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7
T H E A C C U R A C Y O F F B P W I T H R E C E N T LY
I N T R O D U C E D F I LT E R S : A C O M PA R I S O N

7.1 introduction

The field of Computerized tomography (CT) focuses on reconstructing an
image of a scanned object from its projections. Projection data are obtai-
ned using a scanning device, for example using X-rays (CT-scanning)
or electrons (electron microscopy). The size of objects that can be scan-
ned by tomography varies from nanometers in electron tomography
to kilometers in seismic tomography [1–4].

In many tomography applications, such as medical and industrial
imaging, finding an exact reconstruction is not possible due to the
size of the reconstruction problem and due to inconsistent projection
data. Therefore, many algorithms have been developed that approxi-
mate the scanned object. Two common categories of such methods are
the algebraic reconstruction methods and the analytical reconstruction
methods.

The algebraic reconstruction methods (ARMs) use a discrete represen-
tation of the tomographic reconstruction problem. This approach of-
ten involves iterative reconstruction techniques to solve the system of
linear equations. Examples of these methods are the Kaczmarz met-
hod which is also known as the algebraic reconstruction technique
(ART) and the simultaneous iterative reconstruction technique (SIRT).
Also expectation maximization (EM) is a well-known iterative recon-

The author would like to acknowledge Dr. D.M. Pelt from the Centrum Wiskunde &
Informatica, Amsterdam, The Netherlands, for developing the software that was used
to generate the reconstructions for the experiments in this chapter and for his useful
textual comments.
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struction method [5, 6]. Algebraic reconstruction methods are well-
suited for incorporating certain types of prior knowledge. These met-
hods are preferred for limited-data problems, for example if only pro-
jections from few angles are available, or if the projections have a limi-
ted angular range. A disadvantage of algebraic methods is their high
computational burden, which can become a bottleneck if large objects,
or a large number of objects, have to be reconstructed in a short period
of time.

The analytical reconstruction methods are based on a continuous re-
presentation of the tomographic reconstruction problem. The Filtered
Backprojection algorithm (FBP) is a commonly used reconstruction met-
hod in CT imaging. It is a computationally fast reconstruction method,
since it only requires a filtering step followed by a backprojection step.
For low-noise projection data with a substantial number of equiangu-
larly distributed projection angles, FBP is known to produce accurate
reconstructions.

Due to the computational efficiency of FBP, extensive efforts have
been made to improve the quality of its reconstructions for situations
where FBP is known to produce poor quality reconstructions. This re-
construction quality depends strongly on the filters that are used in
the FBP algorithm. Choosing the optimal filter for a particular recon-
struction problem is not straightforward and often some standard va-
riation on the Ramp filter is used. Many methods have recently been
published to create filters for FBP. In this chapter we will compare
methods that can be used in 2D parallel-beam tomography.

New filters can be obtained from theoretical derivations, as shown
by Zeng [7]. Other methods, such as OFBP [8] and AF-FBP [9], create
new filters using information from algebraic reconstruction methods
and thereby incorporating the geometry of the reconstruction problem
in the filters. Applying neural networks is another approach to obtai-
ning filters for FBP, as shown by Pelt and Batenburg [10]. Pelt and
Batenburg also introduce the method MR-FBP [11], where the filter
depends on the measured projection data.

Also in the field of tomosynthesis, creating better filters for FBP has
been a topic of interest. An example is OFBP, which was already men-
tioned above. Also Godfrey et al. [12] and Nielsen et al. [13] have re-
cently introduced new filter methods for FBP. Since these algorithms
cannot be translated into parallel-beam tomography, as opposed to
OFBP, they will not be included in this chapter.
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In this chapter, we will provide an overview of recently proposed
methods to compute filters for the FBP algorithm. While the original
descriptions of these methods are quite diverse, we formulate a com-
mon framework in which each of these methods can be expressed in a
straightforward way. After an introduction to the various methods co-
vered in this chapter, we will provide an analysis of the characteristic
properties of each method. An illustration of the results obtained from
the various filter methods is subsequently provided through a series
of simulation experiments. We conclude this chapter with discussion
and conclusions.

7.2 methods

In this section, we first describe the geometry that will be used in
this chapter and the FBP method with standard filters. Then we give
a short description of the methods that will be compared throughout
this chapter.

We consider a parallel-beam geometry with a monochromatic X-ray
source rotating in a circular trajectory around the object. The object is
represented as a function f : R2 → R. We denote the set of projection
angles by ΘwithNΘ = |Θ|, and the set of detector bins by T withNT =

|T |. Define NTΘ = NTNΘ. Furthermore we denote the projections by
p ∈ RNTΘ .

We assume that the measured projections are related to the object f
by the continuous Radon transform, given in Eq. (7.1).

p(θ, t) = (Rf)(θ, t) =
∫∞
−∞ f(t cos θ− s sin θ, t sin θ+ s cos θ)ds

(7.1)

So, for each projection angle θ ∈ Θ, we obtain the value of the Radon
transform for a discrete set of detector coordinates T . The reconstruction
problem then consists of recovering the function f from this set of mea-
surements.

