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Abstract 

All therapeutic proteins are potentially immunogenic. Antibodies formed against these 

drugs can decrease efficacy, leading to drastically increased therapeutic costs and in rare 

cases to serious and sometimes life threatening side-effects. Many efforts are therefore 

undertaken to develop therapeutic proteins with minimal immunogenicity. For this, 

immunogenicity prediction of candidate drugs during early drug development is essential. 

Several in silico, in vitro, and in vivo models are used to predict immunogenicity of drug 

leads, to modify potentially i mmunogenic properties , and to continue development of 

drug candidates with expected low immunogenicity. Despite the extensive use of these 

predictive models, their actual predictive value varies. Important reasons for this 

uncertainty are the limited/insufficient knowledge on the immune mechanisms underlying 

immunogenicity of therapeutic proteins, the fact that different predictive models explore 

different components of the immune system, and the lack of an integrated clinical 

validation. In this  review, we discuss the predictive models in use, summarize aspects of 

immunogenicity that these models predict, and explore the merits and the limitations of 

each of the models. 
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Introduction 

Therapeutic proteins are very successful in treating a wide variety of l ife-threatening 

diseases such as multiple sclerosis, diabetes, chronic kidney failure and a wide variety of 

cancers. In contrast to small molecule drugs, they do not possess intrinsic toxicity due to 

harmful metabolites or off-target effects, and their side effects are mainly caused by 

exaggerated pharmacodynamic effects (1). Because of their success and versatil ity, 

therapeutic proteins are the fastest growing class of drugs and make up about one third of 

the drug market. 
 

One of the major attention points of therapeutic  proteins is immunogenicity. Anti -drug 

antibodies (ADAs) induced by nearly all  therapeutic proteins can interfere with drug-

efficacy, alter PK/PD or induce severe, sometimes life-threatening, side-effects in a subset 

of the patients (2–5). The potential danger of immunogenicity of therapeutic proteins 

caught public attention around 2002 when an increased number of pati ents treated with 

Eprex® (epoetin alpha) were reported to form antibodies that cross-reacted with 

endogenous erythropoietin. As a result red blood cell  production arrested and blood 

transfusions were vital for these patients’ survival  (5–7). Besides the apparent risk for 

patient safety, immunogenicity also poses a financial burden.  
 

In order to minimize side effects caused by ADA formation, immunogenicity assessment of 

therapeutic proteins during drug development is critical. By identi fying immunogenic 

properties at an early stage, and subsequently modifying those properties, 

immunogenicity in patients could be minimized. Many efforts have been undertaken to 

develop in silico, in vitro, and in vivo models that predict different aspects of 

immunogenicity of therapeutic proteins  (8–10). However, current l imited knowledge on 

the general principles that apply to the induction of antibodies by these drugs makes it 

very difficult to determine the risk factors for immunogenicity and predict the clinical 

consequences of immunogenicity of a new protein drug (11). Also, the clinically observed 

immunogenicity against specific drugs is variable depending on other factors such as the 

disease treated, concomitant treatment and patient background (12). In addition, direct 

clinical evidence showing that use of these predictive models to guide drug development 

actually helps to lower immunogenicity is largely missing, as few drug candidates are 

clinically tested and therefore direct comparisons of candida tes showing predicted high 

and low risk are rarely obtained. Despite these limitations, several in silico, in vitro, and in 

vivo models are currently applied for different aspects of preclinical immunogenicity 

prediction (13–15) (Table 1). 
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Table 1: Main applications and limitations of current in silico, in vitro and in vivo predictive tools for protein 

immunogenicity. 
 

