is a slight generalization of a model introduced by Van den Berg, Rand and Burroughs in

2001 [18], and is capable of explaining how this recognition works on the basis of rare stochastic events.

With the help of a refined large deviation theorem and numerical evaluation it is shown that, for a wide

range of parameters, T-cells can distinguish reliably between foreign antigens and self-antigens.
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1 Introduction

The mammalian immune system relies critically on so-called T-cells, which recognize foreign antigens and

trigger an immune response. The word “antigen” is derived from antibody generating (indicating that

antigens are molecules that can elicit an immune reaction).

Each individual is supplied with a large repertoire of different types of T-cells (each defined by the

special type of T-cell receptor exposed at its surface), and every type recognizes a certain repertoire of

antigens. This recognition, in turn, starts a signalling cascade, which induces an immune response that

finally leads to the elimination of the antigen (Janeway et al. [9]).

The T-cell repertoire of an organism must, on the one hand, recognize foreign antigens in a reliable

way; on the other hand, it must not respond to the body’s own antigens, since this would elicit dangerous

auto-immune reactions. How does this “self-nonself distinction” work?

This basic question of immunobiology has remained unanswered for a very long time. One fundamental

difficulty lies in the fact that foreign antigens and self-antigens are very similar in nature. Van den Berg,

Rand and Burroughs [18] (henceforth referred to as BRB) addressed this difficulty by modelling the

probabilistic nature of the interactions between T-cell receptors and the antigens presented on the surface

of so-called antigen-presenting cells (APCs). A T-cell (with many copies of its given receptor) encounters

these APCs (which carry a random mixture of antigens). By modelling these encounters as random events,
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and taking the interaction kinetics between T-cell receptors and antigens into account, BRB have shown

that the T-cell repertoire can distinguish reliably between APCs that carry foreign antigens and those

that do not.

In order to validate the results of BRB, we reconsider their model and refine its analysis. In mathe-

matical terms, the model boils down to computing the distribution of a large sum of independent but not

identically distributed random variables. Since a T-cell response is a rare event (for a randomly chosen

encounter), the tail of the distribution is relevant – a situation that requires the use of large deviation

theory. Specifically, we need the so-called exact asymptotics, as provided by the Bahadur-Rao theorem

and a generalization proved by Chaganty and Sethuraman [2]. With the help of this theorem, we find

substantially elevated tail probabilities for the case where a foreign antigen is present in a fairly high

copy number, relative to the self-background. Abundance of the foreign antigen is biologically realistic,

since pathogens multiply within the body and swamp it with their antigens before an immune response

is started. Furthermore, the requirement of a high copy number can be relaxed in a refined version of the

model that includes a biological mechanism known as negative selection (see below).

The BRB paper [18] appeared in a biological context (with lots of immunological detail not easily

accessible to the non-specialist) and therefore put little emphasis on mathematical detail. The aim of the

present article is threefold. Firstly, we will make this fascinating piece of theoretical biology available to a

more mathematical readership. To this end, we will streamline the modelling by formulating a set of explicit

assumptions. Secondly, we will put the analysis on a solid mathematical basis by stating and applying

the necessary large deviation result. This result holds under rather general conditions and therefore opens

up interesting perspectives for further research. Thirdly, we will put forward and analyse numerically an

extension of the BRB-model obtained by replacing the constant copy numbers of antigens on APCs by

random variables, which is biologically more realistic.

The remainder of this article (which builds on the thesis of Zint [27], where many more details may

be found) is organized as follows. Section 2 explains the immunological problem in a nutshell. Section 3

presents the mathematical model in its generalized form, with the emphasis on making individual modelling

steps and assumptions transparent. Section 4 is devoted to large deviations, and provides the main theorem

required for our analysis. On this basis, approximations are derived in Section 5, and applied to the

biological model to demonstrate its recognition ability. Section 6, finally, summarizes and discusses the

results, the possible extensions, as well as the limitations of the model.

2 T-cells and antigen recognition in a nutshell

The object of immunobiology is the body’s own defence against pathogens like bacteria, viruses or fungi.

One distinguishes between unspecific and specific defence mechanisms. The latter form the so-called im-

mune system, which specifically reacts to intruders. In this reaction, the T-cells play an important role,

which we will now briefly describe; for more details, see the textbook by Janeway et al. [9].

T-cells. T-cells are produced in the bone marrow and subsequently migrate to the thymus, where

they mature (see below). On leaving the thymus, each T-cell is characterized by a specific type of T-cell

receptor (TCR), which is displayed in many identical copies on the surface of the particular T-cell (see

Fig. 1). These TCRs play an important part in the recognition of intruders (see below). It is important to

note that all TCRs on one T-cell are of the same type. However, a large number (roughly 107; see Arstila

et al. [1]) of different receptors, and hence different T-cell types, are present in an individual.

Antigen-presenting cells. The partners of the T-cells are the antigen-presenting cells (APCs), each

producing so-called MHC molecules of different types (the set of these different types is the same for all

the APCs of a given individual). An APC absorbs antigens from its vicinity and breaks them down. In

the cell the emerging fragments, so-called peptides (short sequences of amino acids), are bound to the

MHC molecules. The resulting complexes, composed of an MHC molecule and a peptide (abbreviated by

pMHC), are displayed on the surface of the cell (the MHC molecules serve as “carriers” or “anchors” to

the cell surface). Since most of the peptides in the vicinity of an APC are the body’s own peptides, every

APC displays a large variety of different types of self-peptides and, possibly, one (or a small number of)
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APC 1

T−cell 1 APC 2

T−cell 2

APC 3

T−cell 3

Fig. 1 A sample of different T-cells and APCs

foreign types. The various types of peptides occur in various copy numbers, as will be detailed below.

For the moment, we merely note that foreign peptides are often present at elevated copy numbers. As

noted above, this is because pathogens multiply within the body and flood it with their antigens, before

an immune response is initiated.

