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3
S PAT I A L VA R I AT I O N S I N R E C O N S T R U C T I O N
M E T H O D S F O R C T

Abstract – In both Filtered Backprojection and algebraic recon-
struction algorithms for tomography, the reconstruction of an object
can depend on the position of the object within the discretized region,
even if the object is aligned perfectly with pixel boundaries. In this
chapter, we investigate this effect and report on a simulation study
concerning spatial dependencies in these reconstruction methods. We
demonstrate that for algebraic methods, these dependencies are influ-
enced not only by the discretization within the reconstruction region,
but also by the shape of the reconstruction region itself.

This chapter has been published with minor modification as: L. Plantagie et al. Spatial
Variations in Reconstruction Methods for CT. Proceedings of the Second International
Conference on Image Formation in X-ray Computed Tomography. Salt Lake City, UT, USA,
2012: 170–173.
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3.1 introduction

Most reconstruction algorithms for CT can be assigned to either the
class of analytical reconstruction methods, which are based on analy-
tical inversion formulas of the Radon transform, or to the class of al-
gebraic reconstruction methods, which start with a discretized inverse
problem and then apply a numerical solver [1–3].

One of the fundamental differences between these two classes rela-
tes to the spatial locality of the reconstruction properties. Analytical
inversion formulas are usually spatially invariant, in the sense that the
value of a particular point in the reconstruction only depends on the
measured values relative to the position of that point. If this depen-
dency is known for a single point, it can be applied to all image points
(e.g., pixel centers) to obtain a full reconstruction. Also, there is no pre-
defined window outside which the reconstruction must be zero. The
well-known Filtered Backprojection (FBP) algorithm is obtained by dis-
cretizing an analytical inversion formula of the Radon transform, and
can therefore be expected to have approximately similar properties.

For algebraic methods on the other hand, there is no intrinsic reason
why the reconstruction should be spatially invariant, and the recon-
struction is constrained a priori to a reconstruction region, which is dis-
cretized and represented by a collection of basis functions. Outside this
region, the reconstruction is automatically set to zero, as the exterior
region is not covered by the support of the basis functions.

For both FBP and algebraic methods, there may be differences in
the way projection values are sampled to determine the value of an
image pixel, depending on the position of that pixel, due to discreti-
zation and interpolation effects within the projection model. As a con-
sequence, reconstructing an object centered at one position within the
reconstruction region may yield a different result from reconstructing
this same object centered at another position. We refer to these variati-
ons as discretization-effects.

For algebraic methods, the shape and position of the reconstruction
region with respect to the object can also influence its reconstruction.
For example, if a line intersects the reconstruction region as a short
segment in a corner, noise that is present in the projection for that line
can have a strong impact on the values of the pixels on the small seg-
ment. For a line segment that has a longer intersection with the recon-
struction region, the noise can be distributed among many pixels on
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that segment. We refer to these local reconstruction variations, which
depend on the shape of the reconstruction grid, as shape-effects.

In this chapter, we report on a case study that was carried out to in-
vestigate both discretization-effects and shape-effects for the FBP met-
hod and the Simultaneous Iterative Reconstruction Technique (SIRT),
respectively. By moving an object across the reconstruction region and
observing how its reconstruction changes with position, we keep track
of both effects and obtain error maps that can be interpreted visually
and analyzed quantitatively.

This chapter is structured as follows: In Section 3.2, we briefly re-
view the discretization approach followed for FBP and SIRT, respecti-
vely. Section 3.3 describes the simulation experiments performed. The
results of these experiments are presented in Section 3.4, mainly by
providing a sequence of images that represent two different error me-
asures, as a function of the position within the reconstruction region.
In Section 3.5, the observations are discussed and future work in this
direction is briefly outlined.

3.2 method

The Filtered Backprojection (FBP) algorithm is obtained by discretizing
the following inversion formula of the Radon transform (see Section
3.3.2 of [1] for details):

f(x,y) =
∫π
θ=0

∫∞
τ=−∞ p(θ, τ− x cos θ− y sin θ)g(τ)dτdθ, (3.1)

where f : R2 → R denotes the unknown image, p(θ, τ) denotes the
measured line projection at angle θ and detector coordinate τ, and g
denotes a filter, which determines how the detector values are weig-
hted before backprojection to form the value at position (x,y). If we
assume that p corresponds to the Radon transform of a certain original
object, it is easy to see that translating this object over (∆x,∆y) leads to
a corresponding translation in the reconstruction over (∆x,∆y). As a
consequence of the discretization step in FBP, interpolation steps are re-
quired to compute an approximation of Eq. (3.1), leading to violations
in this translational property, which we refer to as discretization-effects.

In algebraic reconstruction methods, the image is represented as a
finite weighted sum of basis functions (see, e.g., Chapter 7 of [1] or
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Section 6.3 of [2]). For this chapter, we limited ourselves to the re-
construction of 2-dimensional (2D) slices from 1D parallel beam pro-
jections using a standard pixel basis, yet the general methodology can
be applied to 3D volume reconstruction using various types of basis
functions, and various acquisition geometries.