Category What does it predict? Advantages Disadvantages 

In silico Presence of potential 

CD4+ T cell epitopes 

Fast, low cost Focus on primary structure; no 

information on contribution of other 

factors (e.g., glycosylation, 

formulation, aggregation) 

 Presence of neoepitopes Fast, low cost Does not address the actual T-cell 

activation 

In vitro Presence of CD4+ T cell 

epitopes  

Relatively fast, low cost Focus on activation of specific 

immune cells 

 Presence of neoepitopes Measures biological effects Large donor sets needed 

 Activation of T cells Can be used to screen product-

related factors other than 

primary structure 

Assay variability 

In vivo    

Conventional 

animals  

Relative immunogenicity In vivo correlate of 

immunogenicity 

Per definition a classical immune 

response against therapeutic proteins 

Overestimation of immunogenicity 

Time consuming, expensive 

Non-human immune system 

Non-human 

primates 

Relative immunogenicity Express similar proteins as 

humans, therefore may have 

similar immune mechanism 

underlying immunogenicity 

Predictive value strongly depends on 

protein 

 Likely the presence of 

neoepitopes 

In vivo correlate of 

immunogenicity 

Time consuming, expensive 

 Breaking of tolerance 

(depends on protein) 

In vivo correlate of 

immunogenicity 

Needs clinical validation 

Transgenic 

immune 

Presence of neoepitopes Express protein of interest 

similar to tolerant mice humans, 

can be used to study breaking of 

tolerance 

Mice respond with murine immune 

system 

 Relative immunogenicity In vivo correlate of 

immunogenicty 

Time consuming, expensive 

 Breaking of tolerance In vivo correlate of 

immunogenicty 

Needs clinical validation 

Human immune 

system xenograft 

models 

Presence of neoepitopes Express many human immune 

proteins that xenograft models 

are (potential) therapeutic 

targets, can be used to study 

breaking of tolerance. 

For most models human T cells lack 

the ability to recognize antigens in a 

HLA-restricted manner (i.e. no value 

to predict T cell-de pendent ADA), BLT 

mice are exception. 

 Relative immunogenicity Mice respond with a 

(reconstituted) human immune 

system 

Time consuming, expensive 

 Breaking of tolerance  

(if human protein is 

expressed due to 

xenografting) 

In vivo correlate of 

immunogenicty 

Needs clinical validation 
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This review summarizes the models in use and potential  future models to predict 

immunogenicity of therapeutic proteins. It gives insight into the rationale of each of the 

models and discusses the specific aspects of immunogenicity predicted by them. It ends 

with recommendations on future studies that need to be performed in order to improve 

predictability. 

Models predicting CD4+ T cell epitopes and CD4+ T cell activation 

Most of the in silico and in vitro models used to predict immunogenicity of therapeutic 

proteins focus on identifying CD4+ T helper cell  epitopes and measuring activation of CD4+ 

T cells (Table 1). In an adaptive immune response against foreign proteins, CD4+ T cells 

and their epitopes are crucial for the induction of an immune response, which is 

characterized by isotype switched antibodies such as IgG, by affinity maturation, and the 

formation of immunological memory. The observation that some patients treated with 

therapeutic proteins produce high affinity, isotype switched antibodies, sugges ts that ADA 

immunogenicity in these cases is driven via a CD4+ T cell  dependent mechanism (16), 

involving T cell  epitopes present in the protein sequence. Presentation of these epitopes 

by major histocompatibility complex (MHC) class  II molecules on antigen presenting cells 

(APC) can engage T cells to initiate a cascade of events resulting in an ADA response by B 

cells. Assuming that therapeutic proteins evoke an antibody response via this T cell -

dependent mechanism, the prediction of T cell  epitopes and a corresponding T cell  

response could be an effective way to identify immunogenic sequences and, by 

eliminating them, reduce the potential for immunogenicity. The main methods employed 

in detecting CD4+ T cell  epitopes and CD4+ T cell  responses to proteins are (i) in silico 

analysis of MHC class II binding peptides and (i i) in vitro T cell  stimulation. Both techniques 

enable CD4+ T cell  epitopes to be predicted in the context of human MHC class  II. 

