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1
I N T R O D U C T I O N

1.1 x-ray transmission computed tomography

Computed tomography is a technique that is used to reconstruct an ob-
ject from a set of projections. It is applied in a broad range of fields, for
example electron tomography, (bio)medical imaging, industrial ima-
ging (such as quality inspection for materials science), and seismic to-
mography. The resolution depends upon the object to be scanned and
can vary from nanometers to kilometers [1–5].

For X-ray transmission computed tomography, the projections are
obtained by sending X-ray beams under varying angles through the
object and measuring the intensity profile of the X-ray beam at a de-
tector after it has traversed the object. The difference in intensity of
the beam before and after intersecting the object, i.e. the attenuation,
is used as input for various algorithms that can compute an image of
the interior of the object. The attenuation of the beam is related to the
type and thickness of the materials that lie on the ray paths between
the X-ray source and the detector, and also on the energy of the X-ray
photons that are used. This will be made more precise in the following.

We now consider a two-dimensional object, i.e. a slice. Let µ(x,y,E)
denote the attenuation coefficient of the material at position (x,y) ∈
R2 for energy level E. Let L be a line from the source to the detector
that is parameterized by L(l), i.e., the variable l denotes the position
on the line L. Let Iin(E) denote the intensity of the beam at energy E
before it intersects with the object. The total intensity I of the beam at
position l1 is then given by Eq. (1.1) [6].

I(l1) =

∫Emax

0

Iin(E)e
−

∫l1
0 µ(L(l),E)dldE, (1.1)
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where Iin(E) is the intensity of the incident beam.
In this work we mainly focus on monochromatic X-ray beams, i.e.

beams with only one energy level E0. In this case, there is a single
attenuation for each position (x,y) in the object, which we denote
by f(x,y) = µ(x,y,E0). Then Eq. (1.1) simplifies to Eq. (1.2), which is
known as the Lambert-Beer law [6, 7].

I(l1) = Iine
−

∫l1
0 f(L(l))dl. (1.2)

Let Iout be the intensity of the beam after traversing the object. We
then define the projection of the object along the line L by Eq. (1.3).

pL = − ln
(Iout

Iin

)
=

∫
L

f(L(l))dl, (1.3)

where ln denotes the natural logarithm.
We conclude that by recording the intensities of both the attenuated

beam and the unattenuated beam (without an object in the scanner),
the integral of the attenuation along lines through the object can be
obtained.

For a line L given in Eq. (1.4), the line integral along L is given by
Eq. (1.5). This transform has been introduced by Johann Radon in 1917

[8] and is now known as the Radon transform [6, 9, 10].

L : x cos θ+ y sin θ = t, for some t ∈ R, (1.4)

(Rf)(θ, t) =
∫∞
−∞ f(t cos θ− s sin θ, t sin θ+ s cos θ)ds, (1.5)

for t ∈ R and θ ∈ [0, 2π).
The Radon transform is of great importance in Computed Tomo-

graphy. In 2D parallel beam scanning techniques, a detector is located
opposite an X-ray source. In this work, we assume the detector is si-
tuated along a straight line perpendicular to a parallel beam of X-ray
as shown in Fig. 1.1a. This figure also illustrates the concept of the line
integrals for the Shepp-Logan phantom. The Shepp-Logan phantom is
an image that consists of ellipses with different gray levels. It resem-
bles a cross-section of a human head.
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(a) Object space (b) Radon space

Figure 1.1: (a) 2D Parallel beam scanning geometry, (b) Projection data in
Radon space.

The measured projection data can now be written as a set of line
integrals depending on the projection angle θ ∈ [0,π) and position t
on the detector (see Eq. (1.6)).

p(θ, t) = (Rf)(θ, t). (1.6)

The projection data for the phantom in Fig. 1.1a is shown in Fig. 1.1b.
The gray level corresponds to the attenuation, where black refers to no
attenuation and white to high attenuation.