When setting up an algebraic method, it is assumed that a certain
reconstruction region is known, which completely contains the scanned
object. Typically, this region is chosen to be either square or rectangu-
lar, while sometimes it is modelled as a disk. This region is then dis-
cretized along with the projection operator, leading to the following
relation between the unknown image x and the measured projection
data p:

Wx = p, (3.2)

where W = (wij) ∈ Rm×n denotes the projection matrix, x = (xj) ∈ Rn

is a vector representation of the pixel values in the unknown image,
and p = (pi) ∈ Rm represents the full set of measured detector values
in all projections.

The exact projection matrix W depends on the selection of the re-
construction region, the choice and distribution of basis functions to
represent the image within this region, and the model used for the
projection operator.

The system in Eq. (3.2) is typically solved using iterative numerical
solvers, as it is both very large and sparse. In this article, we consider
one such iterative method called SIRT [4, 5], which converges to a
weighted least-squares solution of the equation system.

Note that not all individual linear equations in Eq. (3.2) have the
same algebraic structure. Each equation corresponds to a projected
line. Depending on the intersection properties of that line with the
discretized reconstruction region, the number of unknown pixel values
that occur in the equation can vary, as well as their coefficients. As
a consequence, the shape of the reconstruction region can influence
the reconstruction of an object, depending on its location within that
region, referred to as shape-effects of the reconstruction region.
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3.3 experiments

To investigate discretization-effects and shape-effects for both FBP and
SIRT, we performed a simulation study on the reconstruction of a small
object that is placed at varying positions within the reconstruction re-
gion. All experiments were carried out using two different choices for
the reconstruction region: (a) a square region of size 63×63 square
pixels of unit size; (b) a pixelated circular region that is circumscribed
around the square region of (a).

We compare the results for Filtered Backprojection (FBP) using the
ramp-filter, which exhibits only discretization-effects, with the Simulta-
neous Iterative Reconstruction Technique (SIRT), which is expected to
show both discretization-effects and shape-effects. For SIRT, 200 iterati-
ons are performed with a relaxation factor of 1. This iteration number
ensures that convergence has been reached.

Projection data were simulated for a parallel detector geometry,
using a detector consisting of 91 bins of unit size, thereby ensuring
that the full reconstruction region is covered by the detector. The simu-
lation was performed using a ray-driven projector based on the Joseph
kernel to determine the contribution of an image pixel to each ray [6],
implemented as a parallel operation on the GPU [7]. The projection
angles of the parallel beam projections are regularly distributed bet-
ween 0 and 180 degrees. The number of projection angles is kept fixed
at 64. For the SIRT reconstruction, a forward projector based on the
Joseph kernel was used.

As test objects, the square and cross images in Fig. 3.1a were used.
The reconstructions of these objects, when placed in the center of a
square reconstruction region, are shown in Fig. 3.1b and 3.1c.

3.3.1 Experiments without noise

In the first experiment, based on noiseless projection data, the test ob-
jects were moved across the reconstruction area. For each position of
the object, its forward projection was computed and the object was
reconstructed. The reconstruction within a small window around the
object (a surrounding square, containing a boundary layer of one pixel
thickness) was then shifted, placing the reconstructed object in the cen-
ter of the reconstruction region. A comparison was made with the re-
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(a) Original (b) SIRT (c) FBP

Figure 3.1: Test objects and their reconstructions when placed in the center of
the reconstruction region.

construction for which the object was placed in the center, using the
following two error measures: (a) the root mean square error (RMSE)
for all pixels in the window; (b) the absolute value of the difference in
average intensity within the object (AIE).

3.3.2 Experiments that include noise

In the second experiment, the test objects were again moved across
the reconstruction area. Poisson distributed noise was applied to the
projection data based on a flatfield photon count of 106 per detector
pixel. As the exact noise realization depends on the simulated photon
counts, which in turn are affected by discretization issues, we chose to
compare the reconstructions to the actual test object, instead of com-
paring to its reconstruction in the center. The reconstruction within a
window around the object (a surrounding square, containing a boun-
dary layer of five pixels thickness) was compared with the original ob-
ject, using the following two error measures: (a) the root mean square
error (RMSE) for all pixels in the window; (b) the absolute value of the
difference in average intensity within the object (AIE).
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(a) (b)

Figure 3.2: Intensity profile of an object at the center (blue line) and centered
at pixel (32, 8) (dashed red line); (a) square object, (b) plus object.

3.4 results

In this section, we examine the discretization and shape effects of SIRT
and FBP for two test objects and two different shapes of the recon-
struction grid.

