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FA S T A P P R O X I M AT I O N O F A L G E B R A I C
R E C O N S T R U C T I O N M E T H O D S F O R T O M O G R A P H Y

Abstract – Most reconstruction algorithms for transmission tomo-
graphy can be subdivided in two classes: variants of Filtered Back-
projection (FBP) and iterative algebraic methods. FBP is very fast and
yields accurate results when a large number of projections are availa-
ble, with high signal-to-noise ratio and a full angular range. Algebraic
methods require much more computation time, yet they are more flex-
ible in dealing with limited data problems and noise. In this chapter
we propose an algorithm that combines the best of these two approa-
ches: for a given linear algebraic method, a filter is computed that can
be used within the FBP algorithm. The FBP reconstructions that re-
sult from using this filter strongly resemble the algebraic reconstructi-
ons and have many of their favorable properties, while the required
reconstruction time is similar to standard-FBP. Based on a series of
experiments, for both simulation data and experimental data, we de-
monstrate the merits of the proposed algorithm.

This chapter has been published with minor modification as: K. J. Batenburg and L.
Plantagie. Fast Approximation of Algebraic Reconstruction Methods for Tomography.
IEEE Trans. Image Process. 2012; 21(8): 3648–3658. This publication is available through
http://dx.doi.org/10.1109/TIP.2012.2197012. © 2012 IEEE.
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2.1 introduction

Transmission tomography is a mature imaging technique, for which
both the engineering aspects of image acquisition and the mathema-
tical and computational aspects of image reconstruction are well un-
derstood [1–4]. Although tomography is nowadays often used as an
off-the-shelf technique, it is important to realize that the resulting
image depends quite strongly on the employed reconstruction algo-
rithm. When comparing reconstruction methods, various aspects must
be balanced, such as the quality of the reconstructed image, the requi-
red reconstruction time, and robustness to noise.

During the past decades, reconstruction algorithms for transmission
tomography have been developed among different chains [5]. The de-
rivation of analytical algorithms departs from an idealized continuous
representation of the image reconstruction problem, for which analy-
tical solutions can be obtained. The resulting inversion formulas are
then discretized and transformed into a reconstruction algorithm. On
the other hand, algebraic algorithms depart from a discretized model
of the tomographic imaging setup, which is represented by a system
of linear equations. Although a least-squares solution of this system
could in principle be calculated directly, this is impractical due to the
enormous size of the corresponding matrix. Instead, iterative methods
are used, as they can deal effectively with such large sparse systems.

The Filtered Backprojection algorithm (FBP) is among the most po-
pular analytical reconstruction methods. It is capable of computing
accurate reconstructions with high computational efficiency, provided
that high quality projections have been acquired for a sufficiently large
number of angles, distributed evenly between 0◦ and 180◦. For this re-
ason, variants of FBP have dominated clinical CT practice for many
years. In particular, the related Feldkamp, Davis, and Kress (FDK) al-
gorithm for cone-beam reconstruction [6] has demonstrated the ability
to combine fully 3-D image acquisition with accurate and efficient re-
construction.

The limitations of FBP become apparent when only a small number
of projection images can be acquired, when the angular range of the
projections is limited or irregular, or when the measured data is noisy.
In such cases, the reconstruction quality of FBP degrades and artefacts
hamper subsequent image processing tasks, such as segmentation.
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Compared to FBP, iterative algebraic methods have several key ad-
vantages: 1) limited data problems (i.e., small number of projection
angles, limited angular range) can be modeled accurately by adjusting
the system of equations, whereas in FBP the underlying analytical mo-
del is based on the assumption of having projections available from all
angles; 2) noise in the projections can be effectively averaged, by see-
king a least-squares solution of the equation system; 3) certain types of
prior knowledge, such as nonnegativity of the attenuation coefficients,
can be incorporated in the reconstruction algorithm; and 4) physical
properties of the imaging system, such as a spatially varying point-
spread function can be modeled by adjusting the system of equations.

Although the analytical (continuous) formula that is the basis of
the FBP algorithm is exact, interpolation errors are introduced if the
assumptions made in this formula (an infinite number of projections
must be available across a full angular range) are not satisfied. The-
refore, the discretized version of the formula does not yield an exact
solution of the reconstruction problem, not even if the projection data
is noiseless. In contrast, iterative methods minimize the residual pro-
jection error by departing from a discretized model that only incorpo-
rates the data that is really available.

Despite these advantages, the high computational cost of iterative
methods, which can easily be one or two orders of magnitude larger
than the computational load of FBP, is a major obstacle toward wide-
spread practical use of such algorithms. The reconstruction time for
iterative algebraic methods can be strongly reduced by parallelizing
the computations, in particular when combined with the massive pa-
rallelism of modern graphic processing units (GPUs) [7, 8]. Still, the
reconstruction of large volumes by iterative methods takes a long time
when compared with FBP, which can be accelerated similarly by paral-
lel computation.

