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Chapter 7

Temporal expectation and information processing:
A model-based analysis

This chapter is based on: Jepma, M., Wagenmaketks, & Nieuwenhuis, S. (under revision).
Temporal expectation and information processinga@del-based analysis.
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Abstract

People are able to use temporal cues to anticibateming of an event, enabling them to process
that event more efficiently. We conducted two ekpents, using the fixed-foreperiod paradigm
(Experiment 1) and the temporal-cueing paradignp@gxnent 2), to assess which components of
information processing are speeded when subjeetsuch temporal cues to predict the onset of a
target stimulus. We analyzed the observed tempoyadctation effects on task performance using
sequential-sampling models of decision making:Rh&liff diffusion model and the shifted-Wald
model. The results from the two experiments weresistent: temporal expectation affected the
duration of nondecision processes (target encaoalaigor response preparation) but had little effect
on the two main components of the decision proagesponse-threshold setting and the rate of
evidence accumulation. Our findings provide nowétience about the psychological processes
underlying temporal expectation effects on simpled choice-reaction time.
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Introduction

People are able to use temporal cues to anticipigttegreat precision the timing of an
event, enabling them to optimize the processintaif event. For example, people can use the onset
of amber traffic lights to direct the temporal fgoof attention towards the moment in time in which
the lights will turn green (or red, depending oe tagion of the world they are in), allowing them
to speed up their response to the green signakriiwpntal psychologists have long known that
response times (RTs) are faster if a target isgoted by a warning signal that is presented at a
constant, or at least predictable, temporal dakeyi€wed in Hackley, 2009; Niemi & Naatanen,
1981; Nobre, Correa, & Coull, 2007). This benefietiect is also observed for choice RTs, even
though the warning signal contains no informatibow the identity of the upcoming stimulus. The
ability of people to use temporal cues is also @vidn the brain: neurons in several brain areas
encode the probability that a stimulus will occtiaay given point in time (Ghose & Maunsell,
2002; Janssen & Shadlen, 2005; Riehle, Gruin, Dieap& Aertsen, 1997). The goal of the current
study was to increase our understandingloth components of information processang
speeded when people can predict the onset of et tstighulus.

The effects of temporal expectation on task peréoroe have been studied with two
different paradigms, developed in largely sepditamtures. One is the foreperiod paradigm, in
which the warning signal is a perfect predictotha interval (oforeperiod between the onsets of
the warning signal and the target. Foreperiod thuras typically varied between blocks of trials.
The typical finding in this paradigm is that RTsrnease progressively as the duration of the
foreperiod is increased and therefore harder imagt (Klemmer, 1956; Niemi & Naatanen,
1981¥. The other paradigm is the temporal-cueing paradig which a cue predicts with some
certainty (e.g., 80%) the interval between the tmeéthe cue and the target. Thee-target
interval is varied within blocks of trials. The typical fimg in this paradigm is that RTs are faster
when the cue-target interval is validly cued (icenfirms the participant’s expectation) than when
the interval is invalidly cued (Correa, Lupiafiezliden, & Tudela, 2004; Coull & Nobre, 1998).
The manipulation within blocks of cue-target int@ss/and the dissociation of expected and actual
cue-target intervals (on invalidly cued trials) radke temporal-cueing paradigm more suitable for
event-related fMRI studies, which have examinedofan areas that are activated when people
process the temporal cue and orient their atterftmnewed in Coull, 2004). However, it seems
reasonable to assume that the key behavioral sftdxtained in the two paradigms reflect similar
underlying mechanisms: in both paradigms partidipanre required to voluntarily orient their
attention to particular moments in time; and expental manipulations (foreperiod duration or cue
validity) affect the degree to which participantse prepared at the moment when the target is
presented.