Interactions between T-cells and APCs. The presentation of peptides on the surface of the APCs is

of great importance for the immune system, because T-cells will only be activated when they recognize

foreign peptides on the surface of an APC. The contact between a T-cell and an APC is established

by a temporary bond between the cells, through which a so-called immunological synapse (see Fig. 2)

is formed, in which the TCRs and the pMHCs interact with each other. If a T-cell recognizes a foreign

peptide through its receptors, then it is activated to reproduce, and the resulting clones of T-cells will

initiate an immune reaction against the intruder.

T−cell

APC

MHC
molecule

TCR

peptide

Fig. 2 An immunological synapse

Maturation. During the maturation of a T-cell, several processes take place in the thymus. Initially,

the T-cell starts to display the TCRs on its surface. After this, two selective processes take place. During

positive selection, those T-cells that hardly interact with the MHC molecules of the individual are removed.

Furthermore, negative selection causes the removal of those T-cells that react too strongly to self-peptides.

Thus, both useless and dangerous T-cells are removed.

Problem. Self-peptides and foreign peptides cannot differ from each other by nature. After all, even

tissues of a different individual of the same species are recognized as foreign (this is the basic problem

of transplantation). However, the activation of a T-cell occurs only when it recognizes a foreign peptide.

Therefore the question comes up how the T-cells can distinguish between self and non-self. At first sight,

the task seems hopeless, since there are vastly more different peptides (roughly 1013; see Mason [12])
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than TCRs (roughly 107, as noted earlier), which makes specific recognition (where one TCR recognizes

exactly one pMHC) impossible; this is known as the Mason paradox. Fortunately, there is an answer to

this question.

3 The model

We present here a slightly generalized version of the model originally proposed in BRB [18]. To this end,

we recapitulate the modelling ideas and idealizations, and summarize them as assumptions (A1)–(A7)

below.

Consider the immunological synapse between a T-cell and an APC (see Fig. 2). The activation of

the T-cell is conceived as follows. If a contact between a TCR and a pMHC lasts longer than a certain

time period, t∗, then the T-cell will receive a stimulus. The T-cell adds up the stimulation rates of all

its receptors. If this sum exceeds a threshold, gact, then the T-cell will be activated. This model relies

on several hypotheses, which are known as kinetic proofreading ([3],[14]), serial triggering ([16],[17]) and

counting of stimulated TCRs ([15],[24]).

3.1 Kinetics of stimulation

Let Ri be an unbound TCR of type i, Mj an unbound pMHC of type j, and Cij a complex composed of

Ri and Mj , where i, j ∈ N. For every such pair, the binding and unbinding may, in chemical shorthand

notation, be symbolized as

Ri + Mj

λij

⇋
ρij

Cij , (1)

where λij and ρij are the association and dissociation rates, respectively. An encounter (to be used

synonymously with an immunological synapse) between a T-cell and an APC with its mixture of pMHCs

is therefore characterized by the type i of the T-cell, the types j of pMHCs at hand and the associated

surface densities zj , as well as the rates λij and ρij (which will be considered fixed for the purpose of

this subsection). If the spatial structure in the immunological synapse is ignored, then the corresponding

kinetics in the synapse is described by the deterministic law of mass action, i.e., for the given i,

d

dt
cij(t) = λijri(t)mj(t) − ρijcij(t) , cij(0) = 0 , ∀j ,

d

dt
mj(t) = −λijri(t)mj(t) + ρijcij(t) , mj(0) = zj , ∀j ,

d

dt
ri(t) = −

X

j

λijri(t)mj(t) +
X

j

ρijcij(t) , ri(0) = r ,

(2)

where ri(t), mj(t) and cij(t) are the surface densities of Ri, Mj and Cij , respectively, at time t (and we

note that only finitely many zj ’s are non-zero). It is easily verified that the solution of (2), for the given

i, satisfies the conservation laws

ri(t) +
X

j

cij(t) = r and mj(t) + cij(t) = zj ∀j . (3)

Note that this deterministic approach, with its surface densities varying over the reals rather than a

finite set, is justified when the numbers of all the involved molecules are large enough (see e.g. Ethier

and Kurtz [6, Chapter 11, Theorem 2.1]). This standard approach to reaction kinetics is also used for

the binding kinetics in the immunological synapse (see e.g. BRB [19, Eq. (A.5)], which describes the

equilibrium of this model). It should be noted, however, that some of the antigen types may be fairly rare

in the situation at hand, so that the deterministic approach may be somewhat crude. But it will become

clear later on that we actually do not depend on details of the binding kinetics.

[Remark: In the probabilistic approach in the next subsection, we will use the symbol zj for the copy

number of type j pMHC rather than its surface density, since they differ by an (irrelevant) normalization

factor only.]
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Equilibrium. The bond between a TCR and a pMHC consists of two parts: contacts between the TCR

and the MHC molecule, and contacts between the TCR and the peptide. According to Wu et al. [26],

the former specify mainly the association rate and the latter mainly the dissociation rate. We consider

mature T-cells, which implies that they have been positively selected, i.e., each T-cell binds one type of

the MHC molecules of the individual very well. Thus, we idealize λij as very large (≫ 1/(r t∗)) for pMHCs

containing this type of MHC molecule, and zero otherwise. For every i, we therefore restrict j in (2) to

the set

Pi = {j : λij ≫ 1/(r t∗)} , (4)

since only these pMHCs contribute significantly to the stimulation rate. As a consequence, we may assume

that the reaction is in equilibrium, because this is reached on a time scale that is short relative to the

time scale of activation. Therefore, in view of (2), for every i we have

ĉij =
λij

ρij
r̂im̂j ∀ j ∈ Pi , (5)

where r̂i, m̂j and ĉij denote the equilibrium quantities. Combining (3) for these quantities with (5), we

get an equation for ĉij that can be solved to give the implicit system of equations

ĉij = zj
r −

“

P

k∈Pi
ĉik

”

r −
“

P

k∈Pi
ĉik

”

+ ρij/λij

(cf. BRB [19, Appendix A.1]). Assuming further that the concentration of TCRs is not limiting (i.e.,

r >
P

j∈Pi
zj – this is the so-called serial triggering regime) and that the relevant dissociation rates are

very small (i.e., ρij/λij ≪ r for all j ∈ Pi), we are led to the idealization

(A1) ĉij = zj .

