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Immunogenicity of therapeutic proteins 

Since the introduction of insulin as the first protein-based pharmaceutical product in the 

1920s, the market for and the number of biopharmaceutical drugs has been rapidly 

growing. At present, about 100 different therapeutic proteins  have been approved for 

clinical use by the US Food and Drug Administration (FDA) and they have acquired a key 

role in the treatment of various diseases such as several types of cancer, autoimmune and 

inflammatory diseases, and metabolic disorders  (1). The first therapeutic proteins 

originated from non-human sources, such as equine antisera and insulin from bovine or 

porcine pancreas. Even though effective for therapy in humans, the large drawback of 

such proteins was their low purity and foreign structure to the human immune system, 

resulting in immune reactions in patients against the therapeutics (2). Extensive research 

has been performed in the past 30 years to improve safety and efficacy of 

biopharmaceuticals. With the development of improved molecular biology methods, 

recombinant expression techniques and better purification protocols, it has become 

possible to obtain highly pure recombinant human proteins. It wa s believed that those 

recombinant human proteins will  not be recognized as foreign by the human immune 

system and will  therefore not reveal the immunogenicity-related problems of former 

therapeutic proteins. However, clinical and post-market studies show that even these 

“human” products stil l  induce immune responses in patients, suggesting that not just 

“foreignness” alone is responsible for the unwanted immunogenicity (3–5).  
 

As we know now, unwanted immunogenicity of therapeutic proteins is a complex issue 

depending on patient-related factors (e.g., type of disease, genetic background), 

treatment-related factors (e.g., administration route, dosage regime), and product-related 

factors (e.g., product modifications, contaminants , and impurities) (6–8). An introduction 

of biological mechanisms potenti ally underlying unwanted immunogenicity can be found 

in Chapter 3. While it is sti l l  not entirely clear how each factor contributes to a drug 

product’s potential for immunogenicity, it is generally recognized that the presence of 

aggregates is one of the main product-related risk factors for inducing immune reactions 

in patients (9–12).  

Protein degradation and aggregation 

Protein degradation can occur throughout the life cycle of a drug product, including 

manufacturing, storage, handling and administration to patients . The protein can thereby 

undergo various ways of degradation (13). Chemical modification for example include 

reactions such as deamidation, oxidation, isomerization, and peptide bond cleavage. 
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These can compromise the primary structure and thereby the conformational stability of a 

protein. Conformational stability can also be influenced by physical degradation including 

exposure to elevated temperatures, solid-liquid and liquid-air interfaces. In many 

instances, protein degradation results in protein aggregation.  
 

Protein aggregation can follow a number of different mechanisms and pathways  (Figure 

1). These mechanisms are not mutually exclusive and can occur in parallel within the same 

product. The predominant mechanisms depends not only on the protein itself, but also on 

a variety of other factors, such as the formulation, the presence of impurities or 

contaminants, and the exposure to chemical or physical  stress mentioned above (14–16). 

It is currently not fully understood how different aggregation mechanisms and the thereby 

resulting structural differences of aggregates influence their potential immunogenicity. 
 

 

Figure 1: Schematic illustration of five common aggregation mechanisms (14). 
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Formulation development, an integral part of every biopharmaceutical drug product 

development program, aims to obtain a product that, amongst other things, maintains the 

stable and functional state of a therapeutic protein throughout the intended shelf l ife, 

while suppressing the potentially harmful degradation pathways. A detailed introduction 

into formulation development can be found in Chapter 2.  

Analytical challenges 

One major challenge during protein formulation development is the reliable 

characterization and quantification of potential degradation products, particularly 

aggregates and particles in the size range between around 0.1 to 10 µm (17,18). 

Importantly, proteinaceous particles in this size range are potential ly the most 

immunogenic class of protein aggregates and are thus generally considered a critical 

quality attribute (19–22). While instrument manufacturers have worked on providing new 

analytical techniques to overcome an analytical gap in the subvisible size range identified 

in 2009 (19), there is a large demand of their critical scientific evaluation (23–26). 

Additionally, subvisible particles can be composed of non-proteinaceous material, such as 

particle sheds from pumps or primary packaging material s (including sil icone oil  droplets 

in prefil led syringes) or particles formed by degradation of excipients (e.g., polysorbate). 

While those are not necessarily harmful themselves, they can negatively impact protein 

stabil ity and thereby compromise product quality (27–32). The presence of non-

proteinaceous particles can also be indicative of problems during the production process 

(33). Unlike the compendial specification for particles ≥ 10 µm and ≥ 25 µm (34,35), there 

are currently no specifications for particle concentrations in the size range < 10 µm. It is 

therefore necessary for developers of innovator as well as biosimilar products  to assess 

the nature and criticality of potentially present aggregates and particles case-by-case. 

Aim and outline of this thesis 

The aim of the work presented here was to evaluate and improve established and 

emerging analytical techniques for the characterization of aggregates and particles in the 

nm- and µm-size range, which are to be employed during research and development of 

biopharmaceutical drug products. These analytical techniques are then applied: 

(i) to characterize particles in the nm- and µm-size range present in protein formulations 

and 

(ii) to study the effect of nanoparticulate impurities from excipients on the stability of 

therapeutic proteins. 
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Chapter 2 is an introduction into the field of protein formulation development. It reviews 

literature on current protein formulation development strategies  and summarizes current 

challenges formulation scientists are facing. Chapter 3 is an introduction into the concept 

and underlying mechanisms of unwanted immunogenicity, as well as a review of various 

models currently employed to predict immunogenicity during the different stages of 

research and development of biopharmaceutical drug products. In Chapter 4, an improved 

version of the commonly applied subvisible particle counting technique light obscuration 

is investigated for its applicability to analyze formulations with high protein 

concentrations. The influence of sample viscosity on the results of different system setups 

is studied using highly concentrated drug products and model solutions wi th enhanced 

viscosity, which are spiked with polystyrene beads. Chapter 5 is a comparative evaluation 

of Micro-Flow Imaging and Resonant Mass Measurement as emerging techniques for the 

differentiation of protein particles and sil icone oil  droplets in biopharmaceutical 

formulations. Artificially formed protein aggregates and sil icone oil  droplets in various 

concentrations and size ranges are analyzed individually and in different combinations by 

both systems. Furthermore, a novel mathematical fi lter, differentiating the particle types 

based on morphology, is developed and evaluated in comparison to currently used 

algorithms. In Chapter 6, four of the most relevant flow-imaging microscopy instruments 

are compared with the goal of identifying their differences, benefits and shortcoming. 

Artificially formed protein aggregates and sil icone oil  droplets as well as counting and 

sizing standards are used to test the instruments with respect to their accuracy and 

precision regarding size and concentration determination as well as their capability of 

differentiating particles of different morphology. In Chapter 7, an interference of sugar-

containing formulations  with l ight scattering based detection of nm-sized protein 

aggregates is investigated. The root cause of this interference is studied by using various 

different sugars, purification techniques and analytical instruments. In Chapter 8, 

nanoparticulate impurities found in pharmaceutical -grade sucrose are investigated and 

their effect on the stability of four therapeutic monoclonal antibodies  currently on the 

market is studied in a time and concentration dependent fashion. In Chapter 9, the main 

findings are summarized and perspectives for further developments  of analytical 

techniques and improvements of scientific knowledge in the field of subvisible particle 

analysis are briefly discussed. 
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Abstract 

Formulation development is an essential part of every biopharmaceutical development 

program and important for the therapeutic and commercial success of a promising protein 

drug product. Assuring the quality, safety, and efficacy of a therapeutic product 

throughout the intended shelf l ife are thereby major goals. Formulation development is 

composed of multiple phases, interacting with other product development exercises as 

early as discovery research all  the way until  and beyond market approval. Every drug 

product demands a tailor-made formulation, due to the complexity of degradation 

pathways potentially affecting the product stability, the specific characteristics of the 

active pharmaceutical ingredient, the demands for patient compliance, and even 

marketing considerations. Formulation development can be approached using various 

strategies, based on a rational design, relying on scientific knowledge in low or medium 

throughput, or high-throughput formulation (HTF) approach screening of hundreds or 

even thousands of conditions employing miniaturized analytical methods . In this chapter 

an introduction to the field of protein formulation development is given, l iterature on 

current protein formulation development strategies is reviewed, and current challenges  

are summarized. 

  



Formulation Development of Biologics  

21 

Introduction 

Protein formulation development aims to render a therapeutic protein product robust for 

manufacturing, storage, handling and administration to patients. So, formulation 

development is essential for the therapeutic and commercial success of a promising 

protein molecule: “it is a medicine, not a molecule, that we are giving to the patient” (1). 

With this chapter, the reader is introduced to general concepts related to formulation 

development of biologics. The focus is on liquid and lyophilized protein formulations for 

parenteral use, as those comprise the vast majority of our current arsenal of marketed 

biologics. Nevertheless, most of the concepts described in this chapter also apply to other 

biologics, such as vaccines and DNA- and RNA-based products. Issues specific for the 

challenges of protein delivery systems for non-invasive administration and particles for 

sustained release and targeting are beyond the scope of this chapter; the interested  

reader is referred to the literature (2–6). 
 

Within this chapter we discuss various elements of protein formulation development, 

formulation strategies during several stages of development and challenges that can be 

encountered. Rather than going into great detail, the intention is to present the 

complexity of the topic and important aspects that should be considered during 

formulation development (see Table 1). 

Formulation Development Strategies and Approaches 

Protein Formulation: Beyond Stabilization 

One of the major challenges in the formulation of therapeutic proteins is to a ssure their 

stability, not only during storage but also during manufacturing, shipment, handling and 

administration. Nevertheless, it should be realized that the ‘optimal’ formulation is not 

necessarily the one that is most stable, but rather should fit the purpose depending on 

several factors. These include, besides sufficient stability, the stage of development, 

clinical requirements, regulatory requirements, packaging, and device configuration, 

economical issues, marketing considerations or the freedom to operate within the patent 

landscape (Table 1). As an example, what is ‘best’ in terms of a product’s stability is not 

necessarily good from a patient’s or economical perspective. For instance, suppose a 

certain product would be most stable in 50 mM sodium citrate, pH 4.0. If the product is 

meant for subcutaneous administration, this formulation probably would be not 

preferred, because the unfavorable combination of low pH and hypotonicity may cause 

pain at the injection site (7). The same formulation might, however, be acceptable if the 

product were intended to be diluted in an infusion liquid prior to intravenous 
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administration, provided that the product is stable in use and compatible with the infusion 

system. Another example: if a lyophilizate in a vial would be stable for five years but the 

same molecule could be formulated as an aqueous solution in a prefil led syringe with two 

years shelf l ife, the latter might be preferred over the more stable formulation for 

economical and marketing reasons and due to easier patient self-administration.  
 

Table 1: Critical factors to be considered during formulation development.  
 

Factor Description / attributes / examples 

Analytical methods High- versus low-throughput, stability-indicating, QC, extended 
characterization 

API Type of protein, physico-chemical properties, e.g., molecular weight, pI, 
hydrophobicity, solubility, post-translational modifications, pegylation  

Clinical factors Patient population (e.g., age, indication, concomitant medication), therapeutic 
window, self-administration versus administration by professional, 
compatibility with infusion solution 

Competitive landscape Originator versus biosimilar product, patent situation, competitive drugs 

Dosage form Single- or multi-dose, prefilled syringe, dual chamber cartridge, pen cartridge 

Drug substance API concentration, formulation composition, available amount, purity 

Excipients Pharmaceutical quality, safety record (for intended administration route and 
dose), manufacturer, tested for critical impurities, stability 

Manufacturing capabilities Disposable/non-disposable technologies, dedicated equipment, filling line / 
pumping 

Other factors Budget, time(lines), manufacturability, company policy, marketing strategy, 
regulatory requirements 

Phase of development Preclinical, early clinical, late clinical, commercial  

Primary packaging material Glass, polymers, rubber, silicone oil, metals, leachables (anti -oxidants, 
plasticizers, etc.) 

Route of administration Subcutaneous, intravenous injection or infusion, intramuscular, intravitreal, 
intraarticular, intradermal 

Target dose and dosing 
regime 

Concentration, volume, indication (e.g., one-time application or chronical 
application) 

Type of formulation Liquid, lyophilizate, frozen liquid 

 

Since a l iquid formulation is often faster and cheaper to produce and is more user -

friendly, generally it is preferred over a lyophilizate. However, it may be impossible to 

develop a sufficiently stable l iquid formulation, either because of time constraints during  

(early) product development or because the molecule turns out to be insufficiently stable 

even after extensive formulation development exercises. The obvious alternative in such 

cases is a dry formulation (apart from an early-stage frozen liquid formulati on), which is 

almost exclusively achieved by lyophilization, a process requiring dedicated formulation 

development. 
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From a formulation scientist’s perspective, in an ideal world already at the earliest stage of 

development the final dosage form, the requi red stability profile as well as other needs 

(see Table 1) have been defined, high-throughput, stability-indicating analytical methods 

are in place, and material, time and resources are available in unlimited amounts. 

However, the real world is quite different. Consequently, the first formulation used during 

preclinical studies (e.g., toxicity studies) is l ikely going to be different from the formulation 

applied during later clinical phases and the final formulation used for commercialization. 

This may be explained, besides by the above-mentioned reasons, by changes in the dosing 

regime, the route of administration or the primary packaging material (e.g., switch from 

vials to syringes) or by instabilities occurring in a not-yet-optimized formulation as well as 

additional insight gained into the stability of the protein molecule and/or the excipients. 

Nevertheless, it is highly favored to have the final formulation composition defined as 

early as possible during drug product (DP) development to avoid additiona l studies, 

regulatory efforts and to align drug substance (DS) and DP composition. To this end, it is 

imperative that the formulation scientist acquires knowledge about the clinical needs, 

marketing considerations as well as regulatory requirements. Moreover, the more is 

known about the physical and chemical stability of a protein molecule as function of major 

formulation variables and external stress factors (temperature, mechanical stress, freezing 

and thawing etc.) early in the development, the less complex, costly and time-consuming 

it will  be in a later stage of development to accommodate a formulation to the needs of 

the molecule and the product. 
 

 “There isn’t just one way of doing it” holds true for formulation development of biologics 

and there are numerous ways and philosophies how to come to a stable and robust 

formulation. No matter which approach is followed for achieving a satisfactory 

formulation, the selection of analytical methods plays a crucial role. Already early in the 

process the critical routes of instability need to be identified in order to establish the 

important stability indicating analytical methods as well as the appropriate formulation 

strategy to tackle the instability issues. Formulation development usually evolves during a 

drug development program, and often thereafter, and can generally be divided in the 

following activities: preformulation, formulation development for DS, DP formulation 

development for preclinical phases, for early clinical phases, for late 

stage/commercialization, and finally formulation activities during the life cycle of a 

product (Figure 1). Of course, there certainly is an overlap between these phases and 

wherever applicable, considerations for a later stage should be reflected as early in the 

development process as possible. In the following sections, we describe first what typically 
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forms part of a protein formulation and then discuss several phases and approaches of 

formulation development. 
 

 
Figure 1: Diagram of a formulation development process . Modified from (8). 

Components of a Protein Formulation 

Active pharmaceutical ingredient and drug substance 

The term active pharmaceutical ingredient (API) refers to the molecule of interest e.g., a 

peptide, monoclonal antibody or enzyme. In a pure state, the API would typically be a 

solid powder, as often found for peptides. This state however, is extremely impractical to 

obtain and/or presents an unstable state for most biologics. Therefore, a DS, a (sometimes 

frozen) l iquid formulation containing the API is used for purified bulk storage. A DS 

typically results from a chromatographic or ultra -diafi ltration step at the end of a 

purification process. In commercial -scale production, the formulation composition of the 

DS is often very similar to that of the final DP, but this can obviously not be the case when 

formulation development has yet to be completed. This may have consequenc es for DP 

formulation screening. 

Excipients 

One rule in formulation development is to avoid putting anything into the formulation 

that is not needed. In other words, a formulation should be kept as simple as possible and 
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each excipient, as well as its quantity, should be justified. Having mentioned this, it is not 

an easy task to combine the right excipients in the right concentration, because a 

stabilizing excipient potentially exhibits a destabilizing effect on a different protein 

instability pathway, and excipients potentially influence each other’s action. For instance, 

polysorbates added for protection against interface related protein aggregation may 

contain oxidizing species, which may promote chemical instability (9). Whereas sodium 

chloride could help reducing a formulation’s viscosity, it may negatively affect a protein’s 

colloidal stability and also be detrimental upon freezing or lyophilization as 

upconcentrated in the freeze-concentrated solution (10). Finally, the most frequently used 

excipient, water for injection, is a natural solvent for proteins but at the same time 

mediates most if not all  possible protein degradation reactions, reason why many 

products are lyophilized to reduce the water content to minimal amounts. 
 

Table 2 gives an overview of the most commonly used excipient classes and their 

functions in protein formulations. Importantly, it is common practice to choose among 

excipients that are approved and commonly used in protein formulations (see examples in 

Table 2) in comparable doses and dosing frequencies for the intended route of 

administration. Although it would be interesting to explore novel  excipients in order to 

expand the options for a formulation scientist, including a new excipient in a formulation 

is often a ‘no go’. The reason is that it would greatly increase development time and cost, 

because – besides the need for a justification to use it instead of a more common 

excipient – its safety would have to be evaluated in order to get the product approved for 

clinical trials and registration. The same may hold true for unusually high doses of a 

certain excipient. Furthermore, the quality of excipients should be considered critically 

and their stability in the specific formulation should be assessed. For instance, sucrose 

might not be included in l iquid formulations below pH 6, because its hydrolysis rate during 

storage may become significant, leading to the formation of fructose and glucose; the 

latter degradant can form glycation products with the protein via the Maillard reaction 

(11). While excipients preferably should comply with compendial standards, additional 

requirements may apply for specific protein formulations . 
 

Excipients can exert several functions, e.g., glyci ne can act as stabilizer, buffer and tonicity 

modifier and may have several modes of action. The need for their inclusion in a protein 

formulation mainly depends on the critical instability pathways of the protein and other 

not protein stability related needs, such as tonicity requirements and lyophilizate 

appearance. Furthermore, certain excipients that may be useful in l iquid formulations 

should be avoided in lyophilizates (e.g., volatile buffers such as acetate, or salts that lower 

the glass transition temperature of the maximally freeze-concentrated solution (Tg’) of 
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amorphous formulation), whereas some excipient functions are specific for lyophilized 

products, e.g., bulking agent, lyoprotector.  
 

Table 2: Common excipients encountered in protein formulations. 
 

Excipient class Function Examples 

Solvents Dissolution Water for injection 

Buffers pH control, tonicity Acetate, citrate, glutamate, histidine, 
phosphate, succinate, glycine, 
aspartate 

Salts Tonicity, solubilization, stabilization, 
viscosity reduction 

Sodium chloride 

Sugars, polyols Tonicity, stabilization, cryoprotection, 
lyoprotection*, bulking agent* 

Mannitol, sorbitol, sucrose, trehalose 

Surfactants Solubilization, stabilization, adsorption 
prevention, reconstitution improvement* 

Polysorbate 20, polysorbate 80, 
Poloxamer 

Amino acids Solubilization, stabilization, tonicity, 
viscosity reduction, pH control, bulking 
agent* 

Arginine, glycine, glutamate, 
histidine, lysine, succinate 

Anti-oxidants Oxidation prevention Methionine, sodium edetate 

Preservatives Antibacterial action (multi-dose 
formulations) 

Benzyl alcohol, meta-cresol, phenol 

* specifically for lyophilized products  
 

Buffer species may have specific destabilizing or stabilizing effects on proteins, besides 

offering buffer capacity. So, buffer type and concentration should be carefully selected 

during formulations screening and the decision depends not only on the desir ed pH 

(typically well within about ± 1 unit from the pKa of the buffer species), but also on the 

protein, the route of administration, and whether it is a l iquid or a lyophilized formulation. 

Furthermore, in high-concentration protein formulations one could consider not to 

include any buffer. Especially in slightly acidic, highly concentrated (>50  mg/ml) antibody 

formulations, the total number of His, Glu, and Asp residues in the API may provide 

sufficient buffer capacity to provide a stable pH value (12). 

Primary Packaging Material 

Since the primary packaging material may affect the quality of the DP, it is an important 

and integral part of the formulation development program. Obviously, the primary 

packaging material depends on the dosage form (see Table 1 for some examples), which in 

turn impacts the way a drug is administered and its user -friendliness. Implications of the 

primary container on formulation development, e.g., the set-up of mechanical stress 
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studies, are addressed in the section “Selection of Analytical Methods and Stress 

Conditions” of this chapter.  

Preformulation 

Preformulation studies are a prerequisite “to know your molecule”, which is vital for the 

entire development cycle of a therapeutic protein. On the short term, preformula tion 

studies may be used for candidate selection and will  help in the optimization of upstream 

and downstream processes for the selected candidate molecule as well as in the 

development of a sufficiently stable formulation for DS, preclinical and first-in-human 

clinical trials. At later stages of development and after commercialization, the 

fundamental knowledge acquired with preformulation activities will  support the rational 

design of (an) optimized formulation(s) and the assessment of the shelf l ife under 

appropriate storage conditions. 
 

The term preformulation is used rather flexible and differently among research groups 

with respect to its transition to, or its position within, formulation development. 

Preformulation studies are performed in close colla boration with discovery research and 

should start as early as a promising drug candidate has been obtained. Preformulation 

studies are meant to gain insight into critical physico-chemical properties of the protein 

drug candidate (see Table 1), such as primary, secondary, and higher-order structure, 

molecular weight, extinction coefficient, isoelectric point, post-translational modifications, 

hydrophobicity, and biophysical properties, such as conformational and colloidal stability. 

Moreover, they are aimed to determine the criticality of various environmental factors, 

such as pH, ionic strength and buffer species, and the API’s sensitivity to pharmaceutically 

relevant stress conditions (Table 3). The latter involves assessment of the predominant 

degradation pathways. The critical predominant degradation pathways, as well as the 

sensitivity to pH and ionic strength, may be quite different between proteins, even for 

relatively similar ones such as monoclonal antibodies  (13–16). Preformulation should 

ultimately lead to the development of suitable stress conditions and a toolbox of stability-

indicating analytical methods, enabling the differentiation between good and bad 

formulations in upcoming, more comprehensive formulation development studies. In 

some cases, selected excipients may already be screened to improve the stability of the 

molecule against critical stress factors. 
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Table 3. Accelerated stability and forced-degradation studies used in protein formulation screening.  
 

Stress type Exemplary stress conditions Anticipated instability types 

Temperature Real-time/intended temperature, 
e.g., at 2-8°C 
Accelerated testing,  
e.g., at 15, 25 or 40°C 

Aggregation, conformational changes, chemical 
changes 

Mechanical, 
shaking 

50-500 rpm, 2 h to >48 h Aggregation, adsorption, conformational changes 

Mechanical, 
stirring 

50-500 rpm, < 1 h to 48 h Aggregation, adsorption, conformational changes 

Mechanical, 
freeze-thawing 

1-5 cycles, e.g., between 25°C  
and -20°C to -80°C 

Aggregation, adsorption, conformational changes 

Oxidation H2O2, 1-5 % for 1-2 days, 
oxygen purge 

Chemical changes (oxidation), aggregation, 
conformational changes 

Humidity* 0-100% RH Aggregation, conformational changes, chemical 
changes, moisture content 

* specifically for lyophilized products  
 

Preformulation includes the testing of the thermal stability, e.g., by (micro-)differential 

scanning calorimetry (DSC) or dynamic scanning fluorimetry (DSF) as well as the testing of 

colloidal stability, including aggregation propensity and viscosity, e.g., by determination of 

the 2nd virial coefficient or the interaction parameter kd by static l ight scattering (SLS), 

dynamic l ight scattering (DLS) or analytical ultracentr ifugation (AUC) (17,18). DSC and DSF 

are often applied to assess thermal events, such as unfolding, which is helpful to define 

relevant conditions for accelerated stability studies . However, although thermal stability 

studies are routinely used in formulation screening, for several reasons thermal stability 

may not correlate with storage stability. For example, Bam et al. (19) observed an 

excellent stabilization against agitation by polysorbates, although DSC experiments 

showed lower unfolding temperatures in presence of the surfactant. Furthermore, the 

ranking of melting temperatures does not always predict the order of conformational 

stability at storage temperature (20,21). Therefore, preformulation should include 

mechanical stress e.g., by shaking or stirring at temperatures, fa r below the Tm value 

(Table 3). Moreover, chemical degradation can arise from the fully native structure even 

without the application of thermal or mechanical stress and might in specific cases be 

more problematic than conformational or colloidal instabili ty (22). Preformulation should 

thus test for such pathways e.g., by forced oxidation (Table 3). 
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Formulation Development 

Formulation development strategies 

Formulation development involves studying the influence of formulation variables on 

potential critical quality attributes upon intended storage, accelerated and forced -

degradation conditions in order to identify a stable and robust formulation based on 

previous experience with the same API or similar molecules and the preformulation work. 

There are several ways and philosophies to reach a stable and robust formulation. One is a 

rational design methodology testing well -selected formulation conditions in low or 

medium throughput and a defined number of excipients based on the properties of the 

molecule, as established in preformulation studies. The alternative high-throughput 

formulation (HTF) approach involves the empirical screening of  hundreds or even 

thousands of different formulations under accelerated conditions preferably employing 

miniaturized analytical methods. Finally, for some well -known molecule formats (e.g., 

monoclonal antibodies), platform approaches might be suitable by a pplying standard 

formulation conditions with a high chance, but no guarantee of success. For novel protein 

molecule designs, such a fast-track formulation approach may not be feasible, as a better 

understanding of the physico-chemical properties and the routes of instability is required 

to identify appropriate formulation conditions.  
 

Independent of the formulation strategy followed, once a suitable formulation has been 

identified, its shelf l ife must be confirmed in real -time and accelerated stability studies 

and its robustness assessed under relevant stress conditions. Accelerated stability studies 

can never replace real -time stability assessment, because rates of the degradation routes 

may have different temperature dependency potentially affected by a c hange in protein 

conformation with temperature (8). Consequently, the predominant degradation pathway 

at elevated temperature, e.g., 25 °C/60 °C, could differ from that under refrigerated 

conditions (2-8 °C). Therefore, and because protein degradation processes can mutually 

influence each other in a complex fashion, Arrhenius kinetics often do not apply to protein 

formulations (23). 

Early-stage formulation development 

Time pressure, l imited resources, the risk of a drug to drop out during the development 

program, or plans to sell  a drug candidate after clinical phase 1, are only some arguments 

to define an early-stage DP for preclinical phase or clinical phase 1 without extensive 

formulation development. In this case, within a relatively short time frame the 

formulation scientist should aim to deliver such an initial formulation that can be 

reproducibly manufactured with a standard container closure system, whil e leaving 

enough flexibil ity to, e.g., alter the dosage regime and the route of administration at later 
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development stages. Lyophilization and reconstitution with a different volume is one 

approach to allow dosing flexibil ity and setting up different protein concentrations 

(24,25). The shelf l ife requirement of this early DP is mainly determined by the logistics of 

supplying the drug for clinical trials. Stability of the API in the DP until  at least the end of 

the trial must be supported by stability data. Importantly, the more is known at this stage 

about the intended commercial formulation (e.g., administration route, dosage form, and 

primary packaging material), the better.  
 

In preformulation and early formulation development, HTF screening can be beneficial, 

especially if there is no or very l imited pre-existing knowledge about the sensitivity of the 

API to formulation and stress conditions. The high number of test formulations can be 

handled when working with automated pipetting systems or robots ideally combined with 

stress testing/stability testing in plates and plate-reader based analytics requiring low 

sample volumes. Typical analytical methods for this purpose are UV spectroscopy (protein 

content, turbidity), fluorescence spectroscopy (intrinsic or extrinsic with dyes) , and DLS, all  

of which can be performed fully automated in multi -well plates. Moreover, intermediate-

throughput methods, such as HPLC/UPLC and DSC, when performed with autosampler 

devices, can be conveniently used (26–28). 

Late-stage formulation development 

While the protein in its initial formulation is tested in clinical trials, the formulation 

scientist will  already be working on an optimized, commercially viable formulation. This 

formulation should, beyond the stability required for the initial formulation, ultimately be 

robust against external stresses during the desired shelf l ife, administration (sometimes 

using product specific application devices), and to potential protein-specific degradation 

pathways. In order to test robustness, forced degradation studies at relevant stress 

conditions (Table 3) combined with a tailored set of stability indicating analytica l methods, 

defined during preformulation, are employed. In this context, design of experiment (DOE) 

approaches can be applied to optimize experimental setups and reduce the number o f 

required sample measurements (29). While forced degradation studies do not reflect real -

l ife conditions, they are useful to reveal differences in stability between formulations and 

to give justification on why excipients are added and at which quantity. In late-stage 

formulation development, tasks of the preformulation phase might stil l  be ongoing a nd 

specific molecule characterization tasks may be intensified. Since the DS is at this stage 

available in larger quantities (and often higher purity), the formulation scientist is not 

anymore tied to low-volume analytical methods used in early-stage development, but can 

also employ resource consuming or high-volume methods e.g. AF4, AUC, FTIR-

spectroscopy, MS, and particle characterization (30) to test the stability of the protein 
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more in detail. Knowledge from clinical trials on application route, dosage regime, and the 

potential use of an application device will  also influence the formulation design. The 

investigation of processing stability s hould include fi lter tests, tubing tests, handling test, 

and fi l l -finish tests to assure robustness towards stresses during manufacturing, if not 

already, at least in parts, performed during early-stage development. Finally, real -time 

stability studies at relevant storage conditions (e.g., 2-8 °C) using the DP in its primary 

container system from different production batches are to be conducted to define and 

justify the product’s shelf-l ife. This is stated in the ICH guideline QC5 and for most DPs a 

shelf l ife of at least 18 - 24 months is desired. 

Formulation development after commercialization 

When a commercial DP has successfully entered the market, formulation development 

might stil l  be needed e.g., for l ife cycle management to change protein concentrati on, 

packaging material , or route of administration and to support changes in the 

manufacturing process. In this case, knowledge from pre-, early stage, and late stage 

formulation activities is key to enable fast and effective formulation change and 

comparability studies. Since slight changes in formulation conditions potentially affect the 

safety and efficacy of the DP, it is necessary to perform detailed studies to assure that 

product quality and degradation profile have not quantitatively worsened or even  

qualitatively altered. If analytical characterization and non-clinical comparability studies 

are not sufficient for this claim, the ICH Guideline Q5E demands additional clinical 

comparability studies. 

Challenges during Formulation Development 

Amount and Quality of DS 

One challenge in preformulation and early-stage formulation studies is the typically 

l imited availability of API. The required amount depends in part on the product 

development stage as well as on the formulation strategy. Vice versa, if substantially 

l imited amounts are available, this may unavoidably lead to a change in formulation 

strategy and/or a reduction of the number of stress testing methods applied, formulations 

screened, and analytical methods used (30). Obviously, analytical methods that require 

l ittle sample are preferred, including well -plated based spectroscopic and light-scattering 

based methods as well as electrophoretic and chromatographic techniques (28). 
 

Another challenge is the potential variation in DS quality during product development, 

which may be due to coinciding development and changes in production cell  l ine, 

cultivation conditions , and downstream processes. In particular during early stages of 
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product development, the quality of the DS may not reflect that of l ater-stage (pilot or 

full-scale production) batches. In particular, aggregate and particle levels in pre-GMP 

technical batches do not always meet the minimum standards, such as those defined by 

the USP Chapter 787, which impedes proper assessment of a formulation’s capability to 

avoid aggregation (31). Moreover, the level of impurities or contaminants may have major 

effects on product stability (32). For instance, variations in residual protease activity will  

especially affect the stability of the API in a l iquid DP. Similarly, a relatively high residual 

l ipase activity may lead to unexpectedly rapid degradation rates of polysorbates (33,34). If 

the root cause of such degradation processes would be identified in an early stage, one 

could choose to first develop a frozen liquid or lyophilized DP for early -stage (pre)clinical 

development, while optimizing the upstream and downstream processes in the meantime. 

This, however, would take additional resources and time. Ultimately, there is the risk that 

formulation development is focused on inhibiting a degradation process that turns out to 

be irrelevant as soon as higher-quality DS batches become available. 
 

For DP formulation screening the available DS formulation will  have to be exchanged with 

the formulations of interest e.g. by column chromatography, dialysis or ultra -/diafiltration. 

