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The quality of the anachment relationship between mother and infant is typically 
determined in the Strange Situation. The assignments of d a n t s  to the A (aroidant), 
B (secure), and C (resistant) atmchment classes are large1.i but not exclusively based 
on measurements during the reunion episodes. In this paper, the measurements in 
the reunion episodes are used to derive a clustering of the infants via three-way 
mixture method of clustering, 1 technique especially designed far clustering threc- 
way data (here: infants, variables and episodes). The rcsults are compared with the 
A-RC classification, and the relevance of the outcomes for attachment research arc 
discussed. At the same time, the paper aims to demonstrate the use and usefulness 
of the three-way clustering procedure Tor data from the social and hchavioural 
sciences. 

In developmental psychology there always has been a strong interest in the 
attachment relationship between mother and child. One of the main instruments to  
assess the quality of attachment has been the Strange Situation (see Ainsworth, 
Blehar, Waters & Wall, 1978). Measurements are made in several episodes of this 
laboratory-based procedure, and the final assessment is a classification of each infant 
(or better, infant-mother relationship) into one of three categories, usually indicated 
with the letter A, B, and C (see Ainswonh e t  of., especially pp. 334-335, 343-362). 
The classification is established via detailed scoring rules using the above-mentioned 
measurements. 

The major evaluation of the classification procedure as outlined in Ainsworth e t  a/. 
(1978, chapter 6) was to perform a port hoe discriminant analysis using the 
classification as the criterion and the measurements as predictors. A disadvantage of 
such a procedure is its circularity. First the measurements are used to create the 
classifications, which in turn are evaluated by using the measurements. This was 
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recognized by the originators, but at the time no  clear alternative seemed to be 
available. In the present paper we will attempt to provide an assessment of the 
classification results without using the same data twice by using a clustering 
procedure. Clustering procedures attempt to find groupings of subjects (objects, etc.; 
here: infants) on the basis of the measurements available. The resulting grouping (or 
statirtical) classification can be compared with the usual c/inica/ or A-BC 
classification to assess the latter (see Sawyer, 1966 for a relevant discussion of clinical 
versus statistical prediction; the term 'clinical' is seldomly used in this context, but 
was inspired by the paper by Richters, Waters & Vaughn, 1988). If the groups in the 
A-B-C classification adequately portray the individual differences in the Strange 
Situation, then the classes found by the clustering procedure should correspond 
reasonably with A-B-C classification, especially if the Ainsworth groups are natural 
clusters. If there is little or  no correspondence, the empirically derived clusters will 
contain mixtures of the Ainsworth groups (see also Lamb, Thompson, Gardner & 
Charnov, 1985, p. 214). 

As we are dealing with three-way data, our prime clustering tool will be the 
mixture rnethod of cl~stering for three-lug data (Basford & McLachlan, 39856; 
McLachlan & Basford, 1988). As there are to our knowledge no applications of the 
three-way mixture method of clustering outside the field of agriculture and biological 
sciences (see e.g. Basford, Kroonenberg & DeLacy, 1991), we have included an 
appendix with some of the technical details, while a more conceptual introduction 
including some remarks about interpretation is given in the main body of the paper. 
Unique to the three-way cluster method is that it can handle explicitly data which 
arise from the type of three-way designs that form the basis of the present data set. 
In particular, during the two so-called remion episodes of the Strange Situation, five 
variables measuring the intensity of the infants' behaviours were scored from 
videotapes for 326 Dutch infants. Thus, the data set can be seen as a 326 by 5 by 2 
three-way data array. 

In this paper we will first provide an expos6 of the three-way mixture method 
clustering, and add a short discussion of an ordination technique to present some of 
the results graphically, i.e. three-way replicated principal component analysis. Then 
the substantive background to the data will be presented. To appreciate the results 
of the three-way method on these data, we will dwell also on the results for two-way 
data, especially because several aspects of the mixture method of clustering can 
be more easily demonstrated on two-way data. In particular, we start with analysing 
the two episodes separately, and only then continue with the data set as a whole. The 
results of the last analyses will be compared with the clinical classification to evaluate 
the characteristics of both the clinical and statistical classifications. 

Method 

There has bcen s long history of 'grouping' approaches when analysing three-may data, probably 
stlning with Tucker & Messick (1963) devising a 'points-of-view' approach where the aim was to seek 
to partition two-way proximity matrices from several sources into relatively homogeneous subgroups. 
aggregate within, and then run nn analysis for each subgroup. Carroll & Arabic (1983) devised a method 
for non-hierarchical overlapping clustering called m c ~ u s  for the cxse of three-wag proximity data with 
either directlg measured or derived proximities. Carroll, Clark & DeSarbo (1984) developed a 
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methodoloRy called rrmmaes For fitting a hiernrchicd tree structure to obtain a discrete network 
representation of proximity d:rca. Dc Soete & Carroll (1989) have made further earensinns to this 
approach using ultramctric trees (for an overview see Arabic, Carroll & DeSarbo, 1987). As far as we 
arc aware, the mixture merhod of clustering is the only clustering technique which handles three-way 
profile datn (i.e. ruhjccts by variables by conditions datn) directly. 

The more usual clustering approaches (a, clustering individuals, say) are the hierarchical ones in 
u-hich by successive fusion thr number of individuals (and subscqoenrlg individuals and clusters) is 
reduced by one, until one large cluster remains. As there is no explicit model underlying such clustering 
procedures, it is exucmely diKicult to  evaluntc the optimal number of clusters and the adequacy of the 
cluster solution for the data. Moreover, once two individuals are allocated to the same cluster in an 
hiernrchical clustering, they will never be separated again. This is in contrast with the mixture method 
nf clusrerinrr where for each number of clusters a new solution is sought indcvendent of the solution - 
with fewer or mare clusters. 

L'nder the mixture amroach to  clusterine IEveritt. 1980: Wolfe. 1970). it is assumed rhat the data at . . -. . , . 
hand can be conaidered as a sample from a mixture of several populations in various proportions. 
Estlmntes of the paramerers of the undedging distributions can be obtained using the likelihood 
principlr, and the elements can be allocnrcd to  these populations on the basis of their estimated posterior 
probabilities of group membership. In this utny, individual observations can be partitioned into a 
number of discrere, relarivcly homogeneous grnups. However, if the posterior prohahilit" is less than 
a specified value the individuals concerned can remain unallncated but with known probabilities of 
helonging to  the various groups. The three-way mixture mcthod of clustering to  be presented is a direct 
gencrnlization of the two-way variant developed by Wnlfc (1970). and the two methods are equivalent 
for a single sample. Even though the esrimarion o< the two-wny case can he solved with the three-way 
program, special software exists for the two-wny case (see below). 

