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ABSTRACT. The usefulness of some procedures suggested by Joreskog for performing
exploratory factor analysis is investigated through an in-depth analysis of some of the
Holzmgcr-Swineford test data In this case the procedures, which use both exploratory
and confirmatory techniques, work not unreasonably, although they manage only just,
and sometimes not quite, to steer away from misleading results.

In this paper we will comment on procedures to perform factor analysis that
have been proposed in the literature by carrying out a detailed analysis on one
particular data set. We will show that there are many pitfalls, surprises and
uncertainties for the analyst on the way towards a solution, notwithstanding
the seeming straightforwardness of the analysis in the literature. We will not
give any description of techniques nor relate if, when, and why it is justified to
take certain steps in factor analysis. For such information one should refer to
standard texts on factor analysis such as Mulaik (1972), Harman (1967),
Rummel (1970), and the paper by Franc and Hill (1976).

We restricted ourselves to the maximum likelihood method, given in Jore-
skog (1966), and incorporated in the package of factor analysis routines EFAP
(Joreskog & Sorbom, 1976). Furthermore, we used the LISREL IV program
(Joreskog & Sörbom. 1978) for the confirmatory factor analysis for one or
more groups.

One major advantage of using maximum likelihood over earlier approaches
to factor analysis is that we obtain standard errors for our estimated loadings,
factor correlations, and uniquenesses.

Description of the Data

The data used in this study were originally described in a monograph by
Holzinger and Swineford (1939). They collected scores on 26 psychological
tests from seventh- and eighth-grade students in two Chicago-area schools:
Pasteur and Grant-White.

Joreskog (1969) selected nine of the original 26 tests (see Table I) and
recomputed the correlation matrix on the total Grant-White sample, obtaining,
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TABU- l
\inc

( 1 ) Visual Perception

(2) Cubes

(3) Lo«nges

(4) Paragraph Comprehension

(7) Sentence Completion

(9) Word meaning

(10) Addition

(12) Counting Groups of Dots

(13) Straight and Curved Capitals

A nonlanguage. multiple-choice test.

A simplified test of spatial relations.
Not described by Holzinger and Harman
(1941); not included in their set of 24
variables. Presumably a spatial imagery
test.
A silent reading test with comprehension
measured by completion and multiple-
choice questions.
Multiple-choice test in which "correct"
answers reflect good judgment.
Multiple-choice vocabulary test.

Speed of adding pairs of 1 -digit
numbers.
Four to seven dots arranged in patterns to
be counted; test of perceptual speed.

A series of capital letters with distinction
required between those composed of
straight lines only and those containing
curved lines; test of perceptual speed.

V i ' f r The descriptions are paraphrased from the appendix of Holzinger and Harman
(1941), since we did not have the original monograph of Holzinger and Swineford
(1939) at hand The test names are given in the order they appear in all our analyses.
The number to the left of each name is the number of the test in the original Holzinger
and Swmeford (1939) battery

by the way, slightlv different correlations from those of Holzinger and Swine-
ford (largest absolute difference 0.023). These correlations are shown in Table
11. along with the correlations from Jöreskog and Lawley (1968) who split the
Grant-White sample into two subsamples (n, = 73, n 2 = 72), and recomputed
the correlation matrices for the two subsamples.

Comparison of the correlations in the subsets with those in the complete set
shows no extraordinary discrepancies, if one takes the 95 percent confidence
in te rva ls into account. The small sample size of the subsets nevertheless causes
substantial differences in the values of the correlations across the subsets,
especially for those near /.cro. The way the overall correlation matrix is
orgam/ed makes i t possible to do a rough visual factor analysis. By arranging
the variables m three groups, that is.
group 1 : visual perception, cubes, lozenges;
group 2: paragraph completion, sentence completion, and word meaning;
group 3: addition, counting dots, and straight/curved capitals.
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wc sec tha i cacli jjroup nuire or less defines a factor. But the variables of each
group have si/eable correlations with the other group variables.