Such processes, which may also involve dilution or concentration of the API, pose stress 

upon the molecule. Consequently, it should be investigated whether the chosen method 

compromises the protein quality. Furthermore, in buffer exchange and concentration 

procedures using a semi -permeable membrane, especially at high protein concentrations, 

the final formulation composition may significantly differ from the intended one because 

of unequal partitioning of excipients. This may be due to volume exclusion, non -specific 

interactions and for ionic solutes, such as salts and buffer components, the Do nnan effect 

(35). The presence of a surfactant such as polysorbates in the DS formulati on e.g. 

introduced in the downstream process to protect the API against interfacial stress would 

pose a particular challenge, as it is practically impossible to remove surfactants 

quantitatively and they may accumulate in an unpredictable way during membra ne 

concentration processes (36). Thus, quantification methods for each of the excipients that 

are part of DS and DP should be in place for guiding the proper design of formulation 

screening methodologies. Furthermore, once a suitable final DP formulation is chosen, the 

polishing step in the downstream process can be adjusted to bring the DS formulation in 

l ine with that of the DP. 

Selection of Analytical Methods and Stress Conditions 

The paradigm “formulation is characterization” refers to the fact that only with a proper 

analytical toolbox one can differentiate between good and poor formulations within the 
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limited time frame of a short accelerated stability and stress program. But how should one 

set up the analytical package and appropriate stress conditions? 

Analytical methods 

No matter which formulation approach is followed, the availability of low-volume, high-

throughput methods is advantageous, especially in preformulation and earl y-stage 

formulation studies. Techniques used in these stages preferable provide a general 

indicator for stability, such as melting temperature by DSF or DSC, or colloidal stability by 

l ight scattering. Since proteins can undergo a variety of degradation reactions (22), 

complementary analytical methods should be used for monitoring the formation of all  

potential degradation products when performing stability and forced-degradation studies. 

Fil ipe et al. (30) gave an excellent overview of commonly used analytical methods 

outlining their measurement parameter, their sample requirement, and whether they can 

be operated in high-throughput. The interested reader is also referred to books by Jiskoot 

and Crommelin (37), and by Houde and Berkowitz (38) providing details about analytical 

methods beyond the scope of this chapter. Especially in later stages of formulation 

development, orthogonal methods should be used to verify the validity of specific 

methods. For instance, size-exclusion chromatography (SEC) methods only cover a l imited 

size range of relatively small protein aggregates (up to about 100 nm) and may not detect 

reversible aggregates within this range (39,40). Consequently, regulatory agencies expect 

SEC data to be confirmed by orthogonal methods, such as AUC and AF4 (30,41). In 

addition, until  recently the use of compendial methods such as l ight obscuration has been 

focused on the analysis of subvisible pa rticles larger than 10 micron. However, safety 

concern with respect to protein aggregates and other particulates in the size range of 2 – 

10 µm and more recently also the submicron size-range has facil itated the development of 

new particle analysis methods  e.g., micro flow imaging, nanoparticle tracking analysis, and 

resonant mass measurement that are now increasingly being applied in formulation 

development (30,41–44). This has also been acknowledged by regulatory bodies and has 

lead to new and updated guidelines such as the USP <787> and the educational chapter 

USP <1787>, suggesting quantification and qualitative character ization of particles in this 

size range by orthogonal methods (45). With the analytical methods comes the challenge 

of setting specifications and their justification. For many quality attributes assessed 

throughout the whole manufacturing process of a DP like appearance, color, pH, steril ity, 

osmolality, visible particles, or subvisible particles , the pharmacopoeial monographs 

apply. Other specifications e.g., the SEC monomer content, are not ultimately defined at 

early stage. A specification of more than e.g., 95 % monomer can be accepted at early 

stage development, may be set in accordance with platform technology experience and 

revised reflecting experience and stability data gathered on the way to commercialization. 
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Stability testing and forced-degradation studies 

How to select appropriate stress conditions? The answer to this question is not 

straightforward, because it depends, amongst others, on the purpose, the protein, the 

formulation, the dosage form, and the development stage (23). For formulation screening, 

the stress conditions should be discriminative and allow ranking of formulations, which 

implies that they should be harsh enough to induce detectable changes, but at the same 

time not so harsh that all  formulations show similar, nearly complete degradation. 

Preexisting knowledge from the literature and in-house experience with similar molecules 

may be extremely valuable to set up appropriate stress conditions. Moreover, the 

relevance of the stress conditions should be kept in mind. For instance, exposing a protein 

to a temperature above its unfolding temperature over a longer storage period would be 

as irrelevant as pyrolyzing a small molecule; and if a formulation is shown to be resistant 

to rigorous shaking for several days, rather than continuing the applied stress for another 

few weeks, one may conclude that the formulation is robust towards this mechanical 

stress factor. 
 

Setting up appropriate stress conditions may be part of preformulation and could be done 

with the DS. Typical stressors include thermal, freeze-thawing, mechanical, and oxidation 

stress. Table 3 gives some rough indications of possible conditions that could be applied 

for each of these stress factors. Although extreme pH and ionic strength are sometimes 

mentioned as stress factors, those are in fact formulation variables that are typically 

studied in preformulation studies, often in combination with exposure to elevated 

temperatures. The outcome of such extreme pH/ionic strength exposure studies is 

relevant to define the design space not only in formulation development but also in 

downstream processing steps, such as elution conditions in chromatographic procedures, 

viral inactivation, hold times , and conditions between purification steps. 
 

Light stress may be added at later-stage formulation studies and essential protection is 

finally provided by the secondary packaging material. One may consider using also less 

harsh conditions than those according to ICH, i n order to assess subtle differences 

between formulations. If the final container is known, this may be advantageous, 

especially for mechanical stress studies. For instance, the influence of shaking stress 

(conditions) is highly dependent on not only the s haking frequency and the incubation 

temperature, but on container dimensions, fi l l ing volume, and solution viscosity as well. 
 

For lyophilized formulations, storage of lyophilizates with different residual moistures 

levels under accelerated testing conditi ons needs to be considered. Moreover, the effect 

of freeze-thawing stress to the corresponding liquid formulation (with conditions used 

during lyophilization) needs to be studied. Furthermore stress stability testing after 
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reconstitution is highly valuable to reflect l ight, temperature, and mechanical stress, which 

the liquid could potentially be exposed to in the clinics and by the patients.  
 

While forced degradation or accelerated stress studies are valid means to compare 

formulation conditions during development and are recommended by the ICH Q1 

guidelines, they have limited predicting value to the stability of a protein at real -time 

storage conditions. Thus, one can use these data to understand degradation pathways and 

to define and justify formulation conditions, for instance the use of an excipient in a 

certain concentration, but one should not exaggerate forced degradation studies. Instead, 

a promising formulation should be tested by long-term studies testing at relevant storage 

conditions as early as possible since these studies are the basis for the determination of 

the product’s shelf l ife and demonstrate the relevance of the different degradation 

pathways. 

Manufacturability and Formulability 

Formulation development has the goal to obtain a DP that s erves the patient’s needs and 

promotes stability of the protein. However, manufacturability should also play a role when 

defining a final formulation, because the product needs to be manufactured at large scale 

and commercially viable. Some steps and procedures that can be performed with ease in 

small scale or on a lab bench might be difficult to implement in a large-scale production 

facil ity. For example, fi ltration steps using very low pore size fi lters are easily performed in 

the lab, but low volume throughput and the costs of industry-sized fi lter systems might 

make implementation problematic in production scale. Also, high-concentration and 

viscous formulations could be difficult to handle during manufacturing and might cause 

problems during release testing by required compendial methods such as l ight 

obscuration. Contrary, low-concentration formulations might face the problem of protein 

loss through surface absorption, a factor that can become more relevant in a production 

facil ity. The same holds true for excipients in low concentrations e.g., substantial loss of 

polysorbate to fi lters at the beginning of a fi l l ing process can occur. The scale up to a 

commercial facil ity can create additional problems not observed in small scale. For 

example, mixing solutions in a large stainless steel tank, pumping solutions through 

stainless steel tubing, fi ltration, and fi l l ing through a high-speed fi l l ing machine can 

introduce unexpected stresses to the protein. In addition, the introduction of particles, 

e.g., by pump systems has been observed. Therefore, the relevance of such scale-up 

related problems should be assessed early during process development and should be 

considered during formulation development. Since some, if not all, of the factors 

mentioned above can show a certain batch-to-batch variability, regulators require stability 

data from multiple production batches before approval of the final DP. 
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Data Handling and Analysis 

From the above it should be clear that protein formulation screening will  involve the 

generation, analysis , and interpretation of huge data sets. The two goals of a formulation 

scientist are to make analytical data manageable as well as interpretable. For the first, a 

streamlined data analysis is important, which should include standardized export and 

analysis templates for each analytical technique (either using standard office software or 

dedicated data analysis programs). In addition, meaningful data folder and fi le structures 

as well as traceable sample names are crucial when handling huge data sets. For the 

second goal, singular-value decomposition analysis can help to condense complex data 

sets, e.g., spectroscopic data, by vector algorithms to a few descriptive values without 

loosing information. Further, visualization tools  such as empirical phase diagrams and 

radar plots (46,47) will  improve data interpretation and will  allow the formulation scientist 

to identify the best formulation more quickly. 

Conclusions 

Protein formulation activities are an important part of a protein drug development 

process. Formulation development should start early in product development. Selecting 

‘the right’ formulation requires extensive exercises, including analytical method 

development, forced-degradation studies, and accelerated and real -time stability studies. 

Moreover, clinical needs, company policy, and marketing strategy should be taken into 

consideration during formulation development. Knowledge gained during preformulation 

activities will help the scientist to identify potential hurdles in the subsequent formulation 

development program and to design a formulation to overcome those, by selecting a 

l imited number of required excipients in appropriate amounts. Since the definition of ‘the 

right’ formulation depends in part on the development stage, early stage formulations 

typically differ from late-stage and commercial formulations. Despite its complexity, if 

formulation development is done properly, the final result is often a simple l iquid or 

lyophilized formulation in a dosage form for parenteral administration. 
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Abstract 

All therapeutic proteins are potentially immunogenic. Antibodies formed against these 

drugs can decrease efficacy, leading to drastically increased therapeutic costs and in rare 

cases to serious and sometimes life threatening side-effects. Many efforts are therefore 

undertaken to develop therapeutic proteins with minimal immunogenicity. For this, 

immunogenicity prediction of candidate drugs during early drug development is essential. 

Several in silico, in vitro, and in vivo models are used to predict immunogenicity of drug 

leads, to modify potentially i mmunogenic properties , and to continue development of 

drug candidates with expected low immunogenicity. Despite the extensive use of these 

predictive models, their actual predictive value varies. Important reasons for this 

uncertainty are the limited/insufficient knowledge on the immune mechanisms underlying 

immunogenicity of therapeutic proteins, the fact that different predictive models explore 

different components of the immune system, and the lack of an integrated clinical 

validation. In this  review, we discuss the predictive models in use, summarize aspects of 

immunogenicity that these models predict, and explore the merits and the limitations of 

each of the models. 
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Introduction 

Therapeutic proteins are very successful in treating a wide variety of l ife-threatening 

diseases such as multiple sclerosis, diabetes, chronic kidney failure and a wide variety of 

cancers. In contrast to small molecule drugs, they do not possess intrinsic toxicity due to 

harmful metabolites or off-target effects, and their side effects are mainly caused by 

exaggerated pharmacodynamic effects (1). Because of their success and versatil ity, 

therapeutic proteins are the fastest growing class of drugs and make up about one third of 

the drug market. 
 

One of the major attention points of therapeutic  proteins is immunogenicity. Anti -drug 

antibodies (ADAs) induced by nearly all  therapeutic proteins can interfere with drug-

efficacy, alter PK/PD or induce severe, sometimes life-threatening, side-effects in a subset 

of the patients (2–5). The potential danger of immunogenicity of therapeutic proteins 

caught public attention around 2002 when an increased number of pati ents treated with 

Eprex® (epoetin alpha) were reported to form antibodies that cross-reacted with 

endogenous erythropoietin. As a result red blood cell  production arrested and blood 

transfusions were vital for these patients’ survival  (5–7). Besides the apparent risk for 

patient safety, immunogenicity also poses a financial burden.  
 

In order to minimize side effects caused by ADA formation, immunogenicity assessment of 

therapeutic proteins during drug development is critical. By identi fying immunogenic 

properties at an early stage, and subsequently modifying those properties, 

immunogenicity in patients could be minimized. Many efforts have been undertaken to 

develop in silico, in vitro, and in vivo models that predict different aspects of 

immunogenicity of therapeutic proteins  (8–10). However, current l imited knowledge on 

the general principles that apply to the induction of antibodies by these drugs makes it 

very difficult to determine the risk factors for immunogenicity and predict the clinical 

consequences of immunogenicity of a new protein drug (11). Also, the clinically observed 

immunogenicity against specific drugs is variable depending on other factors such as the 

disease treated, concomitant treatment and patient background (12). In addition, direct 

clinical evidence showing that use of these predictive models to guide drug development 

actually helps to lower immunogenicity is largely missing, as few drug candidates are 

clinically tested and therefore direct comparisons of candida tes showing predicted high 

and low risk are rarely obtained. Despite these limitations, several in silico, in vitro, and in 

vivo models are currently applied for different aspects of preclinical immunogenicity 

prediction (13–15) (Table 1). 
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Table 1: Main applications and limitations of current in silico, in vitro and in vivo predictive tools for protein 

immunogenicity. 
 

Category What does it predict? Advantages Disadvantages 

In silico Presence of potential 

CD4+ T cell epitopes 

Fast, low cost Focus on primary structure; no 

information on contribution of other 

factors (e.g., glycosylation, 

formulation, aggregation) 

 Presence of neoepitopes Fast, low cost Does not address the actual T-cell 

activation 

In vitro Presence of CD4+ T cell 

epitopes  

Relatively fast, low cost Focus on activation of specific 

immune cells 

 Presence of neoepitopes Measures biological effects Large donor sets needed 

 Activation of T cells Can be used to screen product-

related factors other than 

primary structure 

Assay variability 

In vivo    

Conventional 

animals  

Relative immunogenicity In vivo correlate of 

immunogenicity 

Per definition a classical immune 

response against therapeutic proteins 

Overestimation of immunogenicity 

Time consuming, expensive 

Non-human immune system 

Non-human 

primates 

Relative immunogenicity Express similar proteins as 

humans, therefore may have 

similar immune mechanism 

underlying immunogenicity 

Predictive value strongly depends on 

protein 

 Likely the presence of 

neoepitopes 

In vivo correlate of 

immunogenicity 

Time consuming, expensive 

 Breaking of tolerance 

(depends on protein) 

In vivo correlate of 

immunogenicity 

Needs clinical validation 

Transgenic 

immune 

Presence of neoepitopes Express protein of interest 

similar to tolerant mice humans, 

can be used to study breaking of 

tolerance 

Mice respond with murine immune 

system 

 Relative immunogenicity In vivo correlate of 

immunogenicty 

Time consuming, expensive 

 Breaking of tolerance In vivo correlate of 

immunogenicty 

Needs clinical validation 

Human immune 

system xenograft 

models 

Presence of neoepitopes Express many human immune 

proteins that xenograft models 

are (potential) therapeutic 

targets, can be used to study 

breaking of tolerance. 

For most models human T cells lack 

the ability to recognize antigens in a 

HLA-restricted manner (i.e. no value 

to predict T cell-de pendent ADA), BLT 

mice are exception. 

 Relative immunogenicity Mice respond with a 

(reconstituted) human immune 

system 

Time consuming, expensive 

 Breaking of tolerance  

(if human protein is 

expressed due to 

xenografting) 

In vivo correlate of 

immunogenicty 

Needs clinical validation 
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This review summarizes the models in use and potential  future models to predict 

immunogenicity of therapeutic proteins. It gives insight into the rationale of each of the 

models and discusses the specific aspects of immunogenicity predicted by them. It ends 

with recommendations on future studies that need to be performed in order to improve 

predictability. 

Models predicting CD4+ T cell epitopes and CD4+ T cell activation 

Most of the in silico and in vitro models used to predict immunogenicity of therapeutic 

proteins focus on identifying CD4+ T helper cell  epitopes and measuring activation of CD4+ 

T cells (Table 1). In an adaptive immune response against foreign proteins, CD4+ T cells 

and their epitopes are crucial for the induction of an immune response, which is 

characterized by isotype switched antibodies such as IgG, by affinity maturation, and the 

formation of immunological memory. The observation that some patients treated with 

therapeutic proteins produce high affinity, isotype switched antibodies, sugges ts that ADA 

immunogenicity in these cases is driven via a CD4+ T cell  dependent mechanism (16), 

involving T cell  epitopes present in the protein sequence. Presentation of these epitopes 

by major histocompatibility complex (MHC) class  II molecules on antigen presenting cells 

(APC) can engage T cells to initiate a cascade of events resulting in an ADA response by B 

cells. Assuming that therapeutic proteins evoke an antibody response via this T cell -

dependent mechanism, the prediction of T cell  epitopes and a corresponding T cell  

response could be an effective way to identify immunogenic sequences and, by 

eliminating them, reduce the potential for immunogenicity. The main methods employed 

in detecting CD4+ T cell  epitopes and CD4+ T cell  responses to proteins are (i) in silico 

analysis of MHC class II binding peptides and (i i) in vitro T cell  stimulation. Both techniques 

enable CD4+ T cell  epitopes to be predicted in the context of human MHC class  II. 

In silico models 

In silico models use the amino acid sequence of therapeutic proteins to predict the 

presence of peptides in these proteins that bind to MHC molecules. Several first-

generation models are based on quantitative matrices. They use experimental data of the 

many peptides known to bind to specific HLA allotypes and in addition they score each of 

the amino acids depending on their position in the binding groove. Even though this 

approach has been mainly applied to MHC class I (which is driving cytotoxic responses), in 

silico tools for predicting the presence of MHC class II-binding epitopes such as Tepitope, 

MHCPred, Epimatrix and SVMHC are also developed (17–20). More recently, in silico 

models based on artificial neural networks (ANN) have been developed, which involve 
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data modeling tools able to “learn” which peptides could bind to  MHC. The information 

needed during a learning phase is provided by a set of peptide sequences from both 

known MHC binders and confirmed non-binders, and is used by the ANN to find patterns 

for a prediction of new sequences. Examples of such models are ANNPrep and Comprep 

(21). Several neural network servers are available, such as NetCHOP, NetCTLpan and 

NetMHCpan (http://tools.immuneepitope.org). The ANN methods are very adaptive and 

have the ability to self-improve. 
 

A drawback of the above mentioned methods is their  reliance on extremely large data 

sets, which require intensive experimental work. To overcome this problem, some 

structure-based methods have been developed that also examine the three dimensional 

structures of the binding groove of the HLA molecules using force field analysis based on 

crystal structures and other structural approaches. Up until  now, two models applying to 

HLA class II molecules have been described: Epibase and the methods developed by 

Davies and colleagues (22,23). 
 

The latest in silico algorithms aim to combine T cell  epitope identifications with predictors 

of proteasomal cleavage sites and transport efficiency of the peptides to the endoplasmic 

reticulum (where peptides are loaded onto MHC class  I molecules). Combined prediction 

methods could indeed lead to a bridging between pure T cell  epitope prediction and the 

actual T-helper cell  stimulation by the loaded peptides, as these also take into account 

processes involved in antigen presentation (24). Unfortunately, the reliability of the 

currently available models (e.g. Fragpredict, PAProC) is sti l l  very low. Moreover, 

applications are mostly available for MHC class I prediction and more research on their  

applicability for MHC class II binding is needed. 
 

In general, in silico methods allow a rapid and relatively low-cost analysis of protein 

sequences for peptides that bind to MHC class  II. They are very useful in modeling 

interactions between known CD4+ T cell  epitopes (identified from in vitro T cell  assays) 

and MHC class II, and have shown similar epitopes as identified with in vitro methods 

(discussed later) (25–29). The use of in silico tools has enabled the generation of a number 

of therapeutic proteins in which the CD4+ T cell  epitopes have been removed by 

mutations that disrupt binding to MHC class II. However, whereas good accuracy can be 

reached with some of these tools in generating a peptide map of the peptides that are 

capable to bind MHC class  II receptors in vitro based on the primary protein structure, the 

application of the tools is l imited. The major reason is that these tools are la rgely 

restricted to the prediction of interactions between peptide sequences and MHC 

molecules and therefore do not take into account other factors that affect immune 

responses, such as antigen uptake and processi ng by the APC, T cell  activation through the 
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T cell  receptor (TCR), tolerance of T cells to epitopes encountered during development in 

the thymus, and the involvement of other immune cells. Therefore, in silico methods are 

suitable to predict the presence of potential CD4+ T cell  epitopes on a given protein 

sequence, however, information on subsequent activation of T cells and interactions 

among other immune components is lacking. Because these tools use primary amino acid 

sequence information, they do not take into account the effect of non-sequence related 

factors such as formulation, impurities , and aggregates on antibody response (Table  I). 

In vitro models 

The limitation of in silico methods in providing information on activation of CD4+ T cells 

can be partly overcome by in vitro T cell  assays. In vitro T cell  assays are used to assess the 

potential of whole proteins to activate CD4+ T cells, as well as map T cell  epitopes using 

peptides spanning the sequence of interest. The assays typically involve large numbers of 

patient or healthy donors to represent a large proportion of human leucocyte antigen 

(HLA) allotypes in the world population and to reach sufficient statistical power (Table  1). 

There are many different methods in practice, but in general, peripheral blood 

mononuclear cells (PBMCs), including APCs and T cells from patients, naïve donors or 

antigen-exposed individuals are harvested and brought into contact with either the whole 

antigen or peptide fragments (mostly 15 residues per peptide overlapping 10 or 12 amino 

acids). Subsequently, the type and strength of the immune response can be determined 

by various intracellular and extracellular T cell  markers. A method commonly used for the 

determination of T cell  activation is ELISPOT. This ELISA based method detects cytokines 

secreted by activated T cells, such as IL-2, IL-4, or INF-γ, where INF-γ ELISPOT seems to be 

favored by many researchers (30,31). More recently, flow cytometry was implemented as 

a more direct method for detection of T cell  activation by analyzing the expression of 

CD25 at the cell  surface of CD4+ T cells (32). There is evidence that the repertoire of 

epitopes presented in patients is similar to the epitopes identified in vitro. Two 

independent research groups have identified CD4+ T cell  epitopes in the C1 and A2 

domains of Factor VIII using in vitro primed T cells from healthy donors (33,34). These 

observations have enabled the use of community donor blood for mapping T cell  epitopes 

and determining the T cell  activation potential by whole proteins (Table 1). Data from in 

vitro T cell  assays, such as the number and potency (i mmunodominance) of individual 

T cell  epitopes or proteins, are therefore used to predict the rel ative risk of activating a 

T cell  dependent immune response between multiple variants of a therapeutic protein 

during pre-clinical development.  
 

In general, the use of in vitro T cell  assays allows the qualitative and quantitative 

measurement of T cell  epitopes and their role in the activation of T-helper cells, which in 
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turn enables strategies such as T cell  epitope removal to be employed. In addition, in vitro 

T cell  assays can be used to monitor T cell  activation and proliferation of differently 

formulated products or in presence of aggregates, which is not possible with in silico 

methods. However, as these assays are based on cell  material from donors, batch-to-

batch and donor variability makes s tandardization an issue (Table 1). The use of large 

donor pools is a requirement, making the tools relatively low-throughput at this time (20). 

Combined use 

Often, CD4+ T cell  based in silico and in vitro tools are combined in preclinical  

immunogenicity prediction. Because these models simplify the complexity of the immune 

system and its responses, they are used to assess relative potential for immunogenicity 

due to the presence of CD4+ T cell  epitopes and activation, between similar products 

directed against the same target. In silico tools are particularly used to screen early stage 

drug candidates or l ibraries, in order to exclude the protein variants or designs that show 

a significantly higher number of potential T cell  epitopes compared to other variants. In 

vitro models in particular are also used to study the effect of product-related factors other 

than primary structure on T cell  activation. They are, however, less suitable to predict 

aspects of immunogenicity that involve complex immune processes such as breaking of 

immune tolerance (discussed later on), incidence of antibody formation, and clinical 

consequences of ADAs. 

Models Predicting B cell epitopes and B cell activation  

B cell  epitopes are important in eliciting an immune response against bacteria and viruses. 

A repeated array of B cell  epitopes on the surface of these mi croorganisms can bind to 

multiple B cell  receptors on the B cell  surface, and by crosslinking them, directly activate 

B cells to give an antibody response. This type of immune response is different from the 

classical T cell  dependent immune responses in many ways, but two of the most important 

features are that T cells are not necessarily involved in antibody formation and that 

immunological memory formation against foreign antigens is absent (35). Clinical studies 

on patients treated with therapeutic interferon beta and an anti -TNF antibody have shown 

that patients being antibody positive during first treatment did not show a fast increase in 

antibody titers when treatment was restarted. This indicates that no immunological 

memory was formed (36,37). Although a l imited number of patients was included, the 

data suggest that repeated B cell  epitopes and crosslinking of B cell  receptors could be 

important in immunogenicity. It might be hypothesized that protein aggregates could 
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express repeated cell  epitopes needed to crosslink B cell  receptors and activate B cells. 

This has been suggested as a mechanism for breaking of immune tolerance (38). 
 

Models predicting individual B cell  epitopes are available, however, taking into account 

that the structure of proteins is highly dependent on production conditions, formulation, 

and handling and that, with changing structure, other B cell  epitopes can form, it seems 

almost impossible with our current knowledge to accurately predict B cell  epitopes using 

in silico models (39–41). Nonetheless, advances in their predictive value are made (42). 

Also it is questionable if these models would have any value for immunogenicity 

prediction, because individual epitopes are incapable of crosslinking B cell  receptors; 

instead, repeated epitopes are needed for this. Models looking at repeated protein 

structure are therefore more likely suitable in predicting immunogenicity of therapeutic 

proteins. While current in silico methods are unsuitable for this, in vitro B cell  models 

could be a solution. However, the maintenance of B cells in vitro is a highly complicated 

task and current assays using PBMCs in short term suspension or in monolayer format, do 

not represent in vivo behavior sufficiently (43). 
 

So, for now no models are available that could predict immunogenicity of therapeutic 

proteins due to repeated structures or repeated B cell  epitopes. Moreover, if such models 

would become available, they would likely encounter similar l imitations as the T cell  

epitope models in that they would focus on a single component aspect of the immune 

response, and not take into account the biological complexity of the entire immune 

system. 

In vivo models 

In vivo models used to predict immunogenicity of therapeutic proteins have the advantage 

over in silico and in vitro tools that immunogenicity can be studied in an organism with an 

intact immune system. In contrast to the simplified nature of in silico and in vitro models, 

in vivo models allow the interplay between immune cells and complex processes 

underlying antibody formation against therapeutic proteins. However, because preclinical 

assessment of immunogenicity in vivo is expensive and time consuming, animal models 

are less suitable for large-scale screening. Moreover, care has to be taken that the animal 

models are representative for the immune processes taking place in humans. They are 

therefore mostly used after lead selection by in silico and in vitro models (Table 1). Similar 

to the models described before, the predictive value of animal models depends on the 

items that need prediction, on the type of therapeutic protein and on the similarity of the 

processes underlying immunogenicity compared to those in humans. These include the 

similarities or differences in pharmacokineti cs, pharmacodynamics , and target binding 
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between humans and the species of animal model. Similar to the in silico and in vitro 

models, animal models cannot be used to predict incidence of immunogenicity in patients. 

Also the specificity of humoral antibody responses and therefore potential for clinical 

effect will  be hard to predict. However, they might be used to assess relative 

immunogenicity, presence of ‘neo-epitopes’ and breaking of immune tolerance (Table 1). 

We assume that animal models with an immune system that is genetically most similar to 

the human immune system are most predictive. Therefore, conventional animal models 

such as rats and mice would have least predictive value, while transgenic animal models 

and non-human primates would have highes t predictive value. Recently developed animal 

models such as the human xenograft mouse models are being i nvestigated for 

immunogenicity prediction. 

Conventional Animal Models 

Animal models such as rats and mice have been often used in the early years of pr eclinical 

immunogenicity prediction. However, most human therapeutic proteins are foreign 

proteins (i.e. have limited sequence homology) for these animals and as a result they will  

usually develop an ADA response against a foreign protein. This may not be informative, 

as the exact mechanisms underlying immunogenicity might be different in humans (38). 

Even when the therapeutic protein is foreign in both humans and the animal model (e.g., 

plant derived or bacterial proteins), species differences in the immune system, and 

restriction in genetic diversity between animals (in the case of inbred strains) might 

introduce false results. 
 

When assessing the predictive value of conventional animal models, it is expected that 

they overestimate immunogenicity development in patients since rats and mice are l ikely 

to form antibodies against all  (recombinant human) therapeutic proteins (44). This also 

implies that the ADAs will  mostly be neutralizing. Therefore these animals are insensitive 

to discriminate between binding and neutralizing antibody responses which both can 

occur in patients and are therefore unsuitable to predict clinical  relevance of antibody 

formation. In addition, Katsutani et al. (45) have shown that wildtype mice seem 

unsuitable to assess the presence of neoepitopes. Using human tissue plasminogen 

activator as antigen, they have shown that site specific modification does not lead to 

increased recognition of epitopes in these mice. Because these animals already recognize 

multiple epitopes due to foreignness of the protein, the prediction of neo-epitopes is very 

difficult, especially when taking into account s pecies differences in MHC class  II. However, 

for some proteins, rats and mice might be of value to determine the relative 

immunogenicity between products of the same class. For example, Bellomi et al. (46) have 

used BALB/c mice to assess relative difference between interferon beta 1a formulations. 
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They found that a new formulation of interferon beta 1a was less immunogenic compared 

to commercially available formulations, Avonex and Rebif. 

Mice Rendered Immune Tolerant to Human Proteins 

In order to prevent therapeutic proteins from inducing an ADA response in mice due to 

their foreignness, transgenic mice that express a human protein have been developed. As 

a result these mice are, l ike humans, immune tolerant for the particular human p rotein 

they express. Studies in such mice have shown that the immunogenicity of clinical 

preparations of recombinant human interferon alpha, interferon beta and monoclonal 

antibodies (mAbs) is significantly enhanced by the presence of aggregates (47–50). In 

particular, aggregates induced by metal catalyzed oxidation and aggregates composed of 

monomers that stil l  exhibi t native structural elements appear most immunogenic. 

However, by using these models it is not possible to predict what level of aggregation is 

needed to induce an antibody response in patients. These models have shown to predict 

relative immunogenicity of interferon beta products (51), with the most immunogenic 

product in patients (Betaferon) being more immunogenic in these mice compared to other 

products such as Avonex and Rebif. However absolute incidences of antibody positive 

individuals differed between the immune tolerant mice and patients. 
 

Transgenic mouse models also have been shown to predict neo-epitopes when given a 

modified form of human insulin and tissue plasminogen activator (52,53). So, these 

models can therefore be used to determine relative immunogenicity of protein variants 

and formulations. Moreover, studies conducted with immune tolerant mice have shown 

that although being tolerant for human growth hormone, an immune response could be 

induced when these mice were treated with a sustained-release formulation. This 

i l lustrates that – in addition to predicting immunogenicity due to aggregation, relative 

immunogenicity, and neo-epitopes – these models can be used to study breaking of 

immune tolerance (54). Immune tolerant murine models are, however, l imited by their 

inability to predict the incidence of immunogenicity or clinical consequences of ADA 

formation (Table 1). 
 

A major disadvantage of the immune tolerant mice is that they, l ike conventional animal 

models, respond against a therapeutic protein via a rodent immune system. If the 

mechanisms underlying immunogeni city are T cell  (epitope) triggered, absence of human 

MHC class II in these mice likely l imits the usefulness of such models. In turn, differences 

in B cell  repertoire might affect prediction for B cell  epitopes if these appear to be the 

trigger for immunogenicity (Table 1). 
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Non-human primates 

Because proteins expressed in humans and non-human primates show a high degree of 

homology, non-human primates are expected to be immune tolerant for most human 

proteins. Also their immune system is more similar to the human immune system 

compared to rodent models and transgenic mice. Therefore, the mechanisms underlying 

the antibody response in non-human primates would, in theory, better reflect the human 

immune response against therapeutic proteins. Non-human primates such as 

chimpanzees and rhesus monkeys have been shown to predict the presence of neo - 

epitopes and relative immunogenicity of protein structural variants of various human 

proteins such as tissue plasminogen activator, growth hormone and insulin (45,55,56). In 

theory, they might also be suitable to study breaking of immune tolerance for therapeutic 

proteins, which are similar to their endogenous proteins. In one occasion non -human 

primates have also been shown to predict development of neutralizing (cross -reactive) 

antibodies to thrombopoietin that was also observed clinically (57). However, is 

questionable if this is generally applicable to other therapeutic proteins (Table 1). Despite 

their apparent superiority as predictive model, non- human primates are incapable of 

predicting incidence of immunogenicity in patients. Moreover, non-human primates 

cannot be used to predict immunogenicity of all  therapeutic proteins; apparently their 

predictive value strongly depends on the protein in question. For example, for 

interleukin 3 they have shown very poor predictability (58). This implies that the predictive 

value of these models is only known for already tested proteins (Table 1). 