Connections between algebraic and analytical reconstruction met-
hods have been explored by several authors. In [9], it was shown that
a least-squares matrix formulation of the discretized FBP operator pro-
vides a connection between the analytic and algebraic reconstruction
approach. Any linear, shift invariant reconstruction algorithm is equi-
valent to FBP with a particular filter, which was demonstrated in [10].
In [11], a formula was derived for a filter kernel that can be used to
express the image quality of SIRT.
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In this chapter, we propose an actual reconstruction algorithm that
combines the favorable properties of iterative algebraic methods with
the computational advantages of FBP: for a given linear algebraic met-
hod, an angle-dependent filter is computed that can be used within
the FBP algorithm. The FBP reconstructions that result from using this
filter strongly resemble the algebraic reconstructions, while the requi-
red reconstruction time is similar to that of standard-FBP. In particular,
for one selected image pixel, the reconstruction result of the algebraic
method is identical to the result of applying FBP with the proposed
filter, independently of the projection data.

The filter computation has a high computational cost, which is much
larger than the cost of reconstructing a single image by an algebraic
method. However, as long as the imaging geometry (i.e., projection an-
gles, detector size, etc.) is fixed, the same filter can be used for all subse-
quent reconstructions, as the filter does not depend in any way on the
scanned object. In the vast majority of commercial CT-scanners, only
a few different acquisition schemes are used for a particular scanner.
The filters for these schemes can be computed once, using a separate
computer system, or even a large cluster. Subsequently, reconstructions
can be computed from an arbitrary number of tomography datasets at
the same speed as standard-FBP. The computed filters can be directly
incorporated in existing FBP implementations.

This chapter is structured as follows. In Section 2.2, we briefly re-
visit the analytical model behind the FBP algorithm and its discreti-
zation. Section 2.3 introduces a general model for linear algebraic re-
construction algorithms. The key contribution of this article is made
in Section 2.4, where an expression is derived for algebraic filters (AFs):
filters for the FBP algorithm that are extracted from a linear algebraic
method. We also discuss how such filters can be computed. In Section
2.5, we describe a set of experiments that have been performed to com-
pare the reconstruction quality of our approach with alternative recon-
struction algorithms. The results of these experiments are presented in
Section 2.6. Section 2.7 concludes this chapter.

2.2 the filtered backprojection algorithm

In this chapter, we focus on a parallel beam scanning geometry, using a
single rotation axis. For several other scanning geometries, including
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the fan-beam geometry and the circular cone-beam geometry with
small cone angle, the approach presented here can also be applied,
after rebinning of the projection data.

We start by revisiting the Radon transform and its analytical inver-
sion. Let f : R2 → R be a finite and integrable function with bounded
support for which the Radon transform

p(θ, t) = (Rf)(θ, t)

=

∫∞
−∞ f(t cos θ− s sin θ, t sin θ+ s cos θ)ds (2.1)

is defined almost everywhere in θ ∈ [0,π), t ∈ R. We refer to [12] for
details on the analytical properties of the Radon transform. The vari-
ables θ and t denote the angle with the vertical axis and the signed
distance between the projected line and the origin of the coordinate
system, respectively. We refer to p(θ, ·) as the projection of f for angle
θ. For θ ∈ [0,π), define P(θ,u) =

∫∞
−∞ p(θ, t)e−2πiut dt and q(θ, t) =∫∞

−∞ P(θ,u)G(θ,u)e2πiut du, where G represents a filter. Thus, q(θ, ·)
is obtained from p(θ, ·) by applying the filterG(θ, ·) in the Fourier dom-
ain. Alternatively, the filtering of the projection data can be formula-
ted as a convolution in real space as q(θ, t) =

∫∞
−∞ p(θ, τ)g(θ, t− τ)dτ,

where g(θ, ·) denotes the inverse Fourier Transform of G(θ, ·).
For the choice G(θ,u) = |u|, known as the Ramp filter, the filtered

projections can be used to obtain an exact inversion formula for the
Radon transform

f(x,y) =
∫π
0

q(θ, x cos θ+ y sin θ)dθ. (2.2)

In practice, the function p(θ, t) can only be measured for a finite set
Θ = {θ1, . . . , θd} of projection angles, and at a finite set T = {t1, . . . , t`}
of detector positions. Algorithms that require evaluation of p(θ, t) at
other detector positions, such as the FBP algorithm, typically employ
some form of interpolation to approximate these projection values. For
the sake of clarity, we will assume that T = {−R,−R+ 1, . . . ,R− 1,R}
with R a positive integer, which corresponds to an array of 2R+ 1 con-
tiguous detectors with unit spacing, centered around t = 0.
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The Filtered Backprojection algorithm is obtained by discretizing
Eq. (2.2)

f(x,y) ≈ π
d

∑
θ∈Θ

∫∞
−∞ p(θ, τ)g(θ, x cos θ+ y sin θ− τ)dτ

≈ π
d

∑
θ∈Θ

∑
τ∈T

p(θ, τ)g(θ, x cos θ+ y sin θ− τ)

=
∑
θ∈Θ

∑
τ∈T

p(θ, τ)g̃(θ, τ− x cos θ− y sin θ), (2.3)

where g̃(θ, t) = (π/d)g(θ,−t).
Various discrete approximations of the ideal Ramp filter G(θ,u) =

|u| are used in practice. The Ram-Lak filter, for example, is a windo-
wed Ramp-filter (see Fig. 2.1). Although the Ram-Lak filter can result
in accurate reconstructions if high quality projection data are available,
its amplification of high frequencies results in low reconstruction qua-
lity for noisy data. This effect can be reduced by applying a smooth
window-function to the original filter. Several common filters, such as
the Shepp-Logan and Cosine filter, are based on this principle. Still,
their design is intrinsically heuristic, aimed at optimizing the visual
quality of the reconstructed image.