In silico models 

In silico models use the amino acid sequence of therapeutic proteins to predict the 

presence of peptides in these proteins that bind to MHC molecules. Several first-

generation models are based on quantitative matrices. They use experimental data of the 

many peptides known to bind to specific HLA allotypes and in addition they score each of 

the amino acids depending on their position in the binding groove. Even though this 

approach has been mainly applied to MHC class I (which is driving cytotoxic responses), in 

silico tools for predicting the presence of MHC class II-binding epitopes such as Tepitope, 

MHCPred, Epimatrix and SVMHC are also developed (17–20). More recently, in silico 

models based on artificial neural networks (ANN) have been developed, which involve 
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data modeling tools able to “learn” which peptides could bind to  MHC. The information 

needed during a learning phase is provided by a set of peptide sequences from both 

known MHC binders and confirmed non-binders, and is used by the ANN to find patterns 

for a prediction of new sequences. Examples of such models are ANNPrep and Comprep 

(21). Several neural network servers are available, such as NetCHOP, NetCTLpan and 

NetMHCpan (http://tools.immuneepitope.org). The ANN methods are very adaptive and 

have the ability to self-improve. 
 

A drawback of the above mentioned methods is their  reliance on extremely large data 

sets, which require intensive experimental work. To overcome this problem, some 

structure-based methods have been developed that also examine the three dimensional 

structures of the binding groove of the HLA molecules using force field analysis based on 

crystal structures and other structural approaches. Up until  now, two models applying to 

HLA class II molecules have been described: Epibase and the methods developed by 

Davies and colleagues (22,23). 
 

The latest in silico algorithms aim to combine T cell  epitope identifications with predictors 

of proteasomal cleavage sites and transport efficiency of the peptides to the endoplasmic 

reticulum (where peptides are loaded onto MHC class  I molecules). Combined prediction 

methods could indeed lead to a bridging between pure T cell  epitope prediction and the 

actual T-helper cell  stimulation by the loaded peptides, as these also take into account 

processes involved in antigen presentation (24). Unfortunately, the reliability of the 

currently available models (e.g. Fragpredict, PAProC) is sti l l  very low. Moreover, 

applications are mostly available for MHC class I prediction and more research on their  

applicability for MHC class II binding is needed. 
 

In general, in silico methods allow a rapid and relatively low-cost analysis of protein 

sequences for peptides that bind to MHC class  II. They are very useful in modeling 

interactions between known CD4+ T cell  epitopes (identified from in vitro T cell  assays) 

and MHC class II, and have shown similar epitopes as identified with in vitro methods 

(discussed later) (25–29). The use of in silico tools has enabled the generation of a number 

of therapeutic proteins in which the CD4+ T cell  epitopes have been removed by 

mutations that disrupt binding to MHC class II. However, whereas good accuracy can be 

reached with some of these tools in generating a peptide map of the peptides that are 

capable to bind MHC class  II receptors in vitro based on the primary protein structure, the 

application of the tools is l imited. The major reason is that these tools are la rgely 

restricted to the prediction of interactions between peptide sequences and MHC 

molecules and therefore do not take into account other factors that affect immune 

responses, such as antigen uptake and processi ng by the APC, T cell  activation through the 
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T cell  receptor (TCR), tolerance of T cells to epitopes encountered during development in 

the thymus, and the involvement of other immune cells. Therefore, in silico methods are 

suitable to predict the presence of potential CD4+ T cell  epitopes on a given protein 

sequence, however, information on subsequent activation of T cells and interactions 

among other immune components is lacking. Because these tools use primary amino acid 

sequence information, they do not take into account the effect of non-sequence related 

factors such as formulation, impurities , and aggregates on antibody response (Table  I). 

In vitro models 

The limitation of in silico methods in providing information on activation of CD4+ T cells 

can be partly overcome by in vitro T cell  assays. In vitro T cell  assays are used to assess the 

potential of whole proteins to activate CD4+ T cells, as well as map T cell  epitopes using 

peptides spanning the sequence of interest. The assays typically involve large numbers of 

patient or healthy donors to represent a large proportion of human leucocyte antigen 

(HLA) allotypes in the world population and to reach sufficient statistical power (Table  1). 

