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A L G E B R A I C F I LT E R A P P R O A C H F O R FA S T
A P P R O X I M AT I O N O F N O N L I N E A R T O M O G R A P H I C
R E C O N S T R U C T I O N M E T H O D S

Abstract – In this chapter we present a computational approach
for fast approximation of nonlinear tomographic reconstruction met-
hods by filtered backprojection methods. Algebraic reconstruction al-
gorithms are the methods of choice in a wide range of tomographic
applications, yet they require significant computation time, restricting
their usefulness. We build upon recent work on the approximation of li-
near algebraic reconstruction methods and extend the approach to the
approximation of nonlinear reconstruction methods, which are com-
mon in practice. We demonstrate that if a blueprint image is available
that is sufficiently similar to the scanned object, our approach can com-
pute reconstructions that approximate iterative nonlinear methods, yet
have the same speed as filtered backprojection.

This chapter has been published with minor modification as: L. Plantagie and K. J. Ba-
tenburg. Algebraic filter approach for fast approximation of nonlinear tomographic re-
construction methods. J. Electron. Imaging 2015; 24(1). 013026. This publication is avai-
lable through http://dx.doi.org/10.1117/1.JEI.24.1.013026. Copyright 2015 Society of
Photo-Optical Instrumentation Engineers. One print or electronic copy may be made
for personal use only. Systematic reproduction and distribution, duplication of any
material in this paper for a fee or for commercial purposes, or modification of the
content of the paper are prohibited.
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5.1 introduction

Computed Tomography (CT) deals with the reconstruction of an ob-
ject from a series of projections of this object, taken along a range of
angles [1–4]. Depending on the application, projection images are typi-
cally acquired by a scanning device, using a photon or particle beam
that is transmitted through the object (e.g. X-rays, electrons, neutrons).
Besides extensive applications in medical imaging, tomography is a
common technique in many other fields in academia (materials science,
micro-biology) as well as industry (quality inspection, process monito-
ring) [5–9].

In this chapter we focus on the reconstruction phase of the tomo-
graphy pipeline, where an image of the original object is computed
from the projections by a reconstruction algorithm. The characteris-
tics of the reconstructed image depend not only on the set of input
projection data, but also on the reconstruction algorithm employed. A
range of reconstruction methods have been proposed in the literature,
each having strong and weak points with respect to reconstruction qua-
lity, reconstruction time, and robustness [2, 10–13]. The reconstruction
methods that are used often in practice can be divided into two ca-
tegories: analytical methods and algebraic methods. Here, we use the
term "algebraic methods" to refer to the category of algorithms that
converge to a least-squares solution (e.g. the Simultaneous Iterative
Reconstruction Technique (SIRT)), as well as the category of statistical
methods such as the Expectation Maximization (EM) algorithm.

In the ideal situation, where the reconstruction problem can be re-
presented by a continuous set of data, we can find an exact solution of
the reconstruction problem using an analytical method. This method
uses an inversion formula to obtain the analytical solution. By discre-
tizing this inversion formula, a reconstruction algorithm is obtained
that approximates the analytical result. Typically, such methods are
based on the assumption that the projections can be sampled continu-
ously and a full range of angles are available. In practice, interpolation
techniques must be used to account for missing projection data [1].

The Filtered Backprojection (FBP) algorithm – and its many variants
– is the most prominent example of an analytical reconstruction met-
hod. Due to its computational efficiency, ease of implementation, and
high accuracy if sufficient data is available, FBP is extensively used
in practice [14]. Reconstructions are obtained by convolution of the
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projection data with a filter, followed by a so-called backprojection
step. The filter can be customized and affects the quality of the re-
construction. FBP is capable of computing accurate reconstructions if
a large number of low-noise projections are available, sampled along
the full angular range. For reconstruction tasks involving just a small
number of projections, or limited-angle datasets, FBP reconstructions
are typically plagued by serious artefacts which hamper image inter-
pretation .

Algebraic methods solve a system of linear equations, which repre-
sents the discretized tomographic reconstruction problem. This equa-
tion system directly models the finite set of projections available in the
actual scan, resulting in a very large and sparse matrix describing the
equations. The computation time required to calculate a least squares
solution is so high, that in practice iterative methods are used for its
solution [1]. The algebraic reconstruction methods are known to pro-
duce more accurate reconstructions than FBP when few projections are
available or with noisy data. A key drawback of these methods is their
high computational cost.

A subclass of the algebraic reconstruction methods consists of the
linear algebraic reconstruction methods (LARMs). An algebraic recon-
struction method is linear if the algorithm acts on the projection data
as a linear operator. Examples of LARMs are ART, SART and SIRT [3].

In [15], a method was introduced to create filters for FBP that are ba-
sed on the operation of linear algebraic reconstruction methods. The
reconstructions of FBP with these filters approximate reconstructions
of the corresponding algebraic reconstruction methods. This method
is known as Algebraic Filter FBP (AF-FBP). Using these filters, one can
approximate the accuracy of algebraic reconstruction methods while
at the same time attaining the computational efficiency of FBP. The
construction of the filters is computationally intensive, but needs to
be performed only once for a given set of geometrical parameters (i.e.
number of projections and their corresponding angles). The filters do
not depend on the object that is being reconstructed. An important
limitation of the method for constructing these filters is that the under-
lying algebraic reconstruction method (ARM) is required to be linear.

Other methods have been proposed in literature to create filters for
FBP [16–19]. There are two different approaches; creating filters based
on theoretical derivations which are suited for every geometry, [16, 17]
and creating filters based on the geometry [18, 19]. The AF-FBP met-
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hod belongs to this second group. Like the filters in [19], an iterative
reconstruction method is used to obtain the filters. An important diffe-
rence between these two methods is that in [19] an object consisting of
three thin rods is used in the calculations of the filters, while AF-FBP
for LARMs is object-independent.