Instead of designing filters in the Fourier domain as described above,
the filters can also be designed in the spatial domain (i.e., the detector
domain). In [13], new filters are created based on approximations of
the Ramp filter in the spatial domain. In [14], the method of approx-
imate inverse is applied to obtain filters in the spatial domain that
are not derived from the Ramp filter. In [15] and [16], a method is
described to create filters for tomosynthesis based on iterative recon-
structions of certain test objects.

The effect of applying a particular filter to the projection data can be
studied both in the Fourier domain and in the spatial domain, by con-
sidering the functions G and g, respectively. In this chapter, we mainly
focus on the spatial domain, where the filter operation can be inter-
preted according to Eq. (2.3) as follows: the value of the reconstructed
image at point (x,y) is formed by taking the dot-product of the discre-
tized projection data with a weight vector that is formed by evaluating
the function g̃ at consecutive discrete detector points. Therefore, the
filter g̃ determines the weight of the contribution of each detector po-
sition to the reconstructed value.
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(a) Fourier domain (b) Spatial domain

Figure 2.1: Filter formed by multiplying G(θ,u) = |u| with a window
function.

2.3 algebraic reconstruction algorithms

In algebraic reconstruction algorithms, the reconstruction problem is
represented by a system of linear equations. The reconstructed image
is represented on a grid consisting of n pixels. Let p = (pi) ∈ Rm

denote the measured data elements for all projections, collapsed into a
single vector, where m = d`. Every entry pi (i = 1, . . . ,m) corresponds
to a pair (θ, t) ∈ Θ× T , denoting the angle and detector position for
that particular measurement. As an alternative notation, we refer to
this entry as pθt.

In the case of noiseless projection data, the projection process in
tomography can be modeled as a finite linear transformation W that
maps the image v = (vi) ∈ Rn (representing the object) to the vector
p of measured data

Wv = p. (2.4)

The m×n matrix W = (wij) is called the projection matrix and the
product Wv is referred to as the forward projection of v. The entries of
v correspond to the pixel values of the reconstruction. The entry wij
determines the weight of the contribution of pixel j to measurement
i, which usually represents the length of the intersection between the
pixel and the projected line.
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Several algebraic reconstruction algorithms, including the well-
known ART, SART and SIRT algorithms [2], belong to the class of
linear reconstruction methods. This means that their application to given
projection data p ∈ Rm, yielding a reconstructed image u ∈ Rn, can
be modeled as a linear transformation S : Rm → Rn. We identify this
transformation with the corresponding matrix S ∈ Rn×m, called the
reconstruction matrix, yielding the following expression describing the
input-output relation of the reconstruction algorithm

u = Sp. (2.5)

Example 1. For given projection data p, one can apply a range of SIRT-
like reconstruction algorithms to obtain a solution of Eq. (2.4). Taking
u(0) = 0 as the start solution and denoting the reconstruction after k
iterations by u(k), the iteration step of this family of algorithms can be
described by

u(k+1) = (In −ωCWTRW)u(k) +ωCWTRp, (2.6)

where C = (cij) ∈ Rn×n is a diagonal matrix such that
cjj = α(

∑n
i=1 |wij|) for a certain scalar function α, R = (rij) ∈ Rm×m

is a diagonal matrix such that rii = β(
∑m
j=1 |wij|) for a certain scalar

function β, In ∈ Rn×n denotes the identity matrix, and ω is a relaxa-
tion parameter [17].

Let M ∈ R(m+n)×(m+n) be the iteration-matrix given by

M =

(
(In −ωCWTRW) ωCWTR

∅ Im

)
, (2.7)

and define

SK =
(

In ∅
)
MK

(
∅
Im

)
. (2.8)

Then choosing S := SK gives the reconstruction matrix corresponding
to K iterations of the SIRT algorithm.
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2.4 algebraic filters

In this section, we will demonstrate how the reconstruction of a single
pixel by a linear algebraic method can be interpreted as reconstruction
of that same pixel by FBP, using a particular filter that is determined by
the reconstruction matrix of the algebraic method. By using this filter
within FBP to reconstruct the entire image, a reconstruction algorithm
is obtained, which yields reconstructed images that are very similar to
the results of the algebraic method.

Let S be a reconstruction matrix for a certain linear algebraic met-
hod S. We will now focus on a single pixel c ∈ {1, . . . ,n} of the re-
constructed image. Let (xc,yc) ∈ R×R denote the coordinates of the
center of this pixel.

Denote the cth row of S by s(c). Each entry of s(c) corresponds to
an entry in the right hand side of Eq. (2.5), and therefore to a pair
(θ, τ) ∈ Θ× T , which we denote by s(c)θτ . Substituting this notation in
Eq. (2.5) yields

uc =
∑
θ∈Θ

∑
τ∈T

pθτs
(c)
θτ . (2.9)

For θ ∈ Θ, put t(θ)c = xc cos θ + yc sin θ. We now introduce a
function h(c), which is defined for τ ∈ T − t(θ)c , where the minus sign
denotes element-wise subtraction

h(c)(θ, τ) = s(c)
θ(τ+t

(θ)
c )

. (2.10)

Substituting Eq. (2.10) into Eq. (2.9) yields

uc =
∑
θ∈Θ

∑
τ∈T

pθτh
(c)(θ, τ− xc cos θ− yc sin θ). (2.11)

All required evaluations of h(c) in this expression are defined accor-
ding to Eq. (2.10). Comparing Eqs. (2.3) and (2.11), we see that for the
selected pixel c, the result of applying the linear algebraic method S
is equivalent to applying the FBP algorithm with the angle-dependent
filter g̃ = h(c). We refer to such a filter as an algebraic filter (AF).