Basic F.xploratory Analysis

One of the first questions one faces in factor analysis is how many factors
underlie the data. Ideally, knowledge of the subject matter should give one the
answer, at least approximately.

Conventionally, the question of the number of factors was decided by
looking at the roots of the covariance (or correlation) matrix, and applying the
skree "test," or by looking at the interpretability of the factors. The advent of
maximum likelihood factor analysis has provided a stronger and more ap-
propriate test for the purpose. This goodness of fit x2 test still is not perfect as
it is sample size dependent, and is used for accepting null hypotheses rather
than rejecting them. Fortunately, additional information is available in the
EFAP output, such as the Tucker-Lewis reliability coefficient (Tucker & Lewis,
1973). and the matrix with so-called "residual correlations" (which are correla-
tions among residuals).

For the data, a summary of the analysis with 1 through 4 factors is given in
Table HI. Inspecting this table, the analyses of the data seem to suggest two or
three factors. If one would take Jöreskog & Lawley's (1968) general rule, that
"it is probably wise to continue increasing the value of k (the number of
factors) until the probability P exceeds 0.10" (p. 93). then a solution with three
factors seems better than two. Also another rule, formulated in connection
with confirmatory analysis, which advises to stop increasing the number of
parameters (here: factors) if no significant improvement of the x2 is achieved
by adding these parameters, suggests three factors. The decrease in the
X;-statistic from 62 to 9 is significant for 7 degrees of freedom, but the
decrease from 9 to 3 (see Table I I I ) is not.

On the other hand, the probability value of .67 at three factors gives us the
uneasy feeling that we are overfilling with ihree factors. The larger-ihan-one
value of ihe Tucker-Lewis coefficient points in the same direction. Finally, the
guidelines from Harman (1967, p. 22) that ihe slandard deviation of Ihe
residual correlaiions (here approximaied by the average absolute residual
correlation) should be about I/ Jn (here .08) makes one uncertain about three
factors as well.

If it were possible, one would like to have something like 2, factors. This
may sound silly, hut it is not, if we slightly rephrase the suggeslion in terms of
parameters to be estimated. With two factors, the solution is too constrained
(i.e., there are not enough free parameters). The three-factor solution does not
have enough constraints to fix the solution properly. In other words, there are
so many parameters that even some idiosyncrasies of the data are taken into
account in the estimates. The obvious solution is to put more constrainls on
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TABLE III
lli>l:inçtr-S*ineforJ Data - E\phralor\' Analyses
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the three-factor solution (i.e.. fix some of the otherwise-to-be-estimated param-
eters). We will attack the problem in two ways, both starting with an explora-
tory analysis and ending with one or more confirmatory analyses. The first
approach follows Joreskog & Lawley (1968) by using the time-honored, but too
seldom employed, practice of splitting one's sample into two parts, exploring
one half of the data for patterns, or otherwise useful hypotheses, and confirm-
ing these with the other half. The second approach follows a procedure
suggested by Joreskog (1978). We will then discuss the results of the two
approaches.

Approach 1 : Split the Data into Halves

Joreskog & Lawley used subset I for the exploratory analysis and subset II
for the confirmatory analysis (for the correlation matrices of the two subsets,
sec Table II). There is, however, no a priori reason why subset I should have
been chosen to be the exploratory set and subset II the confirmatory one. In
the sequel we have performed the analysis both ways.'

Exploration on the Subsets

The results of these analyses are summarized in Table IV A and B.

' i t should he mentioned that Joreskog & Lawley used the forerunners of the
programs we used; thai is. for exploration they used UMLFA (Joreskog, 1966), now
superseded hv EFAP. for confirmation they used RMLFA (Joreskog & Gruvaeus,
1967). now subsumed m LISREL IV.
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TABLL IV A
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J Identical to solutions of Jöreskog and Lawley ( 1968, p 93, 94).