Three-~uay mixtr<re method of ciustering : Theory 

In  this section we will give an ourline of the three-way mixture merhod of clustering. We will skip some 
details and present a primarily intuitive and simplified introducrion. A more detailed and general 
exposition is contained in the appendix. The clusrerin~ method is lrased on the assumption rhar each 
of the 326 f = 1Vl  infants belonrrs to one ofpvossihle sroum. but it is unknown to  which one. Therefore. . . .... . - .  
all one can do  is assign i t  to that group to which it has the highest prnbabilitg of belonging. In order 
to bc able ro do  so, it is necessam to establish the characterisrics of each srouD and the ~robahilitv of . ~ .  , 
each infant to belong to  each Rm;p. Observations are svsilahle on 5 (=pj variables ar 2 i = r) sepsmrc 
rimes or episodes. Thus thc data comprise two vectors of multivariate observations on each infant, one 
for each episode. For infant, (,I = I , .  . . , n )  these will he denoted by 5, and *;,, respectively. The vector 
of all observations for infant j has 10 elrments. and will be denoted by r,. 

In t  us fimr assume that there exisrs only one group, then the data would have come from two 
multivarintc normal distributions, one for each episode. When there are morc groups. then thc normal 
distributions of the variables in ench group are allowed tn have different means in each episode. thus 
there are p x r x g  (=  5 x 2 r g )  means to be esrimated. Furthermore, it will be assumed that the 
multivatiarc distribution for each group will not change between episodes, but groups may or may not 
have ditTerent covariances, i .e the groups may have a conmoil (within-group) covariance matrix, or each 
group may have an arbilrar~ (within-group) covariance matrix. Thus there is either one covariance 
matrix o r  there areg covariance matrices to be estimated. Under the normal mixture model proposed 
by Basford & McLachlan (19RSb) for three-way data, iris assumed that the rclarive sizes o i t h e ~ g r o u p s  
C;,, ..., G,, are given by the n,ixingprgbortionr n,, .. ..n, respectively, which are also unknown. so that 
they. too, hnvr to br estimated. 

The ertimarion is carried wirh maximum likelihood procedures, and once n rolution has heen 
obtained, one can derivc the so-called parterior prohobilitirr that an infant j, (/ = I ,  ....n ), with 
obscrvation vector x,, hc lon~s  to group G, (i = I.. . . ,g) (see equation 5 in the Appendix). Each inhnr 
is then assigned to the grnup to which it has the highest estimated posterior probahiliq of belonging. 
In  this way, rile individual infants are parddonerl inro a number of discrete, relarively homogeneous 
groups. 



400 Piet~r M .  Kroonenb~rx, K g e  E. Basford and Marrott van Dam 

A tendency has been observed for the derived clusters to be of roughly equal sire when the covariance 
matrices are specSed to be equal (see e . 5  Gordon, 1981, p. 52). Clearly, if the model is incorrect, for 
instance, if the parent populations i re  decidely nnn-normal, the merhod might be h r  from optimal (see 
e.g. Everirt, 198[I, section 5.2). Whethcr in real life this is a problem depends on the aim of the 
clusrering, i.e. whether one is srcklng for natural clurters, or wants to dissect continuous observations. 
In  the latter case, the multinormality nssumption seems a reasonable one ra make, in the former case 
it is very much an empiricnl mztter whether the method is appropriate. 

Testing for the number of componenrsg in n mixture is an important bur very difficult problcm which 
has not been completely resolved (Mcl..nchlm & Rasford. 1988). An obvious way of approaching the 
problem is to  use the likelihood ratio stnristic A, as discussed by Wolfe (1970, 1971), ro test for thc 
smallest value of g compatible wnh the dara. Many authors, including Wolfe, have noted that 
unfortvnntcly with mixture models, regularity conditions do  not hold for -2lnA to have its usual 
nsymptoric null distribution of chi squared with degrees of freedom equal to rhe difference in the 
number of parameters in the two hypotheses. 

McLachlan & Basford (19R8) recommended thar in general the outcome of Wolfe's likelihood ratio 
teat should not be rigidly interprercd. but rather used as a guide to the possible number of underlying 
groups. They suggested that use also be made of the estimates of posterior probabilities of group 
membership in the chnice of,+ Thcp can be examined for vnluer oFg near to the value accepted according 
to the likelihood ratio test, nnd mnv rherefore be of assistance in leading to a final decision as to the 
number of underlying groups. 

When the number of components in the mixture is known (as mny be the case here with2 = 3, i.e. 
equal to the number of clinial classification groups), Everirt (1981) stated rhat the parameters in the 
model 'may be esrimatcd hy maximum likelihood methods although problcms may arisr due to 
singularities in the likelihood function unless some constraint is placed on the variance-covariance 
matrices, the most nntural being thar these are the same for all components' (p. 171). Note, however. 
that although it may be natural to assume equal covrriance mntricer, in many applied cases (including 
here) the data do not really conform with rhat assumption. A detailed discussion oCrhc problem is given 
in Duda & Hart (1973. np. 198--2011. . . 

The mixture m d e l  used herc assumes that the measurements taken on infants during the separate 
episodes are independent of each orher, in that the likelihood was obtained by multiplying togcther the 
probability density fi~nction for each infant in each episode. Therc is no concern about the inf~nts being 
independent of each other, but the same infants were measured during both episodes. Therefore, we arc 
really assuming independence of mrnsuremenrs on the same infants ovcr time. Independence was a valid 
assumption fot the agriculrural data to which the model had been previously applied (the same 
genotypes, but separate plants, were grown in each locntion), but may be open to criticism with social 
science dara of this type. Treating rhe separate episodes as independent measurements is a compromise 
which enables some of the structure of the design of rhr experiment to be accommodated, i.e. the same 
five variables are measured each time. 

Note thar the exploratory nature of the clustering methodology is being stressed here. Although we 
probably have as much experience as anyone in the application of the three-way mixture method of 
clustering, we do not know about the robustness of the method to the violation of this independence 
assumption. It is hoped rhat by application to repeared observation dara, such insight will be gained. 
Other clustering techniques simply stack the observations for the two episodes together and consider 
the dnra array to be two-way (infants by variables). I t  the outcome of the three-way mixture appnjach 
is supported by the outcome of the complementary ordination procedure discussed below, then ?he 
independence assumption cannot be roo rigid. \Y'e are usinfi an rltcrnative methodology on a particular 
data set to look at a substantive problem, rather than choosing a data set to best demonsrrate the 
methodology. 

