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4
A P P R O X I M AT I N G A L G E B R A I C T O M O G R A P H Y
M E T H O D S B Y F I LT E R E D B A C K P R O J E C T I O N : A
L O C A L F I LT E R A P P R O A C H

Abstract – Filtered Backprojection is the most widely used recon-
struction method in transmission tomography. The algorithm is com-
putationally efficient, but requires a large number of low-noise pro-
jections acquired over the full angular range to produce accurate recon-
structions. Algebraic reconstruction methods on the other hand are in
general more robust with respect to noise and can incorporate the avai-
lable angular range in the underlying projection model. A drawback
of these methods is their higher computational cost.

In a recent article, we demonstrated that for linear algebraic recon-
struction methods, a filter can be computed such that applying Filtered
Backprojection using this filter yields reconstructions that approximate
the algebraic method. In the present work, we explore a modification
of this approach, where we use more than one algebraic filter in the
reconstructions, each covering a different region of the reconstruction
grid. We report the results of a series of experiments to determine the
how well the reconstruction and approximation accuracy of this ap-
proach.

This chapter has been published with minor modification as: L. Plantagie and K. J.
Batenburg. Approximating algebraic tomography methods by filtered backprojection:
a local filter approach. Fundamenta Informaticae 2014; 135(1-2): 1–19. The final publica-
tion is available at IOS Press through http://dx.doi.org/10.3233/FI-2014-1109.
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4.1 introduction

Computed Tomography is a general technique for recovering an image
of the interior of a scanned object from its projections, acquired from
a range of angles. In this article, we focus on transmission tomography,
where the source and detector of the scanning device are located on
opposite sides outside the object. The source emits a penetrating beam
that traverses the object. Depending on the thickness and composition
of the materials on its path, part of the incoming beam is absorbed
or scattered by the object. The measurements at the detector can be
considered as projections of the object. This data forms the input for a
tomographic reconstruction algorithm, which computes an image of the
object from all available projections [1–3].

Most of the reconstruction algorithms proposed in the literature can
be divided into two classes: (i) analytical reconstruction methods and
(ii) algebraic reconstruction methods. The analytical reconstruction
methods are based on discretizations of an inversion formula for the
idealized continuous representation of the reconstruction problem
[4]. The algebraic reconstruction methods are derived from a discrete
approach of the reconstruction problem, which is formulated as a
system of linear equations. Due to the large size of the problem, ite-
rative methods are used to solve the problem instead of calculating a
least-squares solution directly.

The best known example of an analytical reconstruction method is
Filtered Backprojection [5]. Due to its fast computation time and robust-
ness with respect to noise, it is often used to obtain reconstructions. Va-
riants of FBP, such as the FDK algorithm for cone-beam reconstruction
[6], are also highly popular in practice. A disadvantage of these recon-
struction methods is their poor reconstruction quality when there are
only few projection angles or when the angular range is limited.

Algebraic reconstruction algorithms, such as ART, SART, and SIRT
[1, 7, 8], typically yield more accurate results in such limited data sce-
narios, as modeling the problem as a system of linear equations allows
to encode exactly which information is known about the object, instead
of interpolating data that has not been measured. The main drawback
of iterative algebraic methods is that they are more computationally in-
tensive, requiring a few times up to a hundred times the computation
time of FBP.
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An alternative route to obtaining more accurate reconstructions is
to adjust the filter of FBP to specific properties of the projection data,
the set of projection angles, or both [9–12]. In a recent article, we de-
monstrated that the operation of certain algebraic methods (those that
are linear) can be approximated by applying FBP with a custom filter.
This filter is computed once and depends on the particular algebraic
method that is to be approximated. This method is known as algebraic
filter-filtered backprojection (AF-FBP) [13]. For a particular pixel, the re-
constructed image that results from applying FBP with this custom
filter has exactly the same value as in the algebraic reconstruction. The
AF-FBP reconstructions have been demonstrated to approximate the
accuracy and robustness of the underlying algebraic method, while
the computational efficiency is comparable to that of the fast FBP re-
construction method.