® We only consider foreperiods400 ms. At shorter foreperiods target processarglenefit from the phasic increase
in arousal elicited by the presentation of the wagrstimulus: araccessory stimulus effe@tiackley & Valle-Inclan,
1998; Jepma, Wagenmakers, Band, & Nieuwenhuis,)2009
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Which aspects of information processing are resptnfor the decrease in RTs as temporal
certainty increases? One possible account is¢hgbaral certainty facilitates encoding of the targe
(cf. Jepma, Wagenmakers, Band, & Nieuwenhuis, 206Emi & Naatdnen, 1981). Another
possibility is that temporal certainty affects dical parameter of the decision process that setia
on the sensory evidence obtained during stimulagsding. The mechanism underlying two-choice
decisions is well described by the accumulation@$y information from a stimulus over time
(Gold & Shadlen, 2007; Smith & Ratcliff, 2004). éemfmation accumulates toward one or the other
of two decision thresholds until one of the thrédhas reached; then the response associated with
that threshold is initiated. It is possible thakating attention to the moment of target onseg or
timed phasic increase in arousal, speeds up taevitht which evidence is accumulated in the
decision process (cf. Grosjean, Rosenbaum, & EsjrZP01). Another possibility is that increased
temporal certainty does not change the rate ofim&dion build-up but instead causes a lowering of
the decision threshold (or, equivalently, a risstarting point; Bogacz, Wagenmakers, Forstmann,
& Nieuwenhuis, 2010). That is, participants begirécrease the threshold in anticipation of the
target. As a result, responses are faster becagsgahs are made on the basis of less evidence
(Posner, 1978). A final account assumes that isegkaertainty about the timing of an upcoming
target can be used to prepare the motor systemouticommitting to any particular response
(Bertelson, 1967; Sanders, 1980). This may spedtaipxecution of a specific motor response to
the target, much like a pre-heated engine will makar start quicker in any direction.

Previous research has found substantial evidemgeedieg the locus of temporal certainty
effects: To examine the response execution accoesgarchers have conducted choice-RT
experiments that examined the effect of forepeandhe lateralized readiness potential (LRP), a
difference wave that indexes hand-specific resppnsgaration. The onset of the LRP indicates the
moment at which the motor cortex associated wighrésponding hand becomes more active than
the ipsilateral motor cortex, an early indicatidrttee forthcoming motor response. The general
finding is that the effect of foreperiod on theeinial between LRP onset and the overt response is
small or absent, which has led researchers to sdadhat there is very little evidence for a
foreperiod effect on the duration of motor preparaaind execution (e.g., Hackley, Schankin,
Wohlischlaeger, & Wascher, 2007; Muller-Gethmanmidd| & Rinkenauer, 2003). However,
Tandonnet and colleagues have suggested thatltRés&ndings may be misleading. They
examined the Laplacian-transformed event-relatedntial (ERP) waveforms to obtain separate
estimates of the ipsilateral and contralateral mototex response. Although effect sizes were
modest, Tandonnet and colleagues found that inede@snporal certainty decreased the time
between the onset of the contralateral negativifgxing the motor command and the
electromyographic (EMG) onset (Tandonnet, Burlela&Vi & Hasbroucq, 2003, 2006), suggesting a
speedup of motor preparation. When they used tine skata to compute the monopolar (i.e.
standard) and the Laplacian LRPs, they found nepkeriod effect on the LRP-to-response interval.
This suggests that the double-subtraction methsedd to compute the LRP can obscure subtle
latency effects present in the constituent ERP Yeares. Tandonnet and colleagues further found
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that increased temporal certainty shortened the between EMG onset and the actual key press
(Tandonnet et al., 2003; see also Hasbroucq, AlkamB&touret, & Seal, 1995). This indicates that
temporal certainty can also influence the duratibmotor execution.

While there are small but robust effects of tempoegtainty on the duration of motor
processes, these effects cannot fully accounefopbral expectation effects on RT. In particular,
several studies have found that increased tempertlinty reduces the interval between the
stimulus and the P3/LRP onset, two established ensuidf the combined duration of stimulus
encoding and decision making (Correa, Lupiafiez,idaéd Tudela, 2006; Miller-Gethmann et al.,
2003). These studies suggest that temporal expeceffects on RT must also have an earlier
locus.