In algebraic methods, the domain of f is discretized as a discrete
(typically square) set of N×N pixels, forming a vector of N2 pixel va-
lues. Similarly, the measured projections are represented by a vector of
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size NTΘ. This leads to the following discretized version of the recon-
struction problem:

Wx = p. (7.2)

In this system of linear equations, the vector x represents the unknown
object, the vector p represents the combined projection data for all
angles, and the projection matrix W models a discretization of the
Radon transform, defining the relationship between x and p.

This chapter deals with filtered backprojection methods, which can all
be written as

u = WTHp, (7.3)

where u ∈ RN
2

denotes a vector containing the N×N-reconstruction,
WT denotes the transpose of the projection matrix (also known as the
backprojection operator), and H ∈ RNTΘ×NTΘ denotes some filter ma-
trix. The particular choice of the filter matrix H defines the recon-
struction algorithm. In the following subsections we will introduce a
series of filtered backprojection methods that have been proposed in
the literature.

7.2.1 FBP

We first briefly comment on the FBP method itself. We recall that the
Radon transform in Eq. (7.1) has an exact inversion formula given by
Eq. (7.4).

f(x,y) =
∫π
0

∫∞
−∞ p(θ, τ)g(θ, t− τ)dτdθ, (7.4)

where g : R2 → R is the inverse Fourier transform of the Ramp filter
G(θ,q) = |q|.

The FBP method is obtained by discretizing Eq. (7.4), as follows:

f(x,y) =
∑
θ∈Θ

∑
τ∈T

pθτg(θ, τ− x cos θ− y sin θ). (7.5)

Hence FBP can be written in the form of Eq. (7.3), where H is defined
by the filters g. The actual filter that is used in FBP does not have to be



7

7.2 methods 129

the Ramp filter. In fact, each of the methods that we will cover in this
chapter uses a different filter g.

7.2.2 Standard filters for FBP

There are several common filters for FBP, which will be called standard
filters here. These filters are variations of the Ramp filter. The Ramp
filter itself is not commonly used, since it amplifies the noise in the
high frequencies, resulting in a poor reconstruction quality. Therefore,
frequency windows are applied to the Ramp filter.

A well-known filter was proposed by Ramachandran and Lakshmi-
narayanan. It uses a simple windowing function, as shown in Eq. (7.6)
[2, 14]. We refer to this filter as the Ram-Lak filter.

G(θ,q) = |q| rect(q). (7.6)

Other, more smooth filter functions are the Cosine filter and the Hann
filter, see Eq. (7.7) and Eq. (7.8) respectively.

G(θ,q) = |q| rect(q) cos(πq/2), (7.7)

G(θ,q) = |q| rect(q) (0.5− 0.5 cos(2πq)). (7.8)

The latter two functions aim at smoothening the edges of the Ram-
Lak filter. The advantage of the Cosine and Hann filter is that they
reduce image noise. A disadvantage is that they do not preserve edges
in the image.

A major advantage of the FBP method with such a standard filter
is its computational efficiency. The complexity of the filtering step in
the Fourier space is O

(
NTΘ logNT

)
and a backprojection operation

is O
(
NTN

2
)
. The standard filters are independent of both the object

to be scanned and the geometry that is used, including the number of
projection angles and the size of the reconstruction grid. A drawback is
that no prior knowledge can be incorporated. Furthermore, FBP with
standard filters is known to perform poorly in case of a missing wedge
or limited number of projection angles.
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7.2.3 MR-FBP

The method minimal residual filtered backprojection (MR-FBP) is pro-
posed by Pelt and Batenburg (2014). It is designed for limited-data
problems and it aims at finding the filter that minimizes the projection
error of the resulting reconstruction, i.e. the difference between the
forward projection of the reconstruction and the projection data p.

FBP consists of a filtering step, which is a convolution of the pro-
jection data p by some filter, followed by a backprojection. As argued
in [11], FBP can also be written as a convolution of some filter h by p,
followed by a backprojection operation, see Eq. (7.9).

FBPh(p) = WTCph, (7.9)

where FBPh denotes FBP with the filter h applied, WT is the back-
projection, and the matrix Cp is the convolution by p. The filter h

is chosen such that it minimizes the squared difference between the
forward projection of the reconstruction and the measured projection
data.

h∗ = argmin
h

[p−WWTCph]
2. (7.10)

Exponential binning is used to reduce the number of unknowns for the
filter h [11]. The resulting MR-FBP algorithm requires the computation
of O

(
logNT

)
projection operations and the total computation time is

O
(
NΘN

2 logNT +NTΘ[logNT ]2
)

for NT ≈ N.
The filter h∗ is designed to minimize the residual in Eq. (7.10). It

determines the filter as part of the reconstruction algorithm, since the
optimal filter depends on both the object to be scanned and the scan-
ning geometry. Therefore, the geometry can be altered during the expe-
riments, as opposed to some other reconstruction methods discussed
in this chapter. It is also possible for this method to incorporate prior
knowledge for example by adding a regularization term to Eq. (7.10).
Determining the filter is relatively fast and various scanning geome-
tries can be used.