The AF-FBP method is based on selecting a particular pixel in ad-
vance, for which the filter is computed. This filter is subsequently app-
lied to reconstruct all other image pixels as well. A logical question is
therefore whether the AF-FBP method can be improved by computing
multiple filters, at different locations in the image, and combining the
FBP results for the set of computed filters.

In this article we examine the performance of such an approach,
where the results of multiple algebraic filters are combined. We con-
sider a filter sampling where nine filters are computed instead of a
single one, each covering a tile in the reconstructed image. Two diffe-
rent ways of combining these nine AF-FBP reconstructions are experi-
mentally examined. We compare the reconstruction accuracy with the
standard AF-FBP method, with the algebraic SIRT method, and with
FBP with the standard Ram-Lak filter.

This chapter is structured as follows. In Section 4.2 we briefly dis-
cuss FBP and review the standard AF-FBP method. In Section 4.3 we
describe a variation on the standard AF-FBP. The experiments that we
will perform are described in Section 4.4. In Section 4.5 the results of
these experiments are presented. Section 4.6 contains the discussion,
and the conclusions are drawn in Section 4.7.
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4.2 introduction to af-fbp

In this section we briefly introduce the key concepts of the AF-FBP
method. We refer to [13] for a more detailed description. We consider
here the standard case of reconstructing a 2D image from its parallel
beam projections. The unknown image can be considered as a map
R2 → R, which assigns a grey level to each image coordinate (x,y). For
θ ∈ [0,π) and t ∈ R, the line projection p(θ, t) of f is defined by

p(θ, t) =
∫∫

R2

f(x,y)δ(x cos θ+ y sin θ− t)dxdy. (4.1)

In practice, line projections are meausured for a finite set of pro-
jection angles θ and at a finite set of detector positions t. Denote the fi-
nite set of angles for which projections are available by Θ = {θ1, . . . , θk}
and the finite set of detector positions for which a projected line has
been measured by T = {t1, . . . , t`}. The tomographic reconstruction pro-
blem then consists of recovering f from its line projections for all (θ, t) ∈
Θ × T . Typically, only an approximate solution can be obtained in
practice.

We recall that the Filtered Backprojection algorithm can be described
by

f̃(x,y) =
∑
θ∈Θ

∑
τ∈T

p(θ, τ)g(θ, τ− x cos θ− y sin θ), (4.2)

where f̃(x,y) denotes the reconstructed image and g(θ, t) is a pre-
defined filter, such as the common Ram-Lak filter. Usually this filter
does not depend on the projection angle θ.

In algebraic reconstruction algorithms, the tomographic reconstruc-
tion problem is represented by a system of linear equations of the
form

Wx = p,

were the matrix W = (wij) ∈ Rm×n denotes the discretized projection
operator, the vector x ∈ Rn corresponds to the unknown image and
the vector p ∈ Rm contains the measured projection data. The entry
wij determines the weight of the contribution of pixel j to measure-
ment i, which usually represents the length of the intersection bet-
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ween the pixel and the projected line. As the equation system is usu-
ally inconsistent, an exact solution typically does not exist. For such
cases, a range of numerical algorithms exist that minimize the residual
||Wx−p|| with respect to some vector norm.

A reconstruction algorithm can be considered as an operator S :

Rm → Rn, which maps the vector p of measurements to the recon-
structed image x. We call a reconstruction algorithm linear if S is a
linear operator. In such cases, the algorithm can be described by a ma-
trix S ∈ Rn×m. Several algebraic reconstruction algorithms, including
the well-known ART, SART and SIRT algorithms [1], are linear met-
hods.

We now focus on a single pixel c ∈ {1, . . . ,n} of the reconstructed
image. It has coordinates (xc,yc) ∈ R2. Denote the cth row of S by
s(c). Each entry of s(c) corresponds to an entry in the vector p of
measured projection data, and therefore to a pair (θ, τ) ∈ Θ× T , which
we denote by s(c)θτ . Let u = Sp. We then have

uc =
∑
θ∈Θ

∑
τ∈T

pθτs
(c)
θτ , (4.3)

which is very similar to the filtered backprojection formula of Eq. (4.2).
The vector s(c) can be computed by computing a series of reconstructi-
ons using a basis of unit vectors as input. For a given θ ∈ Θ, define
t
(θ)
c = xc cos θ+ yc sin θ. Now define the function h(c)(θ, ·) by the fol-

lowing formula:

h(c)(θ, τ) = s(c)
θ(τ+t

(θ)
c )