Ordination as a con~plmenf t o  cc(sf~ring 

In the cluster analysis the variables and episodes are jointly "red to find an optimal separation of the 
infants into groups. The mean values oi the groups on the variables can be used ro evaluate the 
characteristics of the groups with respect ro each other in either episode. The diRerenccs between the 
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infanra are anly described through the clusters, bur nor on an individual level orhcr than iheir ripoitrriwi 
probabilities r l i  beionging to the groups. By using rlrdinarion tect~niqurr in conjuncrion with cluster 
analysis, n more dcrnilrd analysis of the indivirluals and of the clusters can be obtained. Within social 
and bchnviournl sciences, principal component analysis is probably rhe most common, ordination 
techniqur for two-way dnra. Far three-way darn, ruch as we hare here, scecral variants of principal 
component analysis exisr, ruch as three-mode principal componenr analysis (see e.g. Kroonenberg, 
1983), and parallel hctor analysis (see Hnrshman & I.undy, 1984). .As in the present case we only have 
two episodes, we will use a "cry simple model for the three-way data. sometimes called rrpffrotd (or 
auixbhd) prinr;f~tlrnmponmr mod,/. This model is a special case of both three-mode principal component 
and parallel f%ctor analysis models (see Ten Bcrge, Dr 1.ceuw & I<roonenberg, 1987). 

In replicated principal component analysis, the data from two or more occasions or episodes are 
assumed to h a w  rlle same confr~urntinn for rhe vnnables and for the infants for each occasion, buc the 
rclative size or importance is allowed lo ~ a r \  from cane occasion to  the next. Note ihnr rhis assumption 
tits very nicely wirh the assumption of the mixture method of cluster~ng thar per group thr covariance 
marris is the snme h r  rach occasion. The cluster technique allows interaction between rhc variahler and 
the occasions by modelling n riiffcreni mean Tor each variable in each group at each occasion. In the 
replicated component model as used here, the overall mezns of the varinbler for each occasion are 
modelled separately, and do not form an integrnl part of the three-way model. As we will are rhe 
ditTerences across occasions ktween the means of the groups ;arr not extremely large, so thar a 
rwsonable concordance bcmfern the results of the cluster analysis and the component analysis should 
be porriblc. 

Thc replicated principal component model for three-way data can be written as 

whcrr c, is rhe a~eight or  rclative contribution for episode k, the st, are called component scores and 
b,. the component loadings, and j is rhc indcx of the infants, / th,r index far rhe variables, and S the 
number nf compnnmts; ti,, is the crror of approximarton. Gcnenlly, one is only interested in n small 
number oicornponents, sag two or three. This partially depends on the dimensionalit? of the space in 
which the clusters can br sho*n to  their greatest advantrgr. The components from rhis technique r i l l  
Ix used to  make a simultaneous plot of the compnncnt scores, the component loadings, and thc clusters. 
In thls way, insight can bc acquired about the distinctness and rightness of ihe clusters in relarion ro 
rhe variables and the individual infants. 

Computer prograrns 

'The three-way mixture merhod of clustering is implemented in the computer program called ~ r s c ~ u s . 3 ,  
and can bc obtained from the second author (as can the two-way version of the prngram, ~ r u c ~ u s 2 ) .  
.\n earlier version of this prqqmm was published as an appendix in McLachlm & Basford (1988). 
The replicated principnl component analyses have been carried out with a program for three-mode 
principal componenr analysis (TUCKIILS~)  developed by the first author (Kroonenberg, 1994; 
Kroonenberg & 13rouwer. 19')3). 

Substantive background 

.Straqqe .Siftdotion procedure 

The Strnnge Siturrion procedure was designed to  assess t t ~ e  qu~lirv of inEtnr-motber attachment. and 
is considered appropriate fur infants between 12 and 18 months (for derails. see Ainswonh et ol.. 1978). .. . 
This llboratory-based procedure consists of reven three-minute episodes arranged to continuously 
increase the stress on  the infant, so that its artachment system wirh respect to  the mother is activated. 
T o  be specific, mother and incant nrc taken through a series of episodes each lasting three minutes in 
a (to the infant unfamiliar) room at a laboratory or institute. The crucial episodes, the rrsnion rpirahr (R' l  
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and RZ), are those in which the mother returns after having been away, and the infant war left alone 
wirh a stranger. On the basis of the infant's behnviour during the procedure, the qunlity of the 
infantmother anachment relationship is categorized as i n r c c u r c - ~ ~ ~ o i h ~ z  (A), r8c"rf (R), or inrtcurt 
rrrirtant (C). It should be noted that a fourth catcgory has recrntly been added, the D or disorganized 
classification (see Main & Solomon, 1990). However, this classification category will nor be crmsidered 
here as it has not pet been codcd for our dsn.  

Three important claims have been made wirh respect to the reliability and validity of the /\-B-C 
typology, i.e. the clinical classification. First, different patterns of khaviour in the Strange Situation arise 
from different previous patterns of inbnt-mother interaction. In particular, it is rhe mother's sensitivity 
to the behaviour of their infants thar leads to secure attachment. Second. infants seen more than once 
in the Srrange Situation tend ro behave in the same farhion each time they are measured. I t  should be 
mentioned that attachment classifications remain stable ovcr a period of one ro six months provided 
family circumstances are stable. Third, individual differences in Strange Situation behaviour predict 
behavioural differences in other contexts up to several years later, again provided there hns k e n  stability 
in the family circumstances (see among others, Lamb e f  a/., 1985; and Vsn Dam, 1993, for further 
references). The n h v c  suggests thar the clinical clnssificntion has both a certain amount of reliability and 
validity. 

According to the clasrificntion instructions (see Ainsworrh e l  of.. 1978. pp. 59-63) the scores on five 
seven-point scales in the tn,o reunion episodes play n crucial role in the clinical classification, i.e. 
proximity seeking (PS). contact maintaining (CiLL), resistance (RS), avoidance (rZV), and distance 
interaction (Dl). where high scores on nvnidancc are especially indicative for an A classificatinn, and 
high scores on resirtnnce for n C classificarion. Therefore, we will also restrict ourselve~ to these 
variables (see also Lamb d ol .  1985. pp. 209. and Richters ct a/., 1988). 

T h e  only other clustering of strange siruation measurements known to us (Lamh e l  <I., 1985, pp. 
214-221) was also restricted ro these same I0 vildahlm, but Lamb ~101. used hierarchical two-way cluster 
methods on a sample consisting of Swedish and American infants. Connell (1977) also claims to have 
carried out a cluster analysis, but closer inspection shows that in fact he used an ordination technique. 

Data 

A total of 326 infants, o r  rather infant -mother pairs, are included in our analyses. They originate from 
five different studies conducted at the Centre far Child and Family Studies of the Depsrtment of 
Education, Leiden University. The primary references for these studies, which also contain the detailed 
information an procedural questions, are tinossrns (1986; see also Van IJrendaarn, Goosscns, 
Krooncnberg & Tavecchio, 1985). Goossens & Van IJrendoorn (1990), Hubbard Sr Van IJzendnorn 
(1991). Lambermon & Van IJzendoorn (1989). and \'an Dam & Van IJzendoorn (1988); a 
comprehensive description can Ix found in V m  Dam (19113). 