HLA Transgenic Mice 

Mice expressing specific human HLA allotypes (and lacking endogenous mouse MHC 

class II) have been developed and used for research to evaluate the involvement of human 

HLA alleles in indications such as allergy and autoimmune diseases (59,60). Applications of 

these models in predicting the immunogenicity of protein therapeutics are currently being 

developed. These models will  be particularly valuable when immunogenicity is driven by 

CD4+ T cell  epitopes. To improve the suitability of these mice, they should be crossed with 

mice where immune tolerance against a specific recombinant therapeutic or class of 

therapeutics is induced by either transgenic expression of the protein of interest or 

induction of tolerance during neonatal development (61,62). For example, in order to 

produce a model that might be suitable to predict the potential immunogenicity of mAbs, 

transgenic mice that express (monoclonal) human immunoglobulin could be bred with 

transgenicmice that express human HLA alleles  (63–66). In order to avoid generating mice 

that are tolerant to both human and murine mAb variable region sequences, these mice 

should not express endogenous mouse MHC class II and mouse immunoglobulins. 
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However, obtaining HLA-diversity, which is comparable to that of the human population, 

will  be a significant challenge. 

Human Immune System Xenograft Models 

As an alternative to transgenic mice, models based on immunodeficient NOD scid IL2Rγ/- 

or Rag2−/−γc−/− mice are being developed. These mice lack functional mouse T- and 

B cells, have no functional complement system, have diminished mouse NK functioning, 

and lack mouse macrophage activity. These mice have shown to be very successful for 

engraftment of human immune cells and therefore have a functional human -like immune 

system (67,68). Neonatal immunodeficient mice are used for engraftment of CD34+ 

human hematopoetic progenitor cells, which can be isolated from fetal human tissue. This 

engraftment leads to the reconstitution of 40–60% of human CD45+ mononuclear cells in 

peripheral blood and spleen, and gives sizable compartments of human B cells, T cells, 

natural kil ler cells, monocyte/macrophages , and dendritic cells. Since these mice express 

human MHC class  II and should be tolerant to human immunoglobulins, they might be 

suitable for the prediction of the immunogenicity of therapeutic proteins including mAbs. 

In addition, as the biological activity of the therapeutic target probably plays an important 

role in immunogenicity (e.g., soluble versus membrane-bound), these models offer the 

advantage to express many therapeutic targets (e.g., TNF, BAFF, CD3, CD20) as human 

(69–71). 
 

There are, however, l imitations in using some of the currently available engraftment 

models. First, they are not tolerant against all  human proteins. Second, there is no 

germline transfer of genes encoding human immune cells, so each mouse has to be 

generated on an individual basis. As shown in some studies, this  may lead to considerable 

variability in immune responses to antigens that stimulate potent responses in humans. 

Furthermore, some strains of these mice do not express HLA molecules on thymic 

epithelial cells. Consequently, human T cells developing in these humanized mice lack the 

ability to recognize antigens in an HLA-restricted manner, precluding the investigation of 

human T cell  responses against therapeutic proteins (72). However BLT mice, which are 

immunodeficient mice in which human liver and thymus fragments are implanted under 

the renal capsule and which are given additional haematopoietic stem cells  intravenously, 

do have HLA restricted T cells (73). However B cell  responses in these BLT mice appear to 

be generally l imited to IgM, potentially due to immature lymph node architecture. 
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General Conclusions and Recommendations 

The main limitations in predictive value of the models presented in this paper are (i) 

insufficient knowledge on the interplay of immune mechanisms underlying 

immunogenicity of therapeutic proteins and (i i) insufficient clinical validation. Future 

studies should therefore address these two topics. 
 

The mechanisms underlying immunogenicity of therapeutic proteins are not well studied. 

For example, it is sti l l  uncertain whether the pr imary mechanism by which therapeutic 

proteins induce antibodies is driven via a  T cell  dependent mechanism, via repeated B cell  

epitopes, via another yet unknown mechanism, or whether immunogenicity is a 

combination of all  of these. We also do not know whether there is a general immune 

mechanism explaining immunogenicity of all  (recombinant human) therapeutics, or if this 

mechanism is product specific. Special attention should be taken when considering 

proteins that are non-human, vs. human proteins in patients with endogenous 

counterparts vs. human proteins used in replacement therapy for patients deficient in the 

endogenous counterpart. To answer these questions, more studies in animals, but also 

more in depth studies in patients are needed. One of the priorities should be to elucidate 

to what extent T- and B cell  epitopes are triggering ADA formation, and if there is HLA 

restriction in this response. Also we should focus on understanding contributions of 

aggregates. These are considered one of the major risk factors of immunogenicity. 

However, despite numerous publications we stil l  do not know which specific types of 

aggregates are immunogenic and why they can induce ADAs. Is this because of better 

uptake by APC or are they capable of directly activating B cells? It i s also not clear whether 

low levels of aggregates found in many therapeutic proteins play a role in the protein 

immunogenicity. In addition, insight in treatment and patient-related factors affecting 

immunogenicity should be gained. For example, we do not know if a patient forming 

antibodies against a certain drug can be retreated with that same or a  similar drug on a 

later occasion without having a memory response. For now this is (almost) not studied, 

although sparse clinical data suggests that this might be possible for some therapeutic 

proteins (36,37). We also need more data on why some individuals form ADAs and others 

do not, while being treated with the same drug. 
 

Another focus should be on validating the current predictive models. Data from in silico, in 

vitro, and in vivo models should be combined with clinical data in order to answer 

questions l ike: Does the removal of T cell  or B cell  epitopes lower immunogenicity in 

patients? And to what extent are in vivo models capable of predicting immunogenicity in 

patients? Clinical immunogenicity data comparing the original and corresponding 

“deimmunized” variants of the same protein species  should give insight into the effect of 
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predicted epitope removal on immunogenicity. Also comparing predicted CD4+ T cell  

epitopes, in silico, and in vitro, with actual peptides recognized by MHC II in patients 

would be needed to validate the suitability of epitope prediction by these models. The 

assessment of predictive value of animal models might be achieved by comparing 

antibody incidences of different products between animals and patients. As mentioned 

before, parameters such as antibody titer and clinical effect of ADAs might not be suitable 

in assessing predictive value. Foundations such as the European Immunogenicity Platform 

(www.e-i-p.eu) gather experts in the field to discuss these items and to start 

collaborations aiming to answer some of the questions mentioned above. However, the 

studies comparing in silico, in vitro, in vivo and cl inical data encounter some chal lenges. In 

silico, in vitro, and in vivo models are used to predict relative potential for immunogenicity 

between different products during developmental stages. In order to compare these 

results with clinical data, the same products should be given to patients. This poses a 

problem. Clinical testing will  not involve multiple drug lead candidates. Also chances are 

that drugs given to patients in clinical testing will  have different formulation, impurities 

and aggregation profiles than those during early development. A solution would be to 

include a reference drug during preclinical tes ting that has a known immunogenicity 

profile in patients. It is critical that such reference exhibits similar characteristics to the 

test product, such as target binding, size, and protein class, since these characteristics 

could all  influence immunogenicity. For new drugs, having a reference with similar 

characteristics might be very challenging. These references , however, are very l ikely 

available for biosimilar development in the form of the original product against which the 

biosimilar should be tested. 

Conclusion 

The predictive value of the current in silico, in vitro, and in vivo models used to assess 

immunogenicity of therapeutic proteins  is uncertain and in several cases only partial 

answers are obtained. In order to gain more knowledge about their predictive value and 

to potentially improve existing models, clinical validation and increased insights into the 

immune mechanism underlying immunogenicity should be aimed for. Predicted 

immunogenicity in these models may therefore not lead to a go/no go decision on 

individual drug leads, but instead could be used in the selection of one drug candidate 

over another for further (clini cal) development. In silico, together with in vitro models 

would be most suitable to screen multiple drug leads for potential immunogenicity due to 

T- or B cell  epitopes, activation of T- and B cells or due to a particular formulation. A 

selection of these leads, with assumed lowest immunogenicity potential, would then be 

tested for capability to form ADAs in animal models. These models could give an indication 
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of their relative potential immunogenicity by studying antibody inci dences. Ideally for all  

predictive models, a reference product with known immunogenicity in patients would be 

tested in parallel. It is critical that such a product exhibits similar characteristics, such as 

target binding, size, and protein class. With the use of such a reference, better insight into 

immunogenicity potential of drug leads might be possible, however , it appears unlikely 

that for new drugs such reference products would be ava ilable. For now, clinical testing 

will  stay critical for determining actual immunogenicity in patients. 
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Abstract 

Light obscuration (LO) is the current standard technique for subvisible particle analysis in  

the quality control of parenterally administered drugs, including therapeutic proteins. 

Some of those, however, exhibit high viscosities due to high protein concentrations, which 

can lead to false results by LO measurements. In this study, we show that elevated sample 

viscosities, from about 9 cP, lead to an underestimation of subvisible particle 

concentrations, which is easily overlooked when considering reported data alone. We 

evaluated a solution to this problem, which is the application of sample pressurization 

during analysis. The results show that this is an elegant way to restore the reliability of LO  

analysis of highly viscous products without the necessity of additional sample preparation. 
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Introduction 

Regulatory authorities require all  parentally administered drugs/products to be tested for 

subvisible particulate matter. Light obscuration (LO) is the primary method described by 

the current pharmacopeias (USP <788> and Ph.Eur. 2.9.19) for the quantification of 

subvisible particles in parenteral products (1,2). However, for biopharmaceutical products 

other methods, such as flow imaging microscopy or electric zone sensing, are expected by 

the authorities as well  (3). In l ight obscuration, a syringe pump draws the sample through 

the system, where particulate contaminants or impurities block a certain amount of l ight 

from a laser beam. The resulting “shadow” is detected by an optical sensor and converted 

into an equivalent circular diameter. However, for highly viscous products , such as high-

concentration protein formulations for subcutaneous administration  (4), LO 

measurements are potentially compromised (5) and a more time-consuming microscopy 

method has to be used, which is not always applicable to amorphous protein particles  (1). 

High protein concentrations can impede light obscuration measurements because of an 

increased refractive index of the solution. Herewith the RI difference between 

proteinaceous particles and solution becomes so small that the particles become 

“invisible”, which has been investigated previously by our group (6). In this study we 

focused on the influence of high viscosity to show that elevated sample viscosities from 

about 9 cP lead to an underestimation of subvisible particle concentrations, which is easy 

to overlook when considering reported data alone. We evaluated a solution to this 

problem involving the application of sample pressurization during analysis. The results 

show that this is an elegant way to restore the reliability of LO analysis of highly viscous 

products, e.g., highly concentrated protein formula tions, without necessitating additional 

sample preparation. 

Materials & Methods 

Materials 

Glycerol (≥ 99%) was purchased from Sigma Aldrich (Steinheim, Germany) and 

pharmaceutical grade sucrose was provided by Südzucker (Mannheim, Germany). 

Polyclonal IgG (Hizentra®) was obtained from a local pharmacy. NIST traceable 2 -µm 

polystyrene sizing standards were purchased from Thermo Scientific (Ulm, Germany).  

Sample preparation 

Glycerol and sucrose solutions were prepared in purified water in the stated 

concentrations. A highly concentrated protein solution at elevated viscosity (48 cP) was 
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obtained by upconcentration of polyclonal IgG (Hizentra®) from 200 mg/mL to about 250 

mg/mL by using a centrifugal fi lter unit with a 10 kDa molecular weight cutoff (Mill ipore,  

Schwalbach, Germany). Subsequently, all  solutions were fi ltered through a 0.22 -µm 

syringe fi lter (Mill ipore, Schwalbach, Germany). Samples were measured with or without 

the addition of polystyrene sizing standards (2 µm) in a final dilution of 1:10,000.  

Light obscuration (LO) 

Particle concentrations in a size range between 1 and 200 µm were measured with a 

PAMAS SBSS (Partikelmess- und Analysesysteme GmbH, Rutesheim, Germany) equipped 

with an HCB-LD-25/25 sensor, a 1-mL syringe pump, and a pressurizable sample chamber 

(Figure 1). Four measurements of 0.3 mL with a pre-run volume of 0.2 mL and a fixed flow 

rate of 10 mL/min were performed following the current draft USP <787> method (5) with 

or without pressurization of the sample chamber at 4 bar above atmosphere. The mean 

particle concentration was calculated from the last 3 (out of 4) measurements. Unless 

stated differently, samples were measured in triplicate and mean and standard deviations 

were calculated. 

Viscosity measurements 

A Paar Physica MCR-100 rheometer (Anton Paar GmbH, Ostfi ldern-Scharnhausen, 

Germany) equipped with an MK22 cone was used to measure the dynamic viscosity of a 1 -

mL sample at 20°C every 5 s during a shear rate ramp from 50 to 500 s -1 over 17 min with 

a cone-to-plate gap of 50 µm. All  solutions showed Newtonian behavior. Samples were 

measured in triplicate and mean and standard deviations were calculated. 
 

 
Figure 1: Schematic overview of the PAMAS SBSS light obscuration device 
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Results and discussion 

Filtered solutions of sucrose and glycerol (0, 25, 50 and 75% w/v and v/v, respectively) 

were used to simulate high-viscosity samples. Analysis by l ight obscuration at 0 and 4 bar 

sample pressurization resulted in low background counts (< 100 particles/mL > 1 µm), 

showing that sample preparation and/or the light obscuration system itself introduce 

negligible quantities of foreign particulate matter (data not shown). Next, purified water, 

sucrose, and glycerol solutions were spiked with 2-µm polystyrene sizing standards, 

resulting in approximately 8x104 particles per mill i l iter, as measured in purified water at 

ambient pressure conditions (Figure 2A). Results of the polystyrene sizing standards in 

purified water, measured under sample pressurization, showed similar particle counts. At 

increased concentrations of glycerol (> 50% v/v) or sucrose (> 75% w/v), however, particle 

concentrations apparently decreased when measured at ambient pressure condition s. A 

similar observation was made when a highly concentrated protein solution (polyclonal IgG 

at approx. 250 mg/mL) with a viscosity of 48 cP spiked with 2 -µm polystyrene sizing 

standards was measured. Here the determined particle concentration, derived fr om a 

single LO measurement, decreased from 8.2x104 particles per ml when measured at 4 bar 

to 4.3x104 particles per ml when measured without sample pressurization (Figure 2B), 

showing the relevance of the problem to highly concentrated protein formulations . 
 

 
Figure 2: Measured particle concentrations by light obscuration, with and without sample pressurization, of A) 

water and different glycerol and sucrose solutions and B) high concentrated protein solution, all containing a 

fixed concentration of 2-μm polystyrene sizing standards. Error bars and values in brackets show standard 

deviations from triplicate particle concentration and viscosity measurements, respectively. *p<0 .05, **p<0.005 

(based on one-way ANOVA) 
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The reduction in particle counts can be explained by an intake of air into the syringe pump 

of the LO system (Figure 3). This air intake was also observed for the same highly 

concentrated glycerol and sucrose solutions without the addition of sizing standards, 

however, with no significant effect on the measured particle concentration. This indicates 

that the air bubbles did not pass the detector, because their high refractive index makes 

them easily detectable by the system (7). Thus, the air enters the light obscuration system 

between sensor and syringe pump cell  through tubing connections and/or valves, as a 

result of an under-pressure created by the slow-moving high-viscosity solutions. This 

results in an overestimated measurement volume and, consequently, an underestimation 

of particle concentrations. The sample viscosity at which the effect started to occur in our 

tested system was approximately 9 cP (Figure 2A), a value that can easily be reached in 

concentrated protein formulations  (8). 
 

 
Figure 3: Fig. 3. Image of the PAMAS SBSS light obscuration syringe pump aspirating A) purified water and B) 75% 

(w/v) sucrose solution during sample measurement at ambient pressure conditions . 
 

Since the air intake may depend on the state of the system tubing and valves, two other 

l ight obscuration systems (type PAMAS SVSS) —one equipped with a 1-mL syringe pump 

and the other with a 10-mL one— were tested as well. All  of the tested systems showed a 

similar air intake at very comparable viscosity values (results not shown). This indicates 

that it is a general problem that is not related to one specific PAMAS system. Moreover, 

A B
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depending on their maintenance state, individual LO systems might leak ai r at even lower 

viscosity values.  
 

It is important to realize that the underestimation of particle concentration resulting from 

air intake may be overlooked when considering reported data alone. The syringe pump 

needs to be observed by the operator during method development and specifically tested 

for air intake when samples of increased viscosities are to be analyzed by LO. 

Alternatively, or in addition, one could follow the method described in this study and 

verify if counting or sizing standards spiked into water and into the formulation result in a 

similar increase in particle counts. 
 

The application of l ight obscuration can, given the requirements of regulatory authorities 

and current pharmacopeias, only be circumvented by the application of microscop ic 

techniques, which are more labor-intensive and less precise (9). The current draft USP 

<787>, which is tailored for the analysis of biopharmaceuticals, states tha t sample dilution 

with a low viscosity solvent (e.g., purified water) is a possible “last resort” solution. This, 

however, may have an influence on the composition, distribution or concentration of 

proteinaceous particles. Another more elegant way to measure high-viscosity solutions 

without sample dilution is the application of overpressure on the sample side. As shown in 

Figure 2, the application of 4 bar above atmospheric pressure can restore the reliability of 

l ight obscuration measurements for highly vi scous solutions with viscosities of up to at 

least 50 cP. 

Conclusions 

We have demonstrated that particle concentrations in highly viscous samples, as 

measured by light obscuration, are potentially underestimated. This is due to an intake of 

air into the measurement system and consequently a reduced measurement volume. 

Importantly, this can easily be overlooked by the operator, since blank measurements are 

not affected, though they should be anticipated prior to the analysis of viscous samples. 

Sample pressurization is a simple and effective way to overcome this problem even for 

solutions with viscosities above 50 cP. 
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Abstract 

Our study aimed to comparatively evaluate Micro-Flow Imaging (MFI) and the recently 

introduced technique of resonant mass measurement (Archimedes, RMM) as orthogonal 

methods for the quantitative differentiation of sil icone oil  droplets and protein particles. 

This distinction in the submicron and micron size range is highly relevant for the 

development of biopharmaceuticals, in particular for products in prefil led syringes. 

Samples of artificially generated sil icone oil  droplets and protein particles were quantified 

individually and in defined mixtures to assess the performance of the two techniques. The 

built-in MFI software solution proved to be suitable to discriminate between droplets and 

particles for sizes above 2 µm at moderate droplet/particle ratios (70:30 – 30:70). A 

customized fi lter developed specifically for this study greatly improved the results and 

enabled reliable discrimination also for more extreme mixing ratios (95:5 – 15:85). RMM 

showed highly accurate discriminati on in the size range of about 0.5 to 2 µm independent 

of the ratio, provided that a sufficient number of particles (> 50 counted particles) were 

counted. We recommend applying both techniques for a comprehensive analysis of 

biotherapeutics potentially containing sil icone oil  droplets and protein particles in the 

submicron and micron size range. 
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Introduction 

Protein aggregates can be classified according to their size as visible (> 100 µm), micron (1-

100 µm), submicron (100 nm-1000 nm) and nanometer particles (< 100 nm) (1). Especially 

aggregates in the micron and submicron size range raise concerns as they are potentially 

immunogenic (2,3), could coalesce to form larger particles over time or function as nuclei 

for further aggregation (4). Even though the United States Pharmacopeia (USP) and the 

European Pharmacopoeia (Ph. Eur.) currently define concentration limits in parenteral 

solutions only for particles larger than 10 µm, regulatory authorities increasingly expect 

quantitative characterization of micron particles from 1 to 10 µm and qualitative 

characterization of submicron particles from 100 nm to 1000 nm already in early stages of 

the development phase (5–7). In many cases substantial amounts of particles below 10 

µm are often present in formulations that meet the limits of the pharmacopoeias for 

larger particles (8–10). 
 

In general, particles of all  sizes can be proteinaceous or non-proteinaceous. Among the 

group of non-proteinaceous particles, si l icone oil  droplets, which are also quantified as 

particles by routine methods like l ight obscuration, play a major role. This is especially 

important for products in prefil led syringes or cartridges, where sil icone oil  droplets are 

introduced into the product deriving from the lubrication of the glass barrel and the 

plunger. In a case study, sil icone oil  droplets were identified inside the eyes of patients 

after intravitreal injection, l ikely originating from the sil iconized glass syringes (11). In 

earlier studies, si licone oil  droplets were detected in insulin syringes and associated with 

loss of insulin efficacy (12,13). Furthermore, sil icone oil  droplets were present in 

Interferon products in prefil led syringes  (14). Even though sil icone oil  itself is not 

necessarily harmful to the patient (15), it has been described to induce aggregation of 

monoclonal antibodies  (16) and various other proteins  (17,18), and the formation of 

protein-sil icone oil  complexes (18,19), which might potentially be immunogenic (20). From 

a manufacturing perspective, elevated concentrations of (sil icone) oil  droplets can indicate 

problems during the production process, e.g., improper sil iconization of syringes or 

contamination from leaking components during lyophilization. These factors make an 

analytical differentiation of the total particle load into protein particles and sil icone oil  

droplets necessary. 
 

Among the various techniques for particle analysis  (21), scanning electron microscopy 

coupled with energy dispersive X-ray spectroscopy (SEM-EDX) (22), Fourier-transformed 

infrared (FTIR) (22), and Raman microscopy (23), asymmetrical flow field flow 

fractionation (24), electrical sensing zone as well as flow cytometry (25) are in principle 

able to differentiate sil icone oil  droplets and protein particles. However, mainly flow 
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imaging microscopy techniques and the recently introduced resonant mass measurement 

(RMM) technique are designed for the differentiation of these particles in a higher 

throughput and without cumbersome sample preparation (e.g. staining or fixation). Micro-

Flow Imaging (MFI) has received major attention for the analysis of protein particles  

(22,26–28) but has also been applied for the identification of sil icone oil  droplets  (29). 

Sil icone oil  droplets were successfully differentiated from protein particles on  MFI images 

on the basis of their spherical shape (30) and, more efficiently, by employing a multi -

parametric fi lter (31). 
 

The recently introduced Archimedes system employs the novel principle of  RMM for the 

analysis of submicron and micron particles  (32). The sample solution is flushed through a 

microchannel inside a resonating cantilever (also designated as suspended microchannel 

resonator (SMR)) which changes its frequency depending on the mass of the particles 

passing the channel . Importantly, positively buoyant particles (e.g. si l icone oil  droplets) 

and negatively buoyant particles (e.g. protein particles) can be clearly discriminated as 

they increase and decrease the frequency of the cantilever, respectively  (33). With a 

theoretical size range from about 50 nm up to about 6 µm (depending on the sensor and  

the particle type), RMM bridges the “submicron size gap” (15,34) between on the one 

hand flow imaging microscopy and light obscuration, which cover the micrometer size 

range, and on the other hand nanoparticle tracking analysis and dynamic l ight scattering, 

which allow analysis in the nanometer size range. Literature on RMM is stil l  very l imited. 

Patel et al. (35) presented a first study on the principle of RMM using various 

microspheres as well as sil icone oil  droplets and protein particles for a technical 

evaluation of the system. Barnard et al. (14) applied RMM to analyze protein particles and 

sil icone oil  droplets in marketed Interferon-beta products. However, the accuracy of the 

differentiation between these two particle types was not investigated in those studies and  

remains to be elucidated. 
 

The aim of our study was to evaluate MFI and RMM as orthogonal tools for the 

quantitative discrimination between sil icone oil  droplets and proteinaceous particles in 

the micron and submicron range. For this purpose, defined mixtures of sil icone oil  

droplets and protein particles were prepared at various ratios on the basis of the 

distributions expected in marketed biopharmaceutical products in prefil led syringes. The 

optical discrimination of silicone oil  droplets from protein pa rticles in MFI by (i) the built-in 

software solution “find similar” and (i i) a new customized data fi lter developed in this 

study was compared to the physical discrimination principle of RMM. 
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Materials & Methods 

Materials 

Etanercept (Enbrel®, prefil led syringe, lot no. 31576, exp. 12/2008; lot no. 32411, exp. 

09/2009), adalimumab (Humira®, prefil led syringe, lot no. 292209A05, exp. 10/2006; lot 

no. 430989A04, exp. 02/2008), r ituximab (MabThera®, vial, lot no. B6073, exp. 12/2013), 

and infl iximab (Remicade®, vial, lot no. 7GD9301402, 7FD8701601, 7RMKA81402, pooled) 

were donated by local hospitals. Sucrose, mannitol, sodium chloride, trisodium citrate 

dihydrate and polysorbate 80 were purchased from VWR (Darmstadt, Germany), disodium 

hydrogenphosphate dihydrate and sodium dihydrogenphosphate dihydrate were 

purchased from Merck KGaA (Darmstadt, Germany). Sil icone oil  with a viscosity of 1000 

cSt (same viscosity as used in other studies  (15,16,25) and as l isted in the Ph.Eur. 

monography for sil icone oil  as a lubricant (36)), citric acid, and arginine hydrochloride 

were purchased from Sigma Aldrich (Steinheim, Germany). 

Preparation of protein samples 

Etanercept solution at a concentration of 5 mg/mL was prepared by dilution of 50 mg/mL 

etanercept (removed from the prefil led syringe through the needle) in 25 mM phosphate 

buffer (pH 6.3) containing 100 mM NaCl, 25 mM arginine hydrochloride, and 1% sucrose. 

Adalimumab solution at a concentration of 5 mg/mL was prepared by dilution of 50 

mg/mL adalimumab in 15 mM phosphate/citrate buffer (pH 5.2) containing 105 mM NaCl, 

1.2% mannitol , and 0.1% polysorbate 80.  
 

Rituximab solution at a concentration of 1 mg/mL was prepared by dilution of 10 mg/mL 

rituximab commercial product in 25 mM citrate buffer (pH 6.5) containing 154 mM NaCl 

and 0.07% polysorbate 80 (formulation buffer). The formulation was fi ltered using a 0.2-

µm polyethersulfone syringe fi lter (Sartorius, Göttingen, Germany) and kept at 2 -8 °C for a 

maximum of one week. Heat-stressed rituximab was prepared by incubating 1.5 mL of the 

1 mg/ml rituximab solution for 30 min at 71 °C in a thermomixer (Eppendorf, Hamburg, 

Germany). Stir-stressed rituximab was prepared by incubating 3 mL of the 1 mg/ml 

rituximab solution in a 5R glass vial using a 12 mm Teflon®-coated stir bar at 1000 rpm for 

24 hours at room temperature on a magnetic stirrer (Heidolph MR 3001K, Heidolph,  

Schwabach, Germany). Stressed rituximab at 1 mg/ml (protein particle stock suspension) 

was stored at 2-8°C until  the measurement. 
 

Infl iximab solution at a concentration of 1 mg/mL was prepared by dilution of 10 mg/mL 

infl iximab commercial product in 100 mM phosphate buffer (pH 7.2). The formulation was 

fi ltered using a 0.2-µm polyethersulfone syringe fi lter. Heat-stressed infl iximab was 
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prepared by incubating 0.5 mL of the 1 mg/mL i nfl iximab solution for 30 minutes at 60 °C 

in a thermomixer. Stir-stressed infliximab was prepared by incubating 8 mL of the 1 

mg/mL infl iximab solution in a 10R glass vial using an 18-mm Teflon®-coated stir bar at 

250 rpm for 24 hours at room temperature on a magnetic stirrer (Heidolph MR Hei -

Standard).  

Preparation of silicone oil emulsion 

Pure sil icone oil  was added to fi ltered formulation buffer (0.2 -µm polyethersulfone syringe 

fi lter (Sartorius, Göttingen, Germany)) in a particle-free 15-mL conical tube (VWR, 

Darmstadt, Germany) to a final concentration of 2% (w/v) to generate a  pure emulsion 

without additives. After vortexing briefly, si l icone oil  droplet formation was induced by 

sonication in a water bath (Sonorex, Brandelin, Berlin, Germany) for 10 min. Fresh sil icone 

oil  emulsion (sil icone oil  droplet stock emulsion) was prepared on the day of the 

measurement and kept at room temperature. 

Preparation of individual and mixed samples of silicone oil droplets and protein particles 

Silicone oil  droplet stock emulsion and/or protein particle stock suspension (heat-stressed 

rituximab) was diluted in unstressed protein solution or fi ltered formulation buffer for the 

preparation of mixed and individual samples. Unless stated otherwise, samples were 

prepared to a final protein concentration of 0.5 mg/mL. Mixed samples were prepared to 

cover ratios of sil icone oil  droplets to protein particles of 95:5 to 15:85 based on particle 

counts > 1 µm determined by MFI. Individual samples were prepared to contain the same 

amount of sil icone oil  droplets and protein particles, respectively, as in the mixed samples 

and were referred to as the theoretical concentration. The samples were gently mixed 

with a pipette, kept at room temperature and measured on the day of preparation. 

Micro-Flow Imaging 

An MFI DPA4100 series A system (ProteinSimple, Santa Clara, California) equipped with a 

100-µm flow cell, operated at high magnification (14x) and controlled by the MFI View 

software version 6.9 was used. The system was flushed with 5 mL purified water at 

maximum flow rate and flow cell  cleanliness was checked between measurements. 

Unstressed and fi ltered rituximab or the appropriate formulation buffer was used to 

perform “optimize i l lumination” prior to each measurement. Samples of 0.65 mL with a 

pre-run volume of 0.3 mL were analyzed at a flow rate of 0.1 mL/min (n=3). MVAS version 

1.2 was used for data analysis. 
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Development of a customized filter for MFI 

The MVAS software of the MFI system enables the discrimination of particles based on 

optical parameters of the generated images through the “find similar” operation. For our 

study, a minimum of 20 particles above 5 µm clearly recognizable as sil icone oil  droplets 

was selected for the discrimination. In addition to this, a customized fi lter was developed 

specifically for the heat-stressed Rituximab samples of this study. In detail, the new fi lter 

was based on four customized size-specific cut-offs for particle parameters of sil icone oil  

droplets provided by MFI (Figure 1), which proved to be suitable to discriminate sil icone 

oil  droplets and protein particles . This approach is a modification of previous work by 

Strehl et al. (31). The four parameters used for our fi lter were intensity mean (Figure 1A), 

intensity minimum (Figure 1B), intensity standard deviation (Figure 1C) and aspect ratio 

(Figure 1D).  

 
Figure 1 Scatter plots of particle parameters: A) intensity mean, B) intensity minimum, C) intensity standard 

deviation, and D) aspect ratio for individual samples containing only protein particles (heat-stressed rituximab) or 

only silicone oil droplets analyzed separately by MFI and merged into one graph per particle parameter. The solid 

red lines illustrate cutoffs as a function of size, generated by our customized fit for the discrimination between 

silicone oil droplets and protein particles. The dash-dotted green lines illustrate linear cutoffs used by the MVAS 

software for the “find similar” operation.  
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The first three parameters are based on the intensity of the particle image, which is 

directly proportional to the transparency of the particle (27). The intensity mean describes 

the mean intensity value over all  pixels within one particle; the intensity minimum 

describes the intensity of the darkest pixel of a particle; and the intensity standard 

deviation describes differences between higher and lower intensity values within the 

same particle. The aspect ratio defines the shape of a particle with “1” for an absolutely 

spherical particle and “0” for a needle with an infi nite length. For each of the four particle 

parameters, the individual distributions for silicone oil  droplets and protein particles from 

heat-stressed rituximab were compared as a function of size. Cut-offs were defined at the 

mean value of the 95% confidence intervals between the two populations (Figure S1). A 

polynomial function was automatically fitted to these points from 1 to 11 µm and applied 

for particles from 1 to 9 µm. Above 11 µm, the number of counts acquired was not 

sufficient for this statistical approach; therefore, the fit was adjusted manually in this 

larger size range. The automated and the manual fit were overlapped in the size range 

from 9 to 11 µm to ensure a smooth transition. Since the sil icone oil  droplet population 

was more homogeneous than the protein particle population, the customized fi lter was 

set to identify objects as sil icone oil  droplets only when they fulfi l led all  four cut-off fit 

criteria. Particles showing values below the cutoff for intensity mean and minimum (Figure 

1A and B) and at the same time above the cutoff for intensity standard deviation and 

aspect ratio (Figure 1C and D) were marked as sil icone oil  droplets by the algorithm. 