Subset I.
• the probability./», exceeds .10 at three factors;
• the decrease \: is significant at the 5 percent level in going from two to

three factors, hut not from three to four factors;
• the probability level at three factors (.95) is uncomfortably high, indicating

too good a f i t : at two factors the .00 is not acceptable;
• the lucker- l C\MS coefficient is too low at two factors and too high at three;
• the moan absolute residual correlation is about right (1/v^F = .12) for two

factors, and rather low for three factors.
Conclusion for subset 1 : Two to three factors, or 2 \ if you like.

Suhtet II
• the probability, p. exceeds .10 at three factors;
• the decrease in x: is significant at the 5 percent level in going from two to

three factors, and is not significant in going from three to four factors;
• the probability level is reasonable at three factors, but not acceptable at two

factors;
• the Tucker-LevMs coefficient is acceptable at two factors, but getting rather

high at three factors;
• the mean absolute residual correlation is about right at two factors, and

rather low for three factors.
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TABLE IV B
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Conclusion for subset II: Again two to three factors. Conclusion on the basis
of the two subsets together: Use a three-factor model, but restrict the number
ol parameters to be estimated.2

Confirmation with the Other Subset

\s mentioned before. Jöreskog & Lawley used subset I for their exploration,
and subset II for confirmation. The result of the subset I varimax rotated
solution is shown in Table VA. alongside the subsequent oblique rotations
from I 'Ml FA (VB) and the F.FA1' analysis (VC). Obviously, on the basis of
both the \ anmax and oblique rotations, Jöreskog & Lawley decided to use
pattern h (see Table V I ) as their factor pattern to be tested with the confirma-
tion sample (subset II). From line 5 of Table VII it can be seen that the results
were entirely satisfactory from a fitting point of view (x2 := 30, df. - 23,
p - .15). However, when we tried to replicate their results we ran into
unexpected troubles. At the time of the first analysis, we did not have the
results of Jöreskog & Lawley at hand, and so we based our confirmatory
analysis on factor pattern c (see Table VI) provided by the promax rotation of

•'Note. h\ the way, the sometimes large differences in the results between the two
subsets, especially in the x: fit of the three-factor model, and in the unique variances of
variables K and 9 in the four-factor model (subset I: ̂  ~ .2 and «£, = 4; subset II:
i|\ >|g 0: <£, indicates the estimated unique variance of variable i).
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TABLE V
Hotziltgtr-Swilttfonl Data E\ploraion- Factor Patterns
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TABLE VI
Patterns for the Factor Loading. Matrix. ( A )

Pattern a : Independent clusters

Variable

1
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O

0

0

0

0

0

0

X

X

X

O = zero loading

x = loading to be estimated

pattern h X(9, 1) is also estimated

pat tern c X(9, 1) and X(7, 1) are also
estimated
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TABLE VII
I.ISRI l H' Analysis of Subsets
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.14
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c
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pattern suggested by subset I
exploration, \l>t = -.93!!

i|/8 fixed at zero

pattern suggested by its own
exploration and Joreskog and Lawley

C. Subset l & Subset II

6. 3 68 72 .33 O b common pattern of subsets I and II

HFAF, using the same considerations as Joreskog & Lawley, viz., as the sample
si/e is rather small the sampling variability will be large; therefore only factor
loadings larger than, say .30, should be taken into account. Our confirmatory
analysis (see line 3 of Table VII) was far from satisfactory as it came up with a
negative estimate ( .93!) of the unique variance of variable 8. In other words,
the solution was improper and none of the estimates could be trusted.

Technically, an improper solution suggests that the function to be minimized
has no satisfactory value inside the admissible region (here the region where all
unique variances are greater than or equal to zero). Hence, all one can do is
search for a minimum value on the boundary, which implies setting the value
of the deviant unique variance equal to zero. The estimates of the other values
are then correctly computed. This was done, and the result is given in line 4 of
Table VI I . In general the existence of an improper solution or Heywood case
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indicates (hat (here is a eon f l iel beuveen ilie model (i.e., the hvpothesi/ed
s t ruc ture) and the data. I he reason for the improper solution is not clear cut.
hu t it is prohahlv the following: inspection of the correlation matrix of subset
II ( 1 able I I ) shows tha t var iable 8 has i t s highest correlations with variables 7
and 9, and its correlations w i t h the group I variables are in between those of 7
and 9. Notwithstanding. 7 and 9 are "allowed" to have loadings on the group I
factor, and 8 is not I t seems to us that the resulting conflict might have
produced the improper solution. A thorough discussion of improper solutions
can he found in Van Driel ( 1978).