There are many different methods in practice, but in general, peripheral blood 

mononuclear cells (PBMCs), including APCs and T cells from patients, naïve donors or 

antigen-exposed individuals are harvested and brought into contact with either the whole 

antigen or peptide fragments (mostly 15 residues per peptide overlapping 10 or 12 amino 

acids). Subsequently, the type and strength of the immune response can be determined 

by various intracellular and extracellular T cell  markers. A method commonly used for the 

determination of T cell  activation is ELISPOT. This ELISA based method detects cytokines 

secreted by activated T cells, such as IL-2, IL-4, or INF-γ, where INF-γ ELISPOT seems to be 

favored by many researchers (30,31). More recently, flow cytometry was implemented as 

a more direct method for detection of T cell  activation by analyzing the expression of 

CD25 at the cell  surface of CD4+ T cells (32). There is evidence that the repertoire of 

epitopes presented in patients is similar to the epitopes identified in vitro. Two 

independent research groups have identified CD4+ T cell  epitopes in the C1 and A2 

domains of Factor VIII using in vitro primed T cells from healthy donors (33,34). These 

observations have enabled the use of community donor blood for mapping T cell  epitopes 

and determining the T cell  activation potential by whole proteins (Table 1). Data from in 

vitro T cell  assays, such as the number and potency (i mmunodominance) of individual 

T cell  epitopes or proteins, are therefore used to predict the rel ative risk of activating a 

T cell  dependent immune response between multiple variants of a therapeutic protein 

during pre-clinical development.  
 

In general, the use of in vitro T cell  assays allows the qualitative and quantitative 

measurement of T cell  epitopes and their role in the activation of T-helper cells, which in 



Chapter 3 

50 

turn enables strategies such as T cell  epitope removal to be employed. In addition, in vitro 

T cell  assays can be used to monitor T cell  activation and proliferation of differently 

formulated products or in presence of aggregates, which is not possible with in silico 

methods. However, as these assays are based on cell  material from donors, batch-to-

batch and donor variability makes s tandardization an issue (Table 1). The use of large 

donor pools is a requirement, making the tools relatively low-throughput at this time (20). 

Combined use 

Often, CD4+ T cell  based in silico and in vitro tools are combined in preclinical  

immunogenicity prediction. Because these models simplify the complexity of the immune 

system and its responses, they are used to assess relative potential for immunogenicity 

due to the presence of CD4+ T cell  epitopes and activation, between similar products 

directed against the same target. In silico tools are particularly used to screen early stage 

drug candidates or l ibraries, in order to exclude the protein variants or designs that show 

a significantly higher number of potential T cell  epitopes compared to other variants. In 

vitro models in particular are also used to study the effect of product-related factors other 

than primary structure on T cell  activation. They are, however, less suitable to predict 

aspects of immunogenicity that involve complex immune processes such as breaking of 

immune tolerance (discussed later on), incidence of antibody formation, and clinical 

consequences of ADAs. 

Models Predicting B cell epitopes and B cell activation  

B cell  epitopes are important in eliciting an immune response against bacteria and viruses. 

A repeated array of B cell  epitopes on the surface of these mi croorganisms can bind to 

multiple B cell  receptors on the B cell  surface, and by crosslinking them, directly activate 

B cells to give an antibody response. This type of immune response is different from the 

classical T cell  dependent immune responses in many ways, but two of the most important 

features are that T cells are not necessarily involved in antibody formation and that 

immunological memory formation against foreign antigens is absent (35). Clinical studies 

on patients treated with therapeutic interferon beta and an anti -TNF antibody have shown 

that patients being antibody positive during first treatment did not show a fast increase in 

antibody titers when treatment was restarted. This indicates that no immunological 

memory was formed (36,37). Although a l imited number of patients was included, the 

data suggest that repeated B cell  epitopes and crosslinking of B cell  receptors could be 

important in immunogenicity. It might be hypothesized that protein aggregates could 
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express repeated cell  epitopes needed to crosslink B cell  receptors and activate B cells. 

This has been suggested as a mechanism for breaking of immune tolerance (38). 
 

Models predicting individual B cell  epitopes are available, however, taking into account 

that the structure of proteins is highly dependent on production conditions, formulation, 

and handling and that, with changing structure, other B cell  epitopes can form, it seems 

almost impossible with our current knowledge to accurately predict B cell  epitopes using 

in silico models (39–41). Nonetheless, advances in their predictive value are made (42). 