Particles fulfilling less than four of these criteria were assigned as non-silicone oil  particles, 

which means in our case protein particles. 

Resonant mass measurement 

An Archimedes system (Affinity Biosensors, Santa Barbara, California) was equipped with a 

Hi-Q Micro Sensor and controlled by ParticleLab software version 1.8. The sensor was 

flushed for 60 s with purified water prior to analysis. Subsequently, possible impurities in 

the system were removed by two “sneeze” operations (l iquid in the sensor is pushed into 

both directions) and the system was flushed again for 60 s with purified water. The sample 

solution was then loaded for 45 s. Prior to analysis, the limit of detection (LOD) was 

determined three times in automatic LOD mode. The mean value was then set fixed for 

each measurement. Samples of 150 nL were analyzed (n=3) and fresh sampl e solution was 

loaded for each of the triplicate measurements. 
 

Size determination of particles by RMM is based on the frequency shift f which is 

proportional to the buoyant mass MB and depending on the sensitivity S of the resonator 

(Equation 1). 
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Equation 1 
 

The conversion of buoyant mass MB into dry mass M (Equation 2) and diameter D 

(Equation 3) is then based on the density of the particle, ρparticle (1.32 g/mL for protein 

particles, based on the density of pure protein (37) and the recommendation of the 

manufacturer; 0.97 g/mL for sil icone oil, according to the supplier) and the density of the 

fluid, ρfluid (calculated based on the sensor frequency relative to the frequency and the 

density of water as a reference). 
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Results and discussion 

Silicone oil droplets in prefilled syringes 

Expired prefil led syringes of etanercept and a dalimumab were available for the study and 

analyzed in order to gain insight into relevant levels and size distributions of sil icone oil  

droplets in marketed products as a worst case scenario. Four and six years after 

expiration, respectively, MFI determined for both products about 4x10 5 particles/mL 

above 1 µm. Based on the images generated by MFI, about 80% of the particles above 5 

µm in both products could be identified as sil icone oil  droplets using the “find similar” 

operation provided by the MVAS software. RMM determined 3.2x10 6 particles/mL larger 

than 0.5 µm for etanercept and 2.0x106 particles/mL for Adalimumab, of which 51% and 

97%, respectively, could be attributed to sil icone oil. Three and four years after expiration, 

RMM determined for both analyzed products lower concentrations of protein particles 

and of sil icone oil droplets when compared to products four and six years after expiration, 

respectively (Table S1). This implies that total particle concentrations as well as the ratio 

between sil icone oil  droplets and protein particles can vary substantially between 

products, lots and age of the product. 
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Determination of total particle concentrations (without discrimination) 

For the evaluation of MFI and RMM, sil icone oil  droplets were artificially generated, which 

appeared similar to those found in etanercept and a dalimumab prefil led syringes with 

respect to their shape, optical properties (Figure 2) and size distribution (Figure S2). The 

concentrations used in our study (0.003% to 0.025% (w/v) sil icone oil) provided droplet 

concentrations similar to those identified in the expired etanercept and a dalimumab 

prefil led syringes and are in agreement with other studies suggesting the presence of up 

to 0.03% of sil icone oil  in prefil led syringes  (38,39). A heat-stress method was developed 

using rituximab as a model for the generation of particles with a similar appearance to 

protein particles in etanercept prefil led syringes. A stir-stress method was developed for 

the generation of particles similar to those in adalimumab prefil led syringes (Figure 2). All  

protein samples showed comparable particle size distributions with the smaller particles 

representing the largest fraction (Figure S3). Protein particles in concentrations from 

1x105 to 5x105 particles/mL above 1 µm (according to MFI) were combined with sil icone 

oil  droplets in concentrations from 1x105 to 3x105 particles/mL above 1 µm (according to 

MFI). Using MFI and RMM, several samples with varying concentrations of protein 

particles and sil icone oil  droplets were analyzed, both individually and as mixtures at 

various defined droplet/particle ratios. 
 

 
Figure 2: Examples of MFI images of protein particles and silicone oil droplets detected in  marketed products and 

artificially generated samples . 
 

First, the particle concentrations for individual samples containing either only sil icone oil  

droplets or only protein particles were determined by MFI and RMM. One combination is 

shown as a representative example in Figure 3 for the overlapping measuremen t size 

range of both techniques (1-4 µm). Overall, the results indicate that particle counts and 

size distributions by MFI and RMM are in general agreement. However, certain differences 
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were observed depending on the type of sample and the ratio of protein  particles and 

sil icone oil  droplets: For samples containing only sil icone oil, RMM detected slightly more 

droplets of 1 to 4 µm as compared to MFI, while MFI detected more droplets in the size 

range from 2 to 4 µm (Figure 3A). This trend was reproducible for all  si l icone oil  droplet 

samples, with an up to twofold higher sil icone oil  droplet count in the size range of 1 to 4 

µm detected by RMM as compared to MFI.  
 

This difference might be due to two major reasons: 
 

 (i) Si l icone oil  droplets of sizes up to 50 µm were identified by MFI, which are much 

larger than the microchannel diameter of RMM (8 µm). Those particles larger than 8 

µm represent only 4% of all  si l icone oil  droplets in the sample detected by MFI by 

number; however, they contain 72% of the total mass of all  si l icone oil  droplets in the 

sample detected by MFI (mass was calculated based on droplet counts at the 

respective diameter and the density of sil icone oil  of 0.97 g/mL). These observations 

led us to the hypothesis that larger sil icone oil  droplets might be fragmented into 

smaller ones by shear forces inside the microchannels and capillaries of the RMM 

system. This would result in an increased number of smaller sil icone oil  droplets in 

RMM. Our hypothesis was supported by MFI data from a sample containing only 

sil icone oil, which was analyzed before RMM and collected after an RMM 

measurement. In this case, an increase in sil icone oil  droplet concentration between 1 

and 2 µm with a concomitant decrease above 2 µm was observed when comparing 

particle concentrations before and after the RMM measurement (Figure S4A). It could 

be shown that this was clearly an effect of the RMM measurement itself and not of the 

dilution of the sample during the RMM measurement (Figure S4B). A decreased flow 

rate during sample analysis might reduce this fragmentation effect but would further 

increase the already long measurement time of RMM. 
 

 (i i) Additionally, small particles near the detection limit of MFI could be “overlooked” 

by the software, as suggested also by others (40), further enhancing the differences 

between MFI and RMM for small (1 µm) sil icone oil  droplet counts. 
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Figure 3: Cumulative counts in the size range of 1–4 µm of A) a sample containing only silicone oil droplets, B) a 

sample containing only protein particles (heat-stressed rituximab), and C) the corresponding mixture (droplet–

particle ratio 40:60 for particles >1 µm based on MFI) as determined by MFI and RMM. Error bars represent 

standard deviations from triplicate measurements.  
 

In contrast to the results from sil icone oil  samples, RMM detected consistently less protein 

particles in individual samples than MFI over the entire 1 to 4 µm s ize range (Figure 3B). 

This was also observed in a previous study by our group (41). This difference is suggested 

to occur for two reasons:  
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(i) MFI and RMM apply fundamentally different measurement principles (Figure 4): 

MFI captures 2D microscopic particle images (Figure 4A) and size determination of 

particles by MFI is performed according to their spatial dimension on the images 

defined by the outer boundary of the particle. The differentiation of protein particles 

and sil icone oil  droplets is based on morphological parameters such as particle shape 

and transparency. In contrast, RMM detects particles as distinct positive or negative 

peaks in the frequency trace caused by the physical parameter of particle buoyancy 

(Figure 4B). However, protein particles may vary in density and contain substantial 

amounts of l iquid (42). This is not included into the size calculation by RMM, causing a 

potential underestimation of particle sizes in RMM as compared to MFI, which includes 

l iquid inside the particle in the size calculation. This in turn would lead to an apparent 

shift of the complete particle size distribution in RMM towards smaller particle sizes 

resulting in lower concentrations detected for the respective size bins in RMM as 

compared to MFI. 
 

 (i i) As a second reason, the micron-sized capillaries and channels of the RMM sensor 

are vulnerable to clogging by particles at or above the upper size l imit of the system. 

Even though RMM offers several tools to remove stuck particles, clogging cannot 

always be avoided. Thus, large stuck particles could hinder other particles from 

reaching the sensor. This could explain why the concentration discrepancy between 

RMM and MFI is more pronounced at larger particle sizes. Smaller particles will  pass a 

clogged site more easily, whereas larger particles, although stil l  in the measurement 

range, are more likely to be excluded from the analysis. Altogether, this will  result in 

lower apparent protein particle concentrations in RMM. A possible solution would be 

sample preparation for highly aggregated samples, e.g. fi ltration or centrifugation, 

which can however potentially change sample properties. In the future, a potential 

system reconfiguration by the manufacturer could decrease clogging issues. 
 

Total particle concentrations for mixed samples containing both sil icone oil  droplets and 

protein particles also revealed slight differences between MFI and RMM for the 

overlapping size range of 1 to 4 µm (Figure 3C). For moderate ratios (sil icone oil  

droplets/protein particles 40:60 based on MFI shown as a representative sample), RMM 

detected less particles than MFI, l ikely due to the underestimation of protein particles as 

described before. However, in mixed samples of higher sil icone oil  content (sil icone oil  

droplets/protein particles 80:20 or 95:5 based on MFI) similar concentrations were 

determined by the two techniques. In those samples, the overestimation of sil icone oil  

droplets by RMM was balanced out by the underestimation of protein particles by RMM 

leading to similar total particle counts in MFI and RMM. For all  samples, RMM showed 
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higher standard deviations than MFI. This is probably mainly due to the small analyzed 

volume in RMM (about 0.15 µL) as compared to MFI (about 35 µL). 
 

It was further investigated whether the presence of both sil icone oil  droplets and protein 

particles within the same sample influenced the accuracy of MFI or RMM to determine 

total particle concentrations. For MFI, the concentration determined for mixed samples of 

sil icone oil  droplets and protei n particles from heat-stressed rituximab matched very 

closely the sum of the concentrations determined for the corresponding individual 

samples (Figure S5A). For RMM, the concentration for the mixed sample reasonably 

matched the sum of the individual sampl es for the main size classes (Figure S5B). These 

observations were consistent for different ratios and also for protei n particles from stir-

stressed rituximab mixed with sil icone oil  droplets. This justified the use of particle counts 

of individual samples  as the theoretical concentrations for mixed samples.  

Discrimination between silicone oil droplets and protein particles 

The discrimination between sil icone oil  droplets and protein particles by MFI and RMM is 

based on clearly different mechanisms (see above and Figure 4). The optical discrimination 

by MFI bears the potential risk of false classification due to optically similar sil icone oil  

droplets and protein particles in the lower size range, especially near the detection limit. 

In contrast, the discrimination by RMM based on the physical parameter of particle 

buoyancy enables a clear discrimination with minimal risk of false classification. In this 

case, the difference in density between sil icone oil  droplets and protein particles is 

beneficial. 

Discrimination between droplets and particles by MFI 

In the present paper, the performance of MFI was assessed using the built-in software 

solution “find similar” and a customized data fi lter developed specifically for this study. To 

evaluate the reliability of our customized fi lter, the following control experiments were 

performed: the fi lter was applied on samples containing only sil icone oil  droplets and the 

number of objects falsely marked as protein particles was determined and vice versa. Our 

customized fi l ter marked less than 3% of the counts in the samples containing only 

sil icone oil  droplets (3x105 particles/mL > 1 µm based on MFI) falsely as protein particles 

(> 2 µm) and less than 8% of the counts in the samples containing only protein particles 

(4x105 particles/mL > 1 µm based on MFI) falsely as sil icone oil  droplets (> 2 µm). These 

controls i l lustrate the capability of our fi lter to properly discriminate protein particles and 

sil icone oil  droplets. The requirement that all  four criteria of particle pa rameters need to 

be fulfi l led at the same time is the main difference of our fi lter compared to the fi lter 
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previously developed by Strehl et al. (31), which used the product of four particle 

parameters as criterion for particle classification. In this case, extreme values in one 

parameter could shift the product to the side of one particle type although the other three 

parameters would classify it clearly as the other particle type. Thus, their fi lter led to 

errors of 10% to 12% (> 2 µm) for sil icone oil  droplets classified falsely as protein particles; 

the error for protein particles classified falsely as sil icone oil  droplets depended strongly 

on the type of protein particles and varied between 2% and 42% in their study (31).  
 

 
Figure 4: aw data of an exemplary mixed sample containing protein particles (heat -stressed rituximab) and 

silicone oil droplets from A) MFI (image-based discrimination) and B) RMM (frequency-based discrimination). 
 

In contrast, our fi lter applies more strict criteria for sil icone oil  droplet identification as 

particles fulfi l l ing only three out of four criteria are not marked as sil icone oil  droplets 

leading to lower errors as discussed above. However, for protein particles generated fr om 

a different monoclonal IgG (i nfl iximab) by heat stress or stir stress the customized fi lter 

marked up to 40% (> 2 µm) falsely as sil icone oil  droplets. This was most l ikely due to the 

lower intensity (lower transparency) of particle images of this IgG, which makes a 

misclassification as silicone oil  droplets of similarly low transparency more likely. Th is is in 

agreement with the literature, where large variations were also observed by Strehl et al.  

(31) when their fi lter was applied to different types of protein particles. The MVAS 
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software fi lter could not be tested on these protein samples as it was based on manual 

selection of sil icone oil  droplet images which were not present in these pure protein 

samples. 
 

The “find similar” operation of the MVAS software as well as the customized fi lter were 

both used to categorize particles from mixed samples into sil icone oil  droplets and non -

sil icone oil  particles. Non-sil icone oil  particles were defined as protein particles in our 

case. The obtained concentrations were compared to the theoretical concentrations 

based on the analysis of the individual samples, which were used to assess the accuracy of 

both methods (Figure 5A, C, and Figure 6). For moderate droplet/particle number ratios 

from 30:70 to 70:30 based on MFI, both the selection by “find similar” and the customized 

fi lter were able to determine the correct concentrations within acceptable deviati ons for 

particles > 2 µm. This was observed for samples containing sil icone oil  droplets and 

protein particles from heat-stressed Rituximab (Figure 5A exemplarily shows the results 

for a sample with a droplet/particle ratio of 40:60 based on MFI). For stir -stressed 

Rituximab (Figure 5C) the customized fi lter for MFI showed superior discrimination 

compared to the “find similar” method for particles > 2 µm, even though the customized 

fi lter was designed based on heat-stressed Rituximab particles. The even higher intensity 

of MFI particle images of stir-stressed Rituximab compared to those of heat-stressed 

Rituximab (Figure 2) l ikely contributes to this: since three out of four parameters of the 

customized fi lter are based on the particle intensity, it facil ita tes discrimination from the 

lower intensity sil icone oil  droplets. Furthermore, the customized fi lter was superior for 

samples with more extreme droplet/particle number ratios (see Figure 6A and B for 

representative examples) and for samples based on origi nal, undiluted Rituximab solution 

(Figure 6C). 
 

Thus, for particles between 2 µm and 25 µm, the development of a customized fi lter is 

useful for an accurate discrimination by MFI. For particles with a size below 2 µm, 

discrimination by an alternative method is recommended (e.g. RMM, as discussed later) as 

both “find similar” and the customized fi lter were not reliably capable of determining the 

correct concentration. For particles larger than 25 µm, due to usually low particle numbers 

in this size range, manual classification of the MFI images might be preferred over the 

built-in software solution or a customized fi lter. Those particles can usually be identified 

easily by visual evaluation of the images. 
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Figure 5: Results from MFI (A and C) or RMM (B and D) for the discrimination between silicone oil droplets and 

protein particles. Histograms comparing the theoretical concentrations  (based on individual samples) and 

determined concentrations of silicone oil droplets and protein particles (A and B, heat-stressed rituximab; C and 

D, stir-stressed rituximab) in mixed samples with moderate ratios (droplet–particle ratio 40:60 based on MFI). 

Error bars represent standard deviations from triplicate measurements.  
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Figure 6: MFI cumulative particle counts comparing theoretical concentrations (based on individual samples) and  

determined concentrations of silicone oil droplets and protein particles (heat -stressed rituximab) in droplet–

particle ratios of A) 95:5 and B) 15:85 in samples containing 0.5 mg/mL rituximab as well as C) 60:40 in a sample 

containing undiluted rituximab (10 mg/mL). Error bars (A and B) represent standard deviations from triplicate 

measurements. 

Discrimination between droplets and particles by RMM 

As described for MFI, RMM was evaluated with respect to an accurate discrimination 

between sil icone oil  droplets and protein partic les in mixed samples (Figure 5B, D, and 

Figure 7). For moderate particle/droplet ratios, RMM was consistently able to discriminate 

particles correctly with small deviations from the theoretical concentrations for heat-

stressed (Figure 5B) and stir-stressed rituximab (Figure 5D). Large deviations of 20% or 

more from the theoretical concentration were only observed if the discrimination was 
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based on less than 50 counted particles (corresponding in this case to total concentrations 

(droplets + particles) < 3x105 particles/mL) and thus statistical representation of the 

sample population was limited. This was for example the case for particles larger than 2 

µm (Figure 5B and D). Increasing the analyzed sample volume would compensate for the 

limited reliability of RMM to quantify low particle concentrations, as also reported by 

others.35 However, it needs to be considered that very long measurement times 

associated with large analyzed volumes could also provoke changes in sample properties. 

In contrast, fairly high concentrations of protein particles > 2x10 6 particles/mL caused high 

standard deviations potentially due to the increased probability of coinciding particles and 

also blockage of the channel by particles (Figure 7A). However, extreme droplet/particle 

ratios with high amounts of sil icone oil  droplets provided moderate standard deviations 

and also fairly accurate determination of the theoretical concentration (Figure 7B 

exemplarily displays results for a droplet/particle ratio of 95:5 based on RMM). Those 

results provide evidence that RMM discrimination is reliable for particles below 2 µm. 

Comparison of results for MFI and RMM 

For a final evaluation of MFI and RMM regarding the discrimination of silicone oil  droplets 

and protein particles, results for the same sample were compared between the two 

techniques. For sil icone oil  droplets and heat-stressed Rituximab (Figure 5A and B, 

droplet/particle ratio 40:60) as well as stir -stressed Rituximab (Figure 5C and D, 

droplet/particle ratio 40:60), RMM detected a higher fraction of sil icone oil  droplets as 

compared to MFI for the sizes above 1 µm already in the individua l samples. This 

originated foremost from the differences in total concentration determination as 

discussed earlier: RMM detected in general more sil icone oil  droplets than MFI, whereas 

MFI detected in general more protein particles than RMM (see also Figur e 3). However, in 

this size range, RMM results for the mixed samples are considered more reliable as RMM 

differentiation was shown to be highly accurate (Figure 5B and D). MFI differentiation 

suffered from low image resolution in the lower size range leadi ng to large deviations for 

both the “find similar” operation and the customized fi lter (Figure 5A and C). With 

increasing particle size, the ratios between MFI and RMM in the individual samples 

converged and similar ratios for individual samples were obtai ned for particles > 2 µm 

(Figure 5A and B show a droplet/particle ratio of 30:70 for particles > 2 µm in individual 

samples for both MFI and RMM). For mixed samples, the concentration obtained by MFI is 

suggested to be more reliable for sizes above 2 µm as  the discrimination between droplets 

and particles was highly accurate, especially when the customized fi lter was applied 

(Figure 5A and C). RMM analysis of objects with a size above 2 µm was based on small 
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numbers of counts, questioning the reliability of the determined concentrations (Figure 5B 

and D) in our study. 
 

 
Figure 7: RMM cumulative particle counts comparing theoretical concentrations (based on individual samples) 

and determined concentrations of silicone oil droplets and protein particles (heat -stressed rituximab) in droplet–

particle ratios of A) 40:60 and B) 95:5. Error bars represent standard deviations from triplicate measurements. 

Recommendations and conclusions 

Table 1 summarizes properties as well as pros and cons during the application of MFI and 

RMM which were identified in our study. For MFI, the customized fi lter was shown to 

provide correct results for moderate and extreme ratios between sil icone oil  droplets and 

protein particles. The fi lter was  developed using heat-stressed rituximab particles, but was 

also found applicable for rituximab particles generated by stir stress and for samples 

containing rituximab solution in high concentrations (10 mg/mL). In contrast, the 

application for infl iximab particles generated by either heat or stir stress resulted in large 

errors. These results emphasize the necessity of customizing the fi lter to each specific 

protein, the formulation, and the particle type / stress method of interest. Thus, the 

development of a customized fi lter for quality control of protein therapeutics in prefil led 

syringes with comparable manufacturing conditions can be considered reasonable. In 

contrast, the implementation during formulation development with varying conditions 

should be critically evaluated case by case. The separation by the MVAS software was 
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acceptably accurate especially for moderate ratios of sil icone oil  droplets and protein 

particles. It could stil l  be applied in those cases, when costs and time for the development 

of a customized fi lter would exceed the benefit of a more accurate discrimination. 

However, the differentiation by “find similar” showed clearly higher standard deviations 

as compared to the customized fi lter. This higher variation of the “find similar” operation 

originated most l ikely from the underlying sample and operator dependent manual 

selection of the particle images. For both MFI-based solutions it is important to consider 

that the separation is based on the identification of sil icone oil  droplets, whereas the 

remaining particles, identified only as “non-silicone oil  particles”, are simply equated with 

protein particles by the operator.  
 

Table 1: Summarizing comparison of MFI and RMM for the analysis of silicone oil droplets and protein particles.  
 

 MFI (MFI4100, HighMag Settings) RMM (Archimedes, Micro Sensor) 

Properties of the techniques 

Principle Flow imaging microscopy with digital 
image analysis. 
Sizing based on optical particle boundary. 

Mass determination by 
quantification of frequency shift. 
Sizing based on particle density 

Size range 1-70 µm  0.3-4 µm 

Differentiation of 
protein particles and 
silicone oil droplets 

Based on morphological parameters 
(shape, transparency…) of particle 
images. 
Differentiation may be time-consuming 
(esp. development of customized filter). 

Based on particle buoyancy 
(density). 
Differentiation during the 
measurement without additional 
time consumption. 

Concentration range Up to 1x106 particles/mL 
(coincidence not indicated by the system) 

3x105 to 1x107 particles/mL 
(coincidence indicated by the 
system) 

Reproducibility Higher reproducibility Lower reproducibility 
(due to lower analyzed volume) 

Status of the technique Established R&D and cGMP technique Novel R&D technique 

Pros and Cons during application 

Protein particles Clear visualization of larger particles. Clogging by larger particles possible. 

Silicone oil droplets Detection of larger droplets without 
fragmentation. 

Fragmentation of larger droplets 
possible. 

Samples containing 
protein particles and 
silicone oil droplets 

2-10 µm: good differentiation by built-in 
software filter or (preferably) customized 
filter. 
> 10 µm: easy identification by optical 
evaluation of particle images. 

0.5-2 µm: unambiguous 
differentiation due to physical 
detection principle. 

Complexes of protein 
particles and silicone oil 
droplets 

Potential identification of larger 
complexes (> about 5-10 µm). 

Potential misclassification, 
miscalculation of particle size or no 
detection. 

More than one particle 
type of higher density 
(e.g. protein and rubber, 
steel, glass) 

Potential differentiation according to 
visual appearance (refractive index or 
shape). 

No differentiation possible. 
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For RMM, the discrimination was very accurate for different types of protein particles and 

different ratios as long as sufficiently high numbers of particles were detected. The high 

accuracy of RMM is due to the straightforward categorization of particles and droplets 

according to buoyant mass. This makes RMM a very robust technique for exactly this task. 

It needs to be considered that RMM can only discriminate one type of positi vely buoyant 

from one type of negatively buoyant particles. Thus, if a sample contains protein particles 

as well as other particles of higher density than the buffer, e.g., particles shed from fi l l ing 

pumps or rubber stoppers, RMM is not able to discrimina te them. Here, methods such as 

SEM-EDS, FT-IR or Raman microscopy (43) could be used as orthogonal methods to further 

identify these “non-sil icone oil” particles. Furthermore, complexes consisting of both 

protein and sil icone oil  can pose a challenge for the technique of RMM: The reported size 

of those complexes may be incorrect due to the simultaneous influence of both material 

densities on the density of the complex. As a worst case the complexes might be missed 

entirely as the higher density of protein is compensated by the lower density of  sil icone 

oil, eliminating a clear density difference between particle and formulation. Those 

complexes might be detectable by MFI (given that they are large enough) as shown for an 

IgG particle containing sil icone oil  (22). In our study, only very few of those complexes 

were observed in MFI, because protein particles and sil icone oil  droplets were prepared 

separately to avoid interactions of protein and sil icone oil  during the particle formation 

process.  
 

Taken together, the robust detection principle of RMM has brought significant benefit to 

the field of protein product characterization, especially for the discrimination of sil icone 

oil  droplets and protein particles. RMM differentiation is recommended for particles 

below 2 µm, provided that sufficient particle quantities are detected. MFI differentiation is 

recommended above 2 µm, preferably using a customized fi lter. In order to cover a size 

range as broad as possible, both techniques should be applied in parallel for  a 

comprehensive analysis of samples potentially containing sil icone oil  droplets and protein 

particles in the size range from 500 nm to 70 µm. 

  



Micro-Flow Imaging and resonant mass measurement 

99 

References 

1.  Narhi LO, Schmit J, Bechtold-Peters K, Sharma D. Classification of protein aggregates. J Pharm Sci. 2012 
Feb;101(2):493–8.  

2.  Carpenter J, Cherney B, Lubinecki A, Ma S, Marszal E, Mire-Sluis A, et al. Meeting report on protein 
particles and immunogenicity of therapeutic proteins: filling in the gaps in risk evaluation and 
mitigation. Biologicals. 2010 Sep;38(5):602–11.  

3.  Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006 Jan;8(3):E501–
7.  

4.  Chi EY, Krishnan S, Randolph TW, Carpenter JF. Physical stability of proteins in aqueous solution: 
mechanism and driving forces in nonnative protein aggregation. Pharm Res. 2003 Sep;20(9):1325 –36.  

5.  USP <788>. Particulate Matter in Injections. In: The United States Pharmacopoeia, National Formulary. 
2009.  

6.  Ph.Eur. 2.9.19. General, particulate contamination: sub-visible particles. In: The European 
Pharmacopoeia,. 7th ed. 2011.  

7.  Kirshner LS. Regulatory expectations for analysis of aggregates and particles. In: Colorado Protein 
Stability Conference. Breckenridge, CO; 2012.  

8.  Kerwin BA, Akers MJ, Apostol I, Moore-Einsel C, Etter JE, Hess E, et al. Acute and long-term stability 
studies of deoxy hemoglobin and characterization of ascorbate-induced modifications. J Pharm Sci. 
1999 Jan;88(1):79–88.  

9.  Hawe A, Friess W. Stabilization of a hydrophobic recombinant cytokine by human serum albumin. J 
Pharm Sci. 2007 Nov;96(11):2987–99.  

10.  Tyagi AK, Randolph TW, Dong A, Maloney KM, Hitscherich C, Carpenter JF. IgG particle formation 
during filling pump operation: A case study of heterogeneous nucleation on stainless steel 
nanoparticles. J Pharm Sci. 2009;98(1):94–104.  

11.  Freund KB, Laud K, Eandi CM, Spaide RF. Silicone oil droplets following intravitreal injection. Retina. 
26(6):701–3.  

12.  Chantelau E, Berger M. Pollution of insulin with silicone oil, a hazard of disposable plastic syringes. 
Lancet. 1985;325(8443):1459.  

13.  Chantelau E, Berger M, Bohlken B. Silicone oil released from disposable insulin syringes. Diabetes Care. 
1986;9(6):672–3.  

14.  Barnard JG, Babcock K, Carpenter JF. Characterization and quantitation of aggregates and particles in 
interferon-β products: Potential links between product quality attributes and immunogenicity. J Pharm 
Sci. 2013;102(3):915–28.  



Chapter 5 

100 

15.  Felsovalyi F, Janvier S, Jouffray S, Soukiassian H, Mangiagalli P. Silicone-oil-based subvisible particles: 
Their detection, interactions, and regulation in prefilled container closure systems for 
biopharmaceuticals. J Pharm Sci. 2012;101(12):4569–83.  

16.  Thirumangalathu R, Krishnan S, Ricci MS, Brems DN, Randolph TW, Carpenter JF. Silicone oil - and 
agitation-induced aggregation of a monoclonal antibody in aqueous solution. J Pharm Sci. 2009 
Sep;98(9):3167–81.  

17.  Jones LS, Kaufmann A, Middaugh CR. Silicone oil induced aggregation of proteins. J Pharm Sci. 2005 
Apr;94(4):918–27.  

18.  Ludwig DB, Carpenter JF, Hamel J-B, Randolph TW. Protein adsorption and excipient effects on kinetic 
stability of silicone oil emulsions. J Pharm Sci. 2010 Apr;99(4):1721–33.  

19.  Britt KA, Schwartz DK, Wurth C, Mahler HC, Carpenter JF, Randolph TW. Excipient effects on humanized 
monoclonal antibody interactions with silicone oil  emulsions. J Pharm Sci. 2012 Sep 16;101(12):4419–
32.  

20.  Kossovsky N, Heggers JP, Robson MC. Experimental demonstration of the immunogenicity of silicone-
protein complexes. J Biomed Mater Res. 1987 Sep;21(9):1125–33.  

21.  Zölls S, Tantipolphan R, Wiggenhorn M, Winter G, Jiskoot W, Friess W, et al. Particles in therapeutic 
protein formulations, Part 1: overview of analytical methods. J Pharm Sci. 2012 Mar;101(3):914–35.  

22.  Wuchner K, Büchler J, Spycher R, Dalmonte P, Volkin DB. Development of a microflow digital imaging 
assay to characterize protein particulates during storage of a high concentration IgG1 monoclonal 
antibody formulation. J Pharm Sci. 2010 Aug;99(8):3343–61.  

23.  Lankers M, Munhall J, Valet O. Differentiation between foreign particulate matter and silicone oil 
induced protein aggregation in drug solutions by automated Raman spectroscopy. Microsc Microanal. 
2008 Aug 3;14(S2):1612–3.  

24.  Fraunhofer W, Winter G. The use of asymmetrical flow field-flow fractionation in pharmaceutics and 
biopharmaceutics. Eur J Pharm Biopharm. 2004 Sep;58(2):369–83.  

25.  Ludwig DB, Trotter JT, Gabrielson JP, Carpenter JF, Randolph TW. Flow cytometry: a promising 
technique for the study of silicone oil-induced particulate formation in protein formulations. Anal 
Biochem. 2011 Mar 15;410(2):191–9.  

26.  Sharma DK, King D, Oma P, Merchant C. Micro-flow imaging: flow microscopy applied to sub-visible 
particulate analysis in protein formulations. AAPS J. 2010 Sep;12(3):455–64.  

27.  Sharma DK, Oma P, Pollo MJ, Sukumar M. Quantification and characterization of subvisible 
proteinaceous particles in opalescent mAb formulations using micro-flow imaging. J Pharm Sci. 2010 
Jun;99(6):2628–42.  

28.  Demeule B, Messick S, Shire SJ, Liu J. Characterization of particles in protein solutions: reaching the 
limits of current technologies. AAPS J. 2010 Dec;12(4):708–15.  



Micro-Flow Imaging and resonant mass measurement 

101 

29.  Liu L, Ammar DA, Ross LA, Mandava N, Kahook MY, Carpenter JF. Silicone oil microdroplets and protein 
aggregates in repackaged bevacizumab and ranibizumab: effects of long-term storage and product 
mishandling. Invest Ophthalmol Vis Sci. 2011 Feb;52(2):1023–34.  

30.  Sharma D, Oma P, Krishnan S. Silicone Microdroplets in Protein Formulations - Detection and 
Enumeration. Pharm Technol. 2009;33(4):74–9.  

31.  Strehl R, Rombach-Riegraf V, Diez M, Egodage K, Bluemel M, Jeschke M, et al. Discrimination between 
silicone oil droplets and protein aggregates in biopharmaceuticals: a novel multiparametric image filter 
for sub-visible particles in microflow imaging analysis. Pharm Res. 2012 Feb;29(2):594–602.  

32.  Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, Foster JS, et al. Weighing of biomolecules, single 
cells and single nanoparticles in fluid. Nature. 2007 Apr 26;446(7139):1066–9.  