A disadvantage of MR-FBP is that it is less suited for creating large
numbers of reconstructions with the same geometry, because the filter
depends on the measured projection data. The filter therefore changes
for every scanned object.
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7.2.4 AF-FBP

Filters for FBP can also be created using a linear algebraic recon-
struction method (ARM). In [9], Batenburg and Plantagie introduce
the method algebraic filter - filtered backprojection (AF-FBP). They use
the simultaneous iterative reconstruction technique (SIRT) to demon-
strate the characteristics of this method. We will follow this approach
here.

For any linear algebraic reconstruction method, there exists a trans-
formation matrix R ∈ RN

2×NTΘ such that u = Rp. For some pixel c of
the reconstruction grid, denoted by (xc,yc), define its projection onto
the detector by t(θ)c = xc cos θ+ yc sin θ for θ ∈ Θ. Furthermore, let
r(c) denote the cth row of R and r(c)θτ the entry of this row correspon-
ding to angle θ and detector element τ ∈ T . It is shown in [9] that there
exists a function h(c) such that

uc =
∑
θ∈Θ

∑
τ∈T

pθτh
(c)(θ, τ− t(θ)c ). (7.11)

When c is chosen such that it is the central pixel of the reconstruction
grid, then h(c) can be expressed as R applied to a set of unit vectors
eθτ with value 1 at position (θ, τ) and value 0 otherwise, see Eq. (7.12).

h
(c)
θτ = [Reθτ]c, ∀θ ∈ Θ, τ ∈ T . (7.12)

This angle dependent filter is then applied to obtain all image pixels
of the reconstruction. As shown in [9], the characteristics of these re-
constructions resemble those of the linear ARM that was used to create
the filters. The reconstruction time is however significantly reduced
compared to that of the ARM, since FBP can be used for the recon-
struction. This is advantageous in situations with only few projection
angles or limited projection range, where an ARM in general gives
more accurate reconstructions than FBP with standard filters. When
the computational burden of ARMs prevents the use of such an ARM,
AF-FBP could be a good alternative. Another advantage of AF-FBP is
that certain types of prior knowledge can be incorporated when crea-
ting the filters.

A disadvantage of AF-FBP is the time that is needed to create its fil-
ters. It takes O

(
NTΘ

)
ARM reconstructions to obtain this filter. Howe-
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ver, since the filter is object independent, these calculations need only
be executed once for a given geometry. Furthermore, not all ARMs are
suitable for AF-FBP, since only linear ARMs can be used. The geome-
try is currently limited to 2D parallel beam. Several parameters need
to be set in advance, such as the pixel c and the number of iterations k.
Also a relaxation parameter ω needs to be chosen, which is contained
in SIRT.

7.2.5 Zeng

In [7], Zeng uses the algebraic Landweber algorithm to obtain a fil-
ter for FBP. The Landweber algorithm is an iterative algebraic recon-
struction method that solves the system of linear equations Wx = p to
obtain the minimum least squares solution. It is equivalent to SIRT that
is used by AF-FBP. The kth iteration step of the Landweber algorithm
is given by Eq. (7.13).

x(k+1) = x(k) +ωWT (p−Wx(k)), (7.13)

where ω is a relaxation parameter. Zeng describes a method to obtain
a filter in the frequency domain based on this Landweber algorithm.
The filter can be used in the FBP method.

The first step to deduce the formula for this filter, is to rewrite
Eq. (7.13) into the form in Eq. (7.14), where x(0) is assumed to equal
zero and k is finite.

x(k) = (WTW)−1[I− (I−ωWTW)k]WTp, (7.14)

where I denotes the identity matrix.
It is shown by Zeng that the impulse-response of the matrix WTW,

determined in the central region of the reconstruction grid, behaves ap-
proximately as 1/r. This means that if we move away from the central
pixel along radial lines, the intensity observed decays as 1/r. Further-
more, the 1D Ramp filter is a good approximation of the operation
(WTW)−1. Hence the filter in 1D Fourier space is given by Eq. (7.15).

Hk(vt) = |vt|
[
1−

(
1−

ω

|vt|

)k], (7.15)

where vt denotes the spatial frequency with respect to the detector.



7

7.2 methods 133

When we compare the filter in Eq. (7.15) with the general form in
Eq. (7.3), we see that the filter H is given by a 1D Fourier transform of
p followed by applying the windowed ramp filter Hk and a 1D inverse
Fourier transform of this filtered data.

An advantage of this method is that the computational burden to
obtain the filter is low. Furthermore, the filter can be obtained for a
variety of geometries and is independent of the object to be scanned.