Many common iterative tomographic reconstruction methods do not
meet the linearity condition. Therefore, they cannot be approximated
directly by the AF-FBP. Examples of these methods are conjugate gra-
dient least squares (CGLS), and the statistical reconstruction method ex-
pectation maximization (EM) [20–22]. The CGLS algorithm is mildly non-
linear, in the sense that the algorithm becomes a LARM as the number
of iterations tends to infinity. In tomography, only a relatively small
number of iterations are typically performed, not only for limiting the
computation time but also due to the regularizing effect embedded
in the method itself. The Expectation Maximization algorithm (EM)
maximizes the log likelihood function of the reconstructed image for
a given set of projection data, assuming that the observed data and
the Radon transform of the object are related by a Poisson distribution.
Such statistical reconstruction methods are known to yield superior re-
constructions to LARMs if the projection data contains a high level of
(Poisson distributed) noise [23].

Even though each of the reconstruction methods mentioned above
yields a different reconstruction, the forward operator in the under-
lying inverse problem solved by these methods is still a linear ope-
rator (i.e. a discretized Radon transform). We therefore intuitively ex-
pect that many nonlinear algebraic reconstruction methods (NLARMs)
can locally be approximated by a linear method. By the term "locally"
we refer here to the case where the reconstruction of a similar image,
called a blueprint, is already available and only the difference of the
projections compared to this known image needs to be reconstructed.
Hence we refer not to spatial locality in the image, but to locality in
the space of images, where each image is considered as a point in a
high-dimensional vector space.

In this chapter we adapt the AF-FBP approach to approximate
NLARMs that have this locally linear behavior, such that AF-FBP can
still be applied in cases where a blueprint object is available. We pre-
sent the results of a series of experiments performed to assess the
nonlinearity present in the CGLS and EM methods. We subsequently
examine the reconstruction quality of our adapted AF-FBP method
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and compare them with reconstructions obtained by applying the
NLARM directly.

The ability to compute fast approximations of NLARM reconstructi-
ons is useful in cases where the object to be reconstructed is expected
to contain (small) variations with respect to the blueprint, which is
known in advance. Such cases can be found, for example, in the field
of nondestructive testing and inspection. Our approach is based on the
computation of an algebraic filter that depends on the blueprint image.
This processing step is computationally demanding, as it involves a se-
ries of runs of the iterative algebraic method. Once the filter has been
computed, new images can be reconstructed with the same speed as
Filtered Backprojection. Our method will mainly be useful in scenarios
where a large number of similar objects are scanned in sequence, and
where algebraic methods are required due to limitations in the scan-
ning geometry or scanning time. In such cases, the approach enables
the approximation of advanced algebraic methods, while still maintai-
ning a low computation time, sufficient for real-time reconstruction.

The concept of replacing the full reconstruction problem by the task
of reconstructing the difference from a blueprint object has been used
in various nonlinear inverse problems in imaging (e.g. seismic inver-
sion [24] and electrical impedance tomography) but is applied here for
the first time to fast approximation of nonlinear tomographic recon-
struction methods, thereby considerably extending the applicability of
AF-FBP.

This chapter is structured as follows. In Sect. 5.2 the algorithms
are briefly discussed and notation is introduced. The AF-FBP met-
hod for linear algebraic reconstruction methods is briefly introduced in
Sect. 5.3.1. In Sect. 5.3.2, we extend the AF-FBP approach to NLARMs.
In Sect. 5.4 we describe the setup and results of a series of computa-
tional experiments, comparing the proposed AF-FBP method to other
methods. We conclude with discussion and conclusions in Sect. 5.5.

5.2 preliminaries

In this chapter, the projection data are obtain using a source and de-
tector that rotate around the object in the 2D plane. We use parallel
beams that cover all image pixels for each projection angle. The appro-
ach presented here is not limited to the scanning geometry described
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here, but can be applied to other scanning geometries as well (e.g. fan-
beam, cone-beam). An additional rebinning step of the projection data
is necessary for these geometries. First, we give a brief introduction to
the concepts and notation of FBP, followed by a description of the key
algebraic methods studied in this chapter.

5.2.1 Filtered Backprojection

Our description of Filtered Backprojection introduces the same nota-
tion as used in Section II of [15], but is included here to keep the
present article self-contained.

In the continuous tomography model that is used to describe Filte-
red Backprojection, the unknown image is represented by a finite and
integrable function f : R2 → R of bounded support. Projections p(θ, ·)
of f are defined by the Radon transform

p(θ, t) = (Rf)(θ, t) =
∫∞
−∞ f(t cos θ− s sin θ, t sin θ+ s cos θ)ds, (5.1)

where θ ∈ [0,π) denotes the projection angle and t ∈ R refers to the
signed distance of a projected line from the origin.

The unknown image f can be recovered analytically from its Radon
transform based on the following inversion formula:

f(x,y) =
∫π
0

∫∞
−∞ P(θ,u)G(θ,u)e2πiut dudθ, (5.2)

where t = x cos θ+y sin θ, G(θ,u) = |u| and P(θ, ·) is the Fourier trans-
form of p(θ, ·). The function G(θ, ·) acts as a filter on the projection
data [25].

In practical experiments, the detector that measures the projections
p(θ, ·) is discretized as an array of detector elements, each measuring
a single value. Moreover, the set of angles θ for which projections are
available is also finite and discrete.