33.  Dextras P, Burg TP, Manalis SR. Integrated measurement of the mass and surface charge of discrete 
microparticles using a suspended microchannel resonator. Anal Chem. 2009 Jun 1;81(11):4517–23.  

34.  Rosenberg AS, Verthelyi D, Cherney BW. Managing uncertainty: A perspective on risk pertaining to 
product quality attributes as they bear on immunogenicity of therapeutic proteins. J Pharm Sci. 
2012;101(10):3560–7.  

35.  Patel AR, Lau D, Liu J. Quantification and Characterization of Micrometer and Submicrometer Subvisible 
Particles in Protein Therapeutics by Use of a Suspended Microchannel Resonator. Anal Chem. 2012 Jul 
13;84(15):6833–40.  

36.  Ph.Eur. 3.1.8. Silicone oil used as a lubricant. In: The European Pharmacopoeia,. 7th ed. 2010.  

37.  Fischer H, Polikarpov I, Craievich AF. Average protein density is a molecular-weight-dependent 
function. Protein Sci. 2004 Oct;13(10):2825–8.  

38.  Majumdar S, Ford BM, Mar KD, Sullivan VJ, Ulrich RG, D’souza AJM. Evaluation of the effect of syringe 
surfaces on protein formulations. J Pharm Sci. 2011 Jul;100(7):2563–73.  

39.  Chantelau E. Silicone oil contamination of insulin. Diabet Med. 1989 Apr;6(3):278.  

40.  Pedersen JS. Statistical evaluation of MFI dataset quality for high-throughput analysis. In: Protein 
Simple User Meeting, Basle, Switzerland. 2012.  

41.  Zölls S, Gregoritza M, Tantipolphan R, Wiggenhorn M, Winter G, Friess W, et al. How subvisible 
particles become invisible-relevance of the refractive index for protein particle analysis. J Pharm Sci. 
2013 Mar 5;102(5):1434–46.  

42.  Ripple DC, Wayment JR, Carrier MJ. Standards for the Optical Detection of Protein Particles. Am Pharm 
Rev. 2011;(4):90–6.  

43.  Cao X, Masatani P, Torraca G, Wen ZQ. Identification of a mixed microparticle by combined 
microspectroscopic techniques: A real forensic case study in the biopharmaceutical industry. Appl 
Spectrosc. 2010;64(8):895–900.  



Chapter 5 

102 

Supplementary information 

Table S1: Total particle and silicone oil droplet concentrations of expired marketed products in prefilled syringes 

determined by RMM. 
 

Product 
Total particle concentration 

(> 0.5 µm) 

Identified as silicone oil droplets 

(> 0.5 µm) 

etanercept 

lot 32411, exp.09/2009 1.50 x 106 1.46 x 106 

lot 31576, exp.12/2008 3.25 x 106 1.68 x 106 

adalimumab 

lot 430989A04, exp.02/2008 1.74 x 106 1.61 x 106 

lot 292209A05, exp.10/2006 2.01 x 106 1.94 x 106 

 

 

 
Figure S1: Distribution of the MFI particle parameters A) intensity mean, B) intensity minimum, C) intensity 

standard deviation and D) aspect ratio for individual samples of silicone oil droplets and protein particles (heat-

stressed Rituximab). Box plots show 25/75% (box) and 5/95% percentiles (whisker) as well as minimum and 

maximum values (X). The mean values of the 95% confidence intervals (CI) were used as a basis to fit the function 

for the customized filter. 
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Figure S2: Cumulative size distributions of silicone oil droplets determined by MFI and identified by t he “find 

similar” operation in A) Etanercept prefilled syringes, B) Adalimumab prefilled syringes, C) a sample containing 

only artificially generated silicone oil droplets. Error bars represent standard deviations from triplicate 

measurements. 
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Figure S3: Cumulative size distributions of protein particles determined by MFI and identified by the “find 

similar” operation for silicone oil droplets (protein particles are identified as the inverse pop ulation) in A) 

Etanercept prefilled syringes, B) Adalimumab prefilled syringes, C) heat-stressed Rituximab, D) stir-stressed 

Rituximab, E) unstressed Rituximab. Error bars represent standard deviations from triplicate measurements.  
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Figure S4: Differential size distribution of a sample containing only silicone oil droplets (0.04% (w/v)) analyzed by 

MFI, A) before RMM and collected after RMM analysis and B) before and after dilution according to the dilution 

factor 218 of the sample during RMM analysis. Counts were normalized to the total particle count.  

 

 

 
Figure S5: Cumulative counts in individual samples of silicone oil droplets and protein particles (heat-stressed 

Rituximab) and the corresponding mixture analyzed by A) MFI and B) RMM. Error bars represent standard 

deviations from triplicate measurements. 
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Abstract 

Flow imaging microscopy was introduced as a technique for protein particle analysis a few 

years ago and has strongly gained in importance ever since. The aim of the present study 

was a comparative evaluation of four of the most relevant flow imaging micros copy 

systems for biopharmaceuticals on the market: MFI4100, MFI5200, FlowCAM VS1, and 

FlowCAM PV. Polystyrene standards, particles  generated from therapeutic monoclonal 

antibodies, and sil icone oil  droplets were analyzed by all  systems . The performance was 

critically assessed regarding quantification, characterization, image quality, differentiation 

of protein particles and sil icone oil  droplets, and handling of the systems. The FlowCAM 

systems, especially the FlowCAM VS1, showed high resolution images. The FlowCAM PV 

system provided the most precise quantification of particles of therapeutic monoclonal 

antibodies, also under impaired optical conditions by an increased refractive index of the 

formulation. Furthermore, the most accurate differentiation of protein particles and 

sil icone oil  droplets could be achieved with this instrument. The MFI systems provided 

excellent size and count accuracy (evaluated with polystyrene standards), especially the 

MFI5200 system. This instrument also showed very good performance for protein 

particles, also in case of an increased refractive index of the formulation. Both MFI 

systems were easier to use and appeared more standardized regarding measurement and 

data analysis as compared to the FlowCAM systems. Our study shows tha t the selection of 

the appropriate flow imaging microscopy system depends strongly on the main output 

parameters of interest and it is recommended to decide based on the intended 

application 
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Introduction 

Protein aggregates and particles are important qua lity attributes of therapeutic protein 

formulations (1–3). Especially micron sized aggregates (subvis ible protein particles) (4) are 

considered as critical due to their potential risk of enhancing an immunogenic response 

(5). Quantification of (not necessarily proteinaceous) subvisible particles larger than 10  µm 

and 25 µm in parenterals is required by the pharmacopoeias, and is commonly performed 

using light obscuration (LO) techniques (6,7). For therapeutic protein products regulatory 

agencies increasingly ask for quantification and characterization of particles with a size 

below 10 µm by an orthogonal approach (8,9). Furthermore, the availability of an 

increasing number of emerging techniques (10,11) extends the spectrum of particle 

analysis tools and enables a more detailed characterization of the particles counted. These 

factors inspired the development of a new educational chapter USP<1787> entitled 

“Measurement of Subvisible Particulate Matter in Therapeutic Protein Injections” (12). It is 

currently being discussed whether this chapter should include particle analysis starting 

already from 2 µm as well as the use of additional techniques, such as flow imaging 

microscopy. Flow imaging microscopy has already been used extensively in research and 

development (13–19) and more recently also for quality control/routine testing (own 

experiences). However, it needs to be considered that the calculation of particle size 

depends on the underlying measurement principle and may differ between LO and flow 

imaging microscopy. Moreover, comparison of results is influenced by the type of 

diameter selected for data evaluation and the algorithm that the instrument is using.  
 

Flow imaging microscopy uses a CCD camera with high magnification to capture images of 

the sample solution passing through a thin flow cell. The flow cell  is i l luminated and 

particles with a different refractive index (RI) than the solution decrease the light intensity 

compared to the background and can be detected on the captured images (20,21). Particle 

size and count information is then generated based on image analysis. Besides 

quantification, the digital particle images allow for subsequent morphological 

characterization including size, shape and optical parameters. This, however, requires 

sufficiently high image quality to draw reliable conclusions (21). A prominent application 

example is the differentiation of sil icone oil  droplets and protein particles in prefil led 

syringes and cartridges. For this approach, flow imaging microscopy has been successfully 

applied in several studies (22–24). In general, flow imaging microscopy tends to be more 

sensitive than LO for smal l transparent protein particles and therefore usually detects 

higher particle numbers (13,15,25). An increased RI of the formulation, leading to a 

decreased RI difference between particles and formulation, can impede a correct 
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detection of protein particles by l ight-based techniques. Compared to LO, MFI was shown 

to be slightly more robust against such a decreased RI difference (13,26). 
 

There are several flow imaging microscopy instruments available on the market provided 

by different suppliers. Those are, for example, Sysmex Flow Particle Image Analyzer (FPIA) 

3000 by Malvern Instruments (Worcestershire, UK), various Occhio Flowcell systems by 

Occhio (Angleur, Belgium), the MicroFlow Particle Sizing System by JM Canty (Buffalo, 

New York), several Micro-Flow Imaging (MFI) systems by Protein Simple (Santa Clara, 

California), and various Flow Cytometer And Microscope (FlowCAM) systems by Fluid 

Imaging (Yarmouth, Maine). In this study, MFI and FlowCAM systems with different 

settings were evaluated (Table 1). Both systems are often used for the analysis of 

subvisible particles in research and development and partly also for routine testing in a QC 

environment. A short general article about the handling of MFI and FlowCAM is available 

(27), but no comprehensive report about a direct comparison of the four systems has 

been published until  now. 
 

Here we present the first study thoroughly challenging four of the most relevant flow 

imaging microscopy systems for biopharmaceuticals on the market: MFI4100 and MFI5200 

as well as FlowCAM VS1 and FlowCAM PV. By that we want to provide a basis for the 

increasing use of such systems in QC and support industry and authorities in their efforts 

towards new standards in the field of subvisible particle characterization.  

Materials & Methods 

Materials 

Infl iximab (Remicade®, lots no. 7GD9301402, 7FD8701601, 7RMKA81402, pooled) and 

rituximab (MabThera®, lot no. B6082) were provided by local hospitals. Polystyrene 

particle standards were purchased from Duke Scientific (through Thermo Scientific, 

Fremont, California) and diluted in water for analysis. 
 

Sucrose, sodium hydroxide, di -sodium hydrogenphosphate dehydrate, and sodium 

dihydrogenphosphate dihydrate were purchased from Merck KGaA (Darmstadt, 

Germany). Sodium chloride, sodium citrate dehydrate, and polysorbate 80 were from 

VWR (Darmstadt, Germany). Sil icone oil  with a viscosity of 1000 cSt (as l isted in the Ph.Eur. 

monography for sil icone oil  as a lubricant (24)) was purchased from Sigma Aldrich 

(Steinheim, Germany). The water used in this study was highly purified water (Advantage 

A10 purification system, Mill ipore, Newark, New Jersey). 
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Sucrose solutions were prepared by dilution (w/w) of a 70% (w/w) solution, fi ltered using 

a 0.2-µm cellulose acetate syringe fi lter (Minisart®, Sartorius Stedim Biotech, Aubagne, 

France) and air bubbles were removed by centrifugation for 5  minutes at 7,000 g 

(Centrifuge 5810R, Eppendorf, Hamburg, Germany) prior to use. 

Preparation of protein samples 

Rituximab solution at a concentration of 1 mg/mL was prepared by dilution of 10 mg/mL 

rituximab commercial product in 25 mM citrate buffer (pH 6.5) containing 154 mM NaCl 

and 0.07% polysorbate 80 (formulation buffer). The formulation was fi ltered using a 

0.2 µm polyethersulfone syringe fi lter (Sartorius, Göttingen, Germany) and kept at 2-8°C 

for a maximum of one week. Heat-stressed rituximab was prepared by incubating 1.5  mL 

of the 1 mg/ml rituximab solution for 30 min at 71 °C in a thermomixer (Eppendorf, 

Hamburg, Germany). Stressed rituximab at 1 mg/mL (protein particles stock suspension) 

was stored at 2-8°C until  the measurement. 
 

Infl iximab solution at a concentration of 1  mg/mL was prepared by dilution of 10 mg/mL 

infl iximab commercial product in 100 mM phosphate buffer (pH 7.2). The formulation was 

fi ltered through a 0.2-µm polyethersulfone syringe fi lter. Stir-stressed infl iximab was 

prepared by incubating 8 mL of the 1 mg/mL infl iximab solution in a 10R glass vial using a 

18-mm Teflon®-coated stir bar at 250 rpm for 24 hours at room temperature on a 

magnetic stirrer (MR Hei -Standard, Heidolph, Schwabach, Germany). 
 

For analysis of protein samples, stressed protein solution was diluted in the appropriate 

buffer (fi ltered through a 0.22-µm cellulose acetate/nitrate membrane fi lter, MF-

Mill ipore®, Mill ipore), sucrose solution or water. 

Preparation of silicone oil emulsion 

Silicone oil  was added to fi ltered formulation buffer in a particle-free 15-mL conical tube 

to a final concentration of 2% (w/v) to generate an emulsion without additives. After 

vortexing briefly, si l icone oil  droplet formation was induced by sonication in a water bath 

(Sonorex, Brandelin, Berlin, Germany) for 10 min. Fresh sil icone oil  emulsion (sil icone oil  

droplet stock emulsion) was prepared on the day of the measurement and kept at room 

temperature.   
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Preparation of individual and mixed samples of silicone oil droplets and protein particles 

Silicone oil  droplet stock emulsion and/or protein particles stock suspension was diluted in 

unstressed protein solution or fi ltered formulation buffer for the preparation of mixed and 

individual samples. Mixed samples were prepared in a number ratio of 10:90 based on 

particle counts > 2 µm determined by MFI4100. Individual samples were prepared to 

contain the same number of sil icone oil  droplets and protein particles, respectively, as in 

the mixed samples and are referred to as the theoretical concentration. All  samples were 

prepared to a final protein concentration of 0.5 mg/mL rituximab. The samples were 

gently mixed with a pipette, kept at room temperature and measured on the day of 

preparation. 

Refractive index determination 

Refractive indices of sucrose solutions were determined using an Abbé refractometer (Carl 

Zeiss, Oberkochen, Germany). Measurements were performed in triplicate at a 

wavelength of 589 nm at room temperature and the mean value was calculated. 

Light obscuration (LO) 

Polystyrene standards were analyzed by l ight obscuration using a PAMAS SVSS-C 

(Partikelmess- und Analysesysteme, Rutesheim, Germany) equipped with an HCB-LD-

25/25 sensor in order to obtain a reference value for l inearity evaluation with polystyrene 

standards of MFI4100, MFI5200, FlowCAM VS1, and FlowCAM PV. Samples were diluted to 

a concentration of approx. 103 particles/mL as a reference point for the flow imaging 

microscopy instruments. Three measurements of a volume of 0.3  mL for each sample 

were performed with a pre-run volume of 0.5 mL at a fixed fi l l  rate, emptying rate and 

rinse rate of 10 mL/min and the mean particle concentration per  mL was reported by the 

system. Samples were measured in triplicate and mean and standard deviation were 

calculated. 

Micro-Flow Imaging 

MFI4100 

An MFI4100 system (ProteinSimple) equipped with a 100-µm flow cell, operated at high 

magnification (14x) and controlled by the MFI View software version 6.9 was used. The 

system was flushed with 5 mL purified water at maximum flow rate and flow cell  

cleanliness was checked visually between measurements. Water, the appropriate sucrose 

solution, fi ltered unstressed rituximab formulation (0.5  mg/mL) or the appropriate 

formulation buffer was used to perform “optimize i l lumination” prior to each 



Chapter 6 

114 

measurement to ensure correct thresholding of the MFI system. Samples of 0.65 mL with 

a pre-run volume of 0.3 mL were analyzed at a flow rate of 0.1 mL/min and a fixed camera 

rate (not adjustable by the user) leading to a sampling efficiency of about 5 -8%. Samples 

were measured in triplicate and mean and standard deviation were calculated. 

MFI5200 

An MFI5200 system (ProteinSimple) equipped with a 100-µm flow cell  and controlled by 

the MFI View System Software (MVSS) version 2-R2.6.1.20.1915 was used. The system was 

flushed with 10 mL purified water at maximum flow rate and flow cell  cleanliness was 

checked visually between measurements. “Optimize i l lumination” prior to each 

measurement was done comparably to MFI4100. Samples of 0.5  mL with a pre-run 

volume of 0.2 mL were analyzed at a flow rate of 0.17 mL/min and a fixed camera rate 

(not adjustable by the user) leading to a sampling efficiency of about 80 -85%. Samples 

were measured in triplicate and mean and standard deviation were calculated. 

Particle data analysis MFI 

For both systems, MFI View Analysis Suite (MVAS) version 1.2 was used for data analysis. 

Particles stuck to the flow cell  wall were only counted once and edge particles were 

excluded from analysis. Particle size was evaluated as the diameter of a circle with the 

same projected area as the particle (designated as ECD, equivalent circular diameter, in 

the MFI software). For the discrimination of sil icone oil  droplets and protein particles, a 

minimum of 20 particles (MFI4100) or 50 particles (MFI5200) above 5  µm clearly 

recognizable as sil icone oil  droplets was selected for the “find similar” operation in the 

MVAS software. 

FlowCAM analysis 

FlowCAM VS1 

A FlowCAM VS1 Benchtop B3 system (Fluid Imaging Technologies) was equipped with a 

50 µm single-use cell, a 20x magnification lens and controlled by the VisualSpreadsheet 

software version 3.1.10. A new 50-µm multi-use flow cell  was recently introduced, but was 

not available at the time of the study. The system was flushed with 1 mL purified water at 

a flow rate of 0.5 mL/min and flow cel l  cleanliness was checked visually. 0.5 mL sample 

solution with a pre-run volume of 0.5 mL (primed manually into the flow cell) was 

analyzed with a flow rate of 0.07 mL/min and a camera rate of 20 frames/s leading to a 

sampling efficiency of about 5-8%. Only dark pixels were selected for particle size 

determination at the preset default threshold value of 20. Particle size was evaluated as 

the diameter of a circle with the same projected area as the particle (designated as ABD, 

area based diameter, in the FlowCAM software). For the discrimination of sil icone oil  
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droplets and protein particles, a fi lter can be developed and the parameters can be saved 

in the software. However, to ensure comparability with the MFI systems and to represent 

the analysis of a single sample as good as possible, the selection of sil icone oil  droplets in 

this study was performed on a sample-by-sample basis. A minimum of 20 particles above 

5 µm clearly recognizable as sil icone oil  droplets was selected for the “find similar as 

selected” function. Samples were measured in triplicate and mean and standard deviation 

were calculated. 

FlowCAM PV 

A FlowCAM PV-100 Benchtop system (Fluid Imaging Technologies) was equipped with a 

80-µm multi-use cell, a 10x magnification lens and controlled by the VisualSpreadsheet 

software version 3.4.2. The system was flushed with 5x1 mL purified water by the flushing 

function in the software and flow cell  cleanliness was accepted if less 10 particles were 

counted in 0.02 mL of water in the “autoimage mode (no save)”. 0.5 mL sample solution 

with a pre-run volume of 0.2 mL (primed manually into the flow cell) was analyzed with a 

flow rate of 0.04 mL/min and a camera rate of 21 frames/s leading to a sampling efficiency 

of about 80-85%. Dark and light pixels were selected for particle size determination at the 

preset default threshold value of 30. Particle size was evaluated as the diameter of a circle 

with the same projected area as the particle (designated as ABD, area based diameter, in 

the FlowCAM software). For the discrimination of silicone oil  droplets and protein particles 

through the “find similar” operation, a minimum of 100 particles above 5  µm clearly 

recognizable as sil icone oil  droplets was selected to generate a l ibrary. The complete 

particle population was fi ltered by the “find similar as l ibrary” function. The resulting 

particle population was sorted by fi lter score and particles with fi lter scores of 0 to 5 (with 

0 describing images which the highest match to the images in the library) were defined as 

sil icone oil  droplets. This procedure was necessary as the software was not able to 

perform the same “find similar as selected function” as applied for the FlowCAM VS1 

which was probably due to the clearly higher number of particles images by the FlowCAM 

PV. Samples were measured in triplicate and mean and standard deviation were 

calculated. 

Performance evaluation 

Critical performance parameters (e.g. image quality, size accuracy, and several other 

factors as described below) were ranked relatively withi n the evaluated systems. The 

system with the strongest performance for one specific parameter was scored as “4” 

(++++), the system with the weakest performance in this parameter was scored as “1” (+). 

In detail, the performance was quantified as follows: The image quality parameters were 
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evaluated by eye. Polystyrene sizing and counting performance was judged with respect to 

the specifications by the manufacturer (NIST-traceable), l inearity was evaluated based on 

the deviation from the theoretical concentra tion expected from the dilution factor and the 

linearity of the obtained concentrations (assessed by the R2 value). For the robustness 

towards RI influences, the relative decrease in the measured protein particle 

concentration in formulations with a higher  RI was used for the ranking. The 

differentiation of sil icone oil  droplets and protein particles was evaluated based on the 

match with the theoretical concentration within the system (based on individual samples) 

and the standard deviation, defined as prec ision. The rating of handling parameters was 

based on the personal judgment of the authors. 

Results and discussion 

Count and size performance with polystyrene standards 

The four systems MFI4100, MFI5200, FlowCAM VS1, and FlowCAM PV were first evaluated 

regarding their size and count performance with monodisperse certified polystyrene 

standards. All  systems determined the correct concentration of a 5  µm polystyrene count 

standard with 3000 ± 300 particles/mL > 3 µm (Table 2).  
 

Concentration linearity was evaluated with different dilutions of 5-µm polystyrene size 

standards over a wide range from about 4x10 2 to 8x106 particles/mL. The obtained 

concentrations for particles > 3 µm (as specified for the 5-µm count standard) were 

compared to the theoretical concentration as determined by LO in the low concentration 

range (4056 particles/mL for the second highest dilution) and calculated for the higher 

concentrations (Figure 1). All  systems showed good overall  l inearity, but underestimated 

the particle number at high concentrations (Figure 1A) probably due to coincidence of 

particles, meaning that two particles which are located very closely next to or behind each 

other are detected as one particle. For the highest concentration of theoretically 8x10 6 

particles/mL, a measurement was only possible with the MFI4100 and FlowCAM VS1. 

MFI5200 and FlowCAM PV were not able to handle such high particle concentrations as 

the measurements were automatically aborted at 1x106 and 5x105 captured particles, 

respectively. This is due to a software setting l imiting the number of captured particles to 

500,000 per analysis to ensure proper data handling. The limit can be increased, but this 

would slow down data processing by the software. For the sample with a theoretical 

concentration of 4x106 particles/mL, MFI4100, MFI5200, and FlowCAM VS1 

underestimated the particle concentration by less than 10%, whereas the FlowCAM PV 

system detected 25% less particles than actually expected. In the medium concentration 
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range of theoretically 4x103 to 1x106 particles/mL, all  systems showed good results 

(Figure 1B and C). Whereas the FlowCAM systems slightly underestimated the 

concentration, the MFI4100 system overestimated the concentration in the case of 

theoretically 4x105 particles/mL. The MFI5200 system constantly showed deviations from 

the theoretical concentration of less than 2%. For the lowest concentration of 

theoretically 406 particles/mL, MFI4100, MFI5200 and FlowCAM PV showed large 

deviations of 11-28% and only the FlowCAM VS1 system detected the theoretical 

concentration within 1% (Figure 1C). All  systems showed large relative standard deviations 

in the low concentration range below 4x103 particles/mL (8% for MFI5200, 18% and more 

for the other systems). 
 

Size accuracy was evaluated with monodisperse polystyrene size standards of 2, 5, and 

10 µm. Overall, the MFI systems rendered images of poorer resolution, but better size 

accuracy as compared with the FlowCAM systems evaluated in this study (Table 2 and 

Figure 2). The MFI4100 system underestimated the size of the 2 µm polystyrene standards 

due to resolution limitations for those small particles, but showed satisfying size accuracy 

for 5 µm and 10 µm as well as a narrow distribution for all  sizes (Figure 2A). MFI5200 was 

the only system that determined all  sizes accurately and with a high precision (Figure 2B). 

The images of size standards obtained by the MFI systems appeared rather blurry,  but 

comparable in size and optical appearance, leading to the observed good size accuracy 

and precision. In contrast, the images obtained by the FlowCAM systems showed high 

resolution and sharpness, but also a large variability in size and optical appeara nce. 

Especially the FlowCAM VS1 system showed clear deviations from the correct size (Table 

2) and also a broad size distribution with apparently more than one population per 

analyzed size standard (Figure 2C). This is particularly striking for the 10 µm polystyrene 

standard, for which two apparent populations around 10  µm and 12 µm were detected. 

The 10 µm peak particles appear to be captured in focus, whereas the 12  µm peak 

particles appear out of focus as indicated by the concentrical rings. Although the FlowCAM 

software VisualSpreadsheet is theoretically able to exclude out-of-focus particles, this was 

not performed as it would compromise the accuracy of the particle concentration and 

does therefore not represent a suitable option for real protein sample analysis. The 

FlowCAM PV rendered images of slightly lower resolution, but in return better size 

homogeneity leading to better size accuracy and precision (Figure 2D). For a mixed sample 

of 2 µm, 5 µm, and 10 µm polystyrene size standards, the described differences in image 

quality and homogeneity led to a better separation between the sizes in the MFI systems 

as compared with the FlowCAM systems (Figure 2A-D, lower panels). The underlying 

reasons for the differing image quality and homogeneity are assumed to be (i) the 

magnification and (i i) the depth of focus (Table 1). Furthermore, the threshold value in the 
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FlowCAM systems influences the size accuracy as there is always a trade-off between size 

accuracy and image fragmentation. 

Image properties 

As discussed above, differences in the image properties and especially in the image 

homogeneity lead to divergences in size determination. Furthermore, the image quality is 

a crucial parameter for morphological analysis and for a reliable discrimination of  different 

particle types, e.g. proteinaceous vs. non-proteinaceous particles. Therefore, we 

compared images of polystyrene standards, artificially generated sil icone oil  droplets, and 

protein particles (heat-stressed rituximab) (Figure 3). In general, images provided by the 

FlowCAM systems appeared sharper and of higher resolution than images captured by the 

MFI systems. This is mainly due to the smaller focus area and higher magnification of the 

FlowCAM optics. Thus, many morphological details were already visible on particles as 

small as 5 µm in size, especially for the FlowCAM VS1 system. However, the small focus 

area caused particles of the same type to appear optically different, which could be well 

observed on images for polystyrene standards and silicone oil  droplets. Dark particles with 

a bright halo as well as bright particles with a dark edge and several nuances in between 

were detected within one sample. For protein particles, images captured by the FlowCAM 

systems appeared more uniform regarding the optical contrast than for polystyrene 

standards and sil icone oil  droplets. The MFI4100 system provided comparable images of 

protein particles. In contrast the images captured by the MFI5200 system appeared more 

variable, presumably due to its larger vi ew window which results in different i l lumination 

of particles depending on their location within the view window. For protein particles, this 

can lead to a high diversity in the optical appearance due to diffraction patterns within 

those heterogeneous particles (21). However, it is difficult to judge which instrument 

displays the real heterogeneity of protein particles as this is not known. The difference in 

sharpness and resolution between MFI systems and FlowCAM systems was particularly 

obvious for protein particles with sizes of about 5  µm and 10 µm. Here, FlowCAM images 

provide more morphological details, whereas MFI images appear rather blurry. 

Furthermore, the MFI systems capture only pixels of the particle which are darker than 

the background. In contrast, the FlowCAM systems use a different background calibration 

procedure allowing the additional depiction of pixels brighter than the background which 

probably result from specific diffraction patterns (21). This contributes to the enhanced 

visibility of morphological details but also leads to the heterogeneity in FlowCAM images. 

Within the brands, the MFI4100 and FlowCAM VS1 captured better images than the 

MFI5200 and FlowCAM PV.  
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Figure 1: Linearity of particle concentration measurements by MFI4100, MFI5200, FlowCAM VS1, and FlowCAM 

PV. 5 µm PS standards measured at various dilutions. The theoretical concentrations are based on the counts of 

the second highest dilution obtained by LO (result: 4056 particles/mL). A) Full concentration range, B) zoom into 

medium concentrations, C) zoom into low concentrations. Error bars represent standard deviations from 

triplicate measurements.  
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An additional cause of image variability in the FlowCAM systems for polystyrene standards 

and sil icone oil  droplets might be the il lumination of the flow cell. While the background 

of an MFI flow cell  appears uniformly grey (Supporting information, Figure S1A and B), the 

background of a FlowCAM flow cell  seems to be less evenly i l luminated, especially for the 

FlowCAM VS1 system (Supporting information, Figure S1C and D). This can affect the 

overall  brightness of an image depending on where within the flow cell  it was captured. 

According to the manufacturer, this feature is currently under development for the 

FlowCAM systems. 
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Figure 2: Size accuracy and precision of 2 µm, 5 µm and 10 µm PS size standards measured separately (upper 
panels) and as a mix (lower panels) by A) MFI4100, B) MFI5200, C) FlowCAM VS1, and D) FlowCAM PV. 
Representative images are shown above the corresponding peak of the size distribution.  

Quantification of protein particles 

Because the captured particle images form the basis for particle analysis, a potential 

correlation between image quality and detected particle numbers was investigated. To 

this end, protein particles were generated by heating a rituximab formulation and 

analyzed by the four systems. Due to the time-shifted availability of the FlowCAM systems, 

the exact same sample could not be analyzed in parallel by all  four systems. Instead, one 

sample was analyzed in parallel by the MFI4100 and FlowCAM VS1 (Figure 4A). Another 

sample, prepared later under the same conditions, was analyzed in parallel by the 

MFI5200 and FlowCAM PV as well as by MFI4100 for comparison (Figure 4B). Thus, the 
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difference in the cumulative size distribution between Figure 4A and 4B can be attributed 

to the variability in the sample preparation. System-dependent differences can only be 

evaluated within Figure 4A or within Figure 4B. Although the image resolution for particles 

below 2 µm was poor and the official lower size l imit of the FlowCAM systems is 2  µm, 

counting of particles could be performed for particles > 1 µm with satisfying data quality 

for all  systems. This has been shown before for the MFI4100 system (26). For the same 

sample, the FlowCAM VS1 system detected more particles below 3  µm but fewer particles 

above 3 µm, particularly above 10 µm, as compared with the MFI4100 system.  
 

 

Figure 3: Representative images of polystyrene standards, silicone oil droplets and protein particles (heat -
stressed rituximab) of different particle sizes scaled to the same image size.  

A possible reason for this might be image fragmenta tion which was observed for the 

FlowCAM VS1 when using the setting “only dark particles” (Figure 5). It seems that bright 

parts of particles were detected as the particle boundary by the software. This effect was 

observed for particles larger than 10 µm. Although image fragmentation might also have 

occurred for smaller particles it could not be confirmed by optical evaluation of the images 

due to resolution limitations. Changing the settings to “dark & light” might have decreased 

this effect but, as discussed earlier, failed to provide the correct size for polystyrene size 

standards and was therefore not chosen. This shows again that the user has to accept a 

certain trade-off between good size accuracy and robustness against image fragmentation 

for the FlowCAM systems. On the one hand, this brings along certain user -dependency 

and data variability and there is no optimal setting for all  purposes. On the other hand, 

those many adjustable settings in the FlowCAM systems enable the handling of a specific 

problem. In contrast, the MFI systems require the trust of the user in the predefined 

settings which cannot be changed. For the other systems evaluated in this study image 

fragmentation was not observed for the same samples. However, for an IgG-containing 
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sample from a different study image fragmentation was observed for the MFI4100 system 

(data not shown due to confidentiality). 
 

 

Figure 4: Cumulative particle counts for protein particles of heat-stressed rituximab analyzed by A) MFI4100 and 
FlowCAM VS1 and B) MFI4100, MFI5200, and FlowCAM PV. Error bars represent standard deviations from 
triplicate measurements. 

For the second sample analyzed, MFI5200 and FlowCAM PV detected similar size 

distributions with slightly less particl es detected by the FlowCAM PV system (Figure 4B). 

Clearly more small particles larger than 1 µm were detected by the MFI5200 system, 

pointing on the one hand towards a better sensitivity for small transparent particles, on 

the other hand potentially also towards undetected image fragmentation. For the 

FlowCAM PV system it needs to be considered that the official size range of this system 

starts only at 2 µm and was extended consciously in this study. For total particle 

concentrations larger than 2 µm, similar concentrations were detected by all  three 

systems. The difference for particles larger than 10 µm is probably due to the low total 

number in this size range causing higher standard deviations. In general, the MFI5200 and 
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FlowCAM PV showed lower standard deviations for total particle counts larger than 1 µm 

as compared with the MFI4100 and FlowCAM VS1, as could be expected from the 

differences in the analyzed volume. 
 