The other, reverse, investigation, that is. exploring subset II, and confirming
the resulting pattern h w i t h subset I. ended peacefully with a x2 = 26 for 23
degrees of freedom ( p = .31) (line 1 of Table VII). As expected, patlern c fits
even better (x2 ~ '7, df. = 22, p = .75), probably producing an overfit.

The conclusion of the two analyses is that pattern b is an acceptable one for
both subsets. Another question is, does there exist a model which is compatible
w i t h both subsets? In other words, can we find a pattern matrix, uniqueness,
and factor correlations which can be satisfactorially and simultaneously esti-
mated from both subsets'1 Such a question can be answered using the so-called
simultaneous factor anal\\is for several groups (Jöreskog, 1971). This analysis
can also be performed w i t h L1SREL IV without any problems. The results
there for our data were surprisingly well behaved (x2 = 72, df. — 68, p = .33,
no insignif icant loadings), showing that there is no reason to suppose that the
t w o subsets came from different populations, and, moreover, that the proce-
dure followed in this section can lead to reasonable answers.

Nevertheless, the unfortunate results of one of the analyses shows the
sensitivity of the procedure quite clearly. It is very difficult to pinpoint in this
case what went wrong: if the rotational procedure is to blame, the small sample
si/e, or something else. It is clear, in any case, that a blind following of
procedures such as the above can lead to very nasty results. Setting aside the
question of the sensitivity of the procedure, some further remarks are in order
w i t h respect to the procedure itself. There is no reason why one should stop
wi th the simple iro^-ialuiation suggested by Jöreskog & Lawley. As Mosteller
& lukey ( 1977, p '8) argue, this one-way procedure is inspired by hypothesis
testing. However, in cases such as this, one is not really concerned with
hspoihesis testing hut with estimation. One tries to find a reasonable model,
and estimates of i t s parameters. Therefore, the least one can do, as we did, is
interchange the two subsets, do the analyses again, and combine the informa-
tion of the two subsets. F.xtending the procedure brings one automatically
cither to the "jackkmfe" (e.g.. Mosteller & Tukey, 1977, p. 133 ff.) or to the
"bootstrap" (Hfron. 1979) The problem with thejackknife procedure in factor
analyses such as this one is computer time. Small problems like the present one
could be done w i t h a few groups, but with any sizeable set of variables the
computing costs might easily get out of hand.
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TABLE V1I1

-Ms of (. oniplclf Sel. Basvii on 4m/Aw.v of Subsets

Estimated htadin^s. I wi/MC'irvu-s, and factor Intenorrelatiam (all *. 100).
with iht'ir Standard Erron
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2
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9.

Var

VP

C

L

PC

SC

WM

A

CD

sec

t l

71(09)

49(09)

b6(09)

45(09)

Factors

f2 O unique

87(07)

83(07)

82(07)

49(09)

76(10)

56(09)

25(05)

31(05)

32(05)

68(09) 53(09)

86(09) 26(11)

44(09) 45(07)

factor correlations

2 55(08)

3 38(10) 24(10)

X2,3 = 28.1, p =.21

final Estimates

Having found an acceptable pattern, the only question that remains is, how
to obtain the final estimates. Oo we take them from the single subsets, the two
subsets simultaneously, or from the complete set? In our eyes the only
acceptable estimates are those from the complete set, after all. that was the set
of data for which we wanted to have estimates. These estimates, together with
their standard errors, are given in Table VIII .