Let R ∈ N>0. For simplicity, we assume that the detector contains
l = 2R + 1 detector elements of unit width and that it is symme-
tric around t = 0. Hence, the lines (θ, t) for which the Radon trans-
form is observed by these detector elements correspond to the set
T = {−R,−R+ 1, . . . ,R− 1,R} of values for the parameter t in the Ra-
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don transform. Furthermore, the finite set of projection angles is given
by Θ = {θ1, . . . , θd}. The FBP formula, which approximates Eq. (5.2), is
then given by

f(x,y) ≈ π
d

∑
θ∈Θ

∑
τ∈T

p(θ, τ)g(θ, x cos θ+ y sin θ− τ), (5.3)

with g the inverse Fourier transform ofG. In practice, various filters are
used in FBP, combining the ideal ramp filter with smooth windowing
functions. Examples are the Ram-Lak filter (using a hard frequency
cut-off) and the Hann and Cosine filters (using soft windowing) [3].

5.2.2 Algebraic Reconstruction Methods

In this section we introduce the class of Algebraic Reconstruction Met-
hods (ARMs). The input for these methods is the set of measured pro-
jections and a matrix describing the projection geometry, which toget-
her define a system of linear equations. Let p = (pi) ∈ Rm denote
a vector containing the m = dl measured detector values (with d the
number of angles and l the number of detectors), and let v = (vi) ∈ Rn

denote the object to be reconstructed. We now form the system of li-
near equations

Wv = p, (5.4)

where the matrix W, called the projection matrix, describes the geo-
metry of the tomography setup. Each entry pi of the projection data
corresponds to an angle θ ∈ Θ and detector bin t ∈ T , and is therefore
also denoted as pθt. Its value corresponds to the weighted sum of the
values vj on the line parameterized by (θ, t). Various models can be
used to determine the weight of the contribution of the pixels on such
a line, such as the line model, strip model [26], and Joseph’s model
[27]. Algebraic reconstruction methods solve the system in Eq. (5.4) by
starting at an initial guess of the solution (which can be the zero vec-
tor) and iteratively refining the solution. If the system is inconsistent,
due to noise or other artefacts in the projection data, the residual of the
equation system is often minimized with respect to a particular norm.
The results of ARMs can depend substantially on the particular ARM
that is selected, for several reasons. First of all, the iteration process is
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typically terminated before convergence has been fully reached, such
that the resulting reconstruction depends on convergence properties of
the algorithm. Secondly, the norm that is minimized depends on the
particular ARM. Thirdly, if the equation system is underdetermined
(which is quite common in tomography), the particular solution that
is chosen among all solutions depends on the ARM.

Algebraic reconstruction methods can be modeled as an operator
R : Rm → Rn that maps a vector p ∈ Rm of projection data to a re-
constructed image u ∈ Rn. Some ARMs are linear, meaning that their
operation can be written as u = Rp with R ∈ Rm×n a matrix (called
the reconstruction matrix of the ARM). By definition, a linear ARM has
the property that R(λp+ µq) = λR(p) + µR(q) for all λ,µ ∈ R and
p,q ∈ Rm, which makes it possible to decompose its operation as a
sum of reconstructions of unit vectors. This property is essential to the
filter construction presented in [15]. The well-known SIRT algorithm is
an example of a linear method that can be used to compute algebraic
filters.

Many ARMs used in practice are not linear. Here, we consider two
examples. The CGLS algorithm is nonlinear, except in the limit case of
an infinite number of iterations. In this limit, CGLS converges to the
same reconstruction that would result by applying the Moore-Penrose
inverse [28] to the projection data, which is a linear operator. For any
finite number of operations, CGLS is not linear. We therefore refer
to CGLS as a mildly nonlinear ARM. Another example of a common
nonlinear ARM is the Expectation Maximization (EM) algorithm. Even
in the case of an infinite number of iterations EM does not have the
linearity property. Therefore, we refer to EM as a nonlinear ARM. Below,
we will outline CGLS and EM in more detail.

5.2.2.1 CGLS

The Conjugate Gradient (CG) algorithm is commonly used for solving
large systems of linear equations, due to its fast convergence. It is origi-
nally designed for large sparse systems of equations with a symmetric
and positive-definite matrix [29]. We apply a variant of this method,
Conjugate Gradient Least Squares (CGLS), where the CG algorithm is
applied to the system of normal equations WTWv = WTp.
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Put u(0) = 0, r0 = p, and d0 = WTp. The iteration which computes
uk+1 (k = 0, 1, 2, . . .) is then given by Eq. (5.5).

αk+1 = ‖WTrk‖22 / ‖Wdk‖22,

uk+1 = uk +αk+1d
k,

rk+1 = rk −αk+1Wdk, (5.5)

βk+1 = ‖WTrk+1‖22 / ‖WTrk‖22,

dk+1 = WTrk+1 +βk+1d
k,

For any system of linear equations, the CGLS algorithm converges
to the least squares solution of minimal norm. One way to express
this property, is that CGLS converges to W†p, where W† denotes the
Moore Penrose inverse. As W† is a matrix, the limit behavior for CGLS
corresponding to a large number of iterations is linear. In practice, one
often performs just a few iterations, thereby implicitly imposing a form
of regularization on the reconstructed image. As we will demonstrate
in Sect. 5.4.1, CGLS is not linear in this case, but a linear model can be
used as an approximation.