As will become clear later on, this assumption may actually be relaxed (see Section 6); we make it here

for ease of exposition.

Stimulation rate. A given Cij dissociates at rate ρij . Therefore, Tij , the duration of a contact between

Ri and Mj , is exponentially distributed with mean τij = 1/ρij . Hence, the probability of Tij exceeding t∗

is e−t∗/τij , which we refer to as the stimulation probability (of a Cij). Note that, by the above together

with (4) and (A1), an encounter between a T-cell and an APC is now characterized by i, Pi as well as the

collections of zj and τij for all j ∈ Pi with zj > 0.

The T-cell receives a stimulus every time a complex dissociates that has existed for at least time t∗.

Therefore the average stimulation rate of type ij complexes is given by

(A2) ρij P(Tij > t∗) = w(τij) with w(τ ) = 1
τ e

−t∗

τ .

In Fig. 3, w(τ ) is plotted as a function of τ . This curve can be interpreted as follows.

1. If τ ≪ t∗, then the complex will typically dissociate before stimulation.

2. If τ ≫ t∗, then the TCR and the pMHC will typically be associated for a long time. Therefore the

T-cell will get a stimulus through practically every binding event, but the pMHC keeps the receptor

occupied for a long time, so only few stimuli are expected per time unit.

By (A1) and (A2), we finally get the total stimulation rate for a conjunction of a T-cell of type i and

a particular APC:

(A3) gi =
P

j∈Pi
zjw(τij) .
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Fig. 3 Average stimulation rate of an individual complex type as a function of the average waiting time

3.2 A probabilistic approach

So far, Pi, zj and τij are considered to be given quantities for all i, j ∈ N. Indeed, zj and τij may be

determined experimentally for a given i, j pair (cf. [8],[13]). However, owing to the diversity of complexes

Cij and mixtures of peptides presented on the APCs, it is not possible to specify all these quantities indi-

vidually. Therefore, in order to derive the overall probability of T-cell activation, a probabilistic approach

is required.

Presentation of antigens. The genes of an organism can be classified as constitutive ones and in-

ducible ones. The former encode proteins that are always present in every cell (e.g. proteins of the basic

metabolism). In contrast, the latter encode proteins that only exist in some cells (like for example muscle

proteins) and/or occur only temporarily, i.e., they are variable. Accordingly, the types of self-peptides on

each APC may be partitioned into constitutive and variable, i.e., Pi = Ci ∪ Vi, where Ci ∩ Vi = ∅, and we

suppose that:

(A4) There are constant numbers nc and nv of constitutive and variable types of peptides, respectively, on

each APC.

The constitutive types (Ci) are the same on each APC, whereas there is a different sample of variable

types (Vi) on each APC. As a generalization of BRB [18] and Zint [27], we allow the copy numbers of the

individual types within each class to vary. Therefore we suppose that:

(A5) The zj are realizations of random variables denoted by Zj . These random variables are independent

and identically distributed (i.i.d.) within each of the two classes, and are referred to as Z
(c)
j and Z

(v)
j .

[Remark: The i.i.d. assumption is made for simplicity; we do not model a particular biological mechanism

here. Realistic models would be based on MHC loading fluctuations (cf. BRB [18, Appendix C]). They

invariably induce dependencies, the treatment of which is beyond the scope of the present paper.]

Let us now add in foreign peptides, and make the simplifying assumption that only one type of foreign

peptide is present on an APC, in zf copies. In the following, the index set for the pMHCs is therefore the

union of N and {f}.
The total stimulation rate with respect to a conjunction of a T-cell of type i and a randomly chosen

APC is given by

Gi(zf ) =

0

@

X

j∈Ci

qZ
(c)
j w(τij)

1

A +

0

@

X

j∈Vi

qZ
(v)
j w(τij)

1

A + zfw(τif ) .

Here, the factor q = (nM − zf )/nM ensures that adding the foreign peptides does not change the ex-

pected number nM = nc E(Z
(c)
1 ) + nv E(Z

(v)
1 ) of MHC molecules on the surface of an APC, since also

q(nc E(Z
(c)
1 ) + nv E(Z

(v)
1 )) + zf = nM .

Probability of activation. In line with the original model, we suppose that:
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(A6) For all i and j, the τij are realizations of i.i.d. random variables Tij with mean τ̄ (see BRB [18] and

Zint [27] for explanations).

In particular, this assumption means that no distinction between foreign and self is built into the interaction

between receptors and antigens. This reflects the fact that there is no a-priori difference between the

peptides.

Note that (A6) also implies that the Pi need not be specified and the index i may be suppressed,

because we consider an arbitrary T-cell and the Gi are i.i.d. random variables. Biologically, this means

that we choose a new T-cell type (as well as a new APC) for each encounter, and ignore further meetings

of T-cells of the same type. As a consequence, the partitioning into constitutive and variable peptides has,

at this stage, no effect except for the different abundances.

Altogether the total stimulation rate with respect to a conjunction of a randomly chosen T-cell and

an APC is given by

G(zf ) =

0

@

nc
X

j=1

qZ
(c)
j Wj

1

A +

0

@

nc+nv
X

j=nc+1

qZ
(v)
j Wj

1

A + zfWnc+nv+1 , (6)

where Wj = w(Tj), and:

(A7) The probability of T-cell activation is P
`

G(zf ) ≥ gact
´

.

Specification of distributions and parameter values. For ease of exposition (and in line with the original

model), Tij is exponentially distributed and we have chosen t∗ = 1, τ̄ = 0.04 t∗, nc = 50 and nv = 1500.