Temporal certainty improves various aspects ofguron (Bausenhart, Rolke, & Ulrich,
2008; Martens & Johnson 2005; reviewed in Nobra.e2007). Importantly, it also improves
performance in psychophysical variants of the tamagigms discussed above, in which target
stimuli are briefly presented and then masked:dased temporal certainty enhances perceptual
sensitivity (d-prime) in both the foreperiod pagdi(Rolke, 2008; Rolke & Hofmann, 2007) and
the temporal-cueing paradigm (Correa, Lupiafez ugfléla, 2005). However, although highly
informative, these findings cannot adjudicate betweffects on encoding and the rate of evidence
accumulation (cf. Rolke & Hofmann, 2007). Thatgsrceptual sensitivity may be enhanced
because encoding lasts shorter and evidence acatiomutan start earlier, or because evidence
accumulation progresses at a faster rate; bothagostresult in more evidence by the time the
target stimulus is masked and subjects must maeeigion. Bausenhart and colleagues have tried
to distinguish between these accounts by investigahe foreperiod effect on the shape of speed-
accuracy tradeoff functions obtained with the resgesignal method (Bausenhart, Rolke, Seibold,
& Ulrich, 2010). They found that foreperiod affedtie intercept but not the slope of these
functions, providing evidence for changes in enagdiuration but not the rate of evidence
accumulation. Together, these and other behaviiodihgs (Seifried, Ulrich, Bausenhart, Rolke, &
Osman, 2010) provide substantial evidence that eeahgertainty affects the duration of stimulus
encoding.

While there is substantial evidence that tempceetiainty affects the duration of encoding
and motor processes, the picture is less cleahé&two main components of the decision process:
threshold setting and rate of evidence accumulaficnording to the response-threshold account,
increased temporal certainty results in a well-tifevering of the response threshold, such that
decisions are made on the basis of less evidenstafghtforward prediction of this account is that
the faster RTs should be accompanied by a higlogroption of errors—choice errors in choice-RT
tasks and false alarms in simple-RT tasks in ctitals. Unfortunately, studies with simple-RT
tasks generally do not report false-alarm propogj@r do not include catch trials in the design.
Furthermore, response accuracy in choice-RT tas§generally near ceiling, which necessarily
results in negligible and non-significant foreperigffects. In the rare two-choice RT studies in
which accuracy was off ceiling, foreperiod effeatsaccuracy were small or absent. An exception
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is an experiment reported by Posner, Klein, Sumnaed Buggie (1973), who found a speed-
accuracy tradeoff when comparing foreperiods of @30and 800 ms. A distinct feature of the
results in this study were the extremely fast rasps, due to speed emphasis in the task
instructions. As we have discussed elsewhere (Jepaia 2009), the effect of lowering the
decision threshold on the probability that the emick-accumulation process reaches that threshold
by mistake (i.e., resulting in an error), is largdren the threshold is closer to the starting past

is the case when instructions emphasize speed, THausicrease in error rates with higher
temporal certainty (foreperiod = 400 ms) in theaxkpent of Posner and colleagues is consistent
with the response-threshold account and may hasenhe apparent because of a small distance
beween starting point and threshold. Taken togethesview of speed-accuracy tradeoff data
yields little evidence for or against the respotigeshold account. Furthermore, as we will discuss
later, although the response-threshold accounigisea speed-accuracy trade-off, the observation
of a speed-accuracy trade-off is not uniquely disgjie of shifts in response threshold.

Finally, as noted above, there is preliminary enethat temporal certainty in the
foreperiod paradigm does not affect the rate od@vte accumulation (Bausenhart et al., 2010).
Aside from those results, there are no data infognine evidence-accumulation account, in part
because standard behavioral indices predictedég\ttience-accumulation account cannot be
distinguished from predictions of the encoding ardtdcf. Rolke & Hofmann, 2007). Therefore,
other methods are needed to test whether tempentairtty affects components of the decision
process.