5.2.2.2 EM

Expectation Maximization (EM) aims at finding the reconstruction that
is most likely to result in the measured projection data, where the
measurements have been perturbed by Poisson noise. The detected
photon counts in an X-ray scanner follow such a distribution. The re-
construction that maximizes the likelihood then satisfies Eq. (5.6) [2,
30];

û = ûWT e
−Wû

e−p
, (5.6)

where W has column sum 1 and the arithmetic operations are per-
formed element wise [28, 31]. Here, we focus on a straightforward
Expectation Maximization method that iteratively solves Eq. (5.6). For
a nonzero start solution u0, the (k+ 1)th iteration of the multiplicative
algorithm EM is given by Eq. (5.7);

uk+1 = ukWT e
−Wuk

e−p
. (5.7)
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Note that in practice, regularization is often employed to make the
method more stable [28].

5.3 algebraic filters for fbp

We now briefly discuss the AF-FBP approach for linear algebraic recon-
struction methods, followed by our adaptation to make this method
applicable to nonlinear algebraic reconstruction methods.

5.3.1 The Linear Case

In [15], a method is presented to create filters for FBP based on a linear
algebraic reconstruction method (LARM) of choice. The reconstructi-
ons of FBP with these filters approximate the reconstruction quality of
the LARM. As explained in Sect. 5.2.2, a linear reconstruction method
can be represented by the reconstruction matrix R. The value uc of a
single pixel c ∈ {1, . . . ,n} in the reconstruction u = Rp is given by

uc =
∑
θ∈Θ

∑
t∈T

r
(c)
θt pθt, (5.8)

where r(c)θt is the entry of R in row c and column θt.
Define the center of pixel c as (xc,yc) ∈ R × R, and let t(θ)c =

xc cos θ+ yc sin θ for θ ∈ Θ. Define the function h(c) by

h(c)(θ, τ) = r(c)
θ(τ+t

(θ)
c )

, (5.9)

where (θ, τ) ∈ (Θ× (T − t
(θ)
c )). Then we can write uc as

uc =
∑
θ∈Θ

∑
t∈T

h(c)(θ, t− t(θ)c )pθt. (5.10)

Note that the formulas are valid for any set of projection data, either
consistent (i.e. in the range of the Radon transform) or inconsistent.
Comparing Eqs. (5.3) and (5.10) shows that h(c) acts as a filter on
the projection data for pixel uc. This filter is called an algebraic filter,
and is determined by calculating the impulse response of pixel c for
all the detector positions θt. Similarly, we can create filters for the
other pixels in the image domain. It is reasonable to expect that these
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filters resemble h(c), at least for pixels in a neighborhood of uc. As
shown in [15], applying the algebraic filter of uc to all the pixels in the
image results in a reconstruction quality that is comparable to that of
the LARM used to create the filter. This method is known as AF-FBP
with the algebraic filter h(c). Note that in practice, one uses a Fourier
convolution operation to evaluate the result of applying the filter to
the projection data.

5.3.2 The Nonlinear Case

Nonlinear algebraic reconstruction methods (NLARMs) are used in
many applications of computed tomography. As with linear recon-
struction methods, a disadvantage of these methods is their expensive
computational cost. If the AF-FBP approach as described in Sect. 5.3.1
could be applied, then this would lead to a method with relatively low
computational cost that approximates the NLARM.

The method described in Sect. 5.3.1 requires linearity of the recon-
struction operator R (see Sect. 5.2.2), which is clearly not satisfied for
general NLARMs. We now introduce a variant of AF-FBP that can be
applied to NLARMs, provided that the NLARM behaves locally as a
linear transformation. We say that a reconstruction method is locally
linear if for a set of projections p ∈ Rm and a small perturbation
∆p ∈ Rm, there exists a linear transformation Lp : Rm → Rn such
that

R(p+∆p) ≈ R(p) + Lp∆p. (5.11)

As the matrix Lp can be seen as a linear reconstruction method that
reconstructs the perturbation of the projection data with respect to the
projection data p, we can approximate this method by FBP with an
appropriately chosen filter h(c).

A difference with the filter method for the linear case is the depen-
dence of the matrix Lp on the projection data p. For every new set
of projections p the matrix Lp changes and the filter h(c) has to be
recalculated. In certain practical applications, in particular in indus-
trial tomography, a blueprint of the scanned object is already available,
while one aims to reconstruct the deviations from this blueprint. In
this case, the measured projection data pm is the superposition of the
forward projection pb of this blueprint and the forward projection of
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the variation, denoted by ∆p. The reconstruction v = R(pm) is then
given by v = R(pb + ∆p). Since R is a locally linear transformation,
there exists a matrix Lpb ∈ Rm×n such that v ≈ R(pb) +Lpb∆p. Note
that Lpb is independent of the perturbation ∆p.

In the remainder of this chapter we will refer to the known image
as the blueprint image. An example of a blueprint image is the cross-
section of a turbine blade. Variations on this blueprint are cracks, holes
or local variations in density, while the general shape and size of the
blade is equal to that of the blueprint.

For these locally linear transformations we can create a filter with a
similar method as described in Sect. 5.3.1 for linear algorithms. Instead
of calculating an impulse response as in the linear case, we now cal-
culate a local derivative around pb, because Lpb depends on pb and
acts on the perturbation ∆p. Hence for a given pixel c, we calculate the
filter values at θ ∈ Θ, t ∈ T as stated in Algorithm 1.

Algorithm 1: Calculate filters for locally linear algebraic recon-
struction algorithms
Data: R : Rn → Rm an NLARM,

pb ∈ Rm the projection data of a blueprint image,
Θ the set of all projection angles,
T the set of all detector pixels.