Approach 2: Kxploration Through Confirmatory Analysis

An alternative to splitting the sample, f i t t i ng on one half and testing on the
other half, is to test several models sequentially on the complete sample and
adopt a model t h a t f i t s reasonably well. Since there is no independeni check on
the result (as there was in the spli t ha l l approach), extra care must be taken i f
one is to a\oid capitah/mg on characteristics of the sample which are actually
due only in chance. In par t icular one should noi feel free to test evci\ possible
model. Ins tead , one should follow a reasonable set of guidelines in selecting
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models for testing. Here \\c follow the suggestions of Jöreskog which were
referred to at the end of the Basic Exploratory Analysis section.'

Steps in Testing

( 1 ) i'ind an unrestricted solution. Perform an exploratory ML factor analysis,
plus varimax rotation, using EFAP. The resulting matrix of loadings plus
the uniquenesses for the complete data set is given (Table IXA).

(2) Define a rotation to be used in LISREL. Find the largest loading in each
column of the varimax matrix (underlined in Table IXA), set to zero the
other loadings in the same rows, and perform a LISREL analysis. The
result (Table 1XB) is an oblique (reference variable) rotation of the
varimax solution with no theoretical change in the fit of the model. (The
actual discrepancy between the two x2 values is small and presumably
reflects differences in algorithms, together with limited numerical preci-
sion.)

(3) Make smalt loadings zero to simplify model. Examine the "t-statistics"
provided for the loadings by LISREL (and given in Table IXC) and set to
/ero all loadings which do not exceed 2.58 in absolute value.4 (These are
underlined.) Perform a new LISREL analysis with these additional restric-
tions. ( The result is given in Table IXD ) The difference in x2 between this
and the previous analysis should not exceed the upper 5 percent point of
the x: distribution with degrees of freedom equal to the number of new
restrictions introduced. ( In the present case. 10 restrictions were introduced
and the 5 percent point of XH> 's 18.31. The actual difference is 25.6 — 9.7
- 15.9, so there is no difficulty with accepting the more restricted model.)

(4) E\amine the appropriateness of the simplified model. Look at the first
derivatives of the log likelihood with respect to all the loadings which have
been fixed at zero in the previous LISREL analysis. (The derivatives are
given in Table IXE.) Drop the restrictions on the loading whose derivative
is largest in absolute value (underlined in Table IXE), and perform another
LISREL analysis. (The results are given in Table IXF for our case.)

'Joreskog's ( I97K) published guidelines differ slightly from those followed here.
which .ire actually based on an earlier verbal discussion given by Jöreskog at a seminar
in liromngen in 1^78 The differences are noted in the subsequent discussions as they
arise

4Note' This is the two-tailed .01 value from a standard normal distribution, not from
.1 t d i s t r i b u t i o n Asvmploticallv. the "t-statistics" quoted by LISREL should follow a
normal distr ibution Nonasvmptoticallv, there is no theory that suggests they should be
I dis t r ibuted, so reference to the normal distribution seems to be the only choice.
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TABLE IX
lltii\trulu»H of Approach 2 (all loadings x 100)

(A) EFAP ML, varimax rotation

var. n r: n j/
1
2

3

4

5

6

7

8

9

«/ƒ =

(O

var.

1

2

3

4

5

6

7

8

4

66

50

64

23

18

23

-04

27

48

20

11

21

84_

79

79

18

-00

1')

16

05

08

08

19

07

76

78_

52

50

74

54

24

30

32

39

32

46

= 12, x2 = 9.3, p • .67

"r-statistics" of
variable solution

fl

8.13

3.76

4.51

-.92

.15

-2-5JL

2.68

12

-

-.48

.06

12.41

8.99

8.94

-2.62

-

1.10

reference

0

-.68

-.75

-

1.66

-.09

5.87

9.60

4.90

(B) Reference variable solution

var. n n O é

1
2

3

4

5

6

7

8

9

df--

(D)

var.

1

2

3

4

5

6

7

8

9

71

58

72

00

-10

02

-44

00

32

= 12.X2

(More)

n
71

49

66

00

00

00

00

00

47

00

-06

01

87

86

82

32

00

11

= 9.7, p

restricted

f2

00

00

00

87

83

82

13

00

00

00

-08

-10

00

14

-01

88

83

47

= .64

solution

f3

00

00

00

00

00

00

62

92

39

50

74

54

24

30

32

39

32

46

i
50

76

57

24

31

32

57

16

47

df = 22, x2 = 25.6, p = .27

( continued on next p%.)
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l M U I IX (l'art II)

(1 ) Derivatives ol' restricted solution

var. t'l (2 O

1
1

.?