Just as in FBP, the AF determines the weight of the contribution of
each detector position to the reconstructed value. This brings up the
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question if, similar to FBP, the same filter h(c) can also be used to
reconstruct pixels other than c. Note that as h(c)(θ, τ) is only defined
for τ ∈ T − t(θ)c , this will require the domain of h(c)(θ, ·) to be extended
by interpolation.

One may expect that at least for pixels j that are near c, we have

uj ≈
∑
θ∈Θ

∑
τ∈T

pθτh
(c)(θ, τ− xj cos θ− yj sin θ). (2.12)

This approximation can be interpreted as follows: suppose that both
the reconstruction region and the detector (for all angles) are shifted
such that their relative position with respect to pixel j is the same as
the relative position of the original geometry with respect to pixel c.
Then Eq. (2.12) is an exact equality.

We point out that the filter h(c) depends on the particular pixel
c, and may vary throughout the image domain, which may offer an
advantage for the algebraic method compared to the approximation
given in Eq. (2.12), based on a single filter. In particular, algebraic met-
hods have the capability (by their very definition) to confine all the
intensity of the object within the reconstruction grid, which cannot be
accomplished by FBP methods. Still, as will be demonstrated in Section
2.5, even a single filter can already approximate the reconstruction pro-
perties of the underlying algebraic method quite accurately.

To compute the AF for a given linear algebraic method S for a par-
ticular pixel c, the cth row of the reconstruction matrix S must be
computed, which comes down to determining the impulse response
of pixel c for all detector positions. Let eθτ ∈ Rm denote the unit vec-
tor which has a value of 1 for the entry corresponding to (θ, τ). Then
s
(c)
θτ is given by

s
(c)
θτ = [S(eθτ)]c. (2.13)

Therefore, the method S must be applied separately for each (θ, τ) ∈
Θ×T to compute all filter coefficients s(c)θτ .

In the experiments that will be presented in the next section, we will
focus on the AF for the central pixel of the reconstruction grid, i.e., a
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pixel centered at the origin. For this pixel c, we have t(c)θ = 0 for all θ
and therefore

h(c)(θ, τ) = s(c)θτ for all θ ∈ Θ, τ ∈ T . (2.14)

To use this filter for projection angle θ in an FBP implementation, the
discrete representation of h(c)(θ, ·) must first be zero-padded, after
which the Discrete Fourier Transform is applied. The resulting filter
in the Fourier domain H(c)(θ, ·) can then be applied to the Fourier
representation of the projection data in exactly the same way as the
Ramp filter, or other common filters. Note that the AF is different for
each projection angle, while most common filters do not depend on the
angle. This property does not have a significant impact on the running
time of the filtering operation.

When computing the AF for a single pixel c, the required (sequen-
tial) computation time is mV , where V is the computation time of a
single run of the algebraic method. For large image sizes, with many
projections, the computational cost of computing a single filter can be
substantial and several orders of magnitude larger than the cost of
computing a single algebraic reconstruction. However, the resulting
filter does not depend in any way on the scanned object. If the geo-
metrical parameters (projection angles, detector size and position) of
the scanning device are fixed, the same filter can be used for recon-
structing an arbitrarily large number of datasets. In the vast majority
of commercial CT-scanners, only a few different acquisition schemes
are used for a particular scanner. The filters for these schemes can be
computed once, using a separate computer system, or even a large clus-
ter. Subsequently, reconstructions can be computed at the same speed
as standard-FBP.

2.5 experiments

A set of experiments has been performed to compare the accuracy of
reconstructions computed by AF-FBP, using an algebraic filter based
on the iterative SIRT algorithm, with FBP using a standard filter and
with SIRT. Note that no priors are used for the SIRT reconstructions
or for the derivation of the SIRT-based filters. In this section we will
describe the setup of the experiments.
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(a) Phantom 1 (b) Phantom 2 (c) Phantom 3 (d) Phantom 4

Figure 2.2: Phantom images of size 2044×2044 used for the experiments.

2.5.1 General Design of the Experiments

Four phantom images have been used for the experiments; see Fig. 2.2.
The first phantom is the well-known Shepp-Logan phantom. Phantom
2 represents a cross-section of a cylinder head in a combustion en-
gine. Phantom 3 represents a metal foam, and Phantom 4 is a part
of a human mandible. Phantoms 3 and 4 are slightly adjusted recon-
structions of experimental µCT data sets. The size of all phantoms is
2044× 2044 pixels. Note that the phantom size is a multiple of four. In
fact, the reconstructions are computed using a pixel size that is four
times as large as the phantom pixel size, in both directions. The fea-
tures of the phantoms are not aligned with the coarse reconstruction
grid, such that partial volume effects can be observed in the recon-
structions. The detector consists of 511 bins, each having a width of
four image pixels. The size of the detector therefore equals the width
of the phantom images. Parallel beam projections are simulated using
a ray-driven projector based on the Joseph kernel to determine the con-
tribution of an image pixel to each ray [18]. Per detector bin four rays
are traced, thereby ensuring that each image pixel participates with
strictly positive weight. Unless stated otherwise, the projection angles
of the parallel beam projections are regularly distributed between 0◦

and 180◦. The number of projection angles, denoted by d, may vary
during the experiments.