This method is specifically designed to approximate the Landweber
algorithm. It is therefore not directly applicable to other algebraic re-
construction methods. It requires the start solution x(0) to be equal
to zero and the number of iterations k has to be chosen in advance.
The parameter ω needs to be chosen appropriately, since a value ex-
ceeding 2/σmax, with σmax the largest singular value of WTW, results
in a diverging algorithm, while the rate of convergence decreases with
a decreasing ω.

7.2.6 OFBP

Filters for FBP can also be created based on the impulse response
of an algebraic reconstruction algorithm, as observed by scanning a
very thin object on the detector. The method optimized filtered back-
projection (OFBP) is an example of such a method. It is described by
Kunze et al. in 2007 for breast tomosynthesis, with typically few pro-
jection angles and a limited angular range[8].

The iterative reconstruction method SIRT is used to derive a met-
hod to obtain filters for FBP. Kunze et al. derive an iterative method
called corrected projections simultaneous iterative reconstruction techniques
(P-SIRT) which has its update step in the projection space followed by
a backprojection, see Eq. (7.16).

p(k+1) = p(k) +p−WωWTp(k),

u(k+1) = ωWTp(k+1), (7.16)

where ω is a relaxation parameter. The initial parameter p(0) equals
the measured projection data p.
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In the limit case k → ∞, a reconstruction of P-SIRT is given by
Eq. (7.17).

u(∞) = ωWT (WωWT )−1p, (7.17)

The matrix H = ω(WωWT )−1 acts as a filter on the projection data.
Exact inversion of this matrix is difficult to perform due to the large

scale of the problem. Kunze et al. approximate this inversion by simu-
lating Dirac-line-functions using thin wires to determine the impulse
responses. These impulse responses are then used as the correspon-
ding angle-dependent filters for FBP.

Kunze et al. use three thin wires to determine three impulse respon-
ses. These impulse responses are then averaged to obtain the filters.
The impulse response is assumed to have finite support and to be shift
invariant within a projection angle. The distance between the wires
should be large enough to avoid overlapping of the impulse responses.
It is shown in [8] that the impulse responses for the top, middle and
end of a wire are very similar, hence no averaging is needed in the di-
rection of the wire. The impulse response corresponding to the middle
of the wire is used for the filters. It is furthermore assumed that the
filters created using these wires are independent for each projection
angle.

An advantage of this method is that the computational burden to
create the filters is low. Furthermore, since the filters are object inde-
pendent, the filters need only be determined once for a given geome-
try and scanning device. With this method it is possible to incorporate
prior knowledge when determining the filters.

A disadvantage of the method is that it is designed to approximate
P-SIRT only. It is not possible to create filters with this method that
can be used to approximate other algebraic reconstruction methods.
Furthermore, as opposed to the other methods presented here, a spe-
cific object needs to be scanned to be able to determine the impulse
responses, i.e. the three thin wires. As a result, the filters depend on
the geometry and on the scanning device that is used to create the
filters. Parameters that need to be chosen are the number of iterati-
ons, the thickness and position of the wires, the supersampling and
interpolations that need to be used.
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7.2.7 lNN-FBP

A different approach for solving the CT reconstruction problems is
by using neural networks. In [10] the neural network filtered backpro-
jection method (NN-FBP) is introduced. The NN-FBP method consists
of two stages: a training stage and a reconstruction stage. For the training
stage, a series of high quality images of typical objects is required, al-
ong with their projections. It is important that these images are repre-
sentative for the objects that will be reconstructed later on, in the re-
construction stage. In the training stage, a supervised learning algorithm
is employed, to derive a set of filters such that the reconstructed pixel
values for the training set are as similar as possible to the high qua-
lity test images. This learning algorithm is based on neural network
theory. More concrete, the neural network is modeled as a multilayer
perceptron. It consists of a layer of input nodes z, a weight matrix Ŵ, a
layer of hidden nodes ĥ, an activation function σ that is applied to the
output of each node, and a second weight matrix Q. With appropri-
ate choices of the variables, this network can be written as a weighted
sum of Filtered Backprojections. As a full description of the network
model is outside the scope of our current description, we refer to [10]
for the exact details. By reducing the number of hidden nodes in the
network to one, and choosing a linear activation function σ equal to
the identity function, the neural network can even be written as a sin-
gle filtered backprojection operation as shown in Eq. (7.18). We refer to
this method as linear NN-FBP (lNN-FBP).

nQ,Ĥ(z) = q0FBPĥ0
(x,y) = [Ŵ

T
q0ĥ0p](x,y), (7.18)

where the function nQ,Ĥ(z) defines the value of a single reconstructed
pixel (x,y), based on the network parameters Q and Ĥ, and on the
input projection data z. The input values for z are derived from the
projection data after a translation and reflection operation.