There exist exact inversion formulas for the Radon Transform, such
as the inverse Radon Transform [8] and the Fourier Slice theorem [6, 7,
9, 11]. However, these inversion formulas are based on the assumption
that projections are available for all angles θ and for all detector coor-
dinates t. Since in practice only a finite set of projection angles Θ can
be measured for a finite set of detector bins T , such inversion formulas
cannot be used directly as a reconstruction algorithm. Therefore, re-
construction methods have been developed that approximate the object.
These methods can roughly be divided into two categories: analytical
reconstruction methods and algebraic reconstruction methods (ARMs).
A well-known reconstruction method in the analytical group is Filtered
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Backprojection (FBP). We will now consider both FBP and the algebraic
reconstruction methods in more detail.

1.2 fbp

An intuitive way to approximate the unknown function f is to take
each element of the projection data and backproject it along its cor-
responding line through the object. Pixels that are contained in the
support of the function f receive positive contributions from the corre-
sponding backprojected lines for all projection angles. Pixels outside
f receive in general only contributions for a smaller set of projection
angles and their value in the reconstruction is less than that of pixels
inside f. As attenuation coefficients are always positive values, the re-
construction of this backprojection method is a nonnegative image.

A major drawback of this method is that the reconstructed image is
blurred and does not correctly invert the Radon transform. The Fou-
rier Slice Theorem provides a more accurate inversion formula, which
combines the backprojection operation with a filtering step [6, 7, 9, 11].
Let P(θ, v) =

∫∞
−∞ p(θ, t)e−2πivtdt, the one-dimensional Fourier trans-

form of p, taken separately for each angle θ. According to the Fourier
Slice Theorem, we can calculate f from P as shown in Eq. (1.7).

f(x,y) =
∫π
0

∫∞
−∞ P(θ, v)|v|ei2πvtdvdθ, (1.7)

=

∫π
0

q(θ, t)dθ, (1.8)

where t = x cos θ+ y sin θ and q(θ, t) =
∫∞
−∞ P(θ, v)|v|ei2πvtdv.

The term |v| is the important difference between the backprojection
method described above and the formula in Eq. (1.7). The formula in
Eq. (1.8) is a backprojection of the filtered projection data q, which
is obtained by applying the so-called ramp-filter to the original pro-
jection data p. Note that for G(θ, v) = |v| the function q is defined as
q(θ, t) =

∫∞
−∞ P(θ, v)G(θ, v)ei2πvtdv. If we denote the inverse Fourier

transform of G(θ, ·) by g(θ, ·), then Eq. (1.9) follows from the properties
of the Fourier transform.

q(θ, t) =
∫∞
−∞ p(θ, τ)g(θ, t− τ)dτ. (1.9)
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Hence q(θ, ·) equals the convolution of p(θ, ·) with the filter g(θ, ·).
Combining Eq. (1.8) and Eq. (1.9) and discretizing this formula re-

sults in Eq. (1.10), where u(x,y) denotes the value of the reconstructed
image at coordinate (x,y). This formula is known as Filtered Backpro-
jection.

u(x,y) =
∑
θ∈Θ

∑
t∈T

p(θ, τ)g̃(θ, t− x cos θ− y sin θ), (1.10)

where g̃(θ, t) = π
|Θ|
g(θ, t).

Due to the limited number of projection data that can be measured,
FBP can only compute an approximation of the unknown object f. The
reconstruction quality of this approximation highly depends on the
choice for the filter g. In 1971, Ramachandran and Lakshminarayanan
have proposed to use a windowed filter for FBP [12]. We will refer to
it as the Ram-Lak filter Eq. (1.11).

(Ram − Lak) G(θ, v) = |v| rect(v), (1.11)

where rect(v) equals 1 for v ∈ [−ε, ε] for some ε > 0 and 0 other-
wise. This windowed function reduces the effects of noise in the high
frequency domain, which would otherwise be amplified due to the
multiplication with |v|. To further reduce the effects of amplifying the
high frequencies, other windowed filters have been proposed in litera-
ture. For example the Shepp-Logan filter, Hann filter, Cosine filter, and
Hamming filter, see Eq. (1.12)-Eq. (1.15) respectively [6].