As thc data originate from several samples, whicb were collected for different purposes, the reliability 
information is not entirely complete for all of the scales in all srudies. A report containing all available 
derails can be obtained from the first author. A typical examplc of the reliability uf the scoring of rhe 
five varinbles can be found in \'an IJzendoorn r /  01. (1985, p. 441). 'The inter-coder reliabilities varied 
from .73-.97, and similar values have been found in the othcr subsamples. With respect to the ,I-B-C 
classification. a subset of the same study was independently reclnssified %.hi& gave a correct 
classification rate of .96, and again similar vnlurs were found i t?  other rubnmples. In as far as a.13 
feasible, the classifications were done by other persons than the scorers of rhe five variables. Correlations 
between the asme rariables across episodes for the whole sample are given in Table 6, and these values 
range from .35 (avoidance) to .71 (distance interaction). 

Atfachmenf: A continuor~r o r  discrete constrrrtt? 

Ainsworth intended the Srrange Situation to be primarily a classification procedure, with which 
individual differences in anachment could be assessed in turms of organized prtterns of behaviour (see 
e.g. Ainsworth. 1990). The 12-B-C rypology wass originally empirically developed, and rhere seems to 
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be little theoretical reason to expect that individual differences in Strange Situation are discrete rather 
than continuous. Working with the protocols of 23 infants. Ainsworth r t  a/. (1978) developed the 
clarsificntion system by grouping infants in clusrerr on the basis of perceived behavioural similarities in 
the srrangc situation. Similarities betu.een the result in^ (seven) dusters were then used to achieve a 
funher condensation to three main groups, i.e. rhe A, Hand C classifications. Afcer rhe clnssification of 
infants. Ainswnrth c t  01. (1978) identified aspects of behaviour that seemed crucial in distinguishing the 
various groups and subgroups in the classification. Thesc aspects are primarily those which arc included 
in our analyses. Thus, the classification instrucrions were the result of a purely infi>rmal empirical 
exercise without strong o prior, theoretical reasons for a typology. As Connell & Goldsmith (1982) 
noted 'unless typologies ate derived by appropriate empirical means (e.g. cluster analytic techniques). 
rhey are unlikely to exhibit rhe same predictive capacity and internal structure in subsequent 
applications' (p. 219). Sevcrel vescarchrrs question whether individual behavioural differences in the 
Strange Situarion arc adequately represented by the discrete categorization, and the.: consequently 
recommend the conrideratinn of continuous measures (Cnnnell & Goldsmith, 1982; Kroonenberg & 
Van IJrendoorn, 1987; Lamb e t  01.. 1985). 

Irrespective of the discrercoess of the atrachmenr construct. clu::ter methods will produce clusters. 
either by dissecting continuous dimensions o r  by seeking for natural clusters. Only afterwards, can 
one discern rhe nature of the clusters, for insrance by using ordinarion methods. Results of the cluster 
analyses therefore will not provide il definite nnswcr to rhe (still unresolved) question whether 
attachment is a discrete or n continuous construct. I-Iowever, if the groupings derived by the cluster 
method correspond to the clinical clarsifications, this will at least give funher support to the A - B ~ C  
typology. If not, we will i r  least gain further insight into the individual differences in the Strnngc 
Situation. 

Results 

Even though from a substantive view our main aim is to compare a statistical 
classification with the clinical classification, we will present several more in-depth 
analyses to show how we arrived at the final statistical classification. This is done with 
an eye to our secondary objective, i.e. demonstrating how mixture methods of 
clustering work. First, we will illustrate the kind of decisions that have to be 
considered in using the mixture method of clustering, such as the optimal number 
of clusters and whether arbitrary or  common covariance matrices should be specified. 
The measurements of the first reunion episode will be used for this purpose. 
Secondly, for each of the episodes the infants will be clustered on the basis of the five 
variables using the two-way mixture method of clustering with arbitrary covariance 
matrices. This will provide both an insight into the information content of the 
episodes and starting values for the three-way clustering. Thirdly, the three-way 
mixture method of clustering will be applied to the complete 326 x 2 x 5 data set with 
arbitrary covariance matrices. Fourthly, the evaluation of the statistically derived 
optimal classification from the three-way clustering procedure with respect to the 
original clinical classification based on the Ainsworth coding scheme will be 
addressed. One may cross-classify the different groupings, assess the percentage 
agreement between the partitionings, and compute the concordance with measures 
like Cohen's kappa (Cohen, 1960). Such a procedure, however, needs to be 
supplemented by information on how the clustering technique partitioned the 
subjects. To d o  this, we will depict the groupings in the space defined by the first two 
components derived from the replicated principal component analysis. Some 
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additional information about the basis for the clustering can be gleaned from two- 
way discriminant analyses based on all 10 variables. 

Anahsis decisions 

Number of clusters. T o  demonstrate the considerations that go  into choosing an 
optimal number of clusters, consider the first reunion episode under the common 
covariance matrix model. One can take some guidance from values of the likelihood 
ratio test for comparing a cluster solution with g groups with the solution g-1 
groups (see McLachlan & Basford, 1988, p. 23; \Yiolfe, 1971). Although the log 
likelihood increases monotonically with the number of clusters (Table 1). much 
smaller gains are made with the addition of more than three clusters (the -21nA 
values were 66, 102, and 42 for g = 5 to 7, respectively). In this subsection, 
information on five to seven groups is discussed, although not presented. 

Table 1. Results of two-way mixture method of clustering first reunion episode--R1 
(common covariance matrix model) 

I.og likelihoods with hierarchical starts 
No. of Log likelihood of 
groups best solution HI H2 1-1 3 H4 H5 -21nA 

Notcr. Lambda is the rario ford groups 2 n d ~ -  1 groups. The degrees oCfreedom for the approximnte 
chi-squnred test is twice the difference in number of parameters in the m a  models. This is 2*5 for the 
additional mean vector for the common covariance matrix model and would bc 2*(5 means+p5*6) for 
the additional mean vector and covariance matrix for the nrhitrnry covariance model. Bold type 
indicates the best solutions. MI to 1-15 are the hierarchical clustering tcchniquer using group average, 
median, centroid, flexible sorting, and incremental sum of squares, respectively, as :he classiticarion 
strategy. 