4

5

6

7

S

Q

.(X)

.00

00

-.02

-00

-.01

.15

-.10

.00

.03

.04

-.02

.00

.00

.00

.00

.03

-.06

-M

.03

.04

.12

-.19

.06

.00

.00

.00

(P) less restricted solution

var. fl f2 O

1

2

3

4

5

6

7

8

9

71

49

66

00

00

00

00

00

47

00

00

00

87

81

82

13

00

00

00

00

00

00

10

00

63

91

40

50

76

57

24

31

32

56

18

47

df= 21, x3 = 22.6. p = .36

(G) x2 table

Source dl

More restricted
(Table IXD)

I fss res t r ic ted

(Table IXF)
21

25.6

d i l l e r e n e e

^ . .O S=3.8

3.0

(5a ) / / \impler model is saïufai tor\. \top. If the difference in x2 between the last
two analvses doe.s not exceed the 5 percent level of the x2 distribution with
one degree of freedom (3 .S) . there is no reason to reject the hypothesis that
the previously fixed loading is /ero. Therefore, the more restricted (i.e.,
simpler) model is acceptable and analysis should stop. (See Table IXG for
resul ts in our case )

.\implcr model i\ i<>» restrictive. rela\ it. If the difference x2 'n step (5a)
does exceed 3.8, repeat step 4 w i t h the most recent LISREL results (here
t h i s would ha\e heen the solution of Table IXF) to see if the current model
should be relaxed s t i l l fu r ther (i.e.. if another lestriction should be dropped).
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l i t l lu- I H M step Imdiiig an unrestricted .solution, provides a basis for all
subsequent 1 I S R F L analyses . I t provides information on the number of
factors and the rotation to be used. From this point of view, the subse-
quent steps could be seen as providing a refinement to the usual explora-
tory approach, as i t was applied to the exploratory subsets above.

(2) The second step, def ining a rotation, is a bit artificial, but provides a way
of gett ing the exploratory analysis into LISREL with relatively little
distortion. It could be questioned whether the varimax rotation is the best
one to take as .1 s tar t ing pointé In our case, the promax rotation provided
bv FFAP suggested the use of variables 1, 4 and 7 as reference variables
instead of the I. 4 and 8 actually used. When the subsequent steps were
followed, but now on the promax reference solution, the final result given
m Table XA was obtained. (The earlier result is given as well for compari-
son purposes.) The most striking difference is in the \2 values, with the
value based on promax looking almost too good to be true. Nonetheless, it
is worth remarking that all loadings in the "promax" solution of Table IX
are signif icant at the .01 level, and that trying to fix one or more of them to
/ero results in a s ignif icant \2 difference. This is not to suggest that we find
the loadings based on promax a more attractive final solution than those
based on the v a r i m a x We do not. (Interpretation is more difficult.)
Instead, the point is that there is apt to be more than one "acceptable"
model in any given situation, and that the guidelines which one adopts in
one's search can make a real difference in which of these models one ends
up with.

(.1) The third step, examining the "t-statistics" for the loadings, is designed to
produce a simpler pattern of loadings without increasing the resulting
\ '-value beyond what might he expected by chance (at the .05 level). Like
the previous step, however, it has an element of artificiality, namely the
choice of the 01 level for checking the individual statistics.6 In our case,
the loadings A 7 1 . \-:. and X,,, all have "t-statistics" close to the critical
value of '2.58 If the critical value were changed to -^2.70, all three
loadings would be set to zero; if *2.65 were used, only A 7 , and A72 would
be set to /ero; w i t h '2 58. only A 7 I was set to zero; finally, if ±2.50 were

'Joreskoji (1^78) suggests promax, but actually uses varimax in an illustration.

