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F I LT E R E D B A C K P R O J E C T I O N U S I N G A L G E B R A I C
F I LT E R S ; A P P L I C AT I O N T O B I O M E D I C A L
M I C R O - C T D ATA

Abstract – For computerized tomography (CT) imaging in (bio)-
medical applications, radiation dose reduction is extremely important.
This can be achieved simply by reducing the number of projection
images taken. In order to obtain accurate reconstructions from few pro-
jections, however, common reconstruction techniques are not sufficient.
Algebraic reconstruction methods (ARMs) are often more suited, but
inflict a much higher computational burden. In this work, a recently
proposed method is applied to biomedical µCT, in which the benefits
of ARMs are combined with the computational efficiency of the com-
mon Filtered Backprojection (FBP) algorithm. Our experimental results
demonstrate that this approach yields reconstructed images highly si-
milar to those obtained by an ARM, while maintaining the favorable
computational efficiency of FBP.

This chapter has been published with minor modification as: L. Plantagie et al. Filtered
Backprojection using Algebraic Filters; Application to Biomedical Micro-CT Data. In-
ternational Symposium on Biomedical Imaging. 2015: 1596–1599. This publication is avai-
lable through http://dx.doi.org/10.1109/ISBI.2015.7164185. © 2015 IEEE.
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6.1 introduction

Computerized tomographic (CT) imaging has many applications in clini-
cal settings, in (bio)medical research, and in industry. In this chapter,
we focus on the biomedical imaging task. For example, in osteoporo-
sis research, reconstructions from µCT scanners are commonly used
to perform a longitudinal analysis on the bone structures of small ani-
mals subjected to some form of treatment [1]. Due to the harmful na-
ture of X-rays, radiation dose reduction is an important research goal
for the community. One common way of reducing radiation is simply
to take fewer projection images. This requires reconstruction methods
that can handle such datasets well.

Two main types of reconstruction methods exist in the literature.
Analytical reconstruction methods are based on a discretization of an ex-
act inversion formula for the reconstruction problem. Well-known met-
hods of this type are Filtered Backprojection (FBP) and Feldkamp-David-
Kress (FDK). These methods perform a filtering step of the measured
data in the Fourier space with a predefined filter. Many standard fil-
ters are known from literature, such as the Ram-Lak, Hann and Cosine
filter [2]. The optimal filter depends on the characteristics of the pro-
jection data, such as the signal to noise ratio and the number of pro-
jection angles. The main advantage of analytical methods is their high
computational efficiency, which is why they are offered in nearly all
commercial CT-scanner packages [3]. The downside of these methods,
however, is their inflexibility to special scanning geometries and its in-
ability to deal with insufficient data (e.g. when only few projections
images are available).

Algebraic reconstruction methods (ARM) are typically much more ro-
bust with respect to incomplete or noisy projection data, due to their
inherent ability to model the actual projection geometry of the scan-
ning device. ARMs, such as SIRT, ART and CGLS [4], which compute
a reconstruction by applying a sequence of update iterations, generally
converge to a solution that is optimally consistent with the measu-
red data, with respect to some norm. The drawback of these methods
is their heavy computational burden compared to analytical methods.
Moreover, the rapid improvement in detector technology is leading to
ever larger volume sizes (i.e. higher resolution reconstructions) much
faster than the advances in computational hardware can keep up with.
Ideally therefore, one would like to combine the computational requi-
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(a) Rat femur (b) Mouse thorax

Figure 6.1: FBP reconstructions of two µCT scans using (a) 360 projection
angles; (b) 225 projection angles.

rements of analytical methods with the robustness of algebraic met-
hods. In [5], a method was described for developing filters for analy-
tical methods that are based on the convergence behavior of a linear
ARM. The reconstructions of FBP with these filters approximate the
reconstructions of the corresponding ARM.

Many other methods have been developed to create optimal filters
for FBP. Here, we mention only some recent work in the field. In [6],
Zeng derives a filter in the frequency domain based on the Landweber
algorithm. Nielsen et al. derive filters specifically for a tomosynthe-
sis geometry [7]. Pelt and Batenburg use artificial neural networks to
find good filters based on prior knowledge for datasets with a small
number of projection angles [8]. They also provide a method to find
filters such that the projection error is minimal [9]. In [10], Kunze et
al. describe a method that also approximates an ARM. Opposed to
the method described in [5], Kunze et al. need objects to obtain their
filters.

In this chapter, we will apply the method from [5] to two sets of
biomedical µCT data, that are acquired from a rat femur and a mouse
thorax respectively. We aim to show the resemblance between SIRT and
FBP that is obtained by using the custom filters from [5]. Reconstructi-
ons of the scanned objects using many projection angles are shown in
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Fig. 6.1, where a display range was chosen to enhance visibility. The
same range is used for all reconstructions in this chapter.