(Shepp − Logan) G(θ, v) = |v| rect(v) sinc(v), (1.12)

(Hann) G(θ, v) = |v| rect(v)(0.5− 0.5 cos(2πv)), (1.13)

(Cosine) G(θ, v) = |v| rect(v) cos(πv), (1.14)

(Hamming) G(θ, v) = |v| rect(v)(0.54− 0.46 cos(2πv)),
(1.15)

The main advantage of the Filtered Backprojection is its computa-
tional efficiency. It is also easy to implement and known for its high
accuracy for low-noise projection data with a substantial number of
equiangularly distributed projection angles. The reconstruction accu-
racy degrades in case of a limited angular range, few projection an-
gles or a low signal-to-noise ratio. Fig. 1.2 contains reconstructions of
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(a) Shepp-Logan
phantom

(b) FBP (c) FBP,
|Θ| = 16

(d) FBP,
AR = 135◦

(e) FBP,
I0 = 104

(f) SIRT (g) SIRT,
|Θ| = 16

(h) SIRT,
AR = 135◦

(i) SIRT,
I0 = 104

Figure 1.2: Reconstructions for SIRT with 100 iterations and FBP with the
Ram-Lak filter; unless stated differently, the parameters are n =
255, |Θ| = 128, angular range (AR) = 180◦ and noiseless projecti-
ons.

the well-known Shepp-Logan phantom of both FBP and the algebraic
reconstruction method SIRT (which will be discussed in Section 1.3)
for varying parameters. The Shepp-Logan phantom consists of n× n
pixels. The variable I0 indicates the noise level. It represents the num-
ber of counts per detector element without an object.

1.3 algebraic reconstruction methods

Algebraic reconstruction methods offer an alternative approach to sol-
ving the reconstruction problem. Since the tomographic reconstruction
problem can often not be solved exactly, the reconstruction problem
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is discretized such that we obtain a system of linear equations. The
unknown object is represented on a grid, which we here assume to be
a square, consisting of n× n pixels. The object is characterized by the
vector x ∈ Rn

2
, such that xi corresponds to the density of the object on

pixel i ∈ {1, 2, . . . ,n2}. The contribution of every image pixel to a line
integral is given by the projection matrix W. The number of rows of W
equals the number of projection angles |Θ| multiplied by the number
of detector bins |T |. Hence the discrete reconstruction problem can be
written as Eq. (1.16).

Wx = p, (1.16)

where p ∈ RNTΘ is the projection data and NTΘ = |T ||Θ|.
The number of unknowns in this discrete reconstruction problem is

typically very large and a solution cannot be calculated in reasonable
time by explicit matrix inversion. Therefore, iterative algorithms have
been proposed that solve for a least squares solution. Examples of such
methods are ART/Kaczmarz method, SIRT and CGLS. We will now
discuss SIRT in more detail.

The Simultaneous Iterative Reconstruction Method (SIRT) is an iterative
linear reconstruction method. It updates the current solution based on
the difference between the current forward projection and the measu-
red projection data for all projection angles simultaneously. The kth
iteration step of SIRT can be written as Eq. (1.17) [13, 14]. SIRT conver-
ges to a weighted least squares solution of the reconstruction problem.

u(k+1) = u(k) +ωWT (p−Wu(k)), (1.17)

where u(k) ∈ Rn
2

is the resulting image of the k-th iteration and ω ∈
R is a relaxation parameter.