As stated in BRB [18], the number of MHC molecules ranges between 104 and 106. Therefore we take

nM = 105. Furthermore, we use binomial distributions Binmc,p and Binmv ,p for Z
(c)
j and Z

(v)
j , for all j,

with parameters mc = 1000, mv = 100 and p = 0.5, so that the means E(Z
(c)
1 ) = 500 and E(Z

(v)
1 ) = 50

correspond to the values zc/nM = 0.005 and zv/nM = 0.0005 in the BRB-model. (Apart from the

expectation, the distribution is an ad-hoc choice.)

It should be mentioned that moderate changes of the values of the parameters (like for example nc, nv ,

E(Z
(c)
1 ) and E(Z

(v)
1 )) do not qualitatively alter the results. Furthermore, these values have been chosen

on the grounds of experimental data (see BRB [18] and Zint [27]). The exponential distribution is less-well

founded. To show that the qualitative behavior does not rely on this particular distribution, we will, as

an alternative, use the log-normal distribution (with parameters µ = −3.3 and σ = 0.5) in Section 5.2.

This has a justification in terms of binding/unbinding kinetics (see BRB [18] and Zint [27]).

3.3 Distinction between foreign and self

For the immune system to work, two conditions are essential: (a) if a foreign antigen is present, then at

least one T-cell will be activated; (b) there will be no activation when only self-antigens are present.

It is helpful to recast this into a hypothesis testing framework, in the following way. The immune

system performs a test of the null hypothesis

H0 : zf = 0 (7)

against the alternative hypothesis

HA : zf > 0 . (8)

The test is performed via N independent encounters between a T-cell and an APC. H0 is then rejected

(and HA assumed) if at least one encounter leads to the event {G ≥ gact}; otherwise, H0 is retained. The

type I error is therefore

α = P(HA assumed | H0 true) = 1 − (1 − P (G(0) ≥ gact))
N ,

and the type II error is

β = P(H0 assumed | HA true) =
`

1 − P
`

G(zf ) ≥ gact
´´N

. (9)
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Here, the underlying assumptions are (A1)–(A7), and G(zf ) is the sum of random variables introduced in

Equation (6), with constants nc, nv and parameter zf . In particular, G(0) denotes the total stimulation

rate in the absence of foreign peptides. The parameter gact can be fine-tuned by the cell; for more on

activation threshold tuning, see Van den Berg and Rand [22].

Clearly, α is the probability of an autoimmune response, whereas β is the probability that a foreign

antigen goes unnoticed. By (b) and (a) above, both α and β must be small for the self-nonself distinction

to work.

Both P(G(0) ≥ gact) and P(G(zf ) ≥ gact) are rare events (since at most a tiny fraction of the T-cells

reacts to a given APC). Therefore, α is close to 0 (close to 1) and β is close to 1 (close to 0) for N small

(N very large). We have no good knowledge of the value of N (except that it is bounded above by the

number of T-cell types). But it is clear that a necessary condition for distinction is that gact can be chosen

in such a way that, for physiologically realistic values of zf ,

(C1) P(G(zf ) ≥ gact) ≫ P(G(0) ≥ gact).

Consequently, there is a region of intermediate values of N for which both α and β are small. We thus need

an analysis of the tiny probabilities P(G(0) ≥ gact) and P(G(zf ) ≥ gact). This requires large deviation

theory and is the subject of Section 4.

4 Large deviations

For many families of random variables, large deviation principles (LDP’s) are available to characterize

their atypical behaviour. Here, we will be concerned with sums of random variables, i.e.,

Sn =

n
X

i=1

Xi,

where (Xi)i≥1 is a sequence of independent (but not necessarily identically distributed) random variables

(like those in Eq. (6)). An LDP characterizes the probability of a large deviation of Sn from its expectation;

a large deviation is a deviation of order n (in contrast to a normal deviation of order
√
n, as covered by

the central limit theorem). A basic result is Cramér’s theorem, which says the following. For a sequence

(Xi)i≥1 of i.i.d. real-valued random variables whose moment-generating function φ(ϑ) = E(exp(ϑX1)) is

finite for all ϑ ∈ R, one has, for all a > E(X1),

lim
n→∞

1

n
log P(Sn ≥ an) = −I(a), (10)

where I(a) = aϑa − ψ(ϑa), ψ(ϑ) = log φ(ϑ), and ϑa is the (unique) solution of ψ′(ϑ) = a. That is, for

large n, the probability that Sn is larger than an decays exponentially with n, with decay rate I(a). The

value ϑa is known as the “tilting” parameter. It is used for an exponential reweighting (or “tilting”) of the

distribution of the Xi (and hence of Sn) that inflates the right-hand tail of the distribution in such a way

that the rare event {Sn ≥ an} turns into a typical one; this is a crucial step in the analysis. For a review

of large deviation theory, see e.g. Den Hollander [4]; Cramér’s theorem and its proof are found in Ch. I.3.

Note, however, that the knowledge of the exponential decay rate I(a) alone does not suffice to provide

meaningful leading-order estimates of the probabilities of the rare event itself. This is because (10) is com-

patible with P(Sn ≥ an) = f(n) exp (−nI(a)(1 + o(1))) for any prefactor f(n) = O(nα), with arbitrary

α. More accurate information is obtained from so-called exact asymptotics. For the situation at hand,

this is given by a refinement of Cramér’s theorem due to Bahadur and Rao (cf. [5], Ch. 3.7). Namely,

under the assumptions of Cramér’s theorem and the additional requirement that the distribution of X1

be non-lattice (which is always fulfilled if X1 has a density), one has

P(Sn ≥ an) =
1√

2πnσϑa
e−nI(a)(1 + o(1)) as n→ ∞ (11)

for all a that satisfy E(X1) < a < supϑ ψ(ϑ). Here, I(a) and ϑa are as above, and σ2 = ψ′′(ϑa) is the

variance of 1
nSn after “tilting” with the exponential parameter ϑa. (The condition a < supϑ ψ(ϑ) ensures
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that only those events {Sn ≥ an} are considered that are actually possible; the condition is void if X1,

and hence Sn/n, take values in all of R≥0.)