It was shown earlier that l ight-based quantification of protein particles is influenced by the 

RI of both, particles and surrounding formulation and that this effect is partly system 

dependent (26). Therefore, the robustness of MFI4100, MFI5200, and FlowCAM PV 

towards RI influences  was determined by quantifying protein particles larger than 1 µm 

(stir-stressed infl iximab) in the same concentration in formulations of increasing RI, 

adjusted by addition of sucrose (Figure 6). The FlowCAM VS1 system was not available at 

the time of these experiments. Particle concentrations obtained by MFI4100 were rather 

sensitive to an increase in RI of the formulation. In 20% sucrose (RI  1.36), 80% of the 

original particle concentration was stil l  detected whereas in 50% sucrose (RI  1.42), only 

25% could be detected. MFI5200 and FlowCAM PV were both more robust towa rds RI 

influences: in 20% sucrose, 93% and 89% of the original particle concentration, 

respectively, were stil l  detected and in 50% sucrose the apparent concentration decreased 

only to 54% and 69% with MFI5200 and FlowCAM PV, respectively. The reason for the 

superior performance of MFI5200 and FlowCAM PV is potentially connected to optimized 

optical settings of these newer systems. Two different control experiments in a previous 

study have shown that the particle concentration was not affected directly by the high 

sucrose concentration, e.g. by dissolution or generation of particles (26). Instead, the 

decreased RI difference between particles and surrounding formulation reduced the 

apparent particle concentration. The RI of a 20% sucrose solution (1.36) represents 

pharmaceutically relevant conditions, e.g. at high protein concentration or a combination 

of excipients such as sucrose and high protein concentration (26). 
 

 

Figure 5: Images of protein particles around 10 µm (heat-stressed rituximab) captured by the FlowCAM VS1 
system. Red boxes indicate overlapping or doubly imaged regions in two separate images due to image 
fragmentation. 
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Differentiation of silicone oil droplets and protein particles 

A major advantage of flow imaging microscopy as compared with other analytical 

techniques for subvisible particles, e.g. LO or electrical sensing zone analysis, is the 

possibil ity to characteri ze particles based on images (10). Parameters such as shape and 

transparency can be used to differentiate between different particle types by 

mathematical fi lters (22,23). In this context, the discrimination of silicone oil  droplets and 

protein particles is especially relevant due to the increasing application of prefil led 

syringes. Similar to a previous study protein particles (heat-stressed rituximab) and 

sil icone oil  droplets were generated to represent particles and droplets in marketed 

products (22). The samples were analyzed by MFI4100, MFI5200, FlowCAM VS1, and 

FlowCAM PV as individual samples (to obtain the theoretical concentration within the 

same system) and in controlled mixtures. The “find similar” algorithm in the respective 

software was used to differentiate between sil icone oil  droplets and protein particles. Due 

to the time-shifted availability of the FlowCAM systems, the exact same sample could not 

be analyzed in parallel by all  four systems. Instead, one group of samples was analyzed in 

parallel by the MFI4100 and FlowCAM VS1 (Figure 7A and C). Another group of samples 

which was prepared later under the same conditions was analyzed in parallel by the 

MFI5200 and FlowCAM PV (Figure 7B and D). The concentration was adjusted in such a 

way that similar total particle counts larger than 1 µm were obtained for both groups of 

samples with the MFI4100 as the bridging instrument. However, the relative size 

distribution for protein particles differed clearly between the two sample groups. Thus, 

the differentiation performance was evaluated within the systems, but not between the 

systems. The evaluation was based on the match of the detected concentration (in mixed 

samples) and the theoretical concentration (in individual samples) within each system. 

The theoretical concentration may differ from system to system and is only valid for the 

mixed samples analyzed by the same system. Although an optical discrimination of 

sil icone oil  droplets and protein particles based on the particle images, which is the basis 

for the “find similar” operation, was only reasonable for particles of 5 µm and larger, the 

“find similar” function of the software was able to differentiate particles down to 2  µm. 
 

The FlowCAM PV system showed the best match with the theoretical concentration, thus 

the best differentiation of sil icone oil  droplets and protein particles (Figure 7D). The 

MFI5200 and FlowCAM PV (Figure 7B and D) showed a higher precision than the MFI4100 

and FlowCAM VS1 (Figure 7A and C). Overall, the FlowCAM systems (Figure 7C and D) 

showed better differentiation accuracy than the MFI systems (Figure 7A and B), probably 

due to the higher image quality. However, the differences were rather small and results 

might depend on the specific sample properties. In conclusion, all  systems pr oved to be 
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suitable for the differentiation of sil icone oil  droplets and protein particles from 2 to 

10 µm. For particles below 2 µm, alternative techniques such as resonant mass 

measurement (RMM) can be beneficial (22). For particles larger 10 µm, it is recommended 

independently of the system to differentiate particles by optical evaluation of the images 

rather than by applying the “find similar” function. This approach is feasible due to the 

clear images and usually low particle counts in this size range. 
 

 

Figure 6: Total particle counts for protein particles of stir-stressed infliximab for fixed particle concentrations in 
sucrose solutions of varying concentration and thus RI. Error bars represent standard deviations from triplicate 
measurements. 

Handling of the systems 

Concerning the hardware, MFI systems only allow the adjustment of the sample volume. 

This ensures standardized, user-independent measurements and repeatable results, but 

requires full  trust in the settings predefined by the manufacturer, which cannot be 

customized to specific needs or samples. In contrast, the FlowCAM systems allow changes 

in optical settings (e.g. threshold, shutter and gain) or technical settings (flow rate, image 

capture rate) offering customization of the analysis to specific needs for experienced 

users, but impede comparability between samples analyzed by different operators, at 

different times or even by different instruments of the same type. 
 

The exchange of a flow cell, which requires the adjustment of the focus as a critical 

parameter for image-based particle analysis, is straightforward and unambiguous for the 

MFI systems. For the FlowCAM systems, especially the FlowCAM VS1, this process was 

found to be cumbersome but this is currently being improved by the manufacturer. 

Furthermore, the MFI systems use a peristaltic pump enabling high flow rates and large 

volumes which is useful for an efficient cleaning step, but the flow rate needs to be 

calibrated regularly. The FlowCAM systems for small volumes (as applicable for protein 

samples) are typically equipped with a syringe pump, which does not require calibration 
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by the user, but is restricted in volume and speed limited by the flow cell  diameter. Thus, 

cleaning cycles with FlowCAM need to be performed several times with low volume an d 

flow rate, especially in case of small syringe sizes. 
 

 

Figure 7: Cumulative particle counts comparing theoretical concentrations (based on individual samples 
measured with the corresponding instrument) and determined concentrat ions (mixed samples) of artificially 
generated silicone oil droplets and protein particles (heat-stressed rituximab) in a droplet/particle ratio of 10:90 
(based on particle counts > 2 µm with MFI4100). A) MFI4100, B) MFI5200, C) FlowCAM VS1, D) FlowCAM PV. 
Error bars represent standard deviations from triplicate measurements.  
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Concerning the software, the MFI systems use different software types for the 

measurement (MFI View software for MFI4100, MVSS for MFI5200) and the data analysis 

(MVAS), whereas the FlowCAM systems apply the same software for both steps 

(VisualSpreadsheet). While the latter allows the analysis of the particle population, 

regarding size distribution and cropped images, already during the measurement as a real 

time analysis, this data becomes available only after the measurement for the MFI 

systems. However, the MVAS software includes an essential function to “remove stuck 

particles” (particles stuck to the flow cell  wall which would otherwise be counted on every 

image they were captured on). This option is not yet available for VisualSpreadsheet but is 

currently under development. In both software solutions, particle data can be exported in 

many different ways and the raw data of every single particle (e.g. shape or transparency 

values) is available. MVAS enables export of single particle images, whereas 

VisualSpreadsheet offers collages of particle images. Regarding the differentiation of 

sil icone oil  droplets and protein particles, the analysis of a single sample is simpler in 

MVAS, while VisualSpreadsheet enables the generation of l ibraries from selected particles, 

which can be used to build a fi lter for future samples. In addition, VisualSpreadsheet 

offers the possibil ity to sort the resulting population of similar particles by “fi lter  score”, 

i .e. by similarity to the selected particles. Taken together, MFI systems are more 

standardized, whereas FlowCAM systems are designed for more flexibil ity for the user, 

concerning both hardware and software. 

Conclusions 

Our study showed that the selection of the appropriate flow imaging microscopy system 

depends strongly on the main output parameters of interest and the intended application. 

Each system shows its strengths and weaknesses in different aspects (Table 3). We 

categorized the four systems evaluated in this study based on the technical data and the 

results obtained in this study into high-resolution systems (MFI4100 and FlowCAM VS1, 

because of higher image quality, but lower sampling efficiency) and high -efficiency 

systems (MFI5200 and FlowCAM PV, because of slightly lower image quality, but higher 

sampling efficiency as compared to the corresponding system from the same 

manufacturer). The best images were obtained by the FlowCAM VS1 system, which was 

seen as the best system among the high-resolution instruments. The best performance 

regarding particle counting accuracy and precision was achieved by the MFI5200 system, 

which appeared to be the preferred system among the high-efficiency instruments. The 

MFI4100 and the FlowCAM PV system were observed as all -round systems which might be 

a good compromise between the other two systems that are more biased towards particle 

counting (MFI5200) or particle imaging (FlowCAM VS1).  
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Supplementary information 

 

Figure S1: Images of a clean flow cell (purged with water) in A) MFI4100, B) MFI5200, C) FlowCAM VS1, and D) 
FlowCAM PV. 
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Abstract 

Purpose. In the present study we investigated the root-cause of an interference signal 

(100-200 nm) of sugar-containing solutions in dynamic l ight scattering (DLS) and 

nanoparticle tracking analysis (NTA) and its consequences for the analysis of particles in 

biopharmaceutical drug products. 

Methods. Different sugars as well as sucrose of various purity grades, suppliers and lots 

were analyzed by DLS and NTA before and (only for sucrose) after treatment by 

ultrafi ltration and diafiltration. Furthermore, Fourier transform infrared (FTIR) microscopy, 

scanning electron microscopy coupled energy-dispersive X-ray spectroscopy (SEM-EDX), 

and fluorescence spectroscopy were employed. 

Results. The intensity of the interference signal differed between sugar types, sucrose of 

various purity grades, suppliers, and batches of the same supplier. The interfer ence signal 

could be successfully eliminated from a sucrose solution by ultrafi ltration (0.02  µm pore 

size). Nanoparticles, apparently composed of dextrans, ash components and aromatic 

colorants that were not completely removed during the sugar refinement process, were 

found responsible for the interference and were successfully purified from sucrose 

solutions. 

Conclusions. The interference signal of sugar-containing solutions in DLS and NTA is due to 

the presence of nanoparticulate impurities. The nanoparticles present in sucrose were 

identified as agglomerates of various impurities originating from raw materials.  
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Introduction 

The safety and efficacy of a therapeutic protein depends in part on its chemical and 

physical stability. Degradation, such as aggregation, of a therapeutic protein can reduce 

the availability of the protein’s active form, can negatively affect its pharmacokinetic 

properties and might cause adverse effects, such as unwanted immunogenicity (1–3). To 

enhance the chemical and physical stability of a protein therapeutic , biopharmaceutical 

drug products contain a combination of specific formulation additives to ensure the 

chemical and physical stability of the therapeutic protein. 
 

Among the many known excipients sugars, in particular sucrose and trehalose are 

employed, because they are preferentially excluded from the protein’s surface, thus, 

increasing the free energy of the system and thereby promoting conformational stability 

(4–6). Examples of sugar-containing products on the market are amongst others Enbrel®, 

Avastin® and Stelara®. Sugars are also extensively used for lyophilized protein 

formulations as cryoprotectors and lyoprotectors, e.g., Her ceptin®, Serostim® and 

Remicade (7). As with all  reagents that are approved for the use in pharmaceutical drug 

products, testing procedures and purity criteria of sugars are defined and regulated by the 

respective pharmacopeias. 
 

Throughout the development of a therapeutic protein and its respective drug product, 

particle analysis is performed to assess product quality and protein stability. This practice 

has received increasing attention during the past few years and dynamic l ight scattering 

(DLS) became a commonly applied tool for this task in various phases of development, 

e.g., formulation screening, real -time or accelerated stability studies, and forced 

degradation studies. The value of DLS analysis comes from its wide size range it covers 

(from about a nanometer to several micrometers), the fast and easy performance, and its 

high sensitivity towards larger species, such as protein aggregates and particles (8,9). 

Despite its advantages, however, the analysis can be disturbed by the presence of certain 

excipients, which scatter l ight in the relevant size range, such as polysorbate micelles or 

sugar molecules. Sugar molecules have, according to the literature, a size of about 0.5 and 

1 nm for mono- and disaccharides, respectively (10). Interestingly, however, a second 

signal appearing at around 100-200 nm was consistently found when sugar-containing 

formulations were analyzed by DLS. In 2007, Kaszuba et al. explained the presence of this 

second signal as to be “probably due to collective diffusion of the sucrose molecules”  (11). 

Ever since, academic and industrial researchers have referred to this signal as the intrinsic 

phenomenon of sugar interference with DLS. Importantly, this interference marks a big 

challenge for DLS when analyzing biopharmaceutical drug products, because of difficulties 

in assessing the formation of aggregates and particles in presence of a permanent signal at 
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100-200 nm. It further impairs the ability to compare the stability of a protein formulated 

with different sugars or varying sugar content, e.g., during formulation development. 

Surprisingly and despite all  these issues, the origin of this interference was never truly 

investigated. 
 

Therefore, the present study was designed to understand the root-cause of the sugar 

interference with DLS, and its consequences for the analysis of particles in 

biopharmaceutical drug products. While all  tested sugars (sucrose, trehalose, fructose, 

maltose and galactose) exhibit an interference phenomenon, we show on the example of 

sucrose that the interference is caused by the presence of actual nanoparticles, which 

dramatically di ffer in amount, but less so in size, between suppliers and between batches 

of the same supplier. A detailed characterization of these particles identified them as 

impurities originating from raw materials that are not completely removed during the 

refinement process. The quantities of nanoparticles present in pharmaceutical -grade 

sucrose were found to be up to 109 particles per gram, while the product stil l  can fulfill  all  

requirements set by the current U.S. and European pharmacopeias. 

Materials & Methods 

Materials 

Lysozyme was purchased from Fluka (Buchs, Germany) and a humanized monoclonal 

antibody of isotype IgG1 (12) was used to model a therapeutic protein. Sucrose was 

purchased from Sigma (Taufkirchen, Germany), Merck (Darmstadt, Germany), Caelo 

(Hilden, Germany), VWR (Bruchsal, Germany), and donated by Südzucker (Mannheim, 

Germany). PVDF syringe fi lters with a pore size of 0.2 and 0.1  µm were obtained from 

Mill ipore (Schwalback, Germany), Anotop syringe fi lters with a pore size of 0.02  µm were 

obtained from GE Life Science (Freiburg, Germa ny). 

Sample preparation 

All saccharides were dissolved in Mill i -Q® water (Mill ipore) at stated concentrations in 

percent weight per volume (% w/v). Protein (IgG or lysozyme) was dissolved in a 7% 

sucrose solution to achieve the desired concentrations. If not stated differently, all  

solutions were fi ltered through a 0.2-µm PVDF syringe fi lter. 

Diafiltration 

A Minimate II Tangential Flow Filtration (TFF) system (Pall, Crailsheim, Germany) equipped 

with a 30 kDa TFF capsule (Pall) was used to perform diafi ltration on 700 mL of an aqueous 
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sucrose G solution (50% w/v). Diafi ltration against Mill i -Q® water was performed until  the 

permeate volume reached 14 times the feed volume. The last fi ltrate volume was 

analyzed by DLS and did not show any residual sucrose pea ks. The residual sucrose 

monomer concentration after diafi ltration cDF was calculated as 0.3 mg/L, according to 

Equation 1: 
 

𝑐𝐷𝐹 = 𝑐𝐼 ∙ 𝑒−𝑁 
Equation 1 

 

where cI is the initial sucrose monomer concentration, N the number of diavolumes, and 

where no retention of the sucrose monomer by the TFF membrane is assumed. 

Subsequently, the retenate was concentrated by first using TFF and then 10 -kDa 

centrifugal fi lter-units (Amicon Ultra 15, Mill ipore) to a final volume of ca. 0.8 mL. As a 

control, Mill i -Q® water without the addition of sucrose was treated the same way. 

Dynamic light scattering (DLS) 

DLS measurements were performed with a Zetasizer Nano ZS system (Malvern, 

Herrenberg, Germany) equipped with a 633 nm He-Ne laser. The scattered light was 

detected by using non-invasive backscatter detection at an angle of 173°. A sample 

volume of 500 µL was analyzed in single-use polystyrene semi-micro cuvettes with a path 

length of 10 mm (Brand, Wertheim, Germany). The Dispersion Technology Software 

version 6.01 was used for data collection and analysis. If not stated differently, the 

measurements were made with an automatic attenuator and a controlled temperature of 

25 °C. The intensity size distribution, Z-average diameter, derived count rate, and 

polydispersity index were calculated from the autocorrelation function obtained in 

’general purpose mode’. Each sample was measured in triplicate. 

Nanoparticle tracking analysis (NTA) 

NTA was performed with a NanoSight LM20 (NanoSi ght, Amesbury, UK). The instrument 

was equipped with a 405 nm blue laser, a sample chamber and a Viton fluoroelastomer O -

ring. If sample dilution was necessary to achieve an optimal concentration for NTA, Mill i -

Q® water was used as a diluent and all  results were calculated back to the original 

concentration. Samples were loaded into the sample chamber by using a 1 -mL syringe and 

a pre-run volume of 0.5 mL. Samples were analyzed in triplicate at a stopped flow, while 

0.1 mL was flushed through the chamber between each repetition. The NTA 2.3 software 

was used for capturing and analyzing the data. Movements of the particles in the samples 

were recorded as videos for 60 s, while the shutter and gain settings of the camera were 

set automatically by the software for an optimal particle resolution. 
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UV-spectroscopy 

UV-spectroscopy was performed in UV-transparent 96-well plates (Corning Incorporation, 

NY, USA) by using a Tecan Safire2 plate reader (Tecan Austria GmbH, Grödig, Austria). For 

each data point, 200 µL of sample was measured in triplicate, each measurement being an 

average of 20 reads. 

Fluorescence spectroscopy 

Fluorescence spectroscopy was performed in black 96-well plates (Corning Incorporation, 

NY, USA) by using a Tecan Safire2 plate reader (Tecan Austria GmbH, Grödig, Austria). 

Excitation and emission of a 200-µL sample were 3D-scanned in triplicate, each 

measurement being an average of 20 reads from 250 – 460 nm and 290 – 600 nm, 

respectively.  

Scanning electron microscopy coupled energy-dispersive X-ray spectroscopy (SEM-EDX) 

SEM-EDX measurements were performed with a Jeol JSM-6500F instrument (Jeol, Tokyo, 

Japan) equipped with a sil icon drift detector (Oxford Instruments, Abingdon, U.K.). For 

preparation 90 µL of each sample was dried under vacuum and at room temperature on 

top of a sterile plastic coverslip (Nunc Thermo Scientific, Schwerte, Germany), which was 

fixed onto a SEM-sample holder with an electrically conducting double-sided tape (Plano, 

Wetzlar, Germany). A self-sticking copper band (Plano) was used to electrically connect 

the sample surface to the sample holder base. The sample surface was then carbon -

coated by using a Bal -Tec MED-020 carbon evaporator (Bal -Tec, Wetzlar, Germany). 

Fourier transform infrared microscopy (FTIR) 

FTIR measurements were performed on dried samples with a Bruker Hyperion 3000 FTIR 

microscope equipped with an attenuated total reflection (ATR) objective (Bruker Optics, 

Ettlingen, Germany) operated by the Bruker Opus 6.5 software. Samples were dried and 

prepared as described for SEM-EDX analysis, but without the application of a copper band 

and without carbon coating. 

Results 

Various sucrose products (Table 1) were analyzed as 10% solutions by DLS and all  showed 

two distinct peaks in the intensity-weighted size distribution (Figure 1A). The position of 

the first peak correlates to the literature value for the hydrodynamic diameter of a 

sucrose molecule in water of 0.98 nm (10). The second peak showed its intensity 
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maximum at ca. 100 to 200 nm for all  samples except sucrose C, for which the peak 

appeared at about 1900 nm. The relative intensity area under the curve (AUC) of this 

signal varied considerably between samples, ranging from 8.3% for sucrose C to 60.3% for 

sucrose A, while differences were observed between purity grades, suppliers, and also 

between batches of the same supplier (Table 1). Also in NTA, a signal at about 100-200 nm 

was detected with l ittle variation in size distribution but high variations in particle 

concentration between products (Figure 1B and Table 1). Furthermore, an increase in 

concentration of sucrose A in water resulted in a l i near increase in nanoparticle 

concentration determined by NTA, while a water control did not show any particles 

(Figure 1C). Furthermore, the size distribution did not change with increasing sucrose 

concentration. Additionally, triplicate sample preparations analyzed by DLS and NTA 

showed high repeatability (data not shown). 
 

IgG and lysozyme formulated at various concentrations in 7% sucrose A solutions were 

analyzed by DLS. At an IgG concentration of 0.1  mg/mL, the signal from the sucrose 

molecule (1 nm), the IgG (14 nm) and the 100-200 nm signal were visible (Figure 1D, upper 

panel). At 1 mg/mL, the 100-200 nm signal disappeared and at 5 mg/mL also the sucrose 

signal (1 nm) vanished, leaving only the signal from the IgG. For lysozyme (Figure 1D, 

lower panel), the 100-200 nm signal was detected in presence of all  tested protein 

concentrations (0.1-5 mg/mL), while the signal of the sucrose molecule and lysozyme 

likely overlapped at about 1-2 nm because of the poor resolution of DLS (13). 
 

Solutions of sucrose B were fi ltered through fi lters with decreasing pore size and 

subsequently analyzed by DLS and NTA (Figure 2A and B). Filtering the solutions through a 

0.1-µm filter had a small effect on the size, and little to no effect on the intensity of the 

100-200 nm signal. However, fi ltration through a 0.02-µm filter decreased the signal in 

both DLS and NTA to background levels and the signal did not reappear after incubation of 

the fi ltered sample for 4 days at 25°C (T1). Moreover, it was possible to eliminate the 

signal from the sucrose monomer peak in a sucrose G solution by using diafi ltration 

(Figure 2C). The purified retentate (before concentrating) maintained a stable size 

distribution and nanoparticle concentration when incubated at 25°C for 4  days, as 

determined by DLS and NTA (Figure 2D). 
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Upon concentration of the diafi ltrated sucrose G retentate containing the nanoparticle 

fraction, the sample developed a brownish-yellow color and showed an increase in 

UV420nm absorbance from 0.03 to 0.18 AU. A water control treated the same way as the 

sucrose G sample showed no particles by DLS and NTA and had an unchanged UV420nm 

absorbance of 0.02 AU after concentration. Intrinsic fluorescence of the concentrated 

sample was analyzed to help identifying potential colorants. The fluorescence intensity 

landscape is shown in Figure 3. Two distinct patterns  of maximum fluorescence intensity 

could be identified in the sample, pattern 1 at ca. 280/390 nm (λEx/λEm) and pattern 2 at 

ca. 340/420 nm. The water control treated equally did not show any intrinsic florescence 

(data not shown). 
 

 
Figure 1: A) Intensity-weighted size distribution by DLS and B) particle size distribution by NTA obtained for 

different sugars in aqueous solution at 10%. C) Total particle concentration (insert) and particle size distribution 

obtained by NTA for sucrose A solution from 0 to 10%. D) Intensity-weighted size distribution by DLS for 7% 

sucrose A solutions containing increasing concentrations of IgG (upper panel) and lysozyme (lower panel). Shown 

are mean values (A-D) plus standard deviations (B and D) obtained from triplicate measurements.  
 

When the concentrated particle suspension, derived from sucrose G, was vacuum-dried, a 

thin and compact fi lm layer formed, which did not show any particulate structures by SEM 

analysis. Rather, the fi lm l ayer swelled and subsequently ruptured upon extended 

exposure to the SEM beam, suggesting water entrapment and thus potentially 
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hygroscopic behavior (Figure S1). No particulate matter was visible by SEM on a vacuum-

dried 0.02-µm filter after passing through the concentrated nanoparticle suspension (data 

not shown). Analysis of the fi lm layer by EDX, however, revealed the presence of several 

minerals and metals. Signals from sil icium, aluminum, calcium, and magnesium were 

detected, as well as small amounts of phosphor, sulfur, potassium, and iron (Figure 4). The 

control sample, water processed equally, showed small amounts of sil icium and calcium. 

Carbon, oxygen, and hydrogen signals were also detected, but are method derived and 

cannot be attributed to the sample.  
 

 
Figure 2: A) Intensity-weighted size distribution by DLS and B) particle size distribution by NTA obtained for 

sucrose B solutions (10%) after filtration (stated pore size) and storage for 4 days at 25 °C (T1). C) Intens ity-

weighted size distribution of a 10% sucrose G solution before and after diafiltration and subsequent 

upconcentration as determined by DLS. D) Intensity-weighted size distribution by DLS and particle size 

distribution by NTA (insert) of a diafiltrated 10% sucrose G solution stored at 25 °C. 
 

FTIR microscopy was performed on the vacuum-dried sample to detect and identify 

potential organic material (Figure 5). An FTIR spectrum was obtained that, when 

compared with the S.T. Japan-Europe GmbH library from 2009, matched closest the 

spectra of high-molecular-weight dextran (40 kDa, entry# 2130) and cross -linked dextran 

(Sephadex® G-50, 1.5 – 30 kDa, entry# 8096), with a hit quality of 626 and 620, 

respectively, with 1,000 being a perfect match. Unprocessed sucr ose G powder provided 
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an FTIR spectrum that matched that of powdered sucrose (entry# 9772), with a hit quality 

of 959. 

Discussion 

The interference of sugar-containing solutions with DLS analysis has been observed 

previously and manifests itself through an additional signal at ca. 100-200 nm, besides the 

signal at about 1 nm originating from the sugar monomer (11,14). In our study, we found 

this second signal in solutions of a variety of different sugars (trehalose, fructose, maltose 

and galactose, data not shown) and different sucrose products (Figure 1A), confirming 

these previous observations. The 100-200 nm signal in DLS could mistakenly be 

interpreted as an aggregate peak and mask the formation/presence of protein aggregates. 

Although this signal will  disappear at higher protein concentrations, it should be noted 

that several antibody drugs are formulated with a sugar at protein concentrations 

between 1-5 mg/mL (15), where the interference signal will  l ikely show up (Figure 1D). 

Moreover, blinatumomab, recently approved by the FDA, is formulated at a concentration 

as low as 12.5 µg/mL and several other protein therapeutics, such as epoetins (16) and 

cytokines (17), are formulated at similarly low concentrations. Furthermore, during early -

stage formulation development, proteins are often used at low concentrations because of 

l imited amounts of material available. 
 

 
Figure 3: Fluorescence intensity landscape of suspended nanoparticles isolated from sucrose G. The arrows 

indicate areas of fluorescence maxima. The black area showed strong light scattering and was excluded from the 

analysis. 
 

Up to now, the interference was suggested to be an intrinsic phenomenon coming from 

the sugar molecules themselves. However, if the 100-200 nm signal was indeed an 

intrinsic phenomenon caused by the sugar molecules, one would expect the interference 
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to be the same for solutions of the same sugar concentration. In contrast, our results 

could demonstrate high variability of this interference for sucrose across purity grades, 

suppliers, and also across batches of the same supplier. Further, one batch supplied by 

Merck (sucrose C) showed this signal to a barely detectable, very low extent and the signal 

also deviated in size from that of the other products (Table 1). Altogether, this indicates 

that the interference is caused by particulate matter rather than by monomeric sucrose 

molecules.  
 

Besides DLS, also NTA detected particles at 100-200 nm showing high variability in particle 

concentration between the different sucrose products (Figure 1B). Furthermore, the 

particle concentrations determined by NTA correlate, in relative terms, well with the 

polydispersity index and the derived count rate determined by DLS using a fixed 

attenuator (Table 1). Thus, the particles detected by NTA are l ikely the same as those 

causing the signal in DLS. It should be noted that sucrose, lysozyme and IgG monomers are 

below the lower size l imit of NTA (18). However, they are detected by DLS, but their signal 

can in some cases, when a large protein such as an IgG is formulated at high 

concentration, decrease or even disappear in DLS analysis (Figure 1D). Profound evidence 

that the presence of suspended particles is  responsible for the interference signal comes 

from the results shown in Figure 2A and B, where this signal in DLS and NTA disappeared 

after ultrafi ltration (0.02 µm). The signal did not re-emerge from the remaining sucrose 

molecules in solution over the observed time frame of 4 days, suggesting an origin other 

than an intrinsic phenomenon of the sucrose molecules. After purification by diafiltration, 

the nanoparticles l ikely responsible for the interference did not dissolve or further 

agglomerate to larger particles, at least not readily, when stored in water, supporting the 

theory of the presence of stable and potentially foreign particulates (Figure 2D). 
 

Following the indication that the nanoparticles might be partially or fully composed of 

impurities or contaminants, a detailed chemical analysis of the nanoparticles was 

attempted. No particle l ike structures could be visualized by SEM analysis of a vacuum-

dried particle suspension, because the sample preparation resulted in the formation of a 

fi lm layer. However, the presence of inorganic elements was determined in this layer by 

the SEM coupled EDX analysis (Figure 4). The combination of detected elements closely 

matches the description of an inorganic contaminant called ash, which is a combination of 

chlorides, sulfates, phosphates, si l icates and minerals including calcium, potassium, 

magnesium and aluminum, mostly present as salts or oxides, as well as clay and sand  (19). 

Ash can enter the sugar cane or beet during growth from the soil, water and added 

fertil izers, but can also be introduced to the unprocessed sugar by external matter such as 

dirt or trash. Ash therefore commonly contaminates the unprocessed cane or beet juice, 
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however, to various degrees and with slight differences in composition depending on the 

producer. Even though ash is largely cleared off by current refinement processes, an 

effective removal of ash components in refined white sugar products is sti l l challenging for 

the sugar industry (20). 
 

 

Figure 4: EDX spectrum of vacuum dried nanoparticle isolated from sucrose G (sample) against a water control 
treated the same way (control). Element analysis was performed against internal standards of the SEM-EDX 
system. 

In the dried particle suspension, we could also detect dextran structures by ATR-FTIR 

microscopy (Figure 5A). The data suggest that dextran is present as cross -linked fibers, 

l ikely responsible for the formation of the hygroscopic fi lm layer upon drying the particles. 

Dextran is a well -known impurity in the sugar industry, produced due to enzymatic 

deterioration by Leuconostoc bacteria, which mainly enter the sugar cane or beet during 

harvesting, cutting and grinding, but can also be introduced in later production steps  (21). 

The dextran content in the unprocessed cane or beet juice, however, can vary significantly 

between different producers, depending amongst others on the delay time between 

cutting and mill ing, the harvesting method, the refinement process, and the overal l  

hygiene (22). Importantly, investigations have shown that dextran is not completely 

removed by current sugar refinement processes (23,24).  
 

It should be noted that both, ash and dextran, are essential components of molasses, a 

side product of sugar refinement giving brown sugar its distinct color. U.S. and European 

pharmacopeias require a color test and also UV absorbance data at 420  nm to specifically 

test pharmaceutical -grade sucrose for molasses remains. As described in the results 

section, we observed a brownish-yellow color and an increased UV absorbance at 420 nm 

after concentrating the nanoparticle impurities. The nanoparticle impurities  further 

possessed fluorescence activity in two distinct regions (Figure 3). Diverse amounts of 
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fluorescent impurities of different compositions have been found in various sugar 

products by other research groups (20,25–29). According to these studies, the observed 

fluorescence patterns are caused by a combination of various fluorophores, two of which 

have close similarities with tryptophan and tyrosine and could be responsible for the 

fluorescence pattern 1 at ca. 280/390 nm (25–27). Other fluorophores were identified as 

catechols formed by base-catalyzed sugar degradation and again other are suggested 

being Maillard reaction polymers, all  of which could be potential contributors to the 

fluorescence pattern 2 (28,29). Fluorescent impurities can be found in various sugar 

products, however, in different compositions and quantities. 