Also it is questionable if these models would have any value for immunogenicity 

prediction, because individual epitopes are incapable of crosslinking B cell  receptors; 

instead, repeated epitopes are needed for this. Models looking at repeated protein 

structure are therefore more likely suitable in predicting immunogenicity of therapeutic 

proteins. While current in silico methods are unsuitable for this, in vitro B cell  models 

could be a solution. However, the maintenance of B cells in vitro is a highly complicated 

task and current assays using PBMCs in short term suspension or in monolayer format, do 

not represent in vivo behavior sufficiently (43). 
 

So, for now no models are available that could predict immunogenicity of therapeutic 

proteins due to repeated structures or repeated B cell  epitopes. Moreover, if such models 

would become available, they would likely encounter similar l imitations as the T cell  

epitope models in that they would focus on a single component aspect of the immune 

response, and not take into account the biological complexity of the entire immune 

system. 

In vivo models 

In vivo models used to predict immunogenicity of therapeutic proteins have the advantage 

over in silico and in vitro tools that immunogenicity can be studied in an organism with an 

intact immune system. In contrast to the simplified nature of in silico and in vitro models, 

in vivo models allow the interplay between immune cells and complex processes 

underlying antibody formation against therapeutic proteins. However, because preclinical 

assessment of immunogenicity in vivo is expensive and time consuming, animal models 

are less suitable for large-scale screening. Moreover, care has to be taken that the animal 

models are representative for the immune processes taking place in humans. They are 

therefore mostly used after lead selection by in silico and in vitro models (Table 1). Similar 

to the models described before, the predictive value of animal models depends on the 

items that need prediction, on the type of therapeutic protein and on the similarity of the 

processes underlying immunogenicity compared to those in humans. These include the 

similarities or differences in pharmacokineti cs, pharmacodynamics , and target binding 
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between humans and the species of animal model. Similar to the in silico and in vitro 

models, animal models cannot be used to predict incidence of immunogenicity in patients. 

Also the specificity of humoral antibody responses and therefore potential for clinical 

effect will  be hard to predict. However, they might be used to assess relative 

immunogenicity, presence of ‘neo-epitopes’ and breaking of immune tolerance (Table 1). 

We assume that animal models with an immune system that is genetically most similar to 

the human immune system are most predictive. Therefore, conventional animal models 

such as rats and mice would have least predictive value, while transgenic animal models 

and non-human primates would have highes t predictive value. Recently developed animal 

models such as the human xenograft mouse models are being i nvestigated for 

immunogenicity prediction. 

Conventional Animal Models 

Animal models such as rats and mice have been often used in the early years of pr eclinical 

immunogenicity prediction. However, most human therapeutic proteins are foreign 

proteins (i.e. have limited sequence homology) for these animals and as a result they will  

usually develop an ADA response against a foreign protein. This may not be informative, 

as the exact mechanisms underlying immunogenicity might be different in humans (38). 

Even when the therapeutic protein is foreign in both humans and the animal model (e.g., 

plant derived or bacterial proteins), species differences in the immune system, and 

restriction in genetic diversity between animals (in the case of inbred strains) might 

introduce false results. 
 

When assessing the predictive value of conventional animal models, it is expected that 

they overestimate immunogenicity development in patients since rats and mice are l ikely 

to form antibodies against all  (recombinant human) therapeutic proteins (44). This also 

implies that the ADAs will  mostly be neutralizing. Therefore these animals are insensitive 

to discriminate between binding and neutralizing antibody responses which both can 

occur in patients and are therefore unsuitable to predict clinical  relevance of antibody 

formation. In addition, Katsutani et al. (45) have shown that wildtype mice seem 

unsuitable to assess the presence of neoepitopes. Using human tissue plasminogen 

activator as antigen, they have shown that site specific modification does not lead to 

increased recognition of epitopes in these mice. Because these animals already recognize 

multiple epitopes due to foreignness of the protein, the prediction of neo-epitopes is very 

difficult, especially when taking into account s pecies differences in MHC class  II. However, 

for some proteins, rats and mice might be of value to determine the relative 

immunogenicity between products of the same class. For example, Bellomi et al. (46) have 

used BALB/c mice to assess relative difference between interferon beta 1a formulations. 
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They found that a new formulation of interferon beta 1a was less immunogenic compared 

to commercially available formulations, Avonex and Rebif. 