We conducted two experiments using the two panaslipat are most commonly used in
temporal-certainty research: the fixed-foreperiadapligm (Experiment 1) and the temporal-cueing
paradigm (Experiment 2). Previous work has alwaygsi$ed on either the foreperiod paradigm or
the temporal-cueing paradigm, which explains tlo& t&f integration of the two literatures. To
enable a comparison of the temporal-certainty &ffecthe two paradigms, we identified the
psychological process(es) underlying the obsergaygporal-certainty effects in both paradigms
using two sequential-sampling models for distribngi of response times and error rates. One goal
was to confirm the hypothesis that temporal cetyaaffects the duration of nondecision processes,
as suggested by the literature reviewed above. Memveéhe models we used were particularly
useful for testing the evidence-accumulation asgpaoase-threshold accounts, because each of these
components of decision making corresponds withiquenparameter in both models. Therefore,
our primary goal was to examine whether the vatii¢bese decision-making parameters changed
as a function of temporal certainty.

Experiment 1

In Experiment 1 we investigated which componentsfarmation processing are affected
by temporal certainty using a diffusion-model as&\of the foreperiod effect on RT and accuracy.
The diffusion model is a model of two-choice demmsimaking that defines the decision process as
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the continuous accumulation of noisy stimulus infation over time, from a starting point towards
one of two decision criteria or thresholds (Ratd@ifRouder, 1998; see Figure 1). When one of the
two thresholds is reached, the corresponding resp@ninitiated. There are several reasons to
assume that the diffusion model gives an accuedkection of how the decision process is
implemented in the brain. First, the diffusion pFss is the optimal decision process: it provides th
fastest responses for a fixed level of accuracyh@highest accuracy for a fixed response time
(Wald, 1947). Second, the diffusion model explairesdynamics of neuronal activity during
decision-making behavior (Gold & Shadlen, 2007; t8r&i Ratcliff, 2004). And third, the diffusion
model successfully accounts for RT distributiond arror rates in a variety of two-alternative
forced-choice tasks (e.g., Ratcliff, Van Zandt, &Kbon, 1999).

a Response A
/
Z < N > < >
Encodin Response
(Tep) execution
(Te)
0 Response B

Figure 1. An illustration of the diffusion model. The paraiees area = boundary separation= starting pointy =
drift rate, To, = mean nondecision time. The sample paths repres@ment-by-moment fluctuations in the evidence
favoring the two possible responses, which is duaoise in the decision process. The decision postarts at and
terminates when one of the two boundaries is rehchge duration of, determines the additional time needed for
stimulus encoding and response execution.

The diffusion model can be helpful in evaluating tharious accounts of the foreperiod
effect because some of the main model parametemspond closely to the different processing
components emphasized by these accounts. Thertfo®emportant parameters of the model in
this respect are the drift rate, the boundary sgjmar, and the nondecision component. The drift
rate () is the mean rate of evidence accumulation ird#wsion process, which depends on the
guality of the stimulus and the perceptual systEne higher the absolute value of the drift rate, th
faster a decision threshold is reached. If accyraddictions of target onset time increase the drif
rate of the diffusion model, this would support ithea that high temporal certainty induces a faster
build-up of information. The boundary separatiahi¢ the distance between the two decision
criteria. This parameter determines on how muctenge a decision is based, and can be
controlled strategically by the decision makethd decision maker uses temporal prediction to
briefly lower the boundary separation, this woutdyide support for the notion that the foreperiod
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effect reflects a lowering of the decision thresh@osner, 1978). Besides the decision process,
there are other components of processing involnedtwo-choice RT task, namely stimulus
encoding and response execution which, respectipedgede and follow the decision process. In
the diffusion model, these nondecision processes@nbined into one nondecision component,
Ter. A shortening of the nondecision component by adeyseediction of target onset would
indicate that stimulus encoding and/or motor exeautre speeded.

We applied the diffusion model to data from a staddexical-decision task, in which
participants were asked to classify letter striags word or a nonword, with task instructions
emphasizing response speed in half of the blocllg@sponse accuracy in the