Pelt and Batenburg use an independent validation set during the
training phase to avoid overfitting. After obtaining the optimal values
q∗0 and ĥ

∗
0 for q0 and ĥ0 respectively, and due to the shift invariance

of FBP, a reconstruction with lNN-FBP is obtained from a single FBP
with filter h = q∗0ĥ

∗
0 applied to the projection data. This filter is angle

independent. The computational complexity of the reconstruction part
of lNN-FBP with one hidden node equals O

(
NΘN

2).
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For lNN-FBP a large training set of images is needed. If there is
prior knowledge available of the object to be scanned, then this can be
incorporated by the choice of this training set. An additional advan-
tage of this method is that the optimal filters need only be computed
once for a given training set. Furthermore, since FBP is shift-invariant,
the filter calculation need not be repeated for every pixel of the recon-
struction. The method is described here for a 2D scanning geometry. It
is however also suitable for extension to 3D scanning geometries.

A drawback of the method is that the object to be scanned needs to
be close enough to the training set, otherwise the parameters Q and
Ĥ are no longer accurate to minimize the squared difference between
the reconstruction and the original object. Furthermore, the quality of
the reconstructions depends on several decisions which have to made
in advance. These include the size of the training set and the method
to obtain correct outputs (i.e. FBP with a standard filter or an algebraic
reconstruction method with a high number of projection angles). It is
furthermore known from literature that linear NN-FBP is less accu-
rate than a normal NN-FBP with multiple nodes and with a nonlinear
activation function σ.

7.2.8 Characteristics

We conclude this section with a brief overview of the main characteris-
tics of the reconstruction methods that have been introduced above.

The first characteristic that we consider is the ability to handle few
projection angles, see also Table 7.1. The standard filters for FBP and
the method of Zeng are known to produce poor quality reconstructi-
ons for these datasets, while MR-FBP, AF-FBP, OFBP and lNN-FBP
can handle this input much better since they create filters based on an
explicit model of the projection angles that are actually available.

The ability to handle noisy projection data varies amongst the diffe-
rent filter methods. The Ram-Lak filter amplifies high frequencies and
thus noise. The Cosine and Hann filters do not amplify these high fre-
quencies and can handle noisy data better. MR-FBP, AF-FBP, OFBP and
lNN-FBP perform better in reducing noise than FBP with standard fil-
ters. According to its inventor, the filter of Zeng depends on the index
k which is the number of iterations in the Landweber method. For low
k the noise is reduced while for high k the resolution increases and
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Table 7.1: Characteristics of the different filtering methods; v = yes, x = no,
- (−−) = (very) incapable or slow, + = capable or fast, +/- = inter-
mediate.

the noise is amplified. The results of OFBP and AF-FBP also depend
on the parameter k.

The methods MR-FBP, AF-FBP, OFBP and lNN-FBP are suitable to
incorporate some types of prior knowledge of the scanned object by
using an L2 regularization. For lNN-FBP more object specific informa-
tion can be incorporated in the training stage.

The geometry can be chosen freely for FBP with standard filters,
MR-FBP and Zeng. For the other methods the filters are created based
on a certain geometry. When the number of projection angles or the
size of the detector or reconstruction grid changes, new filters should
be calculated based on this new geometry.

The total reconstruction time can be split into two parts: a preproces-
sing time, where the filters are calculated once for a given geometry,
and a reconstruction time, where the actual reconstruction method is
applied. The preprocessing time depends on the parameters that are
used. For lNN-FBP, this step consists of the training stage and depends
on both the geometry and the size of the training set. For AF-FBP
the preprocessing time depends on the algebraic method that is used
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and the geometry. The method OFBP requires only a small amount
of preprocessing time compared to AF-FBP and lNN-FBP. The other
methods do not require processing time or they calculate a filter ba-
sed on the projection data of the scanned object. The time required for
these calculations is included in the reconstruction time. Therefore, the
reconstruction time of MR-FBP is high compared to that of the other
methods.

The last three characteristics concern additional elements that are
required for the preprocessing step. The method lNN-FBP requires a
training set to be able to compute the filter, OFBP requires a phantom
(in 3D three thin rods) to calculate the filter, and filters from MR-FBP
depend on the scanned object.

7.3 experiments

In this section we describe the experiments that were performed and
the choices that were made to implement the reconstruction methods.
We compare the reconstruction time and preprocessing time of the
different reconstruction methods. We also compare the quality of the
reconstructions with the phantom using both the mean square error
(MSE) and the structural similarity index (SSIM) for varying numbers
of projection angles and for varying amounts of Poisson noise (expres-
sed by the detector count I0).

7.3.1 Phantoms

The Shepp-Logan phantom is used in the first series of experiments.
It consists of a well-described pattern of ellipses and gray values, see
Fig. 7.1a.

In the second series of experiments a foam phantom is used which is
obtained from experimental micro-CT data, see Fig. 7.1b. The original
cone beam dataset was obtained by a Skyscan 1172 with 511 projection
angles. The reconstructed foam is a 3D object of consisting of 524 2D
slices of 1000× 1000 pixels. A slice close to the center of the foam is
used as the phantom for the experiments. Different slices from the 3D
object are used as training examples for lNN-FBP.
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(a) Shepp-Logan (b) Metal foam

Figure 7.1: The phantoms.