What we need to tackle our stimulation rates (6) is the generalization of (11) to situations in which

the (Xi)i≥1 are not identically distributed. Fortunately, a very general result is available, which does not

even require independence. This is the result of Chaganty and Sethuraman [2], which plays a crucial role

in our analysis, and which we will now formulate.

Let (Sn)n∈N be a sequence of R-valued random variables, with moment generating functions φn(ϑ) =

E (exp(ϑSn)), ϑ ∈ R. Suppose that there exists a ϑ∗ ∈ (0,∞) such that

sup
n∈N

sup
ϑ∈Bϑ∗

φn(ϑ) <∞ , (12)

where Bϑ∗ = {ϑ ∈ C : |ϑ| < ϑ∗}. Define

ψn(ϑ) =
1

n
log φn(ϑ) , (13)

and let (an)n∈N be a bounded sequence in R such that for each n the equation

an = ψ′
n(ϑ) (14)

has a solution ϑn ∈ (0, ϑ∗∗) for some ϑ∗∗ ∈ (0, ϑ∗). This solution is unique by strict convexity of ψn.

Define
σ2

n = ψ′′
n(ϑn) ,

In(an) = anϑn − ψn(ϑn) .
(15)

Theorem 1 (Chaganty-Sethuraman [2]) If infn∈N σ
2
n > 0, limn→∞ ϑn

√
n = ∞ and

lim
n→∞

√
n sup

δ1≤|t|≤δ2ϑn

˛

˛

˛

˛

φn(ϑn + it)

φn(ϑn)

˛

˛

˛

˛

= 0 ∀ 0 < δ1 < δ2 <∞ , (16)

then

P (Sn ≥ nan) =
e−nIn(an)

ϑnσn
√

2πn
(1 + o(1)) as n→ ∞ . (17)

�

In analogy with the previous discussion, ϑn is the “tilting parameter” for the distribution of 1
nSn, σ2

n

is the variance of the “tilted” 1
nSn, and In(an) is the large deviation rate function. Let us further remark

that, in principle, even finer error estimates (of Berry-Esséen type, cf. [7], Ch. XVI) can be obtained

beyond the asymptotics in Theorem 1, but this becomes technically more involved.

5 Activation curves

In order to investigate whether condition (C1) can be fulfilled for physiologically realistic values of zf , we

consider the so-called activation curves, i.e., 1 − Fzf (gact) with Fzf the distribution function of G(zf ).

5.1 Simulation and approximation

We begin by deriving an approximation for the activation probability in condition (C1) based on Theo-

rem 1. Consider a sequence of models defined by increasing numbers of constitutive and variable peptide

types. Let

n =

(

nc + nv , if zf = 0,

nc + nv + 1, otherwise,
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and consider the limit n → ∞ with limn→∞ nc/nv = C1 ∈ (0,∞); note that the number of foreign

peptides remains 1 throughout. Let Sn in Theorem 1 be

Gn(zf ) =

0

@

nc
X

j=1

qnZ
(c)
j Wj

1

A +

0

@

nc+nv
X

j=nc+1

qnZ
(v)
j Wj

1

A + zfWnc+nv+1

where

qn =
ncmc p+ nv mv p− zf
ncmc p+ nv mv p

,

and let Mc, Mv and M be the moment generating functions of Z
(c)
j Wj , Z

(v)
j Wj and Wj , respectively, i.e.,

for γ ∈ {c, v},

Mγ(ϑ) =
1

τ

mγ
X

k=0

„Z ∞

0
exp

„

kϑ
exp(−t∗/τ )

τ
− τ

τ

«

dτ

«

Binmγ ,p(k) , (18)

and

M(ϑ) =
1

τ

Z ∞

0
exp

„

ϑ
exp(−t∗/τ )

τ
− τ

τ

«

dτ . (19)

Choose an ≡ a and gact(n) = an. Let ϑn be the unique solution of

a =
nc

n
qn

»

d

dϑ
logMc(ϑ)

–

˛

˛

˛

ϑ=qnϑn

+
nv

n
qn

»

d

dϑ
logMv(ϑ)

–

˛

˛

˛

ϑ=qnϑn

+
1

n
zf

»

d

dϑ
logM(ϑ)

–

˛

˛

˛

ϑ=zf ϑn

.

(20)

We further define

σ2
n =

nc

n
q2n

»

d2

dϑ2
logMc(ϑ)

–

˛

˛

˛

ϑ=qnϑn

+
nv

n
q2n

»

d2

dϑ2
logMv(ϑ)

–

˛

˛

˛

ϑ=qnϑn

+
1

n
z2f

»

d2

dϑ2
logM(ϑ)

–

˛

˛

˛

ϑ=zf ϑn

(21)

and

In(a) = aϑn − nc

n
logMc(qnϑn) − nv

n
logMv(qnϑn) − 1

n
logM(zfϑn) . (22)

Since we have only finitely many different types of random variables, all independent, it is straightfor-

ward to check

Lemma 1 The conditions for Theorem 1 are satisfied.

Proof The moment generating function φn(ϑ) is given by

φn(ϑ) =

(

(Mc(ϑ))nc (Mv(ϑ))nv , if zf = 0,

(Mc(qnϑ))nc (Mv(qnϑ))nv M(zfϑ), otherwise.