, for τ ∈ T − t(θ)c . (4.4)

We refer to h(c) as the algebraic filter for the algorithm S. Note that
h(c)(θ, ·) is only defined on a discrete domain. Intermediate values can
be obtained by interpolation. Also note that the value h(c)(θ, τ) can
depend on the projection angle θ. Just as in FBP, the algebraic filter
determines the weight of the contribution of each detector position to
the reconstructed value. For the selected pixel c, using the algebraic
filter in FBP will result in an identical reconstructed value as for the
linear algebraic method S. It was demonstrated in [13] that if this same
filter is also used to reconstruct all other image pixels, using the FBP
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formula, an image is obtained that approximates the result of the linear
algebraic reconstruction method very well.

4.3 af-fbp with multiple filters

In this section we describe a modified AF-FBP method where recon-
structions of several filters are combined into one final reconstruction.
As described in Section 4.2, we can create a filter for FBP based on any
linear algebraic reconstruction method. This filter is created by com-
puting a series of reconstructions (one for each detector element in the
set T ), and storing the value of a single image pixel. The resulting filter
depends on the choice of the image pixel. For the standard AF-FBP
method the pixel in the center of the image grid is chosen (referred to
as the central image pixel at location (xc,yc) ∈ R2) to compute the fil-
ter. Afterwards, this filter can be applied to any vector p of projection
data, resulting in a reconstruction for which the central pixel has the
same value as for the algebraic method.

In algebraic methods, the positioning of the reconstruction grid im-
poses implicit constraints on the reconstruction problem, namely that
the reconstructed image is zero outside the region of the reconstruction
grid. These constraints mainly affect the reconstruction near the boun-
dary of the reconstruction grid. In general, these implicit constraints
are beneficial to the quality of reconstructions computed by algebraic
methods, as they limit the support of the reconstructed images to a
subregion of R2. As a consequence, an object that is positioned in a
corner of the reconstruction grid is not reconstructed identically (up
to a shift) to an object that is positioned in the center of the grid. It
is therefore natural to consider the question whether an algebraic fil-
ter computed for a pixel near a corner of the reconstruction grid is
substantially different from the central filter, and whether it can pro-
vide more accurate reconstructions in this region. At the same time,
using multiple filters for the reconstruction increases the implementa-
tion complexity of the reconstruction algorithm compared to FBP, as
well as the computation time.

For the sake of simplicity, we limit our investigation here to the
case where nine filters are used, obtained by dividing the image grid
symmetrically in three columns and three rows. The central image
pixel is also the center of one of these subregions. Since the size of
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the image grid need not be divisible by three, the subregions need not
be of equal size. The size of the subregion in the center of the image
equals the image size divided by three. If this is not an integer, we
use the smallest integer that is larger than this number. This integer is
denoted by s. The pixels that are selected are located at (xc± s,yc± s),
(xc,yc ± s), (xc ± s,yc), (xc,yc). For each pixel a filter is created as
described in Section 4.2.

According to Eq. (4.4), computing the filter for an image pixel j ∈
{1, . . . ,n} with coordinates (xj,yj) requires the computation of the row
s(j) of the matrix S. Subsequently, for each angle θ, the part of s(j) that
corresponds with this angle is shifted over a distance t(θ)j = xj cos θ+
yj sin θ. Zero padding is applied for the filter values that fall outside
the region where this shifted filter can be defined by interpolation.

After computation of the nine filters, each of these filters can be used
in a standard FBP implementation. In this way we obtain nine recon-
structions of the original image. The nine reconstructions can be com-
bined in several ways to obtain a final reconstruction of the original
image. In this chapter we explore two different ways to combine the
reconstructions and we compare the reconstruction accuracy of both
methods with the linear algebraic method, standard AF-FBP and FBP
with the standard Ram-Lak filter.

4.4 experiments

In this section we describe a series of simulation experiments that we
performed to examine the accuracy of the modified AF-FBP method.