Rasford & McLachlan (198511; McLachlan & Basford, 1988, chapter 5 )  also look 
at the oueraN correct aNocation rate and the correct allocation ratc for each cluster, where 
allocation rates are defined as weighted sums of the aposteriori allocation probabilities 
of entities (here infants) to clusters. In the present case they do  not seem to be very 
informative with respect to the number of clusters, as the overall values are already 
very high for each solution from two to seven clusters (.998, ,979, .974, ,964, ,929, 
and ,987, respectively). A further possibility might he to look at the average absolute 
within-group correlations to evaluate how well we have succeeded in creating 
homogeneous groups. These values for one to seven clusters are .41, .19, .21, .14, .14, 
.13, and .08, respectively. It seems that the big gains in diminishing the heterogeneity 
are obtained up to four groups, but little is gained afterwards. 
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Further information on the stability of the division of the infants into groups can 
be gained by cross-tabulation of the various partitionings. T o  this end, we show the 
cross-tabulation of the three-cluster solution against th? other solutions (Table 2). A 

Table 2. Cross-tabulations of cluster solutions against the three-cluster solution first 
reunion episode (common covariance matrix model) 

2 1 4 

Group 1 2 1  2 3  1 2 3 4  

1 140 0  140 0  0 1 3 9 1 0 0  
2 109 11 0 109 0 0  84 25 0 
3 (1 77 0  0 77 0  1 6 7 0  

T 219 77 140 109 77 139 85 31 70 

NO@. T = Totals 

fair amount of nesting of solutions occurs and this continues even when a larger 
number of clusters is examined. Apparently there exist fairly definite and stable 
boundaries between the groups. This illustrates one of  the strengths of the mixture 
cluster method, i.e. with increasing (decreasing) numbers of groups, solutions are not 
necessarily a hierarchy, and it is an empirical, rather than a method-dependent, issue 
whether nesting takes place. 

Assembling all the information on the various cluster solutions and using the 
stability argument presented below, it seems that either a two-group or three-group 
solution (given common covariance matrices) is optimal for the first reunion episode. 
As there are three groups in the clinical typology, it was decided to restrict 
subsequent cluster analyses to three groups. 

Arbi t ray  versus common muariance matrices. As explained above, the mixture method is 
an iterative procedure which uses maximum likelihood estimation. Because such a 
procedure is only assured to converge to a local maximum, one has to use several 
different starting allocations to (hopefully) find the global maximum. In the present 
case, these were obtained by using the grouping at the appropriate level from each 
of several different hierachical clustering methods from the statistical package SAS 
CLUSTER (SAS Institute, 1985), in particular, group average (HI), median (HZ), 
centroid clustering (H3), flexible sorting with beta equal to -0.25 (H4), and Ward's 
method (Ward, 1963) or incremental sums of squares (H5). The starting allocations 
for the division of infants into groups presented in Table 1 were obtained without 
standardizing the variables. 

For all solutions with more than two clusters, the likelihood function has indeed 
multiple maxima under the common covariance model for clustering the data from 
the first reunion episode. There is no guarantee that the best maximum is also the 
global maximum, be it that in general more confidence is inspired by a solution when 
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the iterative procedure produces the same solution from different starting allocations. 
K starting allocation obtained via Ward's method very often leads to a solution with 
the highest log likelihood. This is not completely surprising as there exist close links 
between Ward's method and the mixture method of clustering (see e.g. Gordon, 
1981, p. 50). It seems that for the common covariance case only the two-cluster 
solution has good stability (see Table I). 

For this data set, the three-cluster solution with arbitrary covariance matrices is 
very stable as all starts converged to the same solution. Even when using the clinical 
classification as a startifig allocation, the algorithm converged to the same maximum. 
This indicates that the clinical classification is suboptimal for the mixture modelling 
of this data. 

At the three-cluster level (as at other levels), the log likelihood of the arbitrary 
covariance solution by far outstrips that of the common covariance one (6517 versus 
-2743), in other words the assumption of a common covariance matrix is not 
appropriate here. Both models produced a solution with generally unambiguous 
allocations of infants to groups although the partitions were quite different (Table 3). 

Table 3. Cross-tabulations of three-cluster solutions 

R 1 R1 R2 
Arb~cmry Common covariances Arbitrary covariances 

covarlances 

Group 1 2 3 I 2 3 T 

N o t e .  T = Totals. 

Given the more consistent convergence of the arbitrary covariance matrix model 
to a particular solution and the above information on  more definite allocation into 
groups, it was decided to continue with the arbitrary covariance model for all other 
analyses. 

Sepurate analy.res,for the reunion episodes (arbitrary covariance matrices) 

Given that the same number of infants and the same variables were available, the 
smaller size of the log likelihood for the second reunion episode (5864 versus 6517) 
could suggest that the cluster structure might be less clear for this episode. The 
comparison between the clusterings of the first and second reunion episodes (Table 
3) revealed, to our surprise, that the clusterings hardly agree. The percentage 
agreement is .68 while the chance corrected agreement measured by Cohen's kappa 
(Cohen, 1960) is .50, with .60 considered to be an absolute minimum for reasonable 
agreement. While the different distributions of the infants over groups suggest that 
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the clusters are rather diEerent, superficial inspection of the means for each group 
indicates that the groups are not unalike (Table 4). K'e have used the two mixture 
solutions from the separate episodes as additional starting allocations for the three- 
wag clustering to see whether they give rise to different solutions in the combined 
analysis. 

Table 4. Estimated means for three-cluster solutions for first and second reunion 
episodes (arbitrary covariance matrix model) 

Group PS CM RS AV Dl N 

First reunion episode 
1 2.2 1.0 1.7 3.7 4.9 1 85 
2 4.0 2.8 1.8 2.8 5.3 45 
3 5.6 4.8 2.8 1.7 1.0 06 

Second reunion episode 
I 1.9 1.0 1.9 3.6 5.3 124 
2 4.2 3.6 2.4 2.8 4.5 65 
3 5.5 5.4 3.1 1.8 1.0 137 

Note. All means greater than 3.5 are indicated in bold. PS = proximity seeking; C M  = contact 
maintaining; R S  = resistance; hV = avoidance; Dl = distance intcraction. 