3.4.1 Noiseless projection data

In the first series of experiments, the reconstructions of the noiseless
projection data of a shifted object are compared with the reconstructi-
ons of the same object placed in the center of the reconstruction region.
Reconstructions of the phantoms contain a variety of intensity levels
within the reconstructed object. These intensity levels can be visuali-
zed by an intensity profile along a horizontal line through the center
of the reconstructed object. In Fig. 3.2, the intensity profiles are shown
for SIRT reconstructions of the test objects placed in the center of the
reconstruction region and placed near the left boundary of the recon-
struction region.

The reconstructions of the test objects clearly depend on their po-
sition in the reconstruction grid. The root mean square error for all
pixels in the window is used to examine these spatial variations. In
Fig. 3.3 the RMSE are shown for SIRT and FBP reconstructions of both
test objects in a square reconstruction grid. The results are similar for
the circular grid. Since the discretization-effects of SIRT and FBP ap-
pear to be very similar, we subtract the RMSE of FBP from that of SIRT
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(a) SIRT (b) SIRT (c) FBP (d) FBP

Figure 3.3: RMSE of reconstruction of the test objects using a square recon-
struction grid without noise; (a) square object, (b) plus object, (c)
square object, (d) plus object.

(a) (b) (c) (d)

Figure 3.4: Absolute value of the difference of RMSE between SIRT and FBP
of the reconstruction of the test object; (a) square phantom, square
grid, (b) square phantom, circular grid, (c) plus phantom, square
grid, (d) plus phantom, circular grid.

to obtain an approximation of the shape-effects for SIRT. The absolute
value of this difference is shown in Fig. 3.4. Note that some scaling
was required to enhance the visibility.

For square reconstruction grids, reconstructions of an object near the
edge can differ substantially from a reconstruction of the same object
placed in the center of the reconstruction grid. Fig. 3.4 shows that, at
least in some cases, these shape-effects can be reduced by choosing a
different, for example circular, reconstruction grid. These results are
also supported by the second error measure (AIE), as is shown in Fig.
3.5 and 3.6.

3.4.2 Noisy projection data

In the second series of experiments, Poisson noise is applied to the
projection data of the shifted object. An example of a SIRT and FBP
reconstruction of the shifted square test object is shown in Fig. 3.7.
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(a) SIRT (b) SIRT (c) FBP (d) FBP

Figure 3.5: AIE of reconstruction of the test objects using a square recon-
struction grid without noise; (a) square object, (b) plus object, (c)
square object, (d) plus object.

(a) (b) (c) (d)

Figure 3.6: Absolute value of the difference of AIE between SIRT and FBP
of the reconstruction of the test phantom; (a) square phantom,
square grid, (b) square phantom, circular grid, (c) plus phantom,
square grid, (d) plus phantom, circular grid.

(a) SIRT (b) FBP

Figure 3.7: Reconstruction of the shifted square test object with Poisson noise
applied to the projection data.
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(a) (b) (c) (d)

Figure 3.8: Absolute value of the difference of RMSE between SIRT and FBP
of the reconstruction of the test object with Poisson noise; (a)
square phantom, square grid, (b) square phantom, circular grid,
(c) plus phantom, square grid, (d) plus phantom, circular grid.

(a) (b) (c) (d)

Figure 3.9: Absolute value of the difference of AIE between SIRT and FBP of
the reconstruction of the test object with Poisson noise; (a) square
phantom, square grid, (b) square phantom, circular grid, (c) plus
phantom, square grid, (d) plus phantom, circular grid.

As mentioned in section 3.3 the reconstructions are compared to the
original shifted image instead of the reconstruction of the object placed
at the center of the reconstruction region. The spatial variations of SIRT
due to shape-effects are again visualized by comparing both the RMSE
and AIE measures of SIRT and FBP; see Fig. 3.8 and 3.9 for the RMSE
and AIE measure, respectively.

Apparently, as suggested by Fig. 3.9, the total intensity within the
object is invariant under the position of the test object. Fig. 3.8 shows
that, also in the case of noisy projection data, SIRT reconstructions of
an object depend on the position of the object in the reconstruction
region. These spatial variations are influenced by the shape of the re-
construction region.
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3.5 discussion and conclusions

The results of our case study demonstrate that significant discretization-
effects can be observed in both FBP and SIRT reconstructions. More-
over, this effect is highly similar for both algorithms. For SIRT, the
shape-effect also comes into play, yet mainly near the corners of a
square reconstruction region. It appears that this effect can be mitiga-
ted by using a disk-shaped reconstruction region. The magnitude of
shape-effects is increased by the influence of noise in the projection
data, which can cause serious artefacts near the corners of the recon-
struction region.

The actual position dependency may well depend strongly on the
particular projection model used for the reconstruction. Here, we only
considered the Joseph’s method, which is broadly used in tomographic
algorithms. In ongoing and future research, we are now focusing on
the influence of different types of discretizations (e.g., blobs, wave-
lets) on the spatial dependencies, along with various projection models
(e.g., lines, strips).
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