Let zf be fixed. If a is chosen such that gact(n) > E(Gn(0)) and gact(n) > E(Gn(zf )) for all n (in which

case the strict inequalities are in fact uniform in n), then limn→∞ ϑn = C2 ∈ (0,∞). Consequently,

limn→∞ ϑn
√
n = ∞, and also infn∈N σ

2
n > 0. It thus remains to verify Condition (16). Let Fc(x), Fv(x)

and F (x) be the distribution functions of Z
(c)
j Wj , Z

(v)
j Wj and Wj , respectively. Since

ν
(n)
γ (t) =

Mγ(qn(ϑn + it))

Mγ(qnϑn)
=

Z

R

exp(iqntx)
exp(qnϑnx)

Mγ(qnϑn)
dFγ(x), γ ∈ {c, v} ,

and

ν(n)(t) =
M(zf (ϑn + it))

M(zfϑn)
=

Z

R

exp(izf tx)
exp(zfϑnx)

M(zfϑn)
dF (x)
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are characteristic functions of random variables that are not constant nor are lattice valued, and ϑn and

qn converge as n → ∞, there exists an ε > 0 and an n0 < ∞ such that, for all t 6= 0 and n ≥ n0,

|ν(n)
c (t)| ≤ 1 − ε, |ν(n)

v (t)| ≤ 1 − ε and |ν(n)(t)| ≤ 1 − ε (see Feller [7, Chapter XV.1, Lemma 4]). From

this it follows that
˛

˛

˛

˛

φn(ϑn + it)

φn(ϑn)

˛

˛

˛

˛

=

˛

˛

˛

˛

(Mc(qn(ϑn + it)))nc (Mv(qn(ϑn + it)))nv M(zf (ϑn + it))

(Mc(qnϑn))nc (Mv(qnϑn))nv M(zfϑn)

˛

˛

˛

˛

=
˛

˛

˛

“

ν
(n)
c (t)

”nc
“

ν
(n)
v (t)

”nv

ν(n)(t)
˛

˛

˛

= o(1/
√
n)

as n → ∞ for all t 6= 0 (compare the argument leading to [7, Chapter XVI.6, Equation (6.6)]), which

guarantees (16). �

In view of Lemma 1, we may approximate the probability of T-cell activation as

P
`

G(zf ) ≥ gact
´

≈ e−nIn(a)

ϑnσn
√

2πn
, (23)

where G(zf ) is the original stimulation rate of (6), gact = gact(n) = an, and we assume that n is large

enough for a good approximation. (Note that the threshold gact is not known; but we do know that

reactions of T-cells are rare events. Thus, we may assume that gact is such that large deviations results are

applicable, as will also be confirmed by our simulations below.) The expression in the right-hand side must

be evaluated numerically (we used Mathematica R© [25]), since already the moment generating functions

in (18) and (19) are unavailable analytically, and this carries over to ϑn, σ2
n, and In(a) in (20)-(22).

Let us consider the activation curve for two extreme cases, namely, the self-background (zf = 0), and a

very large number of foreign peptides (zf = 2500). Fig. 4 shows the simulated curve in comparison to the

normal approximation and the approximation in (23). As was to be expected, the normal approximation

describes the central part well, whereas for the right tail (the relevant part of the distribution for the

problem at hand) the large deviation approximation is appropriate. For zf = 0, the latter describes

the simulated distribution in an excellent way; for zf = 2500, it still gives correct approximations beyond

gact = 550, which is the region we are interested in (see the next subsection). An improved approximation of

the entire curve is obtained in BRB [18] by combining the normal and the large deviation approximations,

applying them to the self-peptides only, and performing a convolution with the single foreign one. We

prefer the direct approach (23) here, because it makes the large deviation aspect more transparent, and

because it generalizes easily to situations with more than one foreign peptide. In fact, rather than taking

the limit in the way described above, we could as well consider a sequence of models with nf different

foreign peptides and let n→ ∞ such that nc/n, nv/n and nf /n each tend to a constant; the approximation

of our given finite system by (20)-(23) would remain unchanged.

5.2 Activation curves without negative selection

As we have seen in the last subsection, the approximation in (23) is suitable for the calculation of the

activation curves for various values of zf . Fig. 5 shows the curves as a function of gact for exponentially

(a) and log-normally (b) distributed Tij . The results in (a) and (b) are qualitatively the same. Namely,

we observe that the curves for zf = 250 and zf = 500 (both ≤ E(Z
(c)
1 ) = 500) do not differ visibly from

the curve for the self-background; but, for zf > 1000 and gact > 500, condition (C1) is fulfilled. Therefore

the model can indeed explain how T-cells are able to distinguish between self and non-self. Comparison

with Fig. 3 of BRB [18] shows that the separation of the activation curves is indeed similar to that in the

original model. In terms of the cartoon in Fig. 1, the threshold value gact can be chosen so that T-cell

2 will be activated when it encounters APC 2 with three foreign peptides (the circles), while the other

APCs without foreign peptides (the non-circles) will not activate any T-cell.
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(a) zf = 0, linear scale (b) zf = 0, logarithmic scale

0 200 400 600 800
gact

1

10-2

10-4

10-6

PHGHzfL ³ gactL

(c) zf = 2500, logarithmic scale

Fig. 4 P(G(zf ) ≥ gact) as a function of gact, for the self background (zf = 0), and a very large number of foreign
peptides (zf = 2500). The thick black curve and the black points, respectively, form the simulated distribution of
two million [(a),(b)] and twenty million [(c)] sampling points. The dashed curve is the normal approximation, and
the grey curve is the large deviation approximation (23). The simulation in (c) was kindly provided by F. Lipsmeier.

200 400 600 800 1000
gact

1

10-2

10-4

10-6

10-8

0
250
500

1000
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PHGHzfL ³ gactL

(a) exponential distribution

200 400 600 800
gact

10-2

10-4

10-6

10-8

0
250
500

1000

1500

2000

2500

PHGHzfL ³ gactL

(b) log-normal distribution

Fig. 5 Activation curves for values of zf ranging from 0 to 2500, calculated according to approximation (23) for
two different distributions for Tij . The horizontal axis is chosen to start at a value of gact that yields a probability
close to 1 in this approximation.