A disadvantage of many algebraic reconstruction methods including
SIRT is that they require a long computation time. By parallelizing the
computations of SIRT and using GPUs, the reconstruction time can be
substantially reduced [15–17]. However, for large reconstruction pro-
blems the reconstruction time required for SIRT is still much larger
than for FBP, which is an important disadvantage of this method. Ad-
vantages of SIRT are the possibility to incorporate prior knowledge,
the robustness with respect to noise, and the higher accuracy compa-
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red to FBP for limited-data problems and projection angles that are
not equiangularly distributed. The bottom row of Fig. 1.2 contains re-
constructions of SIRT for varying parameters.

1.4 preview

Substantial research efforts have been made to improve the recon-
struction accuracy of the computationally efficient FBP method. This
can be done for example by various pre- and postprocessing steps, or
by using different filters. We will focus in this work on the filtering
step for two-dimensional reconstruction problems in X-ray computed
tomography.

In Chapter 2 ’Fast Approximation of Algebraic Reconstruction Methods
for Tomography’, we introduce a new algorithm to create filters for FBP
which are based on a linear algebraic reconstruction method. This met-
hod is called Algebraic filter-Filtered Backprojection (AF-FBP). The filters
that are created can be used in FBP in the same way as for example
the Ram-Lak filter. The image characteristics of the reconstructions of
AF-FBP are similar to those of the linear Algebraic Reconstruction Met-
hod (ARM) that was used to create the filters. The main benefit of this
method is that, once the filters have been created, reconstructions are
created with the computational efficiency of FBP, while the favorable
reconstruction accuracy of the linear ARM is largely preserved.

By design, the reconstruction of an ARM does not only depend on
the projection data, but also on the size and shape of the reconstruction
grid. Also the position of the object within the reconstruction grid has
an effect on the reconstruction. Both these effects and the discretiza-
tion effects in FBP are examined in Chapter 3 ’Spatial Variations in Re-
construction Methods for CT’.

The method AF-FBP uses by design a single pixel of the recon-
struction grid for the creation of the filters. In the experiments in Chap-
ter 2, the central pixel of the reconstruction grid is chosen for reasons
that are explained there. As a consequence of the results in Chapter
3, choosing a different pixel will lead to different filters. We have the-
refore investigated the idea to use several pixels in the reconstruction
grid to create multiple filters which can be applied to smaller areas of
the reconstruction grid. The implementation and results for applying
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these local filters is presented in Chapter 4 ’Approximating Algebraic To-
mography Methods by Filtered Backprojection: a Local Filter Approach’.

The AF-FBP algorithm presented in Chapter 2 is applicable for linear
ARMs. It is not applicable for nonlinear ARMs such as the Conjugate
Gradient Least Squares (CGLS) method or the Expectation Maximiza-
tion (EM) method. Since also these methods are computationally inef-
ficient compared to FBP, we would like to be able to approximate these
methods with a fast algorithm that is similar to AF-FBP. In Chapter 5

’Algebraic Filter Approach for Fast Approximation of Nonlinear Tomographic
Reconstruction Methods’, the method AF-FBP is extended such that it
can also be used for certain types of nonlinear algebraic reconstruction
methods.

Computed tomography is used in various application fields, for ex-
ample in industrial and (bio)medical imaging. In the experiments con-
ducted in the previously announced chapters, the projection data were
either simulated by computer models or obtained for industrial ima-
ging applications. In biomedical imaging, bone structures and soft tis-
sues with various gray levels are reconstructed. Especially for soft tis-
sues, the difference in gray levels between neighboring tissues can be
small and the boundaries can be highly irregular. In Chapter 6 ’Filtered
Backprojection using Algebraic Filters; Application to Biomedical Micro-CT
Data’, we compare reconstruction results of AF-FBP and FBP with a
selection of standard filters for two experimentally obtained projection
data sets of small animals.

We conclude this thesis with a comparison of several recently pro-
posed methods to create and apply filters for FBP. The algorithms in
Chapter 7 ’The accuracy of FBP with recently introduced filters: a compari-
son’ can all be applied to two-dimensional parallel beam geometries.
We provide a short description of these methods and give an overview
of their characteristics including the computational efficiency. We also
comment on the reconstruction quality based on experimental results.
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