Mice Rendered Immune Tolerant to Human Proteins 

In order to prevent therapeutic proteins from inducing an ADA response in mice due to 

their foreignness, transgenic mice that express a human protein have been developed. As 

a result these mice are, l ike humans, immune tolerant for the particular human p rotein 

they express. Studies in such mice have shown that the immunogenicity of clinical 

preparations of recombinant human interferon alpha, interferon beta and monoclonal 

antibodies (mAbs) is significantly enhanced by the presence of aggregates (47–50). In 

particular, aggregates induced by metal catalyzed oxidation and aggregates composed of 

monomers that stil l  exhibi t native structural elements appear most immunogenic. 

However, by using these models it is not possible to predict what level of aggregation is 

needed to induce an antibody response in patients. These models have shown to predict 

relative immunogenicity of interferon beta products (51), with the most immunogenic 

product in patients (Betaferon) being more immunogenic in these mice compared to other 

products such as Avonex and Rebif. However absolute incidences of antibody positive 

individuals differed between the immune tolerant mice and patients. 
 

Transgenic mouse models also have been shown to predict neo-epitopes when given a 

modified form of human insulin and tissue plasminogen activator (52,53). So, these 

models can therefore be used to determine relative immunogenicity of protein variants 

and formulations. Moreover, studies conducted with immune tolerant mice have shown 

that although being tolerant for human growth hormone, an immune response could be 

induced when these mice were treated with a sustained-release formulation. This 

i l lustrates that – in addition to predicting immunogenicity due to aggregation, relative 

immunogenicity, and neo-epitopes – these models can be used to study breaking of 

immune tolerance (54). Immune tolerant murine models are, however, l imited by their 

inability to predict the incidence of immunogenicity or clinical consequences of ADA 

formation (Table 1). 
 

A major disadvantage of the immune tolerant mice is that they, l ike conventional animal 

models, respond against a therapeutic protein via a rodent immune system. If the 

mechanisms underlying immunogeni city are T cell  (epitope) triggered, absence of human 

MHC class II in these mice likely l imits the usefulness of such models. In turn, differences 

in B cell  repertoire might affect prediction for B cell  epitopes if these appear to be the 

trigger for immunogenicity (Table 1). 
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Non-human primates 

Because proteins expressed in humans and non-human primates show a high degree of 

homology, non-human primates are expected to be immune tolerant for most human 

proteins. Also their immune system is more similar to the human immune system 

compared to rodent models and transgenic mice. Therefore, the mechanisms underlying 

the antibody response in non-human primates would, in theory, better reflect the human 

immune response against therapeutic proteins. Non-human primates such as 

chimpanzees and rhesus monkeys have been shown to predict the presence of neo - 

epitopes and relative immunogenicity of protein structural variants of various human 

proteins such as tissue plasminogen activator, growth hormone and insulin (45,55,56). In 

theory, they might also be suitable to study breaking of immune tolerance for therapeutic 

proteins, which are similar to their endogenous proteins. In one occasion non -human 

primates have also been shown to predict development of neutralizing (cross -reactive) 

antibodies to thrombopoietin that was also observed clinically (57). However, is 

questionable if this is generally applicable to other therapeutic proteins (Table 1). Despite 

their apparent superiority as predictive model, non- human primates are incapable of 

predicting incidence of immunogenicity in patients. Moreover, non-human primates 

cannot be used to predict immunogenicity of all  therapeutic proteins; apparently their 

predictive value strongly depends on the protein in question. For example, for 

interleukin 3 they have shown very poor predictability (58). This implies that the predictive 

value of these models is only known for already tested proteins (Table 1). 