2.5.2 Quantitative Evaluation of the Reconstruction Algorithms

The four phantoms are reconstructed using three different recon-
struction algorithms. Several series of experiments are performed
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to examine the relative reconstruction accuracy of different recon-
struction algorithms. The following three reconstruction methods are
compared.

1. FBP-RL: FBP with the standard Ram-Lak filter; see Section 2.2.

2. SIRT: The reconstruction method described by Eq. (2.6), withω =

1, K = 200, and α(·) and β(·) given by α(x) = β(x) = 1/x for
x ∈ R. It converges to a weighted least-squares solution of the
system Wv = p of minimal norm. We used the version of SIRT
that is described in [17].

3. SIRT-FBP: Filtered Backprojection with an angle-dependent al-
gebraic filter based on SIRT. For every projection angle, the fil-
ter coefficients for the central pixel are obtained using Eq. (2.13),
where the reconstruction algorithm S corresponds with 200 SIRT
iterations.

A square reconstruction grid of z× z pixels is used during the expe-
riments, where each pixel has the same width and height as a detector
bin. Preliminary experiments have shown that in some cases the recon-
struction accuracy of SIRT-FBP improves if the filters are created using
a reconstruction grid with a size z that is larger than the number of
bins of the detector. We denote the number of detector bins by z0.

The quality of the reconstructed images is computed in the image
domain by comparing the reconstruction with the phantom image,
and in the projection domain by comparing the projections of the re-
constructed image with the projections of the phantom. For a recon-
struction u ∈ Rz

2
of size z× z (with z > z0), let ũ ∈ Rz

2
0 denote the

subimage of u of size z0 × z0 with the same central pixel as u. Furt-
hermore, let û be a high resolution version of ũ, obtained by replacing
every pixel in ũ by 4×4 small pixels with the same intensity. Note that
the image û = (ûij) has the same pixel resolution as the phantom
image v = (vij). Define the mean reconstruction error Er by

Er =

∑
i,j

|ûij − vij|∑
i,j
vij

. (2.15)
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Denote the forward projection of u by q = (qθt). Then the mean pro-
jection error Ep is defined by

Ep =

∑
θ∈Θ

∑
t∈T

|qθt − pθt|∑
θ∈Θ

∑
t∈T

pθt
. (2.16)

When comparing FBP-RL with SIRT and SIRT-FBP, the FBP-RL and
SIRT-FBP reconstruction are always computed on a grid of size z0× z0,
whereas the grid size z× z for SIRT can vary. When computing the
projection error, the full z× z reconstruction is used to determine the
forward projection of the SIRT reconstructions.

In the first series of experiments, the effect of the size of the re-
construction grid on the reconstruction accuracy of the algorithms is
examined. In the second series of experiments the size of the recon-
struction grid is kept fixed and the accuracy of the reconstructions
from the three methods is examined as a function of the number of
projection angles d, where the angles are regularly distributed between
0◦ and 180◦.

In certain tomography applications, notably electron tomography,
the angular range of the projections is limited. Contrary to standard
FBP, algebraic methods can easily be adapted to such limited-angle
geometries by adjusting the projection matrix. In the third series of
experiments, the dependence of the reconstruction accuracy on the
angular range is examined for the three methods. In these experiments,
the step between consecutive angles is kept fixed at 0.5◦ and an angular
range of 180◦ corresponds to full angular range with d = 360. This
means that the angular range and the number of projection angles vary
simultaneously.

The experiments described above are based on noiseless projection
data. In the fourth series of experiments the robustness of the recon-
struction algorithms with respect to noise is examined. First, noiseless
projection data are computed. Poisson distributed noise with varying
I0 (number of counts per detector element, measured without an ob-
ject) is applied to this data. The reconstruction quality of FBP with
the standard Ram-Lak is known to degrade for high noise levels. Va-
rious alternative filters have been described in the literature that are
more robust to noise, including the Shepp-Logan (SL), Cosine (Cos),
Hamming (Ham), and Hann (Hann) filters [4, 19]. The reconstruction
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results for SIRT and SIRT-FBP are compared with the results for FBP
using this range of filters.

The AFs used in the previous experiments can vary throughout the
projection angles. In the fifth set of experiments, we consider an an-
gle independent filter, computed by taking the average of the filters for
all projection angles. This way of filtering the projection data enables
an implementation very similar to FBP with a standard filter. The cor-
responding reconstruction algorithm will be denoted by av-SIRT-FBP
and it is compared with SIRT, SIRT-FBP and with FBP for several stan-
dard filters.

Finally, we examine the accuracy of the three reconstruction met-
hods when reconstructing an experimental µCT data set. A diamond
was scanned using a Skyscan 1172 cone-beam µCT scanner. From the
experimental data, 200 parallel beam projections of the central slice
were determined by rebinning the corresponding fan-beam projection
data. Reconstructions computed from these projections using FBP-RL,
SIRT and SIRT-FBP are compared.