4.4.1 Phantoms

The phantoms that are used in the experiments are shown in Fig. 4.1.
Fig. 4.1a is a cross-section of a cylinder head in a combustion engine,
Fig. 4.1b represents a cross-section of a wind turbine blade, Fig. 4.1c
is the Shepp-Logan phantom which represents a simplification of a
cross-section of a human brain [14], and Fig. 4.1d is a cross-section of
a mandible.

The phantoms are defined on a square grid of 2044 × 2044 pixels
and are contained in the inscribed circle with diameter 2044 pixels.
Real world objects can in general not be represented exactly on such a
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(a) Cylinder head (b) Turbine blade (c) Shepp-Logan (d) Mandible

Figure 4.1: The phantoms.

pixel grid. To take this into account in our experiments, we reconstruct
the phantoms on a coarser grid of 511× 511 pixels. To determine the
reconstruction error we then refine the reconstruction to 2044× 2044
pixels by replacing every pixel in the coarse grid by a block of 4× 4
pixels with the same value.

As shown by experiments in [13], the quality of the reconstructions
improves when the filters are created on a larger grid of 767 × 767
pixels instead of 511× 511 pixels. Therefore, we use this larger grid to
create the filters and to create the algebraic reconstructions. With error
measures described in Section 4.4.4, we examine the reconstruction
quality of the modified AF-FBP method.

4.4.2 Projection data

The projection data are obtained using a parallel beam scanning ge-
ometry. The detector consists of 511 elements, each having a width
of four image pixels. The Joseph’s model is used to obtain the con-
tribution of each image pixel to an individual projection ray [15]. Per
detector element we use four rays, each having a width of one image
pixel. This ensures that every image pixel contributes with nonzero
weight to at least one ray per projection angle. The projection angles
are equiangularly distributed within the full range of 180 degrees. The
number of projection angles d varies during the experiments.
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4.4.3 Reconstruction methods

In the experiments we use four different reconstruction methods to
obtain the reconstructions. All algebraic filters are based on the itera-
tive SIRT algorithm. In particular, the following algorithms are compa-
red:

sirt Simultaneous Iterative Reconstruction Method. The kth ite-
ration u(k) is given by Eq. (4.5), where u(0) = 0.

u(k+1) = (In −ωCWTRW)u(k) +ωCWTRp, (4.5)

where C = (cij) ∈ Rn×n and R = (rij) ∈ Rm×m are diagonal
matrices given by cjj = α(

∑n
i=1 |wij|) and rii = β(

∑m
j=1 |wij|)

respectively, In ∈ Rn×n denotes the identity matrix, and ω is a
relaxation parameter [8, 16]. In this chapter we set ω = 1, α(x) =
β(x) = 1/x for x ∈ R. We stop the SIRT algorithm after a fixed
number of 200 iterations.

fbp-rl Filtered Backprojection method given by Eq. (4.2) using
the standard Ram-Lak filter.

sirt-fbp sf SIRT-FBP ’Single Filter’; this is the standard SIRT-
FBP method using one angle-dependent filter based on the cen-
tral pixel of the reconstruction grid; see Section 4.2.

sirt-fbp ir SIRT-FBP ’Isolated Regions’; this is a variation on
SIRT-FBP using nine pixels to calculated nine angle-dependent
filters. The selection of these nine pixels is described in Section
4.3. For each filter a reconstruction is created using FBP with
this filter. The subregion containing the pixel that was used to
create the filter is used for the final reconstruction. These subre-
gions do not overlap and will be referred to as isolated regions.
The collection of all these isolated subregions forms a complete
reconstruction.

sirt-fbp bi SIRT-FBP ’Bilinear Interpolation’; for this method
we use the same subregions as for IR, but we perform an addi-
tional bilinear interpolation step instead of only collecting the
isolated subregions.
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4.4.4 Error measure

The accuracy of the reconstruction methods is examined using two dif-
ferent error measures. The first measure is obtained by calculating the
sum of absolute pixel differences between the reconstruction and the
original object. After normalization, the resulting error is denoted as
the mean reconstruction error Er. Since the reconstruction has a coarser
grid than the original image, we cannot compare them directly. We first
select in the 767× 767 reconstruction grid the smaller 511× 511 pixel
grid with the same central pixel as the reconstruction grid. We then en-
large this grid by replacing every pixel by a block of 4× 4 pixels with
the same value to obtain a grid of 2044× 2044 pixels. We denote this
image by û = (ûij) ∈ Rn