HLA Transgenic Mice 

Mice expressing specific human HLA allotypes (and lacking endogenous mouse MHC 

class II) have been developed and used for research to evaluate the involvement of human 

HLA alleles in indications such as allergy and autoimmune diseases (59,60). Applications of 

these models in predicting the immunogenicity of protein therapeutics are currently being 

developed. These models will  be particularly valuable when immunogenicity is driven by 

CD4+ T cell  epitopes. To improve the suitability of these mice, they should be crossed with 

mice where immune tolerance against a specific recombinant therapeutic or class of 

therapeutics is induced by either transgenic expression of the protein of interest or 

induction of tolerance during neonatal development (61,62). For example, in order to 

produce a model that might be suitable to predict the potential immunogenicity of mAbs, 

transgenic mice that express (monoclonal) human immunoglobulin could be bred with 

transgenicmice that express human HLA alleles  (63–66). In order to avoid generating mice 

that are tolerant to both human and murine mAb variable region sequences, these mice 

should not express endogenous mouse MHC class II and mouse immunoglobulins. 
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However, obtaining HLA-diversity, which is comparable to that of the human population, 

will  be a significant challenge. 

Human Immune System Xenograft Models 

As an alternative to transgenic mice, models based on immunodeficient NOD scid IL2Rγ/- 

or Rag2−/−γc−/− mice are being developed. These mice lack functional mouse T- and 

B cells, have no functional complement system, have diminished mouse NK functioning, 

and lack mouse macrophage activity. These mice have shown to be very successful for 

engraftment of human immune cells and therefore have a functional human -like immune 

system (67,68). Neonatal immunodeficient mice are used for engraftment of CD34+ 

human hematopoetic progenitor cells, which can be isolated from fetal human tissue. This 

engraftment leads to the reconstitution of 40–60% of human CD45+ mononuclear cells in 

peripheral blood and spleen, and gives sizable compartments of human B cells, T cells, 

natural kil ler cells, monocyte/macrophages , and dendritic cells. Since these mice express 

human MHC class  II and should be tolerant to human immunoglobulins, they might be 

suitable for the prediction of the immunogenicity of therapeutic proteins including mAbs. 

In addition, as the biological activity of the therapeutic target probably plays an important 

role in immunogenicity (e.g., soluble versus membrane-bound), these models offer the 

advantage to express many therapeutic targets (e.g., TNF, BAFF, CD3, CD20) as human 

(69–71). 
 

There are, however, l imitations in using some of the currently available engraftment 

models. First, they are not tolerant against all  human proteins. Second, there is no 

germline transfer of genes encoding human immune cells, so each mouse has to be 

generated on an individual basis. As shown in some studies, this  may lead to considerable 

variability in immune responses to antigens that stimulate potent responses in humans. 

Furthermore, some strains of these mice do not express HLA molecules on thymic 

epithelial cells. Consequently, human T cells developing in these humanized mice lack the 

ability to recognize antigens in an HLA-restricted manner, precluding the investigation of 

human T cell  responses against therapeutic proteins (72). However BLT mice, which are 

immunodeficient mice in which human liver and thymus fragments are implanted under 

the renal capsule and which are given additional haematopoietic stem cells  intravenously, 

do have HLA restricted T cells (73). However B cell  responses in these BLT mice appear to 

be generally l imited to IgM, potentially due to immature lymph node architecture. 
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General Conclusions and Recommendations 

The main limitations in predictive value of the models presented in this paper are (i) 

insufficient knowledge on the interplay of immune mechanisms underlying 

immunogenicity of therapeutic proteins and (i i) insufficient clinical validation. Future 

studies should therefore address these two topics. 
 

The mechanisms underlying immunogenicity of therapeutic proteins are not well studied. 

For example, it is sti l l  uncertain whether the pr imary mechanism by which therapeutic 

proteins induce antibodies is driven via a  T cell  dependent mechanism, via repeated B cell  

epitopes, via another yet unknown mechanism, or whether immunogenicity is a 

combination of all  of these. We also do not know whether there is a general immune 

mechanism explaining immunogenicity of all  (recombinant human) therapeutics, or if this 

mechanism is product specific. Special attention should be taken when considering 

proteins that are non-human, vs. human proteins in patients with endogenous 

counterparts vs. human proteins used in replacement therapy for patients deficient in the 

endogenous counterpart. To answer these questions, more studies in animals, but also 

more in depth studies in patients are needed. One of the priorities should be to elucidate 

to what extent T- and B cell  epitopes are triggering ADA formation, and if there is HLA 

restriction in this response. Also we should focus on understanding contributions of 

aggregates. These are considered one of the major risk factors of immunogenicity. 