As noted before, computing an AF is highly computationally inten-
sive. An optimized GPU implementation of the SIRT algorithm was
used to generate the filters, running on a Tesla S1070 quad-GPU sy-
stem. As an example of the running time, we mention computing a
filter for an image of size 511×511, using 64 angles and a detector of
size 511. The running time for 200 iterations of the SIRT algorithm on a
single GPU is around 0.5 s. To compute the AF for all angles, this com-
putation must be carried out 64×511 times, resulting in a total running
time of 4.5 h.

2.6 results

In this section we provide an overview of the results of the experi-
ments. In addition to the quantitative results concerning the recon-
struction and projection errors, a selection of the reconstructed images
is shown, which is chosen such that it illustrates the behavior of the
reconstruction methods.
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(a) Phantom 1: Er (b) Phantom 1: Ep

(c) Phantom 2: Er (d) Phantom 2: Ep

(e) Phantom 3: Er (f) Phantom 3: Ep

(g) Phantom 4: Er (h) Phantom 4: Ep

Figure 2.3: Mean reconstruction and projection error as a function of the size
of the reconstruction grid, with d = 32.
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(a) Phantom 1: Er (b) Phantom 1: Ep

(c) Phantom 2: Er (d) Phantom 2: Ep

(e) Phantom 3: Er (f) Phantom 3: Ep

(g) Phantom 4: Er (h) Phantom 4: Ep

Figure 2.4: Mean reconstruction and projection error as a function of the size
of the reconstruction grid, with d = 256.
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2.6.1 Varying the Size of the Reconstruction Grid

As the SIRT reconstruction depends on the size of the reconstruction
grid z, the filters that are based on SIRT reconstructions also depend
on z, thereby affecting the quality of the SIRT-FBP reconstructions. In
the first series of experiments we examine the accuracy of the recon-
structions as a function of z. During the first run, the relatively low
number of 32 projection angles is used, while for the second run a
larger set of 256 projection angles is used.

Reconstruction errors are shown in Fig. 2.3 and Fig. 2.4, for d = 32

and d = 256 angles, respectively, where the mean reconstruction er-
ror is plotted in the first column and the mean projection error in the
second column. As expected, the errors of the FBP-RL reconstructi-
ons are independent of z. Since the number of unknowns of the equa-
tion system that is solved by SIRT increases with increasing z, while
the number of equations remains the same, the system becomes in-
creasingly underdetermined. This results in decreasing reconstruction
accuracy of SIRT as a function of z. The results show that the recon-
struction error for SIRT-FBP is minimal when z is between z0 and 3

2z0.
For larger grid sizes the decreasing quality of the SIRT reconstructions
determines the behavior of the errors of the SIRT-FBP reconstructions.
The minimal mean projection error occurs close to z = 3

2z0, and the
error of SIRT-FBP for this grid size is significantly less than the mean
projection error of FBP-RL. Furthermore, the quality of the SIRT-FBP
reconstructions with d = 32 exceeds that of FBP-RL and SIRT on grids
with z between 3

2z0 and 2z0. Such results are not to be expected for
d = 256, since for a sufficiently large number of angles FBP-RL is
known to outperform SIRT. Still we see that SIRT-FBP has a signifi-
cantly smaller reconstruction error than SIRT on these grid sizes.

2.6.2 Varying the Projection Angles

In the second series of experiments the number of projection angles d
is varied between 16 and 256 angles, while z is kept fixed at z = 3

2z0,
based on the results of the previous experiments. Some reconstructi-
ons of Phantom 3 are shown in Fig. 2.5. Fig. 2.6 shows that, for all
considered numbers of projection angles, the mean projection error of
SIRT-FBP is smaller than the mean projection error of the FBP-RL re-
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(a) SIRT (b) SIRT-FBP (c) FBP-RL

(d) SIRT (e) SIRT-FBP (f) FBP-RL

(g) SIRT (h) SIRT-FBP (i) FBP-RL

Figure 2.5: Reconstructions of phantom 3 with z = (3/2)z0 and varying num-
ber of projection angles. Top row: d = 16. Middle row: d = 64.
Bottom row: d = 256.

constructions. For most phantoms, the projection error is also smaller
for SIRT-FBP than for FBP-RL, as long as the number of angles is not
too large (i.e., at most 192).

2.6.3 Varying the Angular Range

In this series of experiments the angular range is varied between 5◦

and 170◦. Fig. 2.7 shows the difference between Phantom 1 and its re-
constructions for a selection of the considered limited angular ranges,
i.e. 35◦, 80◦, 125◦ and 70◦, comparing SIRT, SIRT-FBP and FBP-RL. The
values of the difference plots range between black and white, where a
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(a) Phantom 1: Er (b) Phantom 1: Ep

(c) Phantom 2: Er (d) Phantom 2: Ep

(e) Phantom 3: Er (f) Phantom 3: Ep

(g) Phantom 4: Er (h) Phantom 4: Ep

Figure 2.6: Mean reconstruction and projection error as a function of the num-
ber of projection angles with z = (3/2)z0.
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(a) SIRT (b) SIRT (c) SIRT (d) SIRT

(e) SIRT-FBP (f) SIRT-FBP (g) SIRT-FBP (h) SIRT-FBP

(i) FBP-RL (j) FBP-RL (k) FBP-RL (l) FBP-RL

Figure 2.7: Difference between the original image and reconstructions of
phantom 1 with z = (3/2)z0 and varying angular range; limited
angular range per column (from left to right): 35◦, 80◦, 125◦, 170◦.
Dark (light) pixels correspond to reconstruction values that are
higher (smaller) than those of the original phantom.