7.3.2 Implementation details

The standard Ram-Lak filter for FBP is the windowed Ramp filter,
where the window is the interval [−1, 1]. The same window is used
for the Cosine and Hann filter, where some smoothening function is
applied to Ram-Lak filter.

There are several implementation details to be discussed for the
MR-FBP algorithm. The matrix W can be too large to obtain explicitly.
Therefore, the matrix Ap = WWTCp is obtained column-by-column,
where each column is obtained as the forward projection of applying
FBP with unit vectors (with entries in {0, 1}) as filters to the projection
data p. Furthermore, exponential binning is used to reduce the num-
ber of unknowns for the filter h. Small bins are used around the center
of the detector, and the size of the bins increases exponentially furt-
her away from this center. The filter is also assumed to be symmetric
around this center, which decreases the number of unknowns even
further. The direct method called gels* lapack routine is used to find
h∗ in Eq. (7.10).

For the AF-FBP method the algebraic reconstruction method SIRT
with k = 100 iterations and relaxation parameter ω = 1 is used to
obtain the filters. The method SIRT itself is also included in the experi-
mental results to give an idea of the reconstruction time and accuracy
of an algebraic method.
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For the method of Zeng there are two parameters to be chosen in
advance. Zeng has empirically determined the value of the relaxation
parameter ω = 0.5 for the filter function to be the optimal value. The
number of iterations k of the Landweber algorithm is chosen to be
k = 100.

The method OFBP is described for breast tomosynthesis. Since there
are no limitations that prevent applying it to other geometries, we will
apply it in this chapter to the parallel beam geometry. Instead of a
thin rod we use a thin line placed vertically through the center of the
detector as a 2D-phantom to calculate the filters. The thickness of the
line equals the size of a detector pixel. Supersampling of 25 beams
per detector pixel is used to obtain the projections. The number of
iterations used for P-SIRT is k = 10 and the relaxation parameter for
P-SIRT isω = 1. It will become clear in the results section that k = 10 is
not always the optimal choice. We therefore also include some results
with k = 100, which is the same number of iterations that is used for
AF-FBP and Zeng, even though it is outside the scope of this work to
determine (near) optimal parameters for every filter method.

The set of training objects for lNN-FBP consists of 100 slightly al-
tered Shepp-Logan phantoms, where either the direction of some el-
lipses, or the size or gray value is altered. Every image pixel of the
training object can be used to train the neural network. Therefore, the
size of the total training set is much higher than the number of training
objects. The total training set and the validation set consist each of 106

different image pixels. We use the Levenberg-Marquardt algorithm to
find the vectors q∗

0 and ĥ
∗
0 that minimize the square differences be-

tween the output of the multilayer perceptron and the correct out-
put. Furthermore, we use the Nguyen-Widrow initialization method
to obtain start values for the parameters. Lastly, exponential binning is
implemented to reduce the training time.

7.3.3 Geometry parameters

As mentioned before, a parallel beam scanning geometry has been
used to obtain the projection data. The weight of each image pro-
jection for a specific projection is determined using the Joseph kernel.
The number of projection angles NΘ varies between 8 and 64 and the
projection angles are sampled equiangularly in the interval [0, 180) de-
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grees. The number of counts on the detector I0 is varied from 103 (high
noise level) to 106 (low noise level).

The projection data is downsampled to 256 bins and the phantoms
are reconstructed on a square grid of 256× 256 pixels. The phantom
is also downsamples to 256× 256 pixels and the reconstructions are
compared with this downsampled phantom to avoid the inverse crime.

7.4 results

The results of the experiments will be presented in this section. We
first give examples of filters for the different reconstruction methods.
Then we compare the timings and we conclude this section with a
comparison of the reconstruction qualities of the filtering methods.

7.4.1 Filters

The filters that are used in FBP vary per reconstruction method. They
are all shown in Fig. 7.2 with |Θ| = 24. If a filter is angle-dependent
then the filter corresponding to an angle of 22.5 degrees is shown.

Note the difference in both the absolute values of the filter and in
smoothening of the edge of the filter, which is mainly seen for FBP-Cos
and FBP-Hann. Furthermore, we observe a local maximum between
detector bins 1 and 50 in the experimentally determined filters MR-
FBP, SIRT-FBP, OFBP and lNN-FBP. This local maximum is not present
in the theoretically derived filters FPB-RL, FBP-Cos, FBP-Hann and
Zeng.

We also notice the small filter values for OFBP with 10 iterations, the
number of iterations that was suggested by the inventors [8]. When
we compare the reconstruction qualities of the different methods, then
OFBP with k = 10 is not competitive with the other methods. We the-
refore adjusted the number of iterations to k = 100, which is the same
number of iterations as for SIRT-FBP and Zeng. The impact of this deci-
sion is shown in Fig. 7.3 and Fig. 7.4, where the filters with k = 10 and
k = 100 are shown corresponding to an angle of 22.5 degrees, and two
reconstructions of the metal foam phantom are shown with I0 = 103

and |Θ| = 64. Also note the resemblance of the filters between OFBP
with k = 100 and SIRT-FBP with k = 100. Since the filters for k = 100

substantially improve the results of OFBP, we have decided to show
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Figure 7.2: Filters for FBP with |Θ| = 24. The Shepp-Logan phantom is used
for the MR-FBP filter calculation and for the training set for lNN-
FBP.