First and second reunion episod~s joint!), 

For thc single episode analyses we had no  obvious starting values for group 
membership, so had to make do with those from several hierarchical clustering 
procedures. For the combined analysis, we can supplement the starting allocations 
obtained from hierarchical clustering procedures with the groupings obtained as 
solutions from the mixture analysis of the separate rpisodes. As it turned out, aN 
starting allocations (for which the program converged to a solution) converged to 
the same three-way cluster solution with arbitrary covariance matrices. Given the log 
likelihood value for one group was -6041, the best two-cluster solution had a log 

Table 5. Cross-tabulations of cluster so lu t i~~ns  against joint solution for first + second 
reunion episodes (arbitrary covariance matrices model) 

R I  R.2 
-- 

Group 1 2 3 1 2 3 T' 

1 114 0 0 112 0 2 114 
2 69 45 X 12 65 45 122 
3 2 0 88 0 0 90 90 

7. 185 45 96 124 65 137 326 

Not?. T = Totals 
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likelihood of 336, while the log likelihood for the three-cluster solution was 5811. 
Solutions with a larger number of clusters only produced marginal increases in the 
likelihood. In comparison, the three-cluster solution for the common covariance 
matrix model had a likelihood of -5733. Thus, the three-cluster solution with 
arbitrary covariance matrices is clearly the preferred solution. This solurion was also 
satisfactory from the point of view of corrcrf aNocation rater as these were all equal to 
1.00, indicating that all infants were allocated t o  groups with an a posteriori 
probability of 1.00. 

The cross-tabulation of the R1 + R2 three-cluster solution with that of the first and 
second reunion episodes (Tahle 5) gave a percentage agreement and G)hen's kappa 
of 76 per cent and K = .64 with R1, and 82 per cent and K = .73 with R2. This 
mediocre level of agreement might he disconcerting fnr natural clusters, but not 
necessarily so when the clusters are the result of dissections of continuous 
dimensions. I n  that case, it is easy to imagine that even small shifts in the variables 
could lead t o  different optimal solutions for the clustering algorithm. 11s the three- 
way solution had virtually perfect allocation of the infants t o  clusters, we are 
prepared to put more trust in that solution than in each of the separate ones. 

The correlation matrices for the R1 and R2 episodes and the three-group mixture 
solution are listed (Table 6) to provide an indication of the relationships between 

Table 6. Correlation matrices 

Or&inal rorrellrtion nlafrices 
Re~nion Episode I R~r,niorr Episode 2 

Proximity (PS) 1.00 1.00 
Contact (CM) .71 1.00 .71 1.00 
Resistance (RS) .27 .41 1.00 .28 .35 1.00 
Avoidance (AV) -.53 -.49 -.07 1.00 -.59 -.48 .O1 1.00 
Distance (Dl) -.49 -.62 -.32 .19 1.00 -.60 -.69 -.38 .31 1.00 
Correlations between the same variables across 
episodes .52 .67 .40 .35 .71 

Threr-gro~p solution for R 1 + R2 orbitray rof~oriot~~e n~africej ntodel 
Group 1 Gror~p 2 

Proximity I .OO 1.00 
Contact ,013 .no .51 1.00 
Resistance - .8 .(I0 1 .OO .10 .13 1.00 
.Avoidance -.23 .OO .33 1.00 - .41 -.25 .I1 1.00 
Distance .21 .no - . 1 1  -.45 1.00 -.28 -.44 -.ZR .01 l.n0 

Group 3 
Proximity 1.00 
Contact .17 1.00 
Resistance .03 .27 1.00 
Avoidance - 3 7  -.I7 .I0 1.00 
Distance .no .no .00 .no .00 
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variables in the different episodes and clusters. In both the first and the third group, 
all infants had the samc score of 1.00 (the lowest possible) for one of the variables 
(contact maintaining and distance intcraction, respectively). 

The mean differences of proximity seeking (PS), contact maintaining (CM), and 
distance interaction (DI) contribute most to the distinction between groups (Table 
7). Resistance (RS) and avoidance (AV) are less important, be it that they follow the 
pattcrn of PS and CM, and that of DI, respectively. These means (Table 7) show that 
the first cluster is characterized by high values in both episodes for avoidance and 
distance interaction, and low to no  proximity, resistance, and contact maintaining. 
The second cluster shows a stable low RS, but increasing PS and CM coupled with 
decreasing AV and DI. Finally, the third cluster has consistently high PS and ChZ 
scores with low to no  AV and Dl coupled with a comparatively high level of RS. 
Overall, there seems to be a single (proximity +contact) versus (avoidance+distance) 
dimension which the cluster method uses to define groups. 

Table 7. Estimated means for three-cluster solution for first+secnnd reunion 
episodes (arbitrary covariance matrices model) 

Group PS CM RS AC' Dl N 

1 R' l  2.1 1.0 1.5 3.6 5.1 114 
R2 1.9 1.0 2.0 3.6 5.2 

2 R l  3.0 1.8 2.0 3.3 4.7 122 
R2 4.4 3.9 2.5 2.6 3.3 

3 R1 5.5 4.8 2.8 1.8 1.0 90 
R2 5.7 5.7 3.3 1.7 1.0 

Note. PS = proximity seeking; Cbf = contacr mainnininy; R S  = resistance; AV = avoidance; 
Dl = distance inrcmction. 

T o  gain another perspective on the differences between the infants a replicated 
principal component analysis was performed on the two times five variables. Given 
that we intended to use this analysis as a support for the cluster analysis, it was 
decided to limit the solution to a fairly easily presentable one with two components. 
In this wag, we could easily provide a graphical display of the results. The two- 
component solution accounted for 63 per cent of the variability with a first 
component accounting for 47 per cent and the second for 15 per cent. The relative 
weishts of thc two reunion episodes were .66 and .75, indicating that the second 
episode carried a bit more weight in the solution. A discriminant analysis with the 
groups from the three-way cluster analysis as the dependent variable and the first 
component as predictor yielded a canonical correlation coefficient of 39 .  The first 
component provides for a 83 per cent correct allocation of the infants to the groups 
Found by the cluster analysis. The loadings for the five variables on the first 
component are .84 (CM), 0.77 (PS), 0.47 (RS), -0.55 (AV), and -0.74 (Dl). This 
confirms the above statement about the importance of the PS and CM versus AV and 
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-0.15 1 I I I I 
-0.15 0 . 1  -0.05 0 0.05 0.1 

First component 

Figure 1. Joint representation of the infants atid variables on the components of the replicared 
component analysis. Lnhnts are labelled according to their statisucsllg derived cluster membcrship from 
the ihrce-way mixture method of clustering with the arbitrnrg covariancrs model (@ =cluster 1 :  
- = cluster 2; = cluster 3; AV = avoidance; CM = contact maintaining; Dl = rlistmce intcr- 
action: PS = prorimiw seeking: RS = resisrance). 

Dl contrast in the cluster analysis. In Fig. 1 the two components are presented, and 
each of the infants is labelled accord~ng to its cluster membership. In the figure, we 
have also drawn the vectors of component loadings for the five variables. 