Result: The algebraic filter h(c) corresponding to R for pb.
begin

Choose a pixel c in the image
Define (xc,yc) ∈ R×R the center of pixel c
Define eθt the unit vector with value 1 at entry θt for
θ ∈ Θ, t ∈ T

for θ ∈ Θ do
for t ∈ T do

l
(c)
θt = [R(pb + eθt)]c − [R(pb)]c

end
Define t(θ)c = xc cos θ+ yc sin θ
Define h(c) for τ ∈ T − t(θ)c by h(c)(θ, τ) = l(c)

θ(τ+t
(θ)
c )

end
end
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This filter h(c) can be used in FBP in the same way as the (angle
dependent) standard filters and the filters for the linear algebraic re-
construction methods. The implementation of AF-FBP for NLARM is
stated in Algorithm 2. We will refer to this algorithm as nlAF-FBP. In
cases where the distinction between the linear and nonlinear variant
of AF-FBP is not relevant for the discussion, we use the general term
AF-FBP.

Algorithm 2: Applying the AF-FBP filters for NLARM
Data: BP : Rn → Rm the unfiltered backprojection operation,

R : Rn → Rm an NLARM,
pm ∈ Rm the measured projection data,
pb ∈ Rm the projection data of the blueprint image,
Θ the set of all projection angles,
T the set of all detector pixels.

Result: Reconstruction v ∈ Rn.
begin

// Calculate the perturbation ∆p

∆p = pm −pb
for θ ∈ Θ do

// Apply the angle dependent algebraic

filter h(c) on ∆p

p̃ =
∑
τ∈T h

(c)(θ, τ− t(θ)c )∆pθτ
end
v = R(pb) +BP(p̃)

end

5.4 experiments

To examine the performance of the nlAF-FBP method, a series of com-
putational experiments has been carried out based on simulated pro-
jection data. Validating the approach is not straightforward, as the re-
construction accuracy depends not only on the algebraic method and
its parameters, but also on the blueprint image and the scanned ob-
ject. We have chosen to focus on five key-aspects: (i) to verify that the
selected nonlinear algebraic methods indeed exhibit locally linear be-
havior; (ii) to demonstrate the image quality of the nlAF-FBP approxi-
mation for a set of realistic differences between blueprint and scanned
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(a) Cylinder head (b) Turbine blade (c) Shepp-Logan (d) Mandible

Figure 5.1: The blueprint images.

object; (iii) to investigate robustness with respect to noise; (iv) to deter-
mine robustness with respect to image registration errors between the
scanned object and the blueprint; and (v) to investigate the robustness
with respect to beam hardening artefacts.

As blueprint images, we consider both binary images and blueprints
having continuous grey levels. They are shown in Fig. 5.1 and corre-
spond to (5.1a) a cross-section of a cylinder head, (5.1b) a cross-section
of a turbine blade, (5.1c) the well-known Shepp-Logan phantom, and
(5.1d) a cross-section of a mandible. All the blueprint images are de-
fined on a grid of 2044×2044 pixels. The cylinder head and turbine
blade phantoms are representative for inspection tasks in industrial
tomography, which we consider the primary application target of our
nlAF-FBP approach. The Shepp-Logan and mandible phantom have
been added to demonstrate how the algorithm performs for objects
with multiple and continuous grey levels, respectively.

Real-world objects can typically not be represented on a pixel grid.
To approximate the continuous nature of real objects, the reconstructi-
ons are performed on a coarser grid, where four phantom pixels corre-
spond to one pixel in the reconstruction grid. The projection data are
computed based on a detector of 511 bins with a width of four image
pixels per bin. We use an equiangular parallel beam geometry with
a relatively small number of 64 projections, varying between 0 and
180 degrees, as this is a scenario where algebraic methods typically
are preferred over Filtered Backprojection. We use the strip model to
determine the contribution of each image pixel to a projection ray [26].

The following reconstruction methods are used in the computational
experiments:
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algebraic reconstruction methods

cgls Conjugate Gradient Least Squares; see Sect. 5.2.2.1. The
start solution in Eq. (5.5) is u0 = 0. The total number of iterati-
ons is K = 10.

em Expectation Maximization; see Sect. 5.2.2.2. The start solution
in Eq. (5.7) is u0 = 1. The total number of iterations is given by
K = 50.

filtered backprojection methods

fbp-rl , fbp-hann, fbp-cos Filtered Backprojection with the
standard Ram-Lak, Hann and Cosine filters; see Sect. 5.2.1.

nlcgls-fbp Filtered Backprojection with an algebraic filter ba-
sed on CGLS with 10 iterations. The filter coefficients for the
central pixel in Alg. 1 are used to create the filter.

nlem-fbp Filtered Backprojection with an angle-dependent alge-
braic filter based on EM with 50 iterations. For every blueprint
image a non-zero pixel close to the central pixel in Alg. 1 is se-
lected to calculate the filter coefficients.

For nlCGLS-FBP and nlEM-FBP, the algebraic filters are applied to
the perturbation ∆p as described in Alg. 2 to obtain the AF-FBP re-
constructions. For FBP with standard filters (FBP-RL, FBP-Hann, FBP-
Cos), the filters are applied to the measured projection data.

To quantify the quality of the reconstructed images, we consider
two error measures: the deviation from the phantom itself (i.e. the
unknown ground truth) and the deviation from a reconstruction obtai-
ned by the algebraic method that one tries to approximate. To com-
pare the reconstructions to the phantom, the reconstruction is upsam-
pled by a factor 4, replacing each reconstruction pixel by a block of
4×4 pixels with the same value. We denote this enlarged image of
2044×2044 pixels by û = (ûij) ∈ Rn

2
with n = 2044. We define the

mean reconstruction error Er by

Er =

∑
i,j

|ûij − vij|∑
i,j
vij

, (5.12)
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where v = (vij) ∈ Rn
2

denotes the phantom. The mean ARM recon-
struction error EARM

r is computed similarly, yet the reconstruction is
compared to the ARM reconstruction (either CGLS or EM) instead
of the phantom. Our approach is designed to approximate the under-
lying nonlinear algebraic method, so ideally the ARM reconstruction
error will be small, while the reconstruction error with respect to the
phantom can still be considerable.