The intuitive reason behind the self versus non-self distinction is an elevated number of presented

foreign peptides in comparison with the copy numbers of individual types of self-peptides. Indeed, this

increases the variability of G (which is reminiscent of the fact that for n ≥ 2 i.i.d. random variables with

positive variance, nY1 has a larger variance than
Pn

i=1 Yi). So far the number of presented foreign peptides

has to be fairly large: at least as large as the copy number of constitutive ones, which are, in turn, more

abundant than the variable ones (one might actually reformulate the hypotheses pair (7) and (8) so as to
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test whether the foreign antigen is more abundant than the constitutive peptides or not). However, this

restriction vanishes when we take the training phase of the young T-cells into account, as will be done in

the next subsection.

5.3 Activation curves with negative selection

In order to model the process called negative selection (see Jiang and Chess [10] for a recent review of the

biological details), one postulates a second threshold gthy with a similar role as gact. If the stimulation

rate of a young T-cell in its maturation phase in the thymus (where the APCs only present self-peptides)

exceeds this threshold, then the T-cell is induced to die. For a caricature version of this process, let us

assume that T-cell types present in the thymus exist in one copy each and encounter exactly one APC

there.

The model then consists of two parts: first, the maturation phase is modelled to characterize the

T-cell repertoire surviving negative selection; second, activation curves are calculated for this surviving

repertoire. In the first step, we have to calculate the probability to survive negative selection conditional

on the type of the T-cell:

P(survival of a T-cell of type i) = P

0

@

X

j∈Ci

Z
(c)
j w(τij) +

X

j∈Vi

Z
(v)
j w(τij) < gthy

1

A .

In this case the conceptual difference between Ci and Vi has an effect, which is essential. The constitutive

types of peptides are the same on each APC, both in the thymus and in the rest of the body. Only these

can be “learnt” as self by negative selection – the Vi, being a fresh sample for every APC, are entirely

unpredictable. Therefore we have

P(survival of a T-cell of type i) = P(survival |Wij = w(τij) ∀j ∈ Ci) .

But in the case of fixed constitutive copy numbers zc, the constitutive part of the stimulation rate reads

G(c) =
P

j∈Ci
zcw(τij), which is constant for fixed i. Therefore we have

P(survival |Wij = w(τij)∀j ∈ Ci) = P(survival |G(c) = gi) .

This simplifies the second step, the calculation of the activation curves conditional on survival: only a

single integration step is required. Numerically, it turns out that (C1) is already fulfilled for zf ≤ 500

(= E(Z
(c)
1 )). Actually, the detection threshold for foreign antigens is reduced drastically (to about a third

of the original value).

In our case (where the copy numbers vary from APC to APC), G(c) =
P

j∈Ci
Z

(c)
j w(τij), the con-

stitutive part, varies from encounter to encounter. Indeed, whereas the w(τij) are fixed for each T-cell,

the copy numbers are tied to the APCs. Therefore
P

j∈Ci
w(τij) is not sufficient to determine G(c), and

hence the survival probability; rather, the entire collection of the individual stimulation rates w(τij) for

the constitutive types must be known to calculate the probability of the young T-cell to survive negative

selection. The corresponding convolution required in the second step involves high-dimensional integrals,

which appear to be computationally infeasible. In Van den Berg and Molina-Paris [20] this difficulty is

tackled by simplifying the distribution of W to a Bernoulli variable. Here we resort to simulations.

To this end, we assume that each mature T-cell encounters the same number (in our simulation 1)

of APCs in the rest of the body. For gthy = 140 (which for our choice of parameters corresponds to

thymic deletion of about 5% of the young T-cells) the activation curves are shown in Fig. 6. As in the

case of fixed copy numbers, we observe an incipient separation of the activation curves for zf = 0 and

zf = 500. All in all, the above shows that the reduced detection threshold for foreign antigens occurs

in the case of random copy numbers too. However, it seems that the separation of the activation curves

is less pronounced here than in the case of constant copy numbers. This is plausible because the copy

numbers of several constitutive peptides could be large (comparable to the copy number of the foreign

peptide) and therefore the recognition does not work equally well. More pronounced separation of the
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curves could be achieved by including mechanisms of so-called peripheral tolerance into the model. These

mechanisms control the immune response of T-cells once they have left the thymus (mainly by the action

of T-suppressor cells); see [10] for review and [20] for modelling approaches.

Fig. 6 Simulated activation curves with gthy = 140 for zf = 0 (black curve) and zf = 500 (grey curve)

6 Discussion

We have analysed mathematically how T-cells can use large deviations to recognize foreign antigens. Before

we discuss details of our results, let us pause here to discuss the notion of recognition that emerges from

this analysis.

As explained in the introduction, the task the immune system faces is to recognize foreign antigens

against a background of self-molecules. In much of the biological literature (and in line with intuitive

understanding), this recognition is implied to be specific on a molecular basis. In sharp contrast, the

mechanism proposed by BRB [18], and further analysed here, dispenses with such a high degree of strict

specificity and, instead, is based on elevated copy numbers of the foreign antigen, relative to the self-

background. This alleviates the Mason paradox about the repertoire size versus the universe of potentially

relevant peptides. In this sense, specific recognition of antigen types is replaced by probabilistic recognition

(this concept also appears elsewhere in biology, for example in the olfactory system; see, e.g., Lancet et al.

[11]). We have examined this fact in detail for the situation without negative selection, where the principle

becomes most transparent and can be largely dealt with via a large deviation analysis. Negative selection

basically lowers the relevant background stimulation rate. Therefore it is easier for the foreign peptide to

stand out against it, but the basic principle of recognition on the basis of frequencies remains the same.

The generalization we have examined in this article concerns precisely this fundamental issue of fre-

quencies. In the original BRB-model [18], these frequencies were considered fixed (within the variable and

constitutive class). In a subsequent paper, [20], a more sophisticated model of copy number variability was

introduced (to reflect the fact that different cell types produce different proteins in different amounts, and

some specialized cells may even produce large amounts of a variable peptide). We have replaced this here

by a simpler approach that makes the analysis more amenable.