 
Figure 5: FTIR spectra recorded by FTIR microscopy overlaid with the best fitting entries of the S.T. Japan Europe  

GmbH database from 2009. A) Recorded spectrum of vacuum dried nanoparticles isolated from sucrose G (blue) 

overlaid with the entries of high-molecular-weight (red) and cross-linked dextran (violet). B) Recorded spectrum 

of unprocessed sucrose G (blue) overlaid with the entry of powdered sucrose (red).  
 

Dextran impurities found in sucrose occur in a wide molecular -weight-range from a few 

kDa to several MDa (21,22), while the ash components detected by EDX and the 

components suggested by fluorescence spectroscopy are l ikely much smaller in size. 

Interestingly, all  of those were found in the same particle population with a consistent size 

of 100-200 nm. Thus, two questions arise from there: i) How do the various impurities 

come together to form particles and ii) why do these pa rticles occur in such a defined size 
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distribution, even across various producers? A potential answer to these questions l ies in 

the sugar refinery process itself, particularly in the carbonation or phosphatation step. 

Here, calcium carbonate or calcium phosphate, respectively, is formed, which co-

precipitates with high-molecular-weight components and suspended solids (20). During 

this step, agglomeration of dextran and other impurities and contaminants could lead to 

the formation of suspended nanometer sized particles. After the precipitation, the sugar 

juice is usually clarified by fi ltration where the membrane’s  cutoff might be responsible for 

the defined size distribution of the nanoparticle impurities.  
 

While the exact particle formation process is sti ll rather speculative, it is worth discussing 

potential ways to deal with nanoparticle impurities in sugars. On the one hand, this could 

be attempted analytically. For measurements performed by DLS, however, it is not 

possible to mathematically calculate or subtract the contribution of the nanoparticle 

impurities from the signal. For measurements performed by NTA, a simple subtraction of 

the particle counts in the placebo buffer from the particle counts in the sample is possible. 

Nevertheless, it needs to be noted that the concentration of nanoparticle impurities at 

pharmaceutically relevant sucrose concentrations  can exceed protein particle 

concentrations even in degraded samples by several orders of magnitude, making simple 

buffer subtraction statistically meaningless. On the other hand, a pharmaceutical 

manufacturer could get rid of the nanoparticles through the fi ltration of sucrose solutions 

using small pore size fi lters (e.g., 0.02-μm pores) with commonly available systems for 

production scale ultrafi ltration. It would also be beneficial to improve the sugar 

refinement processes in order to reduce the amount of impurities in the final sugar 

product, as has been suggested by various research groups  (19–23,30). To ensure 

effectiveness, however, it would then require monographs to include a test for 

nanoparticulate impurities in pharmaceutical -grade sugar products.  

Conclusions 

In this study we demonstrated that sugar, even in pharmaceutical -grade quality, can 

contain up to 1010 nanoparticles per gram in the 100-200 nm range, which can limit the 

use of techniques for subvisible particle analysis, such as DLS and NTA. The number of 

nanoparticles can vary significantly between suppliers, as well as between production 

batches. This makes it very challenging to compare aggregation states of proteins in sugar -

containing formulations by DLS and NTA, especially during formulation development. Our 

results indicate that the nanoparticles found in sucrose are agglomerates of a variety of 

impurities (dextrans, ash, and aromatic colorants) that were not entirely removed during 

refinement processes. Importantly, the presence of these nanoparticulate impurities is not 
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taken into consideration by pharmacopeial quality criteria. Furthermore, the nanoparticle 

impurities cannot be removed by common sterile fi ltration using a 0.22 -µm pore size fi lter. 

However, ultrafi ltration could be an effective way to clear the nanoparticles from sucrose 

solutions. Whether the particles observed in sugars other than sucrose are composed 

similarly and whether or not these impurities have an impact on a protein’s overall  

stability is currently unknown and is the subject of ongoing follow-up studies.  
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Supplementary information 

 
Figure 6: SEM image of vacuum dried nanoparticles isolated from sucrose G, showing a thin and compact film 

layer that ruptured under the heat of the SEM beam. 
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Abstract 

Purpose. To investigate the effect of nanoparticulate impurities, recently discovered to be 

present in pharmaceutical -grade sugars, on the stability of monoclonal antibodies (mAbs). 

Methods. Nanoparticulate impurities (NPIs) were first purified from pharmaceutical -grade 

sucrose and subsequently spiked into trastuzumab, rituximab, infl iximab, and cetuximab 

formulations. The stability of the mAbs as a function of storage time, temperature, and 

NPI concentration was assessed by visual inspection, flow-imaging microscopy, 

nanoparticle tracking analysis, size-exclusion chromatography, capillary isoelectric 

focusing, and intrinsic differential scanning fluorimetry. Furthermore, NPIs were 

characterized by Laser Doppler electrophoresis and the Glucatell® assay to determine the 

zeta-potential and the (1-3)- β -glucan content, respectively. 

Results. NPIs negatively affected the stability of all  mAbs, albeit it to different extents. 

After spiking with NPIs, trastuzumab mainly showed the formation of high numbers of µm-

sized particles and turbidity, rituximab and cetuximab contained high numbers of nm-

sized particles, while infl iximab formed nm- and µm-sized particles, and showed turbidity. 

Low molecular weight species were observed for rituximab and infl iximab, whereas high 

molecular weight species were detected for cetuximab only. Furthermore, the stability of 

trastuzumab and infl iximab was affected directly after spiking NPIs. In contrast, 

degradation of rituximab and cetuximab was observed only after 14 weeks at elevated 

temperatures. Moreover, the stability of rituximab and infl iximab was affected by NPI 

concentrations that are potentially present in final drug products. The stability of 

trastuzumab, however, was only affected at elevated NPI concentrations. Lastly, NPIs 

were shown to contain a high content of (1-3)-β-glucan, which is an immune-modulating 

molecule. 

Conclusions. The presence of NPIs in (bio-)pharmaceutical formulations poses a threat to 

the stability of mAbs. Additionally, NPIs may have unwanted immunological consequences 

when present in therapeutic protein products. 
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Introduction 

Formulation development is one of the building blocks assuring the efficacy and safety of 

a drug product throughout the intended therapy. One of the main goals during 

formulation development of (bio-)pharmaceutical drug products is to stabilize the 

functional state of the active pharmaceutical ingredient and to minimize various kinds of 

degradation that can occur during manufacturing, storage, handling and administration to 

patients (1,2). During the development of a final drug product, the presence of aggregates 

and particles, which are considered to be a critical quality attribute, is a major challenge 

formulation developers are currently facing. Aggregates and particles are ubiquitous in 

(bio-)pharmaceutical drug products and can occur in sizes ranging from a few nanometer 

to visible precipitates (3,4). Even though many techniques are available today for the 

analysis of aggregates and particles, the enormous size range of interest and the large 

variety of particle compositions and origins complicate their characterization (5,6). 
 

By classification, particles can be of extrinsic, intrinsic or inherent origin (6). Extrinsic 

particles are materials that are unrelated to the drug product, package, or process (e.g., 

clothing fragments and hairs), whereas intrinsic particles are non-proteinaceous materials, 

which are related to the manufacturing or packaging process (e.g., si l icon oil  droplets). In 

contrast, inherent particles originate from the drug product, either the protein itself or 

formulation components. The presence of (inherent) proteinaceous particles has 

continuously been linked to a decreased drug efficacy and to increased side effects, 

including life-threatening immunological reactions in patients (7–10). 
 

Recently, our group has discovered a new type of inherent particle, with a size-range 

between about 100 – 200 nm,  that is present in various pharmaceutical-grade sugars such 

as sucrose, trehalose, fructose, maltose, and galactose (11). Sugars, in particular sucrose 

and trehalose, are commonly employed as excipients, because they are prefer entially 

excluded from the protein surface, thus increasing the free energy of the system and 

thereby promoting conformational stability (12–14). Examples of sugar-containing 

products on the market are Enbrel®, Avastin® and Stelara®. Sugars are also extensively 

used for lyophilized protein formulations as cryoprotectors and lyoprotectors  (e.g., in 

Herceptin®, Serostim®, and Remicade) (15).  
 

With respect to pharmaceutical -grade sucrose, it has been shown that these 

nanoparticulate impurities (NPI) dramatically differ in amount, but less so in size, between 

suppliers and between batches of the same supplier  (11). Nonetheless, the presence of 

NPIs in protein formulations is mostly troubling for other reasons. First, NPIs interfere with 

l ight-scattering based analytical techniques, such as dynamic l ight scattering (DLS) and 



Chapter 8 

158 

nanoparticle tracking analysis (NTA). This  complicates the analysis of protein aggregation. 

Second, NPIs cannot be removed by common sterile fi ltration through a 0.22 -μm pore size 

fi lter. Third, the presence of NPIs is currently not taken into consideration by 

pharmacopeial quality criteria and the effect of NPIs on the stability of therapeutic 

proteins is unknown. 
 

Therefore, the present study was designed to clarify if NPIs  do affect the stability of a 

therapeutic proteins. With the results presented here, it was shown that NPIs have a 

negative effect, albeit to different extents, on the stability of several currently marketed 

monoclonal antibodies (mAbs), namely trastuzumab, rituximab, cetuximab, and infl iximab. 

Furthermore, our data suggests that besides the destabilizing effects, which appeared to 

be protein specific, NPIs possess inherent immune-modulatory properties and thereby 

bear the potential to have unwanted immunological consequences when present in 

therapeutic protein products. 

Materials & Methods 

Materials 

Herceptin® (trastuzumab), MabThera® (rituximab), Remicade® (infl iximab), and Erbitux® 

(cetuximab) were donated by local hospitals. All  drug products had exceeded their expiry 

date. Pharmaceutical -grade sucrose (Ph.Eur.) was purchased from VWR BDH Prolabo® 

(Bruchsal, Germany) and Südzucker (Mannheim, Germany). Hisitidine-HCl, trehalose, 

sodium citrate, sodium chloride, sodium dihydrogen phosphate, di -sodium hydrogen 

phosphate, and citric acid were purchased from Merck (Darmstadt, Germany). Polysorbate 

20 and 80, and glycine was purchased from Sigma (Taufkirchen, Germany). Histidine was 

purchased from Amresco (Solon, OH, USA). PVDF syringe and membrane fi lters with a 

pore size of 0.2 µm were obtained from Mill ipore (Schwalbach, Germany). 

Purification of nanoparticulate impurities from sucrose 

Nanoparticulate impurities (NPIs) were purified from sucrose (VWR) as described earlier 

(11). Briefly, sucrose powder was dissolved in Mill i -Q® water at a maximum of 50 % (w/v). 

Concentration of particles and diafiltration against Mill i -Q® water to remove sucrose were 

performed by using a Minimate II Tangential Flow Filtration (TFF) System (Pall, Crailsheim, 

Germany) equipped with a 30-kDa TFF capsule (Pall) until  a diafiltration volume of at least 

14 times the sample volume was achieved. The retenate was then fi ltered through a PVDF 

syringe fi lter with a pore size of 0.2 µm and further concentrated by using 10 -kDa 
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centrifugal fi lter units (Amicon Ultra 15, Mill ipore). The final sample contained 7x10 11 

particles/mL in a size range of about 100-200 nm (based on NTA). 
 

Milli-Q® water without the addition of sucrose was treated the same way as the sucrose 

solution, using identical volumes and preparation times. The so obtained sample is further 

named “Control”. 

Protein formulations 

Trastuzumab, rituximab, infl iximab, and cetuximab were diluted to a monoclonal antibody 

(mAb) concentration of 2 mg/mL using following formulation buffers. Trastuzumab: 2.4 

mM histidine-HCl, 2.1 mM histidine, 52.9 mM trehalose, and 0.009% polysorbates 20 a t 

pH 6.0. Rituximab: 25 mM citrate buffer, 9 g/L sodium chloride, and 0.7g/L polysorbates 

80 at pH 6.5. Infl iximab: 5 mM phosphate buffer, 50g/L sucrose (Südzucker), and 0.005% 

polysorbate 80 at pH 7.2. Cetuximab: 10 mM citric acid buffer, 100 mM sodium ch loride, 

100 mM glycine, and 0.01% polysorbates 80 at pH 5.5. All  formulation buffers were 

fi ltered through a PVDF syringe fi lter with a pore size of 0.2 µm. 

Stability study 

Trastuzumab, rituximab, infl iximab, and cetuximab, as well as their corresponding 

formulation buffer, were spiked with NPIs to a final concentration of 3.5x10 10 particles/mL 

(based on NTA) or spiked with an equivalent volume of Control. All  samples were then 

transferred to sterile 2R vials (fi l l  volume 1 mL) and each aliquot (N=1) was measured at 

least one day after preparation (T0), after 2 (T2w), 8 (T8w), and 14 weeks (T14w) of 

storage at 2-8, 25 or 40 °C. Sample handling was performed under laminar airflow 

conditions. 

NPI concentration-dependent study 

The NPIs were diluted with Control  in four 10-fold serial dilution steps. Trastuzumab, 

rituximab, and infl iximab, as well as their corresponding formulation buffer, were then 

spiked with the diluted NPIs to achieve final NPI concentrations of 3.5x10 10, 3.5x109, 

3.5x108, and 3.5x107 particles/mL (based on NTA). Additionally, samples spiked with an 

equivalent volume of Control were prepared (shown as 0 particles/mL in the results). All  

samples were prepared in triplicate (N=3) and transferred to sterile 2R vials (fi l l  volume 1 

mL) and stored at 40°C for one week. Sample handling was performed under laminar 

airflow conditions. 
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Visual inspection 

For visual inspection, the vials were tested for the presence or absence of visible particles 

or turbidity under gentle, manual, radial agitation for 5 seconds in front of a white 

background and for 5 seconds in front of a black background according to the European 

Pharmacopoeia (16). Two trained examiners performed the inspection independently. 

Micro-flow imaging (MFI) 

An MFI5200 system (ProteinSimple, Santa Clara, CA, USA) equipped with a 100-μm flow 

cell and controlled by the MFI View System Software (MVSS) version 2-R2.6.1.20.1915 was 

used. The system was flushed with 10 mL purified water at maximum flow rate and flow 

cell  cleanliness was checked visually between measurements. The respective formulation 

buffer / blank was used to perform il lumination optimization prior to each measurement. 

Samples of 0.5 mL with a pre-run volume of 0.2 mL were analyzed at a flow rate of 0.17 

mL/min and a fixed camera rate (not adjustable by the user) leading to a sampling 

efficiency of about 80–85%. 

Nanoparticle tracking analysis (NTA) 

NTA was performed with a NanoSight LM20 (NanoSight, Amesbury, UK). The instrument 

was equipped with a 405 nm blue laser, a sample chamber and a Viton fluoroelastomer O-

ring. If sample dilution was necessary to achieve an optimal concentration for NTA, Mill i -

Q® water was used as a diluent and all  results were calculated ba ck to the original 

concentration. Samples were loaded into the sample chamber by using a 1-mL syringe and 

a pre-run volume of 0.5 mL. Samples were analyzed in triplicate at a stopped flow, while 

0.1 mL was flushed through the chamber between each repetition. The NTA 2.3 software 

was used for capturing and analyzing the data. Movements of the particles in the samples  

were recorded as videos for 60 s, while the shutter and gain settings  of the camera were 

set to maximum for an increased particle resolution in the lower size l imit. 

Size-exclusion chromatography (SEC) 

A TSK Gel 4000 SWXL column (300 mm × 7.8 mm) (Tosoh Bioscience, Montgomeryville, 

PA, USA) and an Agilent 1200 high-performance liquid chromatography system (Agilent 

Technologies, Palo Alto, CA, USA) coupled to an ultraviolet (UV) detector set at 280 nm 

was employed for SEC analysis. The mobile phase was composed of 100 mM sodium 

phosphate, 100 mM sodium sulfate at a pH of 7.0. The flow r ate was set to 0.6 mL/min. 

Samples were centrifuged at 10,000 g for 3 min, kept at 2-8 °C and injected in duplicates 

of each 25 µL. The sample recovery was calculated as the total peak area relative to the 
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Control-spiked sample at T0. Peaks with a retention time above 20 min were buffer 

related and not considered. The monomer peak retention time was at 17.5 min. Peaks 

with a shorter retention time than the monomer were regarded as high molecular weight 

(HMW) species. In contrast, peaks with a longer retention time than the monomer were 

regarded as low molecular weight (LMW) species. Contents of monomer, HMW- and LMW 

species are given as percentages relative to the total sample recovery. 

Capillary isoelectric focusing (cIEF) 

Imaged cIEF was conducted on an iCE280 instrument (Convergent Bioscience, Toronto, 

Canada) equipped with a fluorocarbon-coated cartridge (ProteinSimple) and coupled with 

a PrinCE Microinjector (Convergent Bioscience) set to room temperature. The UV detector 

was set to 280 nm. The anode and cathode reservoir were fi l led with 0.08  M phosphoric 

acid and 0.1 M sodium hydroxide, respectively (both in 0.1 % methylcellulose, electrolyte 

kit, ProteinSimple). Samples were prepared and mixed to achieve a final concentration of 

0.2 mg/mL protein, 4 M urea (Sigma, Taufkirchen, Germany), 0.35 % (w/v) methylcellulose 

(ProteinSimple), 4 % (v/v) carrier ampholytes pH 3-10 (GE Healthcare, Little Chalfont, 

Buckinghamshire, UK), and each 0.5 % (v/v) pI marker 5.85 and 9.77. After a centrifugation 

step (10,000 g for 3 min), the supernatant was analyzed in duplicates by using a pre-

focusing step of 1500 V for 1 min and a focusing step of 3000 V for 6 min. The 

performance of the system was checked on the day of analysis  by using a hemoglobin 

standard (iCE280 System Suitability Kit, ProteinSimple) according to the recommendations 

of the manufacturer. The instrument was controlled using the software version 2.3.6, 

while the recorded electropherograms were analyzed by the software ChromPerfect 

(Version 5.5.6). 

Intrinsic differential scanning fluorimetry (nDSF) 

Samples were diluted to a mAb concentration of 2 mg/mL by using their corresponding 

formulation buffer. The mAbs, as well as their corresponding formulation buffer, were 

spiked with NPIs to a final concentration of 3.5x10 10 p/mL or an equivalent volume of 

Control. All  samples were prepared in triplicates (N=3), immediately transferred to High 

Sensitivity Capillaries (NanoTemper) and the unfolding characteristics from 20 – 95 °C 

were analyzed using a Prometheus NT.48 (NanoTemper Technologies, Munich, Germany). 

The heat ramp was set to 1 °C/min using a laser power of 20%. The PR.Control software 

version 1.12.3 was used for system control, data acquisition and analysis.  
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(1-3)-β-glucan detection 

An NPI sample (7x1011 particles/mL, based on NTA), its 10-kDa fi ltrate (obtained from the 

last upconcentration step during the purification process) and the Control were diluted 

with endotoxin free water in four 10-fold serial dilution steps under aseptic and particle 

free conditions. The (1-3)-β-glucan levels were measured by using a Glucatell® Kit (Cape 

Cod,East Falmout, MA, USA), according to the instructions of the manufacturer. This assay 

is a modified endotoxin assay, where the factor C is deactivated. By that, the assay only 

gives a signal in presence of (1-3)-β-glucans. In brief, the reagent-sample mixture was 

placed in a microplate-heating block at 37 °C for the recommended time. A volume of 50 

µL from each of the three diazo reagents was added to the mixture to stop the reaction. 

The absorbance at 545 nm was measured and (1-3)-β-glucan concentration in pg/mL was 

calculated based on a standard curve. 

Laser Doppler electrophoresis (LDE) 

NPIs at a concentration of 5x1011 p/mL (based on NTA) were buffered at pH 7.4 (1 mM 

phosphate buffer) or at pH 3.0 (1 mM citrate buffer). After transferring 1000 µL sample 

into a folded capillary cell  (Malvern), the zeta-potential was measured by laser Doppler 

electrophoresis (LDE) by using a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, 

UK). Each measurement was the average of 3 zeta-potential measurements consisting of 

100 sub runs. Zetasizer software version 7.03 was used for system control and data 

acquisition. 

Results 

NPI characterization 

The NPIs were purified from pharmaceutical grade sucrose and upconcentrated to around 

7x1011 particles/mL, as determined by NTA. Their size distribution was between around 

100-200 nm and monomodal, as observed in our previous study (11). The Control sample 

showed particle numbers below the quantification limit of NTA. We additionally 

characterized the NPIs by LDE analysis, which determined their zeta potential as -13.4 

(±1.6) and -8.0 (±0.3) mV at pH 7.4 and 3.0, respectively. 
 

Additionally, the NPIs gave a strong signal in the Glucatell® assay testing for (1-3)-β-glucan 

(Figure 1). The NPIs  10-kDa fi ltrate also showed a signal in this assay, however, with a 

more than one order of magnitude lower intensity. The Control sample showed only a tiny 

signal and only when tested without dilution. Based on the signals and the corresponding 
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dilution factors, the NPIs sample (7x1011 p/mL) contained 750 ng/mL (1-3)-β-glucan, the 

10-kDa fi ltrate 25 ng/mL, and the Control 0.013 ng/mL. 
 

 
 

Figure 1: Results of (1-3) β-glucan determination for NPIs, its 10-kDa filtrate and the Control. Data points marked 

with * exceeded the assay limit. 

Stability study using elevated NPI concentration 

A stability study was performed with four mAbs (trastuzumab, rituximab, infl iximab, and 

cetuximab) spiked with NPIs at a concentration of 3.5x10 10 particles/mL, around 10x the 

concentration potentially present in a marketed drug product (11), or with an equivalent 

volume of Control. 
 

 
Figure 2: Axis details of radar plots shown in Figure 3. The a- and b-axis show the LMW and HMW content in 

relative percentage determined by SEC, respectively. The c-axis shows the particle concentration in particles/mL 

determined by NTA. The d-, e-, f- and g-axis show the cumulative particle concentration above 1, 2, 5 and 10 µm 

by MFI, respectively. All axes are shown in logarithmic scale with the lowest value in the center and the highest 

value on the outside of the radar plots in Figure 3. 
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Figure 3: Results of the stability study of A) trastuzumab, B) rituximab, C) infliximab and D) cetuximab. The details 

of the radar plot axes are displayed in Figure 2. Radar plots show results for mAbs spiked with NPIs at a final 

concentration of 3.5x1010 particles/mL (colored graphs) and mAbs spiked with Control (white, semi-transparent 

graphs), where the data points on the C-axis show the respective formulation buffer spiked with NPIs at a final 

concentration of 3.5x1010 particles/mL (black circles). 
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Content of LMW species of rituximab and infl iximab spiked with NPIs increased over time 

compared to the Control -spiked samples (Figure 3B, C, and 4A). Content of LMW species 

of trastuzumab and cetuximab spiked with NPIs did not change compared to the 

corresponding Control -spiked sample (Figure 3A and D). No difference in sample recovery 

was detected by SEC between the NPI-spiked and Control -spiked samples during the 

stability study (data not shown). 
 

NPI-spiked cetuximab showed an increased content of HMW species upon storage at 40°C 

when compared to the Control -spiked sample (Figure 3D and 4B). For trastuzumab, the 

content of HMW species at T0 was higher in the Control -spiked sample than in NPI-spiked 

sample. This difference leveled out with increasing storage time and temperature. For 

rituximab, infl iximab and cetuximab, NPIs did not induce the formation of HMW species 

(Figure 3 and 4). 
 

NPI-spiked rituximab, infl iximab, and cetuximab, but not trastuzumab, showed increased 

particle numbers in the nm-size range at T0 compared to the corresponding formulation 

buffer spiked with NPIs (Figure 3). Importantly, NTA (the analytical method used for the 

nm-size range) detects both, particles formed within the formulation and the spiked NPIs 

(11). Thus, formulation buffer spiked with NPIs was used as the appropriate reference 

rather than Control -spiked mAb samples (which contained negligible particle numbers in 

the nm-size range at T0 and any other time poi nt and temperature during our studies; 

data not shown). There was no considerable change in particle numbers in the nm-size 

range during the stability study after T0 for all  antibodies. 
 

NPI-spiked trastuzumab and infl iximab, showed turbidity, which was observed during 

visual inspection (data not shown) and increased particle numbers in the lower µm-size 

(MFI) range already at T0 (Figure 3). For NPI -spiked trastuzumab, a further increase in 

particle size and number over the µm-size range was observed during the stability study. 

Furthermore, the formation of visible particles was detected after 14 weeks at all  storage 

temperatures. The Control -spiked samples did not show such a behavior. For NPI -spiked 

rituximab and cetuximab, there was no considerable change in particle numbers in the 

µm-size range at 2-8 and 25 °C. At 40 °C, however, rituximab spiked with NPIs showed 

clearly increased particle numbers in the lower µm-size range after 14 weeks when 

compared to the Control -spiked sample. Cetuximab spiked with NPIs showed an even 

more pronounced increase in µm-particle numbers at 40 °C compared the Control -spiked 

sample, which was accompanied by the appearance of turbidity. Infl iximab samples spiked 

with NPIs behaved uncommonly during the stability study with respect to µm-particle 

numbers. While the particle numbers increased at 2-8 °C and particles grew in size at 40 

°C, their numbers decreased dramatically upon storage at 25 °C. In addition, while the NPI -
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spiked samples consistently showed turbidity at 2-8 and 40 °C with the appearance of 

visible particles after 8 weeks at 40 °C, the NPIs spiked samples stored at 25 °C were free 

of turbidity and visible particles. These observations support the results of MFI analysis.  

Additionally, cIEF analysis was performed throughout the stability study. However, no 

difference in charge variance between NPI -spiked and Control -spiked samples was 

observed (data not shown). Furthermore, conformational stability, monitored as the 

melting temperature (Tm) of the four tested mAbs  measured by nDSF was not affected by 

the presence of NPIs (data not shown). 
 

 
Figure 4: Examples of SEC-chromatograms of A) infliximab and B) cetuximab during the stability study. The peaks 

at a retention time of 17.5 min represent the monomer. Peaks with a retention time above 20 min are buffer 

related. 

Effect of NPI concentration on mAb stability 

Subsequent to the stability study, a NPI concentration dependent study was performed 

with three mAbs (trastuzumab, rituximab and infl iximab). The tested NPI concentrations 

ranged from 0 to 3.5x1010 particles /mL. While the highest NPI concentration of 3.5x10 10 

particles/mL is the same as that used for the stability study, the NPI concentrations of 3.5x 

109, 3.5x108, and 3.5x107 particles/mL reflect high, medium, and low potential 

contamination of NPIs, respectively, in a hypothetical formulation containing 10% w/v 

sucrose, based on results of our previous study (11). 
 

The destabilizing effects of the NPIs on trastuzumab, rituximab, and infl iximab observed  

during the stability study could be reproduced for the highest concentration during the 

NPI concentration dependent study (Figure 5). For trastuzumab, it was further shown that 

only the highest NPI concentration affected trastuzumab stability negatively, regarding 

µm-particle numbers (Figure 5A), content of LMW species (Figure 5B), and turbidity (data 
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not shown). Consistent with the results from the stability study, content of HMW species 

(data not shown) and nm-particle numbers (data not shown) were not a ffected by the 

presence of NPIs. A small but significant decrease in sample recovery of about 2%, which 

was not detected in the stability study, was also observed for trastuzumab when spiked 

with the highest NPI concentration (Figure 5B).  
 

 
Figure 5: Concentration dependent effects of NPIs on A,B) trastuzumab, C,D) rituximab and E,F) infliximab. A,C,E) 

Particle concentration of mAb samples in relation to the spiked concentration of NPIs, as measured by  MFI 

and/or NTA. For MFI, the values were corrected for the  particle concentration obtained for mAb spiked with 

Control. For NTA, the values were corrected for the particle concentration obtained for the formulation buffer  

spiked with NPIs. Data points marked with * were negative after buffer correction and set to 1 for the purpose of 

illustration. B,D,F) Protein recovery as percentage of total peak area of the unstressed sample, LMW content as 

relative percentage of the total recovery (as measured by SEC). Symbols represent the arithmetic mean and error 

bars show standard deviations from triplicate preparations.  
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For rituximab, the elevated particle numbers in the nm-size range were consistently 

observed until  a NPI concentration of 3.5x10 8 particles/mL (Figure 5C). Furthermore, the 

content of LMW species was elevated in the presence of NPIs even at concentrations as 

low as 3.5x107 particles/mL (Figure 5D). Consistent with the results from the stability 

study, sample recovery, content of HMW species and µm-particle numbers were not 

affected by the presence of NPIs (data not shown). 
 

For infl iximab, elevated particle numbers in the nm- and µm-size range were observed 

until  a NPI concentration of 3.5x109 particles/mL (Figure 5E). Sample recovery was 

decreased and the content of LMW species was increased, but only when spiked with the 

highest NPI concentration of 3.5x1010 particles/mL (Figure 5F). Consistent with the results 

from the stability study, the content of HMW species was not affected by the presence of 

NPIs (data not shown). 
 

 
Figure 6: NTA images of A) rituximab formulation buffer and B) rituximab, both  spiked with NPIs at a final 

concentration of 3.5x1010 particles/mL. The determined concentration for B) was about 2x1011 particles/mL. 

Images were captured in 100-fold diluted samples. Image colors were inverted for better visibility.  
 

Interestingly, for those NPI-spiked mAb samples that showed elevated nm-particle 

numbers compared to the NPI-spiked formulation buffers (rituximab at NPI concentrations 

of 3.5x1010, 3.5x109, and 3.5x108, and infl iximab at NPI concentrations of 3.5x10 10 and 

3.5x109 particles/mL), we consistently found a decreased mean size by NTA of about 100 

nm compared to the NPIs alone (representative example shown in Figure 6). 
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Discussion  

All four mAbs included in our study, namely trastuzumab, rituximab, infl iximab, and 

cetuximab, showed degradation upon exposure to NPIs, which was more pronounced as 

compared to the Control . Over the course of the study, we found distinct instability 

behaviors for each individual mAb when exposed to NPIs (Table 1). Formulation buffer 

controls have been included in all  presented studies and did not show instabilities in any 

of the tested parameters throughout the study. It can thus be excluded that our 

observations are purely due to differences in formulation buffer composition or the result 

of excipient instabilities. Furthermore, the pH values measured immediately after sample 

preparation were within 0.1 pH units from those of the corresponding control samples, 

excluding pH shifts as the source of the observed instabilities. 
 

Table 1 summarizes the observed effects of the NPIs on the stability of the tested mAbs 

and ranks the mAbs according to the severity of degradation (Sum of +’s ). A higher score 

correlates to a more pronounced mAb degradation compared to the other tested mAbs. 

Following that score bottom-up, rituximab was affected to the lowest extent by the 

presence of the NPIs showing the immediate formation of high numbers of nm-sized 

particles as the main degradation product. Similarly, cetuximab showed the immediate 

formation of high numbers of nm-sized particles as the main degradation product. 

Cetuximab, however, was overall  degraded more severely than rituximab. Trastuzuma b in 

turn showed the formation of high numbers of µm-sized particles as the main degradation 

product and the appearance of turbidity. Infl iximab was, among the tested mAbs, 

degraded to the greatest extent, showing high numbers of nm- and µm-sized particles as 

the main degradation product as well as the appearance of turbidity. 
 

For rituximab and cetuximab, it was observed that the formation of nm-sized particles was 

not accompanied by the formation of HMW species or a simultaneous reduction of sample 

recovery by SEC. It was shown before that only small protein quantities, sometimes below 

the quantification limit of a SEC, are sufficient to form large numbers of subvisible 

particles (17). It could thus be assumed that minute amounts of protein have rapidly 

formed stable particles in the nm-size range. For both mAbs, these particles did not 

change detectibly in number or size over time. They were, however, followed by the 

formation of high numbers of µm-sized particles at elevated temperatures (Figure 3B and 

3D). The similarities in behavior of rituximab and cetuximab suggests comparable 

aggregation mechanisms and by that potentially also a comparable mode of interaction 

with the NPIs. Despite all  the similarities, though, small differences were observed. While 

rituximab formed LMW species at 25 and 40 C, suggesting mAb fragmentation, 

cetuximab showed such behavior only at 40 C to a small extent. Also, in contrast to 
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rituximab, cetuximab formed HMW species at 40 C (Figure 4B). Importantly, rituximab 

showed degradation even when minor quantities of NPIs were present (Figure 5C and 5D).  

Table 1: Influence of NPIs on the tested stability parameters of monoclonal antibodies.  