5.4.1 Local Linearity

The validity of the proposed approach is based on the assumption that
nonlinear tomographic reconstruction methods exhibit approximately
linear behavior in the vicinity of the blueprint image. We performed
a set of experiments to validate this assumption. In these experiments,
the value of a single pixel in the reconstruction is monitored while a
perturbation of increasing norm is introduced in the projections. If the
reconstruction method is locally linear, the value of this pixel should
also depend linearly on the magnitude of the perturbation.

We examined this property for CGLS and EM by considering two
sets of projection data p, q, for the blueprint and the scanned object
respectively. The perturbation ∆p ∈ Rn in Eq. (5.11) is defined as
λ(q− p) with λ ∈ [0, 1]. We compute both R(p) + λ(R(q) −R(p)) and
R(p+ λ(q− p)) for every value of λ ∈ [0, 1] and compare the results
for a particular pixel (located in the interior of the phantom) in the
reconstruction.

Figure 5.2 shows the grey level of this pixel as a function of the
parameter λ, for CLGS and EM in two scenarios: (i) a disk-shaped gap
of grey level 0 and radius 50 pixels is introduced in the cylinder head
phantom, creating an artifical gap; the observed pixel is included in
this disk. (ii) The images p and q are completely different; p is the
Shepp-Logan phantom, whereas q is the cylinder head phantom.

The results are visualized using a blue (dotted) curve and a red
(solid) line. The red line corresponds to the pixel value of R(p) +

λ(R(q) −R(p)), and the blue curve corresponds to the pixel value of
R(p + λ(q − p)), for λ ∈ [0, 1] variable. Large deviations of the blue
curve from the red line imply that the corresponding reconstruction
method does not behave locally as a linear function.



5

5.4 experiments 101

(a) CGLS (b) EM

(c) CGLS (d) EM

Figure 5.2: Plots of the local linearity for a particular image pixel; if the algo-
rithm is locally linear, the blue and red lines should coincide. (a-b)
deviation is a black disk of radius 50; (c-d) true object is comple-
tely different from blueprint.

Although these results depend on the particular pixel for which the
grey value is plotted, they illustrate general observations about the
two algorithms that we found in a broad set of observed pixels: (i)
the CGLS algorithms shows almost perfectly linear behavior for small
perturbations and close-to-linear behavior for large deviations; (ii) the
EM algorithm clearly shows nonlinear behavior already for small de-
viations, although it may still be sufficiently linear for our purpose; for
large deviations, EM exhibits strongly nonlinear behavior.

5.4.2 Variations with cracks

To evaluate how the nlAF-FBP approach performs for realistic devia-
tions between the blueprint and the scanned object, we now consider
the cylinder head and turbine blade phantoms, which resemble objects
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(a) (b) (c) (d)

Figure 5.3: Example from each of the four categories of crack images: (a) cy-
linder head (broad); (b) cylinder head (narrow); (c) turbine blade
(broad); (d) turbine blade (narrow).

that are common in the field of nondestructive testing. Four sets of test
images have been manually created by introducing artificial cracks to
the phantom objects. For each of the two objects, a set of broad cracks
was created, as well as a set of narrow cracks. Each set consists of six
images. An example for each set is shown in Figure 5.3, where the
crack is magnified in the left corner.

In Table 5.1 we show the mean ARM reconstruction errors (i.e.
compared to either CGLS or EM) over each of the four sets, for
the proposed nlAF-FBP method vs. FBP with three standard filters
(FBP-Cos, FBP-Hann, and FBP-RL). We observe that the mean ARM
reconstruction error for nlCGLS-FBP is very small compared to FBP
with standard filters. For nlEM-FBP the approximation of EM is not
as good compared to CGLS, but the ARM reconstruction errors are
still substantially smaller than those of FBP with standard filters for
all cracks examined.

An illustration of the results for a particular testcase is shown in Fi-
gure 5.4. In all images, the box in the left corner contains a zoomed ver-
sion of the crack. We first note that a standard Filtered Backprojection
reconstruction without the use of a blueprint object (Fig. 5.4a) clearly
shows the crack, yet also contains a considerable number of streak ar-
tefacts, making it difficult to distinguish between defects and artefacts.
The CGLS (Fig. 5.4b) and EM (Fig. 5.4d) reconstructions are less prone
to such artefacts. For both CGLS and EM, the nlAF-FBP reconstruction
is visually very similar to the result of the algebraic method, whereas
the FBP-Cos method yield quite different results. We observed similar
results using other standard FBP filters.
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Class nlAF-FBP FBP-Cos FBP-Hann FBP-RL

CGLS

Cylinder head
(broad)

1.7e-3
(7.5e-4)

1.9e-2
(1.7e-3)

1.6e-2
(1.6e-3)

2.6e-2
(2.1e-3)

Cylinder head
(narrow)

4.0e-4
(1.1e-4)

6.4e-3
(8.3e-4)

4.9e-3
(6.1e-4)

1.1e-2
(1.4e-3)

Turbine blade
(broad)

4.7e-3
(3.0e-3)

4.7e-2
(1.9e-2)

3.9e-2
(1.5e-2)

6.9e-2
(3.3e-2)

Turbine blade
(narrow)

8.4e-4
(3.1e-4)

1.3e-2
(3.5e-3)

1.0e-2
(2.7e-3)