Figure 7.3: Filters for FBP with |Θ| = 24with k = 10 and k = 100, respectively.



7

7.4 results 143

(a) (b)

Figure 7.4: Reconstructions of the metal foam phantom with |Θ| = 64 and
I0 = 103 for OFBP with (a) k = 10, (b) k = 100.

Table 7.2: Preprocessing time (PREP) and reconstruction time (REC) for both
NΘ = 8 and NΘ = 64 using the Shepp-Logan phantom with I0 =
5 ∗ 103.

results for OFBP with k = 100 in the remainder of this chapter, for re-
asons of better comparison. It is, however, not in any way the purpose
of this work to find optimal parameters for the different reconstruction
methods. We therefore use the parameters that are suggested by their
inventors for the other reconstruction methods.

7.4.2 Timings

The time that is required to produce a reconstruction is split into
the preprocessing time and the actual reconstruction time, see Section
7.2.8.
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(a) Preprocessing time (b) Reconstruction time

Figure 7.5: Timings required to reconstruct the Shepp-Logan phantom.

The preprocessing times and reconstruction times for the different
reconstruction methods are shown in Fig. 7.5 and Table 7.2 for NΘ = 8

and NΘ = 64 where I0 = 5 ∗ 103. The phantom to be reconstructed
was the Shepp-Logan phantom.

We observe that the preparation time of lNN-FBP is substantial but
does not increase with increasing number of projection angles. The
time that is required to obtain a filter for SIRT-FBP increases linearly
with the number of projection angles. The actual reconstruction time
for these methods is comparable to that of FBP with standard filters,
since no additional calculations need to be done after the filters have
been created for a given geometry. In contrast to these methods, MR-
FBP needs no preprocessing time, while the reconstruction time is sub-
stantially higher and increases with the number of projection angles.
We have included the reconstruction time that is required for SIRT
with k = 100 iterations for comparison.

We also observe a slightly larger reconstruction time for lNN-FBP
compared to for example FBP with standard filters. The difference is
small though, and is due to a slightly different implementation.

7.4.3 Number of projection angles

In this series of experiments, we vary the number of projection angles
and show the resulting MSE and SSIM for a fixed amount of noise
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(a) Ram-Lak (b) Cosine (c) Hann (d) Zeng

(e) SIRT-FBP (f) OFBP 100 (g) MR-FBP (h) lNN-FBP

(i) Ram-Lak (j) Cosine (k) Hann (l) Zeng

(m) SIRT-FBP (n) OFBP 100 (o) MR-FBP (p) lNN-FBP

Figure 7.6: Reconstructions of (a)-(h) the Shepp-Logan phantom, I0 = 103,
|Θ| = 24, (i)-(p) the metal foam phantom, I0 = 104, |Θ| = 32.
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applied to the projection data. We first show some reconstructions in
Fig. 7.6 of the Shepp-Logan phantom for I0 = 103 and |Θ| = 24, and
of the metal foam for I0 = 104 and |Θ| = 32. The results for both the
Shepp-Logan phantom and the metal foam phantom with I0 = 103 are
shown in Fig. 7.7.

We observe that the differences in performance with this high noise
level are large for both the MSE and SSIM measure. For few projection
angles, FBP with standard filters and the method of Zeng are clearly
outperformed by the other methods. FBP with the Ram-Lak filter per-
forms worst with respect to both measures for all considered projection
data. For a larger number of projection angles, the differences in recon-
struction quality become smaller.

The reconstruction methods lNN-FBP, SIRT-FBP, SIRT and OFBP per-
form similarly with respect to both the MSE and SSIM, where we note
that lNN-FBP is slightly better than the other methods. The exception
is the SSIM for the Shepp-Logan phantom, where lNN-FBP is sub-
stantially more accurate than all other filter methods. Furthermore, we
observe that the reconstruction quality of SIRT-FBP and SIRT is compa-
rable, and that it is slightly better than OFBP with respect to the MSE.
For a sufficiently large number of projection angles, the SSIM of OFBP
is larger than that of SIRT-FBP.

The reconstruction quality of MR-FBP for low numbers of projection
angles is relatively high compared to the other methods, while for hig-
her numbers of projection angles MR-FBP performs relatively poorly.

7.4.4 Poisson noise

For the second series of experiments, we vary the amount of Poisson
noise for a fixed number of projection angles. Again we observe that
the reconstruction quality strongly depends on the chosen parame-
ters, the phantom that is used and on the number of projection angles.
This is demonstrated in Fig. 7.8, where the MSE and SSIM are shown
for reconstructions of the Shepp-Logan phantom and the metal foam
phantom for both |Θ| = 16 and |Θ| = 64.