pixel is black if the corresponding reconstruction pixel has a value of
at least (3/2) the value of the phantom pixel, and a pixel is white if the
corresponding reconstruction pixel has a value of at most (1/2) the va-
lue of the phantom pixel. The difference plots for SIRT and SIRT-FBP
are very similar, while FBP-RL results in quite different reconstructi-
ons. The results in Fig. 2.8 show the accuracy of the reconstructions
when the angular range is limited, for the three methods. The pro-
jection error is calculated using only those projections that are inclu-
ded in the angular range. The reconstruction errors of SIRT-FBP are
similar to those of SIRT reconstructions, while for an angular range be-
low 150◦ the reconstruction errors of SIRT-FBP are much smaller than
the errors of FBP-RL for all phantoms.
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(a) Phantom 1: Er (b) Phantom 1: Ep

(c) Phantom 2: Er (d) Phantom 2: Ep

(e) Phantom 3: Er (f) Phantom 3: Ep

(g) Phantom 4: Er (h) Phantom 4: Ep

Figure 2.8: Mean reconstruction and phantom error as a function of the angu-
lar range with z = (3/2)z0.
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The projection error of SIRT-FBP reconstructions is smaller than that
of FBP-RL for almost all test cases. Since SIRT-FBP is an approxima-
tion of SIRT, some discrepancy exists between the SIRT and SIRT-FBP
reconstructions. The magnitude of this effect depends on the particu-
lar image, which can lead to an inferior reconstruction quality of SIRT-
FBP compared to FBP-RL in certain cases. An example is Phantom 3

in Fig. 2.8 for the limited angular range between 60◦ and 120◦. The
magnitude of this effect depends on the particular image. The results
also demonstrate that for the cases where iterative reconstruction met-
hods perform well, i.e. few projection angles or highly limited angular
range, SIRT-FBP clearly outperforms FBP-RL.

2.6.4 Variations in the Filters

Since the operation of the SIRT algorithm depends on both the size of
the reconstruction grid and the set of projection angles, the correspon-
ding filters also depend on these parameters. Fig. 2.9 shows a selection
of filters computed for the central pixel for a varying number of pro-
jection angles and varying grid size, respectively. Every row in these
grayscale figures represents a filter. Consecutive rows correspond to
consecutive angles and the first row corresponds to the filter for an
angle of 0◦. The standard Ram-Lak filter, which does not depend on
the projection angle, is also shown for comparison. The SIRT-based fil-
ters corresponding to an angle of 0◦ for d = 64 and d = 256 are also
shown as line plots in Fig. 2.10 together with the standard Ram-Lak fil-
ter. Note that the algebraic filters depend on the particular projection
angle. As the reconstruction grid in our experiments is a square, the
algebraic reconstruction problem is not rotationally invariant, not even
when pixel discretization effects are neglected. In the grayscale figures
that show the SIRT-based filters some irregularities appear in the form
of lines. These may be attributed to aliasing effects due to discretiza-
tion of both the detector and the image domain. For the case of limited
angle tomography, we found that presenting a thorough, yet compact
overview of the filter variations is not straightforward. The filters may
vary significantly depending on the particular projection angle.
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(a) Ram-Lak filter, z = 3
2z0, d = 128

(b) SIRT-based filters, z = 3
2z0, d = 64

(c) SIRT-based filters, z = 3
2z0, d = 128

(d) SIRT-based filters, z = 3
2z0, d = 256

(e) SIRT-based filters, z = z0, d = 128

(f) SIRT-based filters, z = 2z0, d = 128

Figure 2.9: Grayscale representations of various filters, where each row repre-
sents a filter for some projection angle. In all cases, a detector with
511 bins was used (z0). Both the size of the reconstruction grid z
and the number of projection angles d is varied. The range of the
gray scale is [−1, 1] ∗ 10−5.
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(a) Filter for θ = 0◦, z = (3/2)z0, d = 64

(b) Filter for θ = 0◦, z = (3/2)z0, d = 256

(c) Ram-Lak filter

Figure 2.10: Two AFs used in SIRT-FBP and the standard Ram-Lak filter in
the spatial domain.

2.6.5 Noise

All experiments so far were performed using noiseless projection data.
FBP-RL is known to produce poor quality reconstructions from pro-
jection data that are highly polluted with noise, while SIRT hand-
les this data relatively well. In this series we examine the accuracy
of SIRT-FBP compared to FBP with several common filters and SIRT
in case of noisy projection data, where the detector count I0 ranges
from 102 − 106. Some reconstructions are shown in Fig. 2.11. The re-
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(a) SIRT (b) SIRT (c) SIRT (d) SIRT

(e) SIRT-FBP (f) SIRT-FBP (g) SIRT-FBP (h) SIRT-FBP

(i) FBP-RL (j) FBP-RL (k) FBP-RL (l) FBP-RL

Figure 2.11: Reconstruction of phantom 4 with z = (3/2)z0 and varying noise
levels, I0 per column (from left to right): 250, 1000, 5000, 106.