2.3e-2
(5.9e-3)

EM

Cylinder head
(broad)

6.8e-3
(1.2e-3)

6.4e-1
(9.3e-4)

6.0e-1
(8.4e-4)

7.2e-1
(1.1e-3)

Cylinder head
(narrow)

1.9e-3
(2.1e-4)

6.4e-1
(1.6e-4)

6.0e-1
(1.3e-4)

7.2e-1
(2.7e-4)

Turbine blade
(broad)

2.8e-2
(1.4e-2)

8.8e-1
(3.2e-3)

8.3e-1
(2.7e-3)

9.8e-1
(4.5e-3)

Turbine blade
(narrow)

5.9e-3
(1.9e-3)

8.7e-1
(4.6e-4)

8.2e-1
(3.4e-4)

9.7e-1
(8.8e-4)

Table 5.1: Mean ARM reconstruction errors for the different categories of
cracks, for the different reconstruction methods. For each set of ex-
periments, the mean ARM reconstruction error is shown in black,
and the standard deviation (over 6 crack images) in light grey.

We emphasize that the goal of our approach is to provide an accu-
rate approximation of the algebraic method, which is not necessarily
the same as providing the most accurate reconstruction. The results of
Table 5.1 and Fig. 5.4 demonstrate that indeed the nlCGLS-FBP and
nlEM-FBP methods provide a reconstructed image highly similar to
the respective CGLS and EM reconstructions.

5.4.3 Robustness with respect to noise

So far, the projection data used in the experiments was noiseless. Since
real (i.e. measured) datasets often contain noise, we also examine the
robustness of nlAF-FBP with respect to noise. We applied Poisson
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Figure 5.4: Illustration of reconstruction results for a broad crack in the cy-
linder head; (a) FBP-Cos, without using a blueprint, (b) CGLS, (c)
nlCGLS-FBP, (d) EM, (e) nlEM-FBP. The images (c) and (e) are ba-
sed on reconstruction of the difference between the object and the
blueprint.

noise to the projection data by first transforming the Radon transform
data into photon counts (using the exponential function), subsequently
generating noisy photon count by drawing from a Poisson distribution
for each detector value, and then using the logarithm to convert the
noisy data back to linearized projection data. Note that the resulting li-
nearized projections can contain negative values, which are set to 0. In
the results, the noise level is indicated by I0, the photon count measu-
red at a detector pixel without an object between source and detector
(higher value means less noise). Fig. 5.5 shows a series of examples
of reconstructed images for the mandible and turbine blade phantoms.
Fig. 5.6 shows the mean reconstruction error and mean ARM recon-
struction error for the mandible phantom as a function of noise level,
averaging the results over a large number of noise realizations.

By visually comparing the reconstructions in Fig. 5.5, we notice that
nlCGLS-FBP handles noisy projection data well compared to FBP with
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(a) Blueprint (b) FBP-Hann (c) FBP-Cos (d) FBP-RL

(e) CGLS (f) nlCGLS-FBP (g) EM (h) nlEM-FBP

(i) Blueprint (j) FBP-Hann (k) FBP-Cos (l) FBP-RL

(m) CGLS (n) nlCGLS-FBP (o) EM (p) nlEM-FBP

Figure 5.5: Reconstructions for the mandible and turbine phantom with
noisy projection data; (a)-(h): I0 = 105, (i)-(p): I0 = 106.

a standard filter. This is confirmed by the corresponding reconstruction
errors, where the accuracy of nlCGLS-FBP is similar to that of the
CGLS reconstructions. The accuracy of nlEM-FBP is also much bet-
ter than that of FBP with standard filters, but it is not as close to EM as
nlCGLS-FBP is to CGLS. It is, however, a good approximation of EM
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(a) CGLS, Er (b) EM, Er

(c) CGLS, EARM
r (d) EM, EARM

r

Figure 5.6: Mean reconstruction error with either the original phantom (Er)
or the ARM reconstruction (EARM

r ) for the mandible phantom with
varying Poisson noise levels I0 applied to the projection data.

based on the results of EARM
r . We observe similar results for the other

phantoms and for other numbers of projection angles.
Hence in case of noisy projection data, nlAF-FBP yields results that

approximate the NLARM well for both CGLS and EM, yet a more accu-
rate approximation is observed for CGLS compared to EM. Compared
to FBP using standard filters, the nlAF-FBP method (for both CGLS
and EM) yields reconstruction with a strongly reduced noise level.

5.4.4 Robustness with respect to registration errors

Even if a blueprint of the scanned object is available, there may be
registration errors between the scanned object and the blueprint, in ad-
dition to the deviations of the actual object structure. To examine the
effect of such errors on the reconstruction accuracy of the AF-FBP met-
hod, we performed a series of experiments where the scanned object
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(a) CGLS (b) EM

Figure 5.7: Mean reconstruction error with the rotated phantom (Er) for the
Shepp-Logan phantom.

is obtained by rotating the blueprint around its center. The rotations
are denoted by the number of degrees, where a positive number cor-
responds to a rotation clockwise and a negative number to a rotation
counterclockwise.

In Fig. 5.7 the mean reconstruction error is shown for the Shepp-
Logan phantom. For small rotations of at most a few degrees, nlCGLS-
FBP is almost as accurate as CGLS. Using FBP with standard filters
to obtain reconstructions results in considerably higher reconstruction
errors. The nlEM-FBP is less tolerant to registration errors and becomes
less accurate than EM already for rotations of 1 degree. We observed
similar results for the other phantoms.