For few projection angles, the standard filters Ram-Lak, Cosine and
Hann are outperformed by the other methods. Also Zeng cannot com-
pete with the other filter methods for the metal foam phantom. For
the Shepp-Logan phantom, however, the method of Zeng is a strong
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(a) Shepp-Logan (b) Shepp-Logan, detail

(c) Metal foam (d) Metal foam, detail

(e) Shepp-Logan (f) Metal foam

Figure 7.7: Mean square error and structural similarity index measure with
I0 = 103.
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(a) Shepp-Logan, |Θ| = 16 (b) Metal foam, |Θ| = 16

(c) Shepp-Logan, |Θ| = 16 (d) Metal foam, |Θ| = 16

(e) Shepp-Logan, |Θ| = 64 (f) Metal foam, |Θ| = 64

(g) Shepp-Logan, |Θ| = 64 (h) Metal foam, |Θ| = 64

Figure 7.8: Quality of the reconstructions using the MSE and SSIM.
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competitor for the other methods. The ranking of these methods also
depends on the measure; for MSE the method lNN-FBP performs best
for both phantoms, while for SSIM the outcome does not only depend
on the phantom, it also depends on the amount of noise that is app-
lied to the projection data. The methods lNN-FBP, OFBP and SIRT all
perform best for a specific combination of these influencing factors.

The results also depend heavily on the number of projection angles.
For the high number of projections |Θ| = 64, we observe that lNN-
FBP performs very well with respect to the MSE, while the SSIM of
lNN-FBP varies from the best to below average compared to the other
methods. The opposite is seen for SIRT-FBP, OFBP and Zeng, where
for example the MSE of SIRT-FBP is large for low noise levels, while
the SSIM varies from the best to average depending on the phantom
that is reconstructed. The method MR-FBP performs well with respect
to the MSE for low noise levels, while it ranges from poorly to average
for the SSIM.

7.5 discussion and conclusions

The scientific research of the last decade that had aimed at improving
filters for FBP has resulted in several new filtering methods. In this
chapter we presented an overview of these algorithms and compared
their characteristics. We have also shown some reconstruction results
for two different phantoms.

Since the reconstruction methods have very different characteristics,
the choice for a specific reconstruction method depends on many fac-
tors. Time constraints are often an important factor in this decision; in
this work both the preprocessing time and the reconstruction time are
considered during the experiments. Furthermore, the number of pro-
jection angles and the amount of noise have a large impact on the qua-
lity of the reconstructions. Some filtering methods are better at hand-
ling few projection angles and high noise levels than others. Another
factor that can play a role in the choice for a specific reconstruction
method is the ability to incorporate prior knowledge.

The reconstruction methods lNN-FBP and AF-FBP require a large
amount of preprocessing time and are therefore only suitable if the fil-
ters can be repeatedly used in a large number of experiments. The met-
hod OFBP also requires some preprocessing time, but this is small com-
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pared to AF-FBP. The method MR-FBP requires a large reconstruction
time, since it calculates a filter for every reconstruction based on the
measured projections. Therefore this method is less favorable if large
numbers of objects need to be scanned. The theoretically derived fil-
ters Ram-Lak, Cosine, Hann and Zeng require no preprocessing time
and only a very short reconstruction time.

When not the reconstruction time but the ability to handle noise and
few projection angles is the highest contributing factor to the choice
for a reconstruction method, then the decision which method is best
is less straightforward. We have shown that the reconstruction quality
of the various methods depends highly on the number of projection
angles and the amount of noise that is applied to the projection data.
The suitability of the different methods varies with the phantom that
is used. Furthermore, the outcome of comparing the reconstruction
qualities depends on the choice of the measure. For the combination
of geometry and phantoms we have considered here, the method lNN-
FBP performs in most situations for both measures very well, while
Ram-Lak, Cosine, Hann and Zeng cannot handle few projection angles
and high noise levels well. The relative reconstruction qualities of the
methods AF-FBP, MR-FBP and OFBP vary too much per phantom and
geometry to draw any conclusions on which one performs best.

The ability to incorporate some types of prior knowledge is not ex-
amined in this chapter. Neither did we attempt to optimize the para-
meters of the reconstruction methods, such as the number of iterations
k or the relaxation parameter ω. We have used the values suggested
by their inventors, with the exception of OFBP since its reconstruction
quality was otherwise not competitive with respect to the other filte-
ring methods. Optimizing the parameters is outside the scope of this
work.

Furthermore, we have deliberately refrained ourselves from any at-
tempt to explain the observations in the Results section. Instead, we
have limited our comments to a description of the behavior of the fil-
tering methods. Since the aim of this chapter is to give an overview
of the different filtering methods and their characteristics, the Results
section is merely an illustration of the preceding theory. It requires
further research with an increased number of phantoms and varying
scanning geometries to be able to recommend filtering methods for
specific reconstruction settings.
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