This chapter is structured as follows. In Sec. (6.2), the method from
[5] is briefly described. Sec. (6.3) contains information on acquiring the
experimental data and the experiments that are performed. The results
are shown in Sec. (6.4). We discuss our findings and conclude this chap-
ter in Sec. (6.5).

6.2 the af-fbp method

This section contains a brief discussion of the Algebraic Filter - Filtered
Backprojection (AF-FBP) reconstruction method. We first consider the
Filtered Backprojection method and then explain the reasoning behind
creating filters based on a linear ARM. For simplicity, we consider only
a 2D parallel beam setup, but the concepts can be extended to other
geometries as well.

FBP is a discretization of the inverse Radon transform, where the
projection data p is filtered by a filter g and then backprojected. The
filter g : R2 → R can be chosen freely, depending on the experimental
setup. The reconstruction formula for FBP is given by Eq. (6.1).

f(x,y) =
∑
θ∈Θ

∑
τ∈T

pθτg(θ, τ− x cos θ− y sin θ), (6.1)

where f : R2 → R is the unknown image, Θ denotes the set of pro-
jection angles, T denotes the set of detector bins and p ∈ Rm with
m = |Θ| · |T |.

The AF-FBP method generates angle-dependent filters g based on
the convergence of a linear ARM [5]. For this chapter we use the itera-
tive method SIRT. Since SIRT is a linear, stationary Richardson solver,
there exists a reconstruction matrix R : Rm → Rn such that, for a fixed
number of K iterations, the reconstruction u ∈ Rn of SIRT is given by
u = Rp. By writing this equation element wise for a certain pixel c of
u, we obtain Eq. (6.2).

uc =
∑
θ∈Θ

∑
τ∈T

r
(c)
θτ pθτ, (6.2)

where r(c) denotes the cth row of R.
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Let the coordinates of the center of pixel c be denoted by (xc,yc) ∈
R×R, then t(θ)c = xc cos θ+ yc sin θ is the projection of pixel c on the
detector at angle θ. For a variable τ ∈ T − t(θ)c , where the minus sign
denotes element wise subtraction, we define a function h(c) : Rm → R

by Eq. (6.3).

h(c)(θ, τ) = r(c)
θ(τ+t

(θ)
c )

. (6.3)

Combining Eq. (6.2) and Eq. (6.3) yields the formula in Eq. (6.4).

uc =
∑
θ∈Θ

∑
τ∈T

pθτh
(c)(θ, τ− xc cos θ− yc sin θ). (6.4)

Hence for the central pixel c, the role of function h(c) equals that of
the filter g in Eq. (6.1). It has been shown in [5] that, for pixel c being
the pixel at the center of the image grid, the use of the function h(c)

as a filter in the FBP method yields a good approximation of the linear
ARM. We refer to h(c) as an algebraic filter.

Each coefficient of the algebraic filter can be obtained by applying
SIRT to projection data p that equals a unit vector eθτ, with entry one
on position θτ and zero otherwise. The resulting image pixel uc will
then equal r(c)θτ ; see also Eq. (6.2). After applying this step for all unit
vectors eθτ with θ ∈ Θ and τ ∈ T , the algebraic filter h(c) can now be
deduced from r(c) by using Eq. (6.3).

The algebraic filter h(c) can be applied to projection data in the same
way as standard filters that are often used for FBP.

6.3 experiments

In this section, we describe experiments that we performed and define
the measure that we use to examine the image quality of the recon-
structions.

We consider the central slices of the two datasets depicted in Fig. 6.1.
As the method AF-FBP is deduced for a parallel beam scanning ge-
ometry, the central slices were rebinned to parallel beam projection
data. The first dataset concerns an ex-vivo scan of a rat femur, cross-
sectioned at the epiphyseal plate, an area of interest for femur research.
In total, 376 projection images were taken with a resolution of 5µm in
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(a) SIRT (b) FBP-Hann

Figure 6.2: Reconstructions of femur projection data with 60 projection an-
gles and SIRT with K = 50 iterations.