At the same time, allowing the Zj to vary allows us to weaken assumption (A1), which is somewhat

too restrictive in that it assumes that, for all j ∈ Pi, all pMHCs are in the perfectly bound state. But

if we simply reinterpret Zj as the (fluctuating) number of bound antigens rather than the total number

(i.e., corresponding to ĉij rather than to zj), then we can circumvent (A1) and, at the same time, free

ourselves from the details and limitations of the deterministic binding kinetics, the assumptions of which

may sometimes be violated, for example, if copy numbers are low.

Although, in this vein, a detailed model of the binding kinetics may not be required, one last remark

is in order concerning a potential stochastic model. Stochastic models of binding kinetics, e.g. as described

in Ethier and Kurtz [6, Chapter 11], take care of the finite number of molecules, and of the resulting

fluctuations of bound molecules over the short time scales of the binding kinetics. Over the longer time

scales to be considered for our averaged stimulation rates, the corresponding time averages would be
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relevant. In particular, these would in general not be integers; in this light, the factor q, which turns the

multipliers of the sums in (6) into non-integer values, is rendered plausible.

Summarizing, our results show that the probabilistic recognition phenomenon is astonishingly robust

against fluctuations of the copy numbers. Similarly, generalizations in various other directions that take

into account many more biological details (see e.g. [20,21,23]), have shown that the phenomenon persists

in a robust way. One may therefore hope that several details of the assumptions may actually be dispensed

with. Future work will thus aim at identifying the joint mathematical content of the underlying family of

models. In particular, this will include an analysis of what aspects of the distribution of the W ’s are key

to the observed phenomenon. Luckily, the scope of the large deviation result Theorem 1 is wide enough

to cope with very general situations. In particular, one is not bound to sums of independent random

variables, but can also tackle dependencies (like, for example, those introduced by negative selection)

within the present framework. Furthermore, the large deviation framework may also be used to construct

efficient simulation methods for the tail events, as will be described in a forthcoming paper (F. Lipsmeier

& E. Baake, in preparation).

Acknowledgements It is a pleasure to thank Hugo van den Berg for explaining the details of the BRB-model
and providing helpful comments on the manuscript, and Michael Baake for extensive discussions. The simulation
results in Fig. 4(c) were kindly provided by Florian Lipsmeier. This work was supported by the Bilateral Research
Group “Random Spatial Models in Physics and Biology”, funded by DFG and NWO.

References

1. Arstila, T.P., Casrouge, A., Baron, V., Even, J., Kanellopoulos, J. and Kourilsky, P. (1999). A direct
estimate of the human αβ T cell receptor diversity. Science 286, 958–961.

2. Chaganty, N.R. and Sethuraman, J. (1993). Strong large deviation and local limit theorems. Ann. Probab.

21, 1671–1690.
3. Coombs, D., Kalergis, A.M., Nathenson, S.G., Wofsy, C. and Goldstein, B. (2002). Activated TCRs

remain marked for internalization after dissociation from pMHC. Nature Immunol. 3, 926–931.
4. den Hollander, F. (2000). Large Deviations, Fields Institute Monographs 14, American Mathematical Society,

Providence, RI.
5. Dembo, A. and Zeitouni, O. (2004). Large Deviations: Techniques and Applications (2nd edn.), Springer,

New York.
6. Ethier, S.N. and Kurtz, T.G. (1986). Markov Processes: Characterization and Convergence, Wiley, New

York.
7. Feller, W. (1971). An Introduction to Probability Theory and Its Applications Volume II (2nd edn.), Wiley,

New York.
8. Hunt, D.F., Henderson, R.A., Shabanowitz, J., Sakaguchi, K., Michel, H., Sevilir, N., Cox, A.L.,

Appella, E. and Engelhard, V.H. (1992). Characterization of peptides bound to the class I MHC molecule
HLA-A2.1 by mass spectrometry. Science 255, 1261–1263.

9. Janeway, Jr., C.A., Travers, P., Walport, M. and Shlomchik, M.J. (2005). Immunobiology: the Immune

System in Health and Disease (6th edn). Churchill Livingstone, Edinburgh.
10. Jiang, H. and Chess, L. (2006). Regulation of immune responses by T-cells. New England Journal of Medicine

354, 1166–76.
11. Lancet, D., Sadovsky, E., and Seidemann, E. (1993). Probability model for molecular recognition in biolog-

ical receptor repertoires: significance to the olfactory system. Proc. Natl. Acad. Sci. 90, 3715–3719.
12. Mason, D. (1998). A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol.

Today 19, 395–404.
13. Matsui, K., Boniface, J.J., Steffner, P., Reay, P.A. and Davis, M.M. (1994). Kinetics of T-cell receptor

binding to peptide/I-Ek complexes: correlation of the dissociation rate with T-cell responsiveness. Proc. Natl.

Acad. Sci. USA 91, 12862–12866.
14. McKeithan, T.W. (1995). Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci.

USA 92, 5042–5046.
15. Rothenberg, E.V. (1996). How T-cells count. Science 273, 78–79.
16. Valitutti, S., Müller, S., Cella, M., Padovan, E. and Lanzavecchia, A. (1995). Serial triggering of many

T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151.
17. Valitutti, S. and Lanzavecchia, A. (1997). Serial triggering of TCRs: a basis for the sensitivity and specificity

of antigen recognition. Immunol. Today 18, 299–304.
18. van den Berg, H.A., Rand, D.A. and Burroughs, N.J. (2001). A reliable and safe T cell repertoire based

on low-affinity T cell receptors. J. theor. Biol. 209, 465–486.
19. van den Berg, H.A., Burroughs, N.J. and Rand, D.A. (2002). Quantifying the strength of ligand antagonism

in TCR triggering. Bull. Math. Biol. 64, 781–808.



16
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