2
with n = 2044 and the original phantom by

v = (vij) ∈ Rn
2
. The mean reconstruction error is then defined by

Er =

∑
i,j

|ûij − vij|∑
i,j
vij

. (4.6)

The second measure is obtained by calculating the sum of absolute
pixel differences between the reconstruction u = (ukl) and the alge-
braic reconstruction uARM = (uARM

kl ) on the same grid of 511× 511 pixels
that was used in the mean reconstruction error before refining it. Af-
ter normalization this error is denoted as the mean ARM reconstruction
error EARM

r , defined by

EARM
r =

∑
k,l

|ukl − u
ARM
kl |∑

k,l
uARM
kl

. (4.7)

4.4.5 Series of experiments

The reconstructions are compared in three series of experiments.
In the first series of experiments the number of projection angles is

varied. We show the resulting mean reconstruction errors Er, as well
as the mean ARM reconstruction errors EARM

r , for all four phantoms
and using several different interpolation methods for the filters. The
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aim of this series is to compare the accuracy of the five reconstruction
methods for a varying number of projections (d ∈ {16, 24, 32, 64}).

In the second series of experiments we apply varying amounts of
Poisson noise to the projection data. FBP with a Ram-Lak filter is
known to produce poor quality reconstructions if the projection data
has a low signal-to-noise ratio, while SIRT provides superior results
for such data. We examine the reconstruction quality of SIRT-FBP with
multiple filters, compared to SIRT, FBP-RL and standard SIRT-FBP.

In the third series of experiments a larger detector is used to obtain
the projections and to create the filters. As discussed in Section 4.3,
a shift operation has to be applied when computing an algebraic fil-
ter for a non-central image pixel. If such an image pixel is near the
boundary of the reconstruction region, then substantial zero-padding
is needed for some angles on one side of the shifted filter. Enlarging
the size of the detector (and hence the size of the filter), decreases the
number of zeros that has to be inserted. A disadvantage is the larger
computation time to create the filter. In this series of experiments we
examine the effect of using these larger filters on the reconstruction
quality.

4.5 results

In this section we present the results of the experiments described in
the previous section. We start with discussing the algebraic filters for
the different selected image pixels and show their effect on the re-
constructions. Then we compare the reconstructions of SIRT-FBP with
multiple filters with reconstructions of both the standard SIRT-FBP and
FBP-RL.

4.5.1 Filter dependence on the selected pixel

The algebraic filters depend quite strongly on the pixel that is used
to create them. Each image in Fig. 4.2 provides a visual representation
of a particular row s(j) of the matrix S, where the vertical axis corre-
sponds with the projection angle and the horizontal axis corresponds
with the position on the detector. The selected pixels p1, . . . ,p9 are
numbered row-wise, starting at the top left corner with p1.
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(a) pixel p1

(b) pixel p5

(c) pixel p6

(d) pixel p8

Figure 4.2: Visual representations of rows of the matrix S for d = 32 pro-
jection angles.

(a) Filter for pixel p1

(b) Filter for pixel p5

(c) Filter for pixel p6

(d) Filter for pixel p8

Figure 4.3: Filters for d = 32 projection angles after linear interpolation and
shifting.

Fig. 4.3 shows the corresponding filters that are the result of Eq. 4.4,
after applying a linear interpolation and angle-dependent shifting of
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the images in Fig. 4.2. The large homogeneous grey areas arise due to
the necessary zero-padding to obtain a filter of size 511 after shifting.
These areas might have a large influence on the resulting reconstructi-
ons. To examine this influence, we also include experiments for a lar-
ger filter of 767 elements. Since this gives rise to a larger system of
equations Wx = p, the algebraic reconstructions will change as well.
The corresponding filters will therefore not only contain fewer zero
elements, but are different from the filters in Fig. 4.3 in the nonzero
entries as well. The results are shown in Section 4.5.4.

In Fig. 4.4 the reconstructions are shown for the nine different angle-
dependent filters with d = 32. These reconstructions are combined
into a final reconstruction using either the filters corresponding to the
central pixel (denoted by SF), or to the collection of isolated subregions
(denoted by IR), or to a bilinear interpolation of the isolated regions
(denoted by BI), as discussed in Section 4.4.3.