a Bruker µCT SkyScan 1172 scanner running at 40kV. The second data-
set concerns an in-vivo scan of a mouse, cross-sectioned at the thorax.
Its 451 projections of resolution 34µm were taken in a Bruker µCT
SkyScan 1076 system running at 59kV. For both datasets, the SkyScan
NRecon software was used for data preprocessing and beam harde-
ning correction. To emulate low dose scans, we selected 45 and 60

projection angles from both scans.
In the experiments, we apply the SIRT-FBP method (FBP with an

algebraic filter based on SIRT) to the above mentioned datasets. The
aim of SIRT-FBP is to approximate the SIRT reconstruction. We will
first consider the reconstructions of SIRT and FBP with a standard
filter. They are shown for the femur dataset in Fig. 6.2, where SIRT
is performed with K = 50 iterations and the Hann filter is chosen as
the standard filter for FBP. The reconstructions of SIRT and FBP-Hann
(FBP with a standard Hann filter) have characteristic imaging features.
The SIRT reconstruction is a smoothed image, while the FBP-Hann
reconstruction contains extensive streaking artifacts. Furthermore, the
heavy computational burden of SIRT can be a reason to choose FBP,
even when a researcher would favor the reconstruction quality of SIRT
over FBP. In those situations, SIRT-FBP could be applied, which yields
an approximation of SIRT with comparable computation time as FBP
with standard filters.
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In all experiments, the number of detector bins is D = 799. The
reconstruction grid is a square, consisting of D×D pixels of unit size.
The number of iterations for SIRT is K = 50, unless stated differently.
The forward projections that are needed to execute SIRT are obtained
using the Joseph kernel [11]. For the calculations in this chapter we
use the ASTRA toolbox [12].

6.3.1 Quality measure

The quality of the reconstructions is examined by comparing the recon-
structions with the SIRT reconstruction, since the aim of SIRT-FBP is
to approximate SIRT. The reconstructions are compared on the recon-
struction grid of D×D pixels. Denote a reconstruction by u = (ukl)

with 1 6 k, l 6 D. Furthermore, let the algebraic reconstruction be
denoted by uARM = (uARM

kl ). Then the mean ARM reconstruction error is
defined as

EARM
r =

∑
k,l

|ukl − u
ARM
kl |∑

k,l
uARM
kl

. (6.5)

Hence EARM
r is an L1-norm in the object space combined with a scaling

term. We assume that the set of projection data is nonnegative and that
uARM is nonzero.

6.4 results

In this section, we show the results of the experiments described in
Sec. (6.3). We emphasize that the purpose of AF-FBP is to approximate
the quality of the corresponding ARM reconstructions, instead of im-
proving the overall reconstruction quality.

In Fig. 6.3 we show the reconstructions of the femur dataset for SIRT,
SIRT-FBP, FBP-RL (FBP with a standard Ram-Lak filter) and FBP-Cos
(FBP with a standard Cosine filter). The number of projection angles
is d = 60 and the number of SIRT iterations is K = 50. For the recon-
struction of FBP-Hann (FBP with a standard Hann filter) we refer to
Fig. 6.2. Notice the resemblance between the SIRT and SIRT-FBP recon-
struction, and the streak artifacts for FBP-RL and FBP-Cos which are
much more pronounced.
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(a) SIRT (b) SIRT-FBP

(c) FBP-RL (d) FBP-Cos

Figure 6.3: Reconstructions of femur projection data with 60 projection an-
gles and SIRT with K = 50 iterations.

We use the mean ARM reconstruction error (see Sect. 6.3.1) to com-
pare the reconstructions. The results are shown in Table 6.1. The EARM

r

for SIRT-FBP is significantly smaller than that of FBP with standard fil-
ters. This implies that SIRT-FBP approximates the SIRT reconstruction,
while FBP reconstructions with standard filters differ substantially
from SIRT reconstructions.

We obtain similar results for a different number of iterations K in
the range from 10 to 1000, although the differences in EARM

r decrease
for increasing K.
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Class SIRT-FBP FBP-RL FBP-Hann FBP-Cos

45 projection angles

femur 0.18 1.6 1.3 1.4
thorax 0.13 0.50 0.43 0.46

60 projection angles

femur 0.17 1.3 1.1 1.2
thorax 0.12 0.42 0.36 0.38

Table 6.1: Mean ARM reconstruction errors EARM
r for K = 50.

6.5 conclusions and discussion

We introduced the method AF-FBP, which uses custom filters that are
created based on a linear ARM. The reconstructions of AF-FBP approx-
imate the reconstructions of the ARM that was used to create the filters.
This was already shown in earlier work for simulated data [5]. In this
work, we have applied this new method to experimental biomedical
µCT data for the first time. Our results demonstrate that reconstructi-
ons approximating the image quality of SIRT can now be created with
the computationally fast FBP method.

In this chapter we have focused on the image quality of AF-FBP
compared to SIRT, because SIRT-FBP is designed to approximate SIRT.
Whether it is advantageous to use SIRT (or SIRT-FBP) instead of FBP
with other filters depends on the application and the features that are
desirable for the particular imaging task. In future work, we will inves-
tigate how other algebraic methods – that are capable of incorporating
prior knowledge or particular noise models – can be approximated
following a similar approach.
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