' J.<reskog ( 1*178) .suggests Its This would give the same result as the critical value of
2.50 in the above, ami makes no difference for the promax In our view. .01 seems

more reasonable, however, as the "t-statistics" are considered separately, instead of
simultaneously
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TABLE X
Solutions Starting f-'rom Different Rotations, ladings X 10

A. From promax, variables 1, 4 and
7 used for reference

[ t = 15, p = .84

B. From varimax, variables 1, 4 and
8 used for reference

1 2 3

1 7

2 5

3 7

4

5

6

7

9

8

8

2 3

1 7

2 5

3 7

4

5

6

8 7

8 4 - 3 7 8

9 5

9

8

8

1 6

4 9 5

9

4

=26, p = .27

Differences for loadings on variables 7 and 8 have virtually no effect on the
loadings for the remaining variables

Tho.se free in one solution but fixed in the other are underlined.

used none of the three loadings would be set to zero. The solutions
corresponding to these four possibilities appear in Table XI. The difference
between the x: for solution X1A and that for the unrestricted case is 41
and has 12 degrees of freedom. Clearly, we have gone too far in using a
critical value of 2.70. If, nonetheless, we follow the procedure of steps 4
and 5 for this solution, we find that X Q , has the largest derivative, leading
us to examine solution X1B. With a x2 difference of 23 and one degree of
freedom, we must reject the null hypothesis (per step 5b) that \9, is zero.
When steps 4 and 5 are repeated for solution B, no further improvement
occurs. Thus X1B represents a satisfactory solution. It should be noted that
XIB was also the solution arrived at via the split-half method. Solution
XIC is our standard result, and has been included for reference purposes.
Note that i t does not represent a significant improvement over B (x2

difference of two with one degree of freedom), so the null hypothesis that
X7 , - 0 cannot be rejected. Finally, consider solution X1D. Its x2 dif-
ference from the unrestricted solution is only five, with nine degrees of
freedom —too good to be true. Following steps 4 and 5, it remains an
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TABLt XI
KOU/ /V i'f Varwiig Critical Value

g.i ^ 10 for Four Different Models

§9

A B C D

2.70 2.65

1 2 3 1

1

i

3

4

5

6

7

8

9

7

5

7

9

8

8

2 3

7

5

7

7

8

9

8

8

7 4

2.58

2 3

7

5

7

7

9

4 J

9

8

8

2.50

2 3

7

5

7

1 6

9

9

8

8

L 1 9

4 4

s

Î

X?4 " 51 X^3 = 28 X*2 = 26 xî, = 15
p = .001 p = .21 p = .27 p = .81

. Those free in one solution but fixed in another are underlined.

"acceptable" solution. In terms of goodness of fit and difficulty of inter-
pretation, solution XID bears some resemblance to the solution based on
the promax rotation, given in Table XA. The introduction of two more
acceptable solutions via slight changes in the critical value for the "t-statis-
tics" reinforces the points made in the discussion of step 2 concerning
nonuniqueness of results and sensitivity to modifications.

(4) The fourth and f i f th steps, freeing one of the loadings which had previ-
ously been set to zero and checking the effect of this, have been included to
make sure we have not gone too far in our simplification of the model (i.e.,
put in too many zeros). A large derivative with respect to a fixed loading
suggests that a substantial decrease in the x2 may be obtained by freeing
that loading.7

7J6reskog (1978) suggests using .01 instead of .05 for the choice of a critical x2 value.
This has no effect on the present analyses Here we agree with Joreskog about his .01.
See footnote 6.
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l wo comments seem wor thwhi le here. First, it is also possible at this stage
t h a t we have not gone far enough wi th our simplification and that a repeat of
step 3 (examining "t-stat is t ics") would he worthwhile. In our case, this would
take us from solution C to solution B of Table XI. All loadings in solution B
have clearly s ignif icant "t-statistics," so the process would stop here.