4.5.2 Varying the number of projection angles

In the first series of experiments the four phantoms are reconstructed
using different numbers of projection angles. The projection data are
noiseless in these experiments. Fig. 4.6 shows the mean reconstruction
errors for the turbine blade phantom.

The mean reconstruction error of both standard SIRT-FBP and mo-
dified SIRT-FBP is very close to the error of SIRT. The variation SIRT-
FBP with bilinear interpolation outperforms SIRT-FBP with isolated
regions. This is expected behavior, since bilinear interpolation uses the
values of a pixel in two or more reconstructions, which results in a
smoothing of the presumed larger pixel errors near the boundary of
the isolated regions. Therefore, we expect the mean reconstruction er-
ror, Er, to be smaller than that of SIRT-FBP with isolated regions. Furt-
hermore, we observe that standard SIRT-FBP results in reconstructions
that are slightly more accurate than SIRT or SIRT-FBP with multiple fil-
ters. FBP-RL is substantially less accurate than the other reconstruction
methods considered here.

The standard SIRT-FBP method uses only a single filter based on
the central pixel. These results therefore show that the local use of
filters based on pixels other than the central pixel does not reduce the
mean (ARM) reconstruction error. This might be due to the fact that
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(a) FBP with filter for p1 (b) FBP with filter for p2 (c) FBP with filter for p3

(d) FBP with filter for p4 (e) FBP with filter for p5 (f) FBP with filter for p6

(g) FBP with filter for p7 (h) FBP with filter for p8 (i) FBP with filter for p9

Figure 4.4: Reconstructions of the cylinder head phantom using the filters
based on the nine different image pixels.

shifting and zero-padding of these filters is required before they can
be applied to the projection data, resulting in the loss of some accuracy
in the approximation of the ARM due to the additional interpolation
step.

SIRT-FBP with bilinear interpolation is not only more accurate than
SIRT-FBP with isolated regions, it is also a better approximation of
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(a) SIRT (b) FBP-RL

(c) SIRT-FBP SF (d) SIRT-FBP IR (e) SIRT-FBP BI

Figure 4.5: Reconstructions of the cylinder head phantom with d = 32; (a)
SIRT reconstruction using 200 iterations; (b) FBP with Ram-Lak fil-
ter; (c) SIRT-FBP with the filters corresponding to the central pixel;
(d) SIRT-FBP combining the nine reconstructions from isolated re-
gions; (e) SIRT-FBP combining the nine reconstructions using bili-
near interpolation.

SIRT. Its mean ARM reconstruction error is only slightly larger than
that of standard SIRT-FBP. The mean ARM reconstruction error of
SIRT-FBP with isolated regions is larger than that of standard SIRT-
FBP and SIRT-FBP with bilinear interpolation. However, it is still much
smaller than that of FBP-RL.

Furthermore, we observe that the reconstruction errors are almost
indifferent to the method chosen to interpolate the filter. Every row
in Fig. 4.6 shows the reconstruction error for a different interpolation
method. We will therefore not include the results of the different in-
terpolation methods in the remainder of this chapter and only show
the results using the linear interpolation method for the filters. These
results for the other three phantoms are shown in Fig. 4.7. The left-
hand side column shows the same pattern as for the turbine blade.
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(a) FI linear, Er (b) FI linear, EARM
r

(c) FI nearest, Er (d) FI nearest, EARM
r

(e) FI spline, Er (f) FI spline, EARM
r

(g) FI cubic, Er (h) FI cubic, EARM
r

Figure 4.6: Mean (ARM) reconstruction error Er (EARM
r ) for the turbine blade

phantom. Several interpolation methods are used to compute the
filters; SF = single filter, IR = isolated regions, BI = bilinear inter-
polation.
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(a) Cylinder head, Er (b) Cylinder head, EARM
r

(c) Mandible, Er (d) Mandible, EARM
r

(e) Shepp Logan, Er (f) Shepp Logan, EARM
r

Figure 4.7: Mean reconstruction error Er of the cylinder head phantom (top
row), mandible phantom (middle row), Shepp Logan phantom
(bottom row). Linear interpolation is applied to compute the fil-
ters. SF = single filter, IR = isolated regions, BI = bilinear interpo-
lation.