However, despite numerous publications we stil l  do not know which specific types of 

aggregates are immunogenic and why they can induce ADAs. Is this because of better 

uptake by APC or are they capable of directly activating B cells? It i s also not clear whether 

low levels of aggregates found in many therapeutic proteins play a role in the protein 

immunogenicity. In addition, insight in treatment and patient-related factors affecting 

immunogenicity should be gained. For example, we do not know if a patient forming 

antibodies against a certain drug can be retreated with that same or a  similar drug on a 

later occasion without having a memory response. For now this is (almost) not studied, 

although sparse clinical data suggests that this might be possible for some therapeutic 

proteins (36,37). We also need more data on why some individuals form ADAs and others 

do not, while being treated with the same drug. 
 

Another focus should be on validating the current predictive models. Data from in silico, in 

vitro, and in vivo models should be combined with clinical data in order to answer 

questions l ike: Does the removal of T cell  or B cell  epitopes lower immunogenicity in 

patients? And to what extent are in vivo models capable of predicting immunogenicity in 

patients? Clinical immunogenicity data comparing the original and corresponding 

“deimmunized” variants of the same protein species  should give insight into the effect of 
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predicted epitope removal on immunogenicity. Also comparing predicted CD4+ T cell  

epitopes, in silico, and in vitro, with actual peptides recognized by MHC II in patients 

would be needed to validate the suitability of epitope prediction by these models. The 

assessment of predictive value of animal models might be achieved by comparing 

antibody incidences of different products between animals and patients. As mentioned 

before, parameters such as antibody titer and clinical effect of ADAs might not be suitable 

in assessing predictive value. Foundations such as the European Immunogenicity Platform 

(www.e-i-p.eu) gather experts in the field to discuss these items and to start 

collaborations aiming to answer some of the questions mentioned above. However, the 

studies comparing in silico, in vitro, in vivo and cl inical data encounter some chal lenges. In 

silico, in vitro, and in vivo models are used to predict relative potential for immunogenicity 

between different products during developmental stages. In order to compare these 

results with clinical data, the same products should be given to patients. This poses a 

problem. Clinical testing will  not involve multiple drug lead candidates. Also chances are 

that drugs given to patients in clinical testing will  have different formulation, impurities 

and aggregation profiles than those during early development. A solution would be to 

include a reference drug during preclinical tes ting that has a known immunogenicity 

profile in patients. It is critical that such reference exhibits similar characteristics to the 

test product, such as target binding, size, and protein class, since these characteristics 

could all  influence immunogenicity. For new drugs, having a reference with similar 

characteristics might be very challenging. These references , however, are very l ikely 

available for biosimilar development in the form of the original product against which the 

biosimilar should be tested. 

Conclusion 

The predictive value of the current in silico, in vitro, and in vivo models used to assess 

immunogenicity of therapeutic proteins  is uncertain and in several cases only partial 

answers are obtained. In order to gain more knowledge about their predictive value and 

to potentially improve existing models, clinical validation and increased insights into the 

immune mechanism underlying immunogenicity should be aimed for. Predicted 

immunogenicity in these models may therefore not lead to a go/no go decision on 

individual drug leads, but instead could be used in the selection of one drug candidate 

over another for further (clini cal) development. In silico, together with in vitro models 

would be most suitable to screen multiple drug leads for potential immunogenicity due to 

T- or B cell  epitopes, activation of T- and B cells or due to a particular formulation. A 

selection of these leads, with assumed lowest immunogenicity potential, would then be 

tested for capability to form ADAs in animal models. These models could give an indication 
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of their relative potential immunogenicity by studying antibody inci dences. Ideally for all  

predictive models, a reference product with known immunogenicity in patients would be 

tested in parallel. It is critical that such a product exhibits similar characteristics, such as 

target binding, size, and protein class. With the use of such a reference, better insight into 

immunogenicity potential of drug leads might be possible, however , it appears unlikely 

that for new drugs such reference products would be ava ilable. For now, clinical testing 

will  stay critical for determining actual immunogenicity in patients. 
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