5.4.5 Beam hardening

The previous experiments have been conducted using a monochroma-
tic X-ray beam. For a monochromatic beam, the law of Lambert-Beer
states that the measured projections (after log-correction) increase line-
arly with the thickness of a homogeneous object. In practice, however,
a polychromatic X-ray beam is often used and the measured projecti-
ons depend on the thickness of the object in a nonlinear way, resulting
in beam hardening artefacts [2]. Especially for objects with metal parts,
such as the cylinder head phantom and turbine blade phantom, beam
hardening should be taken into account.

We performed a series of experiments to determine the behaviour
of the nlAF-FBP method when the projection data are obtained using
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(a) Blueprint (b) CGLS (c) nlCGLS-FBP (d) FBP-Hann

Figure 5.8: Reconstructions of the cylinder head phantom with a broad crack.
Note that the subfigures (b)-(d) have a different grey level range
compared to the phantom, to provide a more clear visualization
of the beam hardening artefacts.

Class nlCGLS-
FBP

FBP-Cos FBP-Hann FBP-RL

CGLS

Cylinder head
(broad)

1.7e-3
(4.8e-4)

2.7e-1
(3.2e-4)

2.4e-1
(2.7e-4)

3.4e-1
(4.3e-4)

Cylinder head
(narrow)

9.9e-4
(5.2e-5)

2.7e-1
(5.5e-5)

2.4e-1
(4.5e-5)

3.4e-1
(9.8e-5)

Turbine blade
(broad)

1.3e-1
(4.8e-4)

3.4e-1
(1.2e-3)

3.0e-1
(1.0e-3)

4.2e-1
(1.9e-3)

Turbine blade
(narrow)

1.3e-1
(5.4e-5)

3.3e-1
(1.7e-4)

2.9e-1
(1.2e-4)

4.1e-1
(4.7e-4)

Table 5.2: Mean ARM reconstruction errors for the different categories of
cracks for CGLS, using a polychromatic X-ray beam. For each set of
experiments, the mean ARM reconstruction error is shown in black,
and the standard deviation (over 6 crack images) in light grey.

a polychromatic source. For the sake of brevity, we focus here on the
CGLS algorithm. To simulate beam hardening, we apply the correla-
tion between material thickness and attenuation as found by [32]. The
reconstructions are shown in Fig. 5.8. The corresponding mean ARM
reconstruction errors for CGLS for both the cylinder head phantom
and the turbine phantom are shown in Table 5.2.

We observe that also for a polychromatic X-ray beam the mean
ARM reconstruction error for nlCGLS-FBP is smaller than that of FBP
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with standard filters. Hence nlCGLS-FBP reconstructions resemble the
CGLS reconstruction better than reconstructions of FBP with standard
filters.

5.5 discussion and conclusions

We have presented a novel approach for computing algebraic filters
that can be used in FBP. With these filters we can approximate alge-
braic reconstruction methods with the computational efficiency of filte-
red backprojection. Contrary to the original AF-FBP method, which re-
quires the underlying algebraic reconstruction method to be linear, our
new approach is aimed at approximating nonlinear reconstruction met-
hods, provided that they exhibit local linearity for reconstructions close
to a given blueprint image. We experimentally investigated this local li-
nearity property for two nonlinear methods: Conjugate Gradient Least
Squares with a small number of iterations, and Expectation Maximi-
zation. The results show that while for CGLS the local linearity as-
sumption is satisfied quite well, EM shows significant deviations from
linear behavior. Using our approach for computing filters that act on
the difference between the measured projection data and the projections
of the blueprint, we performed experiments to assess the capabilities
of our algorithm for both CGLS and EM. For CGLS, our approach re-
sults in reconstructions that are highly similar to the result of applying
CGLS directly to the measured data, while reducing the computation
cost to that of applying FBP (once the pre-processing has been done).
The variations can be confined to small regions (such as cracks), but
moderate registration errors with respect to the blueprint image are
also tolerated well. These results are not restricted to monochromatic
beams. Also for polychromatic beams nlCGLS-FBP approximates the
reconstruction accuracy of CGLS. For the EM algorithm, which has a
stronger nonlinear nature, the results are mixed. Noisy projection data
and cracks are in general handled well. For variations concerning the
whole blueprint image, such as rotations, the approximation accuracy
of nlEM-FBP degrades. Hence in several scenarios the nonlinear alge-
braic filter approach yields more accurate reconstructions than using
a standard filter for FBP, but there are also cases where it fails. Investi-
gating the exact conditions under which our method is favorable, and
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also the influence of the pixel location for which the filter is computed,
will require further research.

Compared to FBP, algebraic methods are more suitable for limited-
data scenarios. The ability to approximate the results of slow, nonlinear
algebraic methods using very fast FBP methods opens up the possi-
bilities of reducing the acquisition time, while keeping reconstruction
quality constant. As already discussed in [15], computing the algebraic
filters is computationally highly demanding, as it requires one to carry
out a large number of ARM reconstructions (one per detector element).
Even when using a moderately sized GPU cluster, the computation of
a new filter may take a full day of computation time, based on the im-
plementation in [33]. As outlined in [15], the computational load can
sometimes be considerably reduced by angle independent filters.

The computational overhead for calculating a set of filters for a blue-
print becomes cumbersome when the blueprint changes frequently.
The presented method is therefore especially suitable for nonde-
structive testing and inspection of a small range of industrial objects,
for which blueprints are readily available. In situations where alge-
braic reconstruction methods are preferred over FBP with standard
filters, such as a limited range of available projection angles, the exten-
sive computation time can be a bottleneck in the testing process. For
scenarios where a large number of similar objects must be scanned,
the nlAF-FBP approach allows for very fast – or even real-time – re-
construction of batches of objects once the filters have been computed.
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