The mean ARM reconstruction errors for SIRT-FBP with bilinear inter-
polation are again smaller than for SIRT-FBP with isolated regions. In
all cases, the reconstructions computed using algebraic filters are more
accurate than for FBP-RL.
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4.5.3 Poisson noise

In the second series of experiments we apply Poisson noise to the pro-
jection data, by simulating the Poisson distribution based on a varying
number of photons used for the beam profile. The lower this photon
count, the higher the noise level. The results for varying noise levels
are shown in Fig. 4.8 and Fig. 4.9.

It can be observed in Fig. 4.8 that FBP-RL cannot handle noisy
projection data very well. The mean reconstruction errors for high
amounts of noise are large compared to those for SIRT-FBP and SIRT.
The right-hand side column of both figures is a detail of the figures on
the left-hand side. In this detail we observe that SIRT-FBP performs
slightly better in terms of the mean reconstruction error than SIRT.
This is consistent with observations in [13] for d = 64. It can also be
observed for the other numbers of projection angles. Furthermore, as-
sembling the modified SIRT-FBP reconstruction using isolated regions
or bilinear interpolation reduces Er for high amounts of noise. The
local reconstructions using filters corresponding to the selected pixels
p1, p3, p7 and p9 contain less noisy reconstructions in the area around
the selected pixel. Since only this area is used while assembling the
final reconstruction, this might explain the smaller Er. For less noisy
projection data, the standard SIRT-FBP method based on one angle-
dependent filter performs equally well or better than the modified
SIRT-FBP method, depending on the number of projection angles.

In Fig. 4.9 the results are shown for d = 32 and d = 64. The mean
ARM reconstruction errors EARM

r with d = 16 and d = 24 are similar to
those for d = 32 and therefore not included in this chapter. The recon-
structions of the standard SIRT-FBP (with one angle-dependent filter)
differ less from SIRT than SIRT-FBP with multiple angle-dependent
filters. We do observe that bilinear interpolation results in reconstructi-
ons that are closer to the SIRT reconstructions than using isolated regi-
ons.

All results for the cylinder head are representative for the other three
phantoms. The results for the other phantoms are therefore not inclu-
ded in this chapter.
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(a) d = 16 (b) d = 16, detail

(c) d = 24 (d) d = 24, detail

(e) d = 32 (f) d = 32, detail

(g) d = 64 (h) d = 64, detail

Figure 4.8: Mean reconstruction error Er of the cylinder head phantom for
varying amounts of noise applied to the projection data. Linear
interpolation is applied to compute the filters. SF = single filter, IR
= isolated regions, BI = bilinear interpolation.
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(a) d = 32 (b) d = 32, detail

(c) d = 64 (d) d = 64, detail

Figure 4.9: Mean ARM reconstruction error EARM
r of the cylinder head

phantom for varying amounts of noise applied to the projection
data. The rows correspond to different numbers of projection an-
gles d. Linear interpolation is applied to compute the filters. SF =
single filter, IR = isolated regions, BI = bilinear interpolation.

4.5.4 Varying the size of the detector

In the third series of experiments we increase the size of the detector
from 511 elements to 767 elements. The filters that cover the recon-
struction grid of 511×511 pixels need less zero-padding. Several filters
are shown in Fig. 4.10.

The reconstruction errors using these larger filters are shown in
Fig. 4.11. We compare them with the results for the smaller filters in
Fig. 4.6. We observe that both Er and EARM

r of SIRT-FBP are less affected
by the method chosen to assemble the reconstruction than for the smal-
ler filters with a support of 511 elements. The value of Er is comparable
in both cases. The right-hand side column of the figure shows that the
reconstructions using a detector of 767 elements are more similar to
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(a) Filter for pixel p1

(b) Filter for pixel p5

(c) Filter for pixel p6

(d) Filter for pixel p8

Figure 4.10: Larger filters with 767 elements per angle for d = 32 projection
angles.

the SIRT reconstructions than those using a smaller detector of 511
elements, although the differences are small.