Parameter Method trastuzumab rituximab infliximab cetuximab 

Visible particles  Visual inspection + - + - 

Turbidity Visual inspection ++ - ++ + 

µm-particles MFI ++ + ++ + 

nm-particles NTA - ++ ++ ++ 

HMW species SEC - - - + 

Sample recovery SEC + - + - 

LMW species SEC - + + - 
Conformational 

Instability 
nDSF - - - - 

Charge variants cIEF - - - - 

 Sum of +’s 6 4 9 5 

- = was not affected (relative to the control) 

+ = was affected, but only at high concentrations of NPIs and/or not immediately (relative to the control) 

++ = was highly and immediately affected and/or affected at NPIs concentrations potentially present in drug 

products (relative to the control) 
 

Trastuzumab behaved differently to the presence of NPIs than rituximab and cetuximab. 

No increase in numbers of nm-sized particles was observed in any measurement. 

However, µm-particles formed immediately, as mentioned above, and grew in number 

and size, especially at 2-8 °C. This was accompanied by the presence of sample turbidity 

and resulted over time in formation of visible particles. Particle formation observed for 

trastuzumab was, different to rituximab, accompanied by a decrease in sample recovery 

by SEC (Figure 5B). Interestingly, HMW species of trastuzumab were not just absent in the 

presence of NPIs, but actually decreased compared to the Control -spiked sample. This 

could indicate that dimers are, besides the monomer, a potential source for particl e 

formation and that, overall, a different type of interaction between trastuzumab and NPIs 

could have been at play. Other than observed for rituximab, trastuzumab showed signs of 

degradation only when exposed to NPI concentration above those potentially p resent in 

real-l ife drug products. 
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For infl iximab, it appears as if the characteristics observed for rituximab as well as those 

observed for trastuzumab are present. High numbers of nm-sized particles as well as µm-

sized particles formed immediately and even when exposed to smaller quantities of NPIs. 

Similar to rituximab, the nm-sized particles were continuously present and did not change 

detectibly in concentration and size over time and temperature. Additionally, degradation 

of infl iximab also occurred in the presence of NPI concentrations potentially present in 

real-l ife drug products. Similar to trastuzumab, the µm-sized particles grew over time until  

the appearance of visible particles, which was accompanied by sample turbidity and a 

decreased sample recovery by SEC. It is not entirely clear, however, why this growth did 

not occur at 25 °C. Here, infl iximab seems to show only the instability behavior observed 

for cetuximab and rituximab, while at 2-8 and 40 °C the instability behavior also observed 

for trastuzumab is additionally present. Potentially, there is more than one mechanism 

involved when it comes to the formation of µm-sized particles in presence of NPIs, with 

different temperature relationships.  
 

It has been described previously that the presence of non-proteinaceous particles in the 

subvisible size range can affect the stability of a therapeutic protein. This is, because the 

activation energy for the formation of an aggregate can be dramatically lowered in the 

presence of solid surfaces (e.g., dust particles, container components, insoluble organic 

aggregates, etc.) (18,19). On the example of stainless-steel particles from piston pumps, 

sil icone microdroplets from syringe coatings, and glass microparticles from glass 

containers, it was shown that heterogeneous nucleation occurs (i.e., particles that are 

comprised of proteinaceous and non-proteinaceous constituents) which negatively affect 

protein stability and could potentially increase protein immunogenicity (20–23). It is l ikely 

that the NPIs included in our study induced aggregation of the mAbs by presenting them a 

liquid-solid interface for heterogeneous nucleation.  
 

Moreover, electrostatic interaction between mAbs and NPIs ma y have contributed as well, 

because NPIs are overall  negatively charged, while the four mAbs are, due to their 

isoelectric point and buffer pH, positively charged. Whether other interactions could have 

contributed to the destabilizing effects of the NPIs cannot be concluded from our data. 

We could however show that no decrease in conformational stability, as measured by the 

melting temperature (Tm), or the formation of charge variants (e.g., though chemical 

modification played a role). A permanent associati on of the mAbs to the NPIs is not 

supported by our results, because NTA determined for the newly formed particles a 

smaller mean particle size than for the spiked NPIs alone (Figure 6). If association had 

occurred, one would expect a slight size increase. Even though this study cannot conclude 

with certainty on the underlying mechanisms responsible for the different behaviors of 
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the tested mAbs, it is clear that NPIs can indeed affect the stability of proteins and that 

the extent of destabilizing effects seems to depend on the mAb and the NPI 

concentration.  
 

It has been shown before that nm- and µm-sized protein particles can trigger 

immunological reactions and thus increase the risk for side effects and other unwanted 

clinical events such as decreasing the therapeutic efficacy of the drug product (7–10). It 

could be that much lower concentrations of NPIs than the ones tested in this study lead to 

protein degradation, e.g., during long term storage, and that such degradation products 

could pose a risk for patients. We can expect NPIs to be present in at least some marketed 

drug products containing sugar, but there is no data or study available making a 

correlation between the safety of a drug product and its NPI concentration. However, it 

has been reported that during a clinical phase 1 study for a therapeutic protein that some 

of the healthy volunteers developed immunological side effects (24). These were marked 

by a dose-related transient fever and an elevation in total white blood cells, neutrophils , 

and C-reactive protein similar to an endotoxin-like exposure. The researchers could l ink 

this effect to impurities originating from the sucrose used in the formulation. They found 

the presence of (1-3)-β-glucan and could show that this was the root cause of the 

observed immunological side effects. This conclusion appears plausible, since these 

moieties are known immune-modulators (25). Additionally, the researchers found that the 

amount (1-3)-β-glucan could be decreased by fi ltering the sucrose solution through a 10 -

kDa fi lter. During their study, however, no further characterizations were made to identify 

the NPIs.  
 

We tested our NPIs with the same assay and found high concentrations of (1-3)-β-glucan, 

just as described by Notarnicola et al. (24) (Figure 1). In addition, the values decreased 

markedly when the NPI samples were fi ltered through a 10-kDa membrane. This strongly 

indicates that the NPIs used in our study are comparable to the impurities that triggered 

the immunological side effects observed by Notarnicola et al . (24).  

Conclusions 

The presence of residual contaminants and impurities in (bio)pharmaceutical drug 

products should never be underestimated. In this s tudy, we showed that NPIs negatively 

affected the stability of trastuzumab, rituximab, infl iximab, and cetuximab. Although 

degradation profiles differed between the tested mAbs, destabilizing effects were 

observed at NPI concentrations that are, potentiall y, present in (bio-)pharmaceutical drug 

products formulated with sugar. Further studies are needed to identify the mechanism(s), 

protein characteristics, and formulation parameters involved in NPI -mediated protein 
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destabilization. We also showed that NPIs contained (1-3)-β-glucan, which is an immune-

modulating molecule. Therefore, the presence of NPIs in therapeutic protein products is a 

potential risk factor for immunological side effects. 
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Summary 

Biopharmaceuticals have been highly successful in treating severe diseases and disorders 

that could not be treated by classical pharmaceutical compounds. A major obstacle for 

current research and development programs of biopharmaceutical drug products is the 

instability of the therapeutic protein, which may compromise safety and efficacy. For 

instance, the formation of aggregates, especially in the nm- and µm-size range, has been 

linked to immune reactions in patients, also known as unwanted immunogenicity.  In the 

light of challenges regarding the analytical characterization of nm- and µm-particles, the 

aim of this thesis was to evaluate and improve established and emerging analytical 

techniques in this size range. These analytical techniques were then applied to 

characterize particles in the nm- and µm-size range present in protein formulations and to 

study the effect of nanoparticulate impurities on the stability of therapeutic proteins. 
 

Chapter 2 introduced the concept of protein formulation development, which aims to 

assure the quality, safety, efficacy of a therapeutic protein product throughout the 

intended shelf l ife. Furthermore, various formulation strategies  were outlined and 

challenges that can be encountered during the different stages of research and 

development for biopharmaceutical drug products  are discussed. 

Chapter 3 introduced the concept and underlying mechanisms of unwanted 

immunogenicity and gave guidance on how to select a suitable set of currently available 

immunogenicity prediction models during the different stages of research and 

development of biopharmaceutical drug products.  

In Chapter 4, an improved version of the already established light obscuration technique 

was successfully applied to determine subvisible particle concentrations in formulations 

with high protein concentrations. It could further be shown how currently applied systems 

are l imited in the analysis of viscous samples and that exceeding those limits could lead to 

an underestimation of particle counts.  

Chapter 5 comparatively evaluated Micro-Flow Imaging (MFI) and Resonant Mass 

Measurement (RMM) as emerging techniques for the differentiation of protein particles 

and sil icone oil  droplets in biopharmaceutical formulations. The data showed that a 

customized morphological fi lter, developed specifically for this study, greatly improved the 

results delivered by the MFI instrument and enabled reliable discrimination of particles 

with a size as low as 2 µm. RMM showed highly accurate discrimination in the size range 

of about 0.5–2 µm. Therefore, it is recommended applying both techniques for a 

comprehensive analysis of biotherapeutics potentially containing silicone oil  droplets and 

protein particles in the submicron and micron size range.  
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Chapter 6 compared four of the most relevant flow-imaging microscopy instruments and 

identified their differences, benefits and shortcoming to enable researchers the 

employment of the most suitable system for a given application. Based on the results, the 

systems were categorized into high-resolution systems, obtaining detailed morphology 

parameters enabling an accurate particle classification, and high-efficiency systems, 

delivering particle counts and sizes with high accuracy and precision.  

In Chapter 7, it was shown that the interference of sugar-containing formulations with 

l ight scattering based analytical techniques is caused by the presence of a so far unknown 

type of nanoparticulate impurity in pharmaceutical -grade sugars. The results suggested 

them to be agglomerates of a variety of impurities  (dextran, ash and aromatic colorants) 

not fully removed by the sugar refinement processes.  

Chapter 8 investigated the effect of the nanoparticulate impurities discovered in Chapter 

7 on the stability of four therapeutic monoclonal antibodies currently on the market. The 

stability of all  antibodies was impaired by the presence of the nanoparticulate impurities  

resulting in the formation of aggregates , and nm- and µm-sized particles, however, to 

different extents among the antibodies. Furthermore, i t was shown that the 

nanoparticulate impurities themselves contain immunomodulatory molecules potentially 

able to elicit immune responses  in patients.  

Perspectives 

The work presented in this thesis aimed to support scientific efforts in making future 

biopharmaceutical products safer, by increasing the scientific understanding on the proper 

employment, strengths and limitations of crucial  analytical techniques and by providing 

new insights into the nature and criticality of nm- and µm-sized particles. Future 

investigations and scientific studies should aim to improve particle characterization 

analytics, increase the fundamental understanding and optimize the prevention of 

aggregation, and to deliver further insights into the relationship between aggregate 

properties and immunogenicity.  

Characterization of particles in biopharmaceutical products 

The demand for novel and improved analytical techniques for the characterization of 

particles in the nm- and µm-size range has been expressed by many research groups  in the 

past and is sti l l  valid (1–3). The “subvisible size gap” has  been closed in part by the 

development of novel analytical techniques, some of which were evaluated in this thesis. 

In general, orthogonal methods employing truly different measurement principles are 

needed and should then be applied to overcome weaknesses and biases of instruments 
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relying on the same measurement principle. As an example, l ight-scattering based 

techniques NTA and DLS may be supported by emerging promising methods such as tailor 

dispersion analysis and flow cytometry, providing true orthogonality to commonly applied 

techniques (4–8).  
 

Developments of new instruments for particle characterization should furthermore aim to 

address challenges presented by future biopharmaceutical drug products. The current 

trend, especially for monoclonal antibody products , goes towards highly concentrated 

preparations (e.g., above 100 mg/mL) for subcutaneous administration, due to the 

necessity of high doses (several mg/kg) with frequent dosing regimens (9). These products 

create new demands on current and future analytical technologies, such as s mall scale 

methods with low sample volume requirements and the ability to measure samples of 

high viscosity and high refractive index without the necessity of sample preparation (10–

12). Some currently applied techniques would require a sample dilution step because of 

analytical l imitations, which could alter a protein’s aggregation state through a change in 

solvent composition and protein concentration, thereby affecting the reliability of test 

results (12).  
 

Another trend for future biopharmaceutical drug products is the development of 

dedicated application devices  and the use of prefil led syringes. These developments aim 

for a quicker and more accurate dosing, while enabling administration by non-

professionals or self-administration (13). However, these developments come with new 

challenges. For example, the commonly applied process of sil iconization of syringe 

surfaces for lubrication may lead to the presence of subvisible silicone oil  droplets in some 

products (14–16). This creates the necessity for differentiation and identification of 

particles and demands novel analytical technologies and methodologies, some of which 

were evaluated during this thesis . While particles originating from primary packaging are 

not always harmful themselves, they can negatively affect the stability of the therapeutic 

protein (17,18). It is furthermore important to develop novel surface modification 

techniques that overcome the weaknesses of current container closure systems (13,19). 
 

The combination of different measurement principles within one analytical device should 

also be in the focus of future development programs. For example, a device applying 

imaging microscopy or dynamic l ight scattering in l iquid samples alongside Raman 

spectroscopy could establish a direct l ink between particle size and morphology and 

particle origin (20–23). Such insights would be highly valuably during biopharmaceutical 

development and troubleshooting.  
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Understanding and prevention of aggregation 

A highly active field of research aims to understand the fundamental mechanisms 

underlying protein aggregation and the formation of nm- and µm-particles. Many different 

aggregation mechanisms have been identified, but it is not yet possible to predict which 

pathways will  be predominant for a certain protein in a particular formulation (24). 

Furthermore, different pathways can exist in parallel and their occurrence depends on the 

molecular nature of the protein, the protein environment (e.g., formulation and primary 

container) and the applied stress conditions . If the molecular nature makes a protein 

prone to aggregation because of the presence of potential aggregation hot-spots, one 

could attempt to change the protein’s sequence and structure by protein engineering 

(24,25). This, however, may not eliminate the formation of aggregates, since factors other 

than primary and secondary structure are important in this context. For some proteins, 

aggregation pathways in relation to pH and ionic strength have been identified (26–29). 

Unfortunately, these can in most cases not be directly applied to other proteins . 

Furthermore, it is currently not fully understood how proteins aggregate when exposed to 

solid-liquid and liquid-air interfaces (30,31). Thus, formulation developers stil l  rely mostly 

on empirical data and scientific experience to find suitable formulation conditions and the 

(or a) right combination of stabilizing excipients. A correlation of protein characteristics to 

a range of potentially optimal formulation conditions, including suggestions for type and 

concentration of excipients , would enable a faster and more focused formulation-, and 

thereby product development.  

Relationship between aggregate properties and immunogenicity 

It is clear that the presence of protein aggregates, especially in the nm- and µm-size range, 

can dramatically increase the risk for unwanted immunogenicity and the occurrence of 

adverse effects in patients. Stil l , there is currently l ittle understanding as to which specific 

properties of aggregates and particles are involved in immunogenicity (32). Studies have 

shown that the amount of aggregates and particles determined in drug products does not 

necessarily correlate to the presence, type, or severity of immunological  reactions in 

patients (33). Thus, besides number and size of aggregates and particles, there must be 

many other attributes important for i mmunogenicity, such as the arrangement and 

content of T-cell  and B-cell  epitopes on the aggregates’ surface, protein conformation 

within the aggregate, type and extent of chemical modifications accompanied with 

aggregation, and aggregate density and morphology. It is an active field of research to 

understand the contribution of each of those attributes to the overall  immunogenicity of a 

biopharmaceutical drug product. These efforts , however, are often impaired by the 

availability of clinical data and the ability to compare quality attributes among the 
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different products, related to the lack of standardized particle analytics (34,35). Thus, 

improved techniques for the analysis of aggregates and particles, util ized in a standardized 

way, will  contribute to the investigation of unwanted immunogenicity.   
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Biofarmaca worden succesvol ingezet bij het behandelen van ernstige ziekten en 

aandoeningen die niet te behandelen zijn met klassieke geneesmiddelen. Echter, een 

grote belemmering voor hedendaags onderzoek naar nieuwe biofarmac a betreft de 

instabiliteit van therapeutische eiwitten, wat een schadelijke invloed kan hebben op de 

veiligheid en werkzaamheid. Zo is de vorming van aggregaten – met name in de 

nanometer en micrometer schaal – in verband gebracht met immuunreacties in patiënten. 

Dit fenomeen staat beter bekend a ls ongewenste immunogeniciteit. 
 

In Hoofdstuk 2 wordt het formuleringsproces van therapeutische eiwitten geïntroduceerd. 

Dit proces vormt een essentieel onderdeel van de ontwikkeling van biofarmaca, omdat het 

tracht het therapeutische en commerciële succes van veelbelovende producten te 

waarborgen. Het verzekeren van de kwaliteit, veil igheid en werkzaamheid gedurende de 

houdbaarheid van het product is daarbij het hoofddoel. Omdat het formuleringsproces 

plaatsvindt tijdens het gehele ontwikkelingsproces van biofarmac a, bestaat het 

formuleringsproces uit verschillende fases. Bovendien vereist elk biofarmac on een unieke 

formulering om een aantal redenen: verschillende vatbaarheden voor bepaalde 

degradatiemechanismen, specifieke karakteristieken van het actieve bestanddeel (het 

therapeutische eiwit), bepaalde eisen om de therapietrouw te verhogen en diverse 

marketingoverwegingen. Daarnaast kan het formuleringsproces op verschillende 

manieren worden aangepakt. Zo kan er, gebaseerd op een rationele aanpak, gebruik 

worden gemaakt van wetenschappelijke kennis die verkregen is door het systematisch 

analyseren van eiwitten met behulp van diverse analytische technieken. Dit hoofdstuk 

geeft een introductie over het formuleringsproces van therapeutische eiwitten. Hierbij 

zullen huidige formuleringsstrategieën en uitdagingen worden behandeld. 
 

Omdat alle therapeutische eiwitten de potentie hebben om immunogeen te zijn, zal in 

Hoofdstuk 3 ongewenste immunogeniciteit en onderliggende mechanismen besproken 

worden. Antil ichamen tegen therapeutische ei witten kunnen namelijk de werkzaamheid 

verminderen, wat kan leiden tot een toename in de kosten van een therapie. In zeldzame 

gevallen kan het zelfs resulteren in levensbedreigende situaties. Vandaar dat het 

belangrijk is om therapeutische eiwitten te ontwikkelen met een minimale 

immunogeniciteit. Het voorspellen van immunogeniciteit speelt daarom al vroeg in het 

ontwikkelingsproces een belangrijke rol. Verschillende in sil ico-, in vitro- en in vivo-

modellen kunnen gebruikt worden om immunogeniciteit te voorspellen. Dit biedt de 

mogelijkheid om immunogene eigenschappen te identificeren en om een selectie te 

maken van eiwitten met een lage immunogeniciteit. Hoewel dergelijke modellen volop 

worden gebruikt, zijn er verschillen in de voorspellende waarde. Zo is  er nog onvoldoende 

kennis over het type immuunreactie op therapeutische eiwitten dat ongewenste 
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immunogeniciteit tot gevolg heeft. Daarnaast verkennen modellen verschillende 

componenten van het immuunsysteem en is er een gebrek aan een geïntegreerde 

klinische validatie. In dit hoofdstuk bespreken we welke modellen tegenwoordig in 

gebruik zijn en welke aspecten van immunogeniciteit deze modellen vertegenwoordigen. 

Daarnaast bediscussiëren we de toegevoegde waarde en beperking van elk model. 
 

Light obscuration (LO) is tegenwoordig een standaardtechniek om subvisuele 

(microscopisch fi jne) deeltjes te analyseren tijdens de kwaliteitscontrole van 

geneesmiddelen die parenteraal worden toegediend, zoals therapeutische eiwitten. In 

sommige gevallen hebben zulke geneesmiddelen een hoge viscositeit door een hoge 

eiwitconcentratie. Dit kan leiden tot foutieve LO-metingen. In Hoofdstuk 4 wordt 

omschreven hoe een verhoogde viscositeit van vloeibare monsters , vanaf 9 centipoise 

(cP), leidde tot een onderschatting in het a antal subvisuele deeltjes. Het toepassen van 

een overdruk op monsters met een hoge viscositeit bleek de betrouwbaarheid van de LO-

metingen te herstellen zonder dat extra monstervoorbewerkingen vereist waren. 

Daarnaast werd duidelijk dat huidige analytische technieken niet goed in staat zijn om 

viskeuze samples te analyseren. Wanneer hier geen rekening mee wordt gehouden kan dit 

leiden tot een onderschatting in het aantal deeltjes. 
 

In Hoofdstuk 5 wordt omschreven hoe Micro-Flow Imaging (MFI) en Resonant Mass 

Measurement (RMM) gebruikt kunnen worden om sil iconenoliedruppels en eiwitdeeltjes 

van elkaar te onderscheiden. Het kunnen onderscheiden van dergelijke deeltjes – op 

nanometer- en micrometer-schaal – is essentieel voor de ontwikkeling van biofarmaca, 

met name bij voorgevulde injectiespuiten. In dit onderzoek werd gebruikgemaakt van 

kunstmatig verkregen sil iconenoliedruppels en eiwitdeeltjes. Daarnaast werden deze 

deeltjes gemengd in verschillende verhoudingen om te onderzoeken in hoeverre de 

technieken in staat zijn om deze deeltjes te onderscheiden. De ingebouwde MFI-software 

was in staat om sil iconenoliedruppels en eiwitdeeltjes van elkaar te onderscheiden 

wanneer de deeltjes groter waren dan 2 m en er een mengverhouding van 70:30-30:70 

werd gebruikt. Tevens werd er een MFI-softwarefilter ontwikkeld dat de prestaties 

aanzienlijk verbeterde; zelfs wanneer er extreme mengverhoudingen werden gebruikt van 

95:5-15:85. Daarentegen bleek RMM in staat te zijn om sil iconenoliedruppels en 

eiwitdeeltjes van 0.5 tot 2 m van elkaar te onderscheiden, onafhankelijk van de 

mengverhouding die werd gebruikt. Kortom, zowel MFI als RMM waren in staat om 

deeltjes van elkaar te onderscheiden. Daarom adviseren we om beide technieken te 

gebruiken bij het analyseren van biofa rmaca die mogelijk sil iconenoliedruppels en/of 

eiwitdeeltjes bevatten.  
 

Flow Imaging Microscopy (FIM) is een aantal jaren geleden geïntroduceerd en is sindsdien 

steeds belangrijker geworden voor het analyseren van eiwitdeeltjes. Hoofdstuk 6 
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omschrijft een vergelijking van vier relevante FIM-apparaten (MFI4100, MFI5200, 

FlowCAM VS1 en FlowCAM PV) voor het analyseren van biofarmac a. Voor deze 

vergelijking werden verschillende deeltjes gebruikt, namelijk polystyreen 

standaarddeeltjes, eiwitdeeltjes (gemaakt van monoklonale antil ichamen) en 

sil iconenoliedruppels. Naast de kwantificering en karakterisering is onderzocht hoe goed 

de apparaten in staat zijn om verschillende type deeltjes van elkaar te onderscheiden. 

Bovendien is er gekeken naar de gebruiksvriendel ijkheid en kwaliteit van de verkregen 

afbeeldingen van de deeltjes . De FlowCAM-apparaten, met name de FlowCAM VS1, 

creëerden afbeeldingen in een hoge resolutie. De FlowCAM PV gaf de meest precieze 

kwantificering van het aantal eiwitdeeltjes, zelfs wanneer er sprake was van suboptimale 

omstandigheden door een verhoogde brekingsindex van de formulering. Bovendien was 

dit systeem het beste in staat om eiwitdeeltjes van sil iconenoliedruppels te 

onderscheiden. Ook de MFI-apparaten konden accuraat de deeltjesgrootte- en 

concentratie van samples met polystyreen standaarddeeltjes vaststellen. De MFI5200 

bleek hierin het best in staat. Dit apparaat was, net als de FlowCAM PV, ook in staat om 

eiwitdeeltjes te detecteren, zelfs wanneer er sprake was van een verhoogde 

brekingsindex. In vergelijking met de FlowCAM-apparaten waren de MFI-apparaten 

gebruiksvriendelijker en bleek het gemakkelijker om gestandaardiseerde metingen en 

data-analyses uit te voeren. De belangrijkste conclusie van dit onderzoek is dat de selectie 

van het meest geschikte FIM-systeem sterk afhankelijk is van de voornaamste output 

parameters met betrekking tot het doel van het onderzoek.  
 

Hoofdstuk 7 beschrijft de hoofdoorzaak en consequentie van het interferentiesignaal 

(100-200 nm) dat zich manifesteert bij Dynamic Light Scattering (DLS) en Nanoparticle 

Tracking Analysis (NTA) analyses van suikerhoudende oplossingen. In dit onderzoek zijn 

verschillende suikers met variërende zuiverheden en van diverse leveranciers 

geanalyseerd met DLS en NTA. Ook is het effect van ultrafi ltratie en diafi ltratie 

bestudeerd. Verder zijn Fourier Transform Infrared (FTIR) Microscopy, Scanning Electron 

Microscopy Coupled Energy-dispersive X-ray Spectroscopy (SEM-EDX) en Fluorescence 

Spectroscopy gebruikt. De intensiteit van het interferentiesignaal was afhankelijk van het 

type suiker en zuiverheid, en de leverancier en productiepartij. Ultrafi ltratie van monsters 

met een 0.02-m filter verwijderde het interferentiesignaal. Het interferentiesignaal bleek 

veroorzaakt te worden door nanodeeltjes – bestaande uit dextranen, mineralen en 

aromatische kleurstoffen – die niet volledig verwijderd waren tijdens het suikerraffinage 

proces. Kortom, het interferentiesignaal werd veroorzaakt door nanodeeltjes die als 

verontreiniging aanwezig zijn in farmaceutische suikers. Verder in deze samenvatting zal 

er naar deze nanodeeltjes gerefereerd worden als Nano-Verontreinigingen (NVs). 
 

In Hoofdstuk 8 wordt omschreven welk effect de eerder omschreven NV’s hebben op de 

stabiliteit van verschillende monoklonale antil ichamen. Eerst zijn NV’s verkregen uit 
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farmaceutische graad sucrose (saccharose). Vervolgens zijn de verkregen NV’s toegevoegd 

aan trastuzumab-, rituximab-, infl iximab- en cetuximab-formuleringen. De stabiliteit van 

de monoklonale antil ichamen is onderzocht door middel van Visual Inspection, FIM, NTA, 

Size-exclusion Chromatography (SEC), Capillary Isoelectric Focusing en Intrinsic Differential 

Scanning Fluorimetry als functie van opslagtijd, temperatuur en NV-concentratie. Ook zijn 

de NV’s gekarakteriseerd met behulp van laser Doppler electrophores e en de Glucatell  

assay om de -potentiaal en het (1-3)--glucaangehalte te bepalen. NV’s bleken een 

schadelijke invloed te hebben op alle onderzochte monoklonale antil ichamen. Na het 

toevoegen van NV’s aan trastuzumab werden de formuleringen troebel en ontstonden er 

grote aantallen microdeeltjes. In ritixumab- en cetuximabformuleringen vormden zich 

alleen hoge aantallen nanodeeltjes. Na het toevoegen van NV’s aan infl iximab ontstonden 

er zowel nanodeeltjes als microdeeltjes. Bovendien werd het infl iximab-mengsel troebel. 

Hoewel de stabiliteit van trastuzumab en infl iximab vrijwel direct na het toevoegen van 

NV’s al verminderde, was dit bij rituximab en cetuximab pas detecteerbaar na een 

opslagtijd van 14 weken en een verhoogde opslagtemperatuur. Bovendien werd de 

stabiliteit van ritixumab en infl iximab al beïnvloed door een NV-concentratie die mogelijk 

in commerciële producten aanwezig is. De stabiliteit van trastuzumab werd alleen 

beïnvloed bij hogere concentraties NV’s. NV’s bleken ook een hoog gehalte te hebben aan 

(1-3)--glucaan, een immuunstimulerende stof. Samengevat vormt de aanwezigheid van 

NV’s in farmaceutische suikers een risico op stabiliteitsproblemen en ongewenste 

immunogeniciteit. 
 

Gezien de problemen met betrekking tot het karakteriseren van deeltjes in de nanometer - 

en micrometer-schaal zal dit proefschrift hopelijk leiden tot een verbetering van 

bestaande en opkomende analytische technieken om subvisuele deeltjes te onderzoeken. 

Daarnaast kunnen wetenschappers die werkzaam zijn bij bedrijven of universiteiten de 

verkregen inzichten toepassen om analytische technieken zo effectief mogelijk te 

gebruiken. Dit proefschrift laat ook zien dat farmaceutische suikers NV’s  bevatten die niet 

alleen interfereren met analytische technieken, maar ook een schadelijk effect bleken te 

hebben op de stabiliteit van monoklonale antil ichamen. De resultaten gepresenteerd in de 

voorgaande hoofdstukken dragen dus bij aan de mondiale inspanning om veilige en 

effectieve geneesmiddelen te ontwikkelen. 
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Abbreviations 

% percent 

%RH Percent relative humidity 

°C Degree Celsius 

µg Microgram 

µL Microliter 

µm Micrometer 

ABD Area based diameter 

ACS American Chemical Society 

ADA Anti-drug antibody 

AF4 Asymmetric flow field flow fractionation 

Al Aluminum 

ANN Artificial neuronal networks  

APC Antigen-presenting cell  

API Active pharmaceutical ingredient 

Asp Asparagine  

AU Absorption unit 

AUC Analytical ultracentrifugation 

C Carbon 

Ca Calcium 

CD4+ Cluster of differentiation 4 positive 

CFR Code of federal regulations  

cIEF Capillary isoelectric focusing 

cP Centipoise  

cSt Centistokes 

CTA Clinical trial authorization 

DLS Dynamic l ight scattering 

DNA Deoxyribonucleic acid 

DP Drug product 

DS Drug substance 

DSC Differential scanning calorimetry 

DSF Dynamic scanning fluorimetry 

ECD Equivalent circular diameter 

EDX Energy dispersive X-ray spectroscopy 

ELISA Enzyme-linked immunosorbent assay 



Appendix 2 

196 

Exp. Expiration date 

FDA Food and Drug Administration 

Fe Iron 

FTIR Fourier transform infrared spectroscopy 

g Gram 

Glu Glutamine 

h Hour(s) 

H Hydrogen 

H2O2 Hydrogen peroxide 

HCl Hydrogen chloride  

His Histidine 

HLA Human leukocyte antigen 

HMW High molecular weight 

HPLC High performance liquid chromatography 

HTF High throughput formulation 

ICH International Council for Harmonization 

IgG Immunoglobulin G 

IgG1 Immunoglobulin G1 

IgM Immunoglobulin M 

IL Interleukin 

INF Interferon 

K Potassium 

kDa Kilo Dalton 

LA License application 

LDE Laser Doppler electrophoresis  

LMW Low molecular weight 

LO Light obscuration 

LOD Limit of detection 

mAb Monoclonal antibody 

MDa Mega Dalton 

MFI Micro-Flow Imaging 

mg Mill igram 

Mg Magnesium 

MHC Major histocompatibil ity complex 

min Minute(s) 

mL Mill i l iter 
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mM Millimolar 

mm Mill imeter 

MS Mass spectrometry 

NaCl Sodium chloride 

nDSF Intrinsic dynamic scanning fluorimetry 

ng Nanogram 

NIST National Institute of Standards and Technology 

NK Natural kil ler cells  

nm Nanometer 

NPI Nanoparticulate impurities  

NTA Nanoparticle tracking analysis  

O Oxygen 

P Phosphorus 

Part./mL Particles per mill i l iter 

PBMC Peripheral blood mononuclear cells  

PDI Polydispersity index 

Ph.Eur. European Pharmacopeia 

PK/PD Pharmacokinetics / pharmacodynamics 

pKa Acid dissociation constant 

PVDF Polyvinylidene fluoride 

QC Quality control  

R2 Coefficient of determination 

RI Refractive index 

RMM Resonant mass measurement 

RNA Ribonucleic acid 

rpm Rounds per minute 

s Second(s) 

S Sulfur  

SEC Size-exclusion chromatography 

SEM Scanning electron microscopy 

Si Sil icon 

SLS Static l ight scattering 

SMR Suspended microchannel resonator 

TCR T cell  receptor 

TFF Tangential flow fi ltration 

Tg’ Glass transition temperature of the frozen state 
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Tm Melting temperature 

TNF Tumor necrosis factor 

UPLC Ultra performance liquid chromatography 

US  United States 

USP United States Pharmacopeia 

UV Ultra-violet 

v/v Volume per volume 

w/v Weight per volume 

w/w Weight per weight 

λ Wavelength 
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