Comparison with clznical classification 

As mentioned in the introduction, the main object of the paper is to evaluate clinical 
classification which was constructed using the guidelines set out by Ainsworth e t  a/. 
(1978). T o  do  so, we have crossed the clinical classification with the clusters from the 
three-way mixture method for the case of arbitrary covariance matrices (Table 8). It 
is apparent that the clustering method and the clinical classification ptocedures work 
differently as they create entirely different clusters. Whichever way one wants to 
arrange the table, the highest percentage agreement one can get is 51 per cent, a very 
low figure indeed. Neither the cluster sizes, nor the allocation of individuals to 
clusters show much agreement. From the point of view of the cluster analysis, the 
clinical classification is clearly suboptimal. Even with the clinical classification as a 
starting allocation for the clustering, the algorithm will converge to the solution 
already presented. 
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Table 8. Clinical classification versus cluster classitication first and second reunion 
episodes combined (arbitrary covariance matrices model) 

Group 1 2 3 T 

A 58 19 3 80 
B 66 41 102 209 
C 0 5 32 37 
T 124 65 137 326 

-- 

Noh. T = Toralr. 

T o  evaluate why the clustetings are so different, one may look at the means for the 
A, B, and C groups (Tahle 9). The means of avoidance and resistance are notable 
when compared with their role in the clusterclassification (Table 7) where they were 
less disparate. Further insight can be gained by performing discriminant analyses 
on all 10 variables with the clinical classification and the mixture classification as 
dependent variables, respectively. The concordance between the mixture cluster 
analysis and the discriminant analysis need not be exact. The cluster method treats 
thc data as multivariate measurements on the same infants at two separate 
(independent) times, whereas the discriminant analysis assumes (a larger set of) 
multivariate observation:; on  the infants (at one time) only. A Further point is that 
discriminant analysis assumes equal covariance matrices in the three groups, while we 
have shown that the groups found by the cluster analysis have quite different 
covariance matrices. In principle, one would need a quadratic discriminant analysis 
to do  the arbitrary covariance matrices solution justice. However, in the present case 
this option is not available as the covariance matrices of both group 1 and 3 are 
singular, which prohibits such an analysis. 

Table 9. Estimated means for clinical classification 

Group PS CM RS A V  DI N 

Noto. PS = pcoximi? seeking; CM = contact maintaining; RS = resistance; AV = avoidance; 
Dl = distance interaction. 

I From the standardized coefficients in the discriminant analyses (Table I@), it is 
evident rhat the two groupings weigh the variables quite differently. The clinical 
classification rests virtually exclusively on avoidance and resistance, and the 
additional analyses show that avoidance and resistance in the second reunion episode 



Table 10. Discriminant analyses results (standardized discriminant coefficients) 'J fi. 
2 
-3 

1st reunion episode 2nd reunion episode % 
No. AV RS CM PS  Dl AV RS CM P S  Dl R, % 

h 
2 
Q 
a 
rn 

c/jnicd/ ~Iaf~ification * 3 

All Vars I .4 .1 .O .2 .0 .8 .2 -.2 -.3 -.2 .78 83.7% 2 
A + R / R l 2  1 

@ 
.3 .I .9 .2 .77 82.2% 

A+R/R? 1 1.0 .2 .76 82.5% 8 
A + R / R l  2 .9 -.4 .47 66.8% 

k 
tn 

. i l l  Vars 2 .I .5 -.2 .2 .2 -.2 .7 .1 .0 -.I .63 ts 
A+R/RlZ  2 .I .5 -.2 .7 .62 3 
A+R/R2  2 -.I 1.0 .58 & 
A + R / R l  1 .5 .9 .52 9 

,I~fi.vture method clurt~ring (arbitray cot'driance motricef  mod^() % 
All 1 -.3 .O .3 .2 -.5 -.I .I .3 .3 -.2 .91 88.0% 3 !?. 

:\\I 2 .1 .1 -.3 -.l .6 .2 -.I .6 .5 .O .57 2. 
3 

Aktei. K, = canonical cnrrelation; "/o = percentage correct classification by borh discriminant functions jointly; A + R  = avoidance md resisrance only: ti a 
R l 2  = R1 + R 2 ;  No. = numkr of discriminant function; PS = proximity seeking; CM = contact maintaining; RS = resistance; .4V = avoidance; 
DI =distance interaction. Values grearer than or equal to .4 in absolute value arc shown in bold face. 9 

B 
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are able to discriminate as well as all variables together, 82.5 and 83.7 per cent, 
respectively. The clustering solution, however, is based on the information in all 
variables with the least weighting on resistance. Note that while the clustering 
method indicates all subjects have aposteriori probabilities of 1.00 of belonging to a 
 articular cluster, the discriminant analysis casts doubt about the proper allocation 
of 12 per cent, i.e. 39 infants. This discrepancy is probably due to the different 
assumptions about the covariance matrices, as mentioned above. 

A final point about the clinical classification can be best illustrated by presenting 
again the first two components of the replicated component analysis, but now 
labelling the infants in the plot with their clinical classifications. Again the vectors 
of the five variables are displayed as well. In the section on the substantive 
background we mentioned the problem of continuity versus discreteness of the 
attachment construct, which corresponds to the question of natural clusters or  
dissecting continuous dimensions. Inspecting both Fig. 1 and Fig. 2, we see that in 
neither case is it easy to maintain that the partitions correspond to natural clusters. 
Both the partitioning by the cluster method and that by the clinical classification 
appear to dissect the continuous dimensions. 

. . . . .. . 
** IC 

t- - - - - - -  - .-I-- r* • - 
E- 2 -. -- -- - -CM -- - -i- -L a - <- Dl- - - - I-- - p s  - = -- - - a:-- - - -  -- - - - - - - - - - - - -- - - - - - - 0  - - - -  - - - - =  - - -  =.-- - -- - --- - - - - - - 

-0.15 I 1 1 I 

0 . 1 5  -0.1 -005  0 0.05 0.1 
First component 

Figure 2. Joint representation of  the inhnrs and variables on the componenrs of rhe replicated 
component analysis. Infants are labelled accord in^ ro their clinical classifications (0 = ,A; - = R ;  
W = C; AV = aroidancr; CAI = contact maintaining; Dl = disrance interaction; PS =proximity 
seeking; RS = resistance). 
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Conclusions 

Given the results presented, we have to conclude that three-way clustering does not 
correspond to the A-R-C typology (see also Lamb et a/., 1985). The three-way 
clustering methods and clinical classification procedures create entirely different 
groups of infants. In the course of analysis, these discrepancies were considered from 
different perspectives tr, gain further insight into the individual differences in the 
Strange Situation. From the estimated means for the cluster solutions, it could be 
derived that the role of avoidance and resistance is much more important to the 
clinical classifications than to the clusters. The same conclusion can be drawn from 
the results of discriminant analyses with the clinical classifications and the clusters as 
dependent variables. The two groupings weighted the variables in a different way; 
whereas the clinical groupings rest almost exclusively on avoidance and resistance, 
the cluster groupings are based on the information of all variables, except resistance. 