The results for different interpolation methods used in the computa-
tion of the filter and for different phantoms are similar to those discus-
sed above and are omitted here.
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(a) Turbine blade, Er (b) Turbine blade, EARM
r

(c) Shepp Logan, Er (d) Shepp Logan, EARM
r

Figure 4.11: Mean (ARM) reconstruction error Er (EARM
r ) for filters with 767

elements per angle, for varying number of projection angles. Li-
near interpolation is applied to compute the filters. SF = single
filter, IR = isolated regions, BI = bilinear interpolation.

4.6 discussion

Our experimental results suggest that the standard SIRT-FBP method
approximates SIRT better than SIRT-FBP with nine algebraic filters. An
interesting result is obtained in the case where we apply high amounts
of Poisson noise to the projection data and compare the reconstructi-
ons with the phantom instead of with the SIRT reconstruction. In this
case, the reconstructions of SIRT-FBP with bilinear interpolation are
more accurate than the standard SIRT-FBP reconstructions and the
FBP-RL reconstructions. Although it is not the aim of the AF-FBP met-
hod to improve the accuracy of the reconstructions, since there we
want to approximate the ARM as best as possible, it opens new oppor-
tunities for further research.
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The value of the pixel that was used to create the filter for SIRT-FBP
is the same in both the SIRT reconstruction and the SIRT-FBP recon-
struction. We can therefore view SIRT as an SIRT-FBP with an alge-
braic filter calculated for every image pixel. Hence we have compared
the reconstruction accuracy of SIRT-FBP with one, with nine and with
511× 511 algebraic filters. The results show that for high amounts of
Poisson noise the reconstruction accuracy of SIRT-FBP with nine alge-
braic filters outperforms that of SIRT-FBP with both one algebraic filter
and with 511× 511 algebraic filters. Assuming that the reconstruction
accuracy of SIRT-FBP depends smoothly on the number of algebraic
filters, there should be an optimal number of algebraic filters that max-
imizes the reconstruction accuracy of SIRT-FBP. Also the position of
the selected pixels in the image grid can influence this accuracy and
should be examined in more detail.

4.7 conclusions

In this chapter we have investigated an approach to create algebraic
filters (AFs) that can be used in the Filtered Backprojection method.
Reconstructions of the standard AF-FBP method can be computed
using the same computation time as FBP, while they resemble the re-
construction properties of the linear algebraic reconstruction method
that was used to create the filter. Compared to the original AF-FBP
method, which is based on a single filter, the approach proposed in
this chapter is based on computing multiple filters, each covering a
region of the reconstruction grid. For each (angle-dependent) filter we
calculate an FBP reconstruction. Parts of these reconstructions are com-
bined into a final reconstruction by either assembling separate regions
or by using bilinear interpolation for neighboring regions from each
reconstruction. In a series of simulation experiments, we examined the
reconstruction accuracy of these variations by comparing the recon-
structions with both the phantoms and the corresponding algebraic
reconstructions, based on the SIRT algorithm.

For the sake of clarity, we focused on a particular scenario where
nine filters are created, each based on a different pixel in the recon-
struction grid. The resulting reconstructions show little dependence
on the different interpolation methods that can be applied to compute
the filters. Since in the creation of some filters substantial zero-padding



4

82 4 local filter approach

is required, we also created filters with an extended support to reduce
this zero-padding. This results in only a small effect on the quality of
the corresponding reconstructions, while it increases the computation
time of the filters.

Assembling the final reconstruction using bilinear interpolation re-
sults in general in a more accurate reconstruction than combining se-
parate regions. The differences between standard AF-FBP and AF-FBP
based on multiple filters are small and in many situations the stan-
dard AF-FBP method outperforms the suggested variations. There are
situations, such as projection data with few angles and a high amount
of noise, where modified AF-FBP using bilinear interpolation outper-
forms standard AF-FBP when we compare the reconstructions with
the original phantoms. In general however we observe that using more
than one angle-dependent filter does not automatically lead to a better
approximation of the corresponding algebraic method, or in a more
accurate reconstruction method.

Our findings suggest that for the AF-FBP method, the central pixel
is actually a very good choice for computing the filter, even if this filter
is then applied to reconstruct image pixels in the outer regions of the
reconstruction grid.
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