sults in Fig. 2.12 show that the reconstruction errors of SIRT-FBP and
SIRT are very similar and that the reconstruction and projection errors
of SIRT-FBP are significantly lower than the corresponding errors of
FBP reconstructions with any standard filter used in this experiment.
Surprisingly, the projection errors for SIRT-FBP are smaller than for
SIRT for very high noise levels. This can be attributed to the fact that
for SIRT, noise can accumulate in corners of the reconstruction grid,
where the intersection between projected lines and the image domain
is very small for certain projection angles. These effects may cause nu-
merical instabilities, resulting in a somewhat larger projection error,
which does not occur for SIRT-FBP as only the angle-dependent filter
for the central pixel is employed there. We remark that one cannot say
that SIRT-FBP is more robust to noise than FBP in general, as SIRT-FBP
itself is just a variant of FBP with an appropriately chosen filter.
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(a) Phantom 1: Er (b) Phantom 1: Ep

(c) Phantom 2: Er (d) Phantom 2: Ep

(e) Phantom 3: Er (f) Phantom 3: Ep

(g) Phantom 4: Er (h) Phantom 4: Ep

Figure 2.12: Mean reconstruction and projection error as a function of the
noise level with z = (3/2)z0 and d = 256.
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(a) Phantom 1: Er (b) Phantom 1: Ep

(c) Phantom 2: Er (d) Phantom 2: Ep

Figure 2.13: Mean reconstruction and projection error of FBP with several
standard filters, SIRT, SIRT-FBP, and av-SIRT-FBP, as a function
of the number of projection angles with z = (3/2)z0.

2.6.6 Experiments with an angle independent filter

In this series of experiments, av-SIRT-FBP is compared with SIRT-FBP,
SIRT and with FBP based on various standard filters. Although the
implementation of av-SIRT-FBP is similar to FBP with a standard fil-
ter, the quality of av-SIRT-FBP reconstructions is comparable to that
of SIRT-FBP reconstructions, as can be seen in Fig. 2.13 for Phantoms
1 and 2. The reconstructions of Phantoms 3 and 4 show similar pat-
terns and are therefore not included. We remark that in some cases,
av-SIRT-FBP actually results in a smaller reconstruction error compa-
red to both SIRT and SIRT-FBP. As all experiments presented here deal
with underdetermined systems of linear equations, even SIRT cannot
be expected to converge to the phantom image. As both SIRT-FBP and
av-SIRT-FBP are approximations to SIRT, they sometimes perform bet-
ter and sometimes worse than SIRT.
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(a) SIRT (b) SIRT (c) SIRT (d) SIRT

(e) SIRT-FBP (f) SIRT-FBP (g) SIRT-FBP (h) SIRT-FBP

(i) FBP-RL (j) FBP-RL (k) FBP-RL (l) FBP-RL

Figure 2.14: Diamond reconstruction with z = (3/2)z0 from experimental
µCT data; d per column (from left to right): 20, 40, 100, 200.

2.6.7 Experimental µCT data

For the final experiments, an experimental µCT data set is used. The
dataset was acquired by scanning a raw diamond using a Skyscan 1172

µCT scanner. Cone-beam projection data were acquired for 400 angles
in a full 360◦ angular range, using an angular step size of 0.9◦. The
camera pixel size was 41µm. The projection data for the central slice
are effectively fan-beam data. Since the FBP algorithm and filter deri-
vation used in this chapter are based on a parallel beam geometry, the
projection data were rebinned to a parallel beam geometry, forming a
dataset of 200 parallel beam projections equally distributed between
0◦ and 180◦. Each of the projections consists of 511 detector values.

Since the ground truth data are not available, the reconstructions
are compared with each other to analyze the reconstruction behavior
for the different algorithms. The results in Fig. 2.15 show that the error
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(a) Diamond: Er (b) Diamond: Ep

Figure 2.15: Reconstruction errors as a function of the number of projection
angles for the experimental µCT diamond data with z = (3/2)z0.
As there is no ground truth data available, a comparison is made
between pairs of reconstructions computed by different algo-
rithms.

of the SIRT-FBP reconstructions behaves very similar to that of SIRT
reconstructions, while the difference between SIRT-FBP and FBP-RL
reconstructions is comparable to that between SIRT and FBP-RL re-
constructions. The reconstructions in Fig. 2.14 show the same behavior
patterns. For low numbers of projection angles the mean projection
error of SIRT-FBP is much less than that of FBP-RL.

2.7 conclusions

In this chapter, we have presented an algorithmic approach for compu-
ting AFs that can be used within the framework of the well-known
FBP algorithm. The resulting AF-FBP reconstructs objects with the
computational efficiency of FBP, while maintaining the more robust
reconstruction properties of the chosen algebraic reconstruction techni-
que. We have presented a formal description of the AFs and examined
their properties in several series of experiments for the algebraic recon-
struction method SIRT. The results showed that SIRT-FBP reconstructi-
ons are very similar to SIRT reconstructions. Therefore, AF-FBP could
be applied in situations, where FBP with standard filters was known
to produce low quality reconstructions and algebraic reconstruction
techniques yield superior results, such as low dose tomography, limi-
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ted angle tomography, etc. Computing the AF has a high computati-
onal cost. However, for a fixed scanning geometry and a fixed set of
projection angles, this computation must be performed only once, as it
does not depend on the scanned object. The filter computation should,
therefore, be considered as a calibration step, which can be performed
in an off-line setting. In further research, the properties of AF-FBP will
be analyzed in more detail and generalizations to other common geo-
metries, such as various cone-beam geometries will be considered.
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