A second comment is that freeing the loading with the largest derivative does
not necessarily result in the greatest improvement in \2- From Table 1XE. X 7 I

has onlv the second largest derivative. When it is freed, however, the result is
solution D of Table XI. The x: difference between XIC and XID is 11 with
one degree of freedom, a much greater difference than that obtained by freeing
\ < , ( the parameter with the largest derivative), and a change that is clearly
significant. Thus, by the standards of step 5. we should reject the hypothesis
that X ., is /ero. and adopt solution XID.

f-'inul Comments on the Procedure and its Results
In our opinion, solutions XID and XB represent over-fitting based on

chance characteristics of the sample being studied To put it another way, we
would expect the f i t of these two models to be much worse when applied to a
new sample. One of the functions of any set of guidelines for exploratory
factor analysis should be to steer us away from such solutions. It is to the
credit of the Jöreskog guidelines that (in their unmodified form) they did not
lead us to either of these solutions in the present case. We did, however, come
uncomfortably close, and there is no assurance that we might not get into
trouble another time. This is a point to keep in mind when using any
inferential procedure. The best we can hope for is that a procedure will do well
bv us most of the time.

Results of the Two Approaches and yet Another One

We nov hneflv discuss and compare the results of the analyses performed in
the "Approach I" and "Approach 11" sections. The solutions (estimated on the
complete data set) are given in detail in Table XIIA and B.

I-nctor leadings

In comparing these results, the main point is that there is essentially no
difference between them The one extra loading in the "confirmatory" solution
(that of the addition test on the second factor) is estimated at .13 with a
standard error of .08. As noted in the previous section a slight modification of
Joreskog's guidelines would have resulted in fixing this parameter at zero, in
which case we would indeed have adopted identical solutions via the two
approaches. From an interpretational point of view, it definitely is preferable
not to have an addition test loading on a factor whose largest loading comes
from a paragraph comprehension test. Consequently, the "spin half' solution
is the one which wi l l be discussed further.
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As presumably intended by Holzinger & Swineford (1939), and as found by
previous investigators, these nine variables determine what seem to be a spatial
relations factor, a verbal factor, and a speed factor. In addition, the straight-
curved capitals test (nominally a pure speed test) has a medium loading on the
spatial relations factor. Since distinguishing straight from curved lines has a
perceptual character to it, this loading does not seem to give us too much
difficulty from an interpretational point of view. It might be argued that the
same logic would suggest the possibility of a loading for the counting dots test
on the spatial relations factor, but this does not seem to be a serious complaint
(see also below).

Factor Correlations

With any oblique factor solution, there should be some discussion of the
correlations among the factors. There seems to be nothing unusual in the
present case. Positive correlation among abilities is common in unselected
groups such as the school children who took these tests. One might have hopeH
the speed factor would have little relation to the other two, and indeed, the
relevant correlations are not large (see also below).

Uniquenesses

The unique variances range from a negligible value (for counting dots) to a
distressingly large one (for cubes). There is nothing wrong with small unique-
nesses, at least when they are associated with highly reliable tests. (Holzinger &
Harman, 1941, quote a reliability of .94 for counting dots.) In the same sense,
large uniquenesses are not surprising when they are associated with unreliable
tests. (The reliability for cubes is given as .57.8) In any event, the primary goal
of factor analysis is to account for intercorrelations among variables—not their
variances—and the "split-hair' solution yields residual correlations which are
no greater (and no smaller, as well) then might be expected by chance if it were
the true model for the population. (This is what the nonsignificant x2 value
tells us.)

Yet Another Solution

Before leaving the problem, it seems important to say that there is a place
for outside knowledge, which can never be filled completely by exploratory
techniques, no matter how refined. In the present case, it was noted that
theoretical considerations might suggest a nonzero loading for counting dots
on the spatial relations factor, and that perhaps the speed factor should be

i uncorrelated with the other two. Such modifications were introduced, and the
result (complete with standard errors) appears in Table XIIC. It, again,
provides a satisfactory solution, and is in many respects very similar to the
other two solutions.

"I t might be noted in passing that, of the first group variables, cubes has consistently
the lowest correlations with all other variables (sec Table II). In other words, it does
not have very much variance in common with the other variables.
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