From the results of a discriminant analysis, which predicted the clusters using the 
first principal component of a replicated principal component analysis, one single 
dimension appeared to underlie the clustering. This dimension could be interpreted 
as the extent to which infants primarily seek proximity and contact with the mother 
(i.e. use PS and Chi), or  primarily stay at a distance from her (i.e. use AV and Dl). 
This points towards different styles of behaviour of the infants, largely independent 
of their attachment classifications. 

The differences between the two classifications point to different underlying 
assumptions. Clearly, there are theoretical substantive arguments why resistance and 
avoidance play such a dominant role and carry so much weight in the clinical 
classification. In the clustering method, i t  is the differences in the sizes of variances 
which determine for a large part the outcome of the analysis, and especially resistance 
is a variable with one of the smaller variances. One way of looking at these results 
is that there are more and larger differences in the strange situation than are captured 
by the clinical classification. On the other hand, they ate apparently not the ones 
which are deemed the most important in the theory of attachment. Earlier, we 
indicated that attachment research has shown the validity of the clinical classification 
by relating it to several preceding and subsequent behaviours. Whether this can also 
be said for the differences highlighted bv the clustering procedure is a matter ro be 
investigated. 

With respect to the continuity-discreteness argument, the analyses lend some 
support to the statement by Lamb et a/. (1985), that the A, B, and C do not represent 
distinct types of infants, but that they have arisen from an undetlying continuum 
which has been artificially trichotomized. Of course, a similar statement can be made 
about the statistically derived grouping. These results do  not necessarily imply that 
a natural trichotomy does not exist, they only indicate that such a division is not 
strongly supported by the present empirical investigation. One should either call 
upon theoretical arguments or  additional empirical information to substantiate the 
natural clusters claim. 

The mixture method of clustering has allowed an effective exploratory analysis of 
the data which enables some aspects of the three-way structure to be incorporated. 
The assumption of independence of the episode measurements in the mixture model 
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does not appear to he too restrictive, given the consisrencg of the results from 
different analytical techniques. Thus, for the present data, we have reasonable 
confidence m the summarization in terms of relatively homogeneous clusters. 
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Appendix 

Three-n,<v mixture method of clustering 

The fitting of n normal mixture model to three-way data is presented in the context of clustering cntities 
on the basis of multivndare observations k i n g  recorded on each of these entities (here infants) ar 
separate episodes or locarions. Then the observation vector x, = 1, ..., n) contains the multivariate 
responses of the j t h  infant during both episodes. and is given by equation (1) 

*-, = ( x ; , .  . . . , x;,)', (1) 

where xi, is a vector of length p giving the response of infant,, in episode k for each of the same p 
attributes measured during each cpisode ( k  = 1, .... r). The vecrors x,, (j= 1 .... , n ; k  = I .  ... , r )  are 
taken m be independently distributed. 

This method is model based. in that the Form of the dcnsitp of nn observation in ench o l  the 
underlying populations has to be specified. A common approach is to take thc component densities to  
hc multivarivtc normal distributions with (in principle) different mean vectors and either equal or 
arbitrary covariance matrices. Undcr the normal mixture model proposed by Basford & McLachlan 
(19856) for such rhrec-way dam. it is assumed that each infant klongs to one o f g  possible groups 
C,, ... , q, in proportion n ,,... ,no respectively, so that during A given cpisode k. 

5. - h'(/6rr, 1;) in G, with probability n, ( i  = I ,  ... .I). (2) 

The within-group covnriance matrix 1; is taken not to  depend on the episode. From equation (2). the 
density of the full observation vector xl conditional on the j th  individual belonging to G, is equal to 

for i = 1 .... .x, where the vector 8 of unknown parameters contains the elements of I , ,  ( i  = I , .  .. .g; 
k = 1, ... , r )  and the distinct elements of 1; ( i =  I .  ... .,<). 

Esrimates of the pnrsmcterr in this model can be ohtained using the likelihood principle, whereby the 
log likelihood of ( n .  8)  given by 

in u n ,  @ = t in [i n d ( x l ,  a] ( 4 )  
1-1 

is msrimized. 
Once the likelihood solution of ( n . 8 )  has been obtained, estimnres of the posterior prohnbilities of 

population membership can be forrncd for each .xi (really rhe cnrity, her? inianr, with obserrar!on x,) 
to gir,e a probahilis~ic clustering. The posterior prohnhility that s, belongs ro G, is given by 
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Each x, is then assigned to the population or group to which it has the highest cstirnntcd posterior 
probability of belonging, i.c. to C ,  if 

+",>?,, ( ; = I  ,..., g ; ; + u ) .  (6) 

In this way, individual observations (here the individual infanrs) are partitioned into a number of 
discrete, relatively homogeneous groups. If (n,B) were known, the allocation rule based on equation 
(5) would be the optimal or Bayer rule (Anderson, 1984, chapter 6) which minimizes the overall error 
mte. For the above model, the likelihood estimate of (n.0) satisfies 

8 7 

1.: = X S i ~ j ( ~ I 1 - l i , k ) ' ( ~ , k - ~ i , d l r  C fN (; = 1,. ... g). 
1-1 1-1 1-1 

(9) 

The posterior  roba ability that thejrh entity belongs to  G,, given the observation x, on it, is given by 

Equations (7) to (10) are solved iterarively by using some initial estimates of the unknown parameter 
vector (n, 0). These iterative estimates can be identified with those obtained by directly applying the EM 
algorithm of Dempster, Laird & Rubin (1977) to solve the likelihood equation. Then prol-idrd rhe 
likelihood is bounded abavc, convergence ro some local maximum is assured. 

Unfonunarely with mixture models, the likelihood equation has multiple roots, so there is the 
problem of which root to  choose. This problem is discussed in detail in Basford & McLnchlan (1985~) 
and McT.achlnn & Basford (1988). Wirh equal covariance matrices for the groups and the normal,? 
assumption, the maximum likelihood estimator of (n, 8) does exist and is strongly consistent. Therefore 
the lnrgest of the locnl maxima (assuming all have been located) is the one to choose. I n  the arbitrary 
cn\rarimce matrix care, the likelihood is unbounded and so the maximum likelihood estimator of 
(n, 0)  does not exist (Kiefer & Woliowitz, 1956). Riefer (1978). however, verified far univariate dam that 
there is e sequence of roots of the likelihood equation which is consiaenr, asymptotically normal and 
eflicient. W'ith probability tending to one, these roots correspond to  locnl mmima of the likelihood. 
McLachlan & Basford (1988) postulated chat it would be surprising if the univariate result, that it is the 
sequence of roots corresponding to  the larpcsr of the local maxima which is consistent (see Hathaway, 
19851, does not carry over to mixtures 06 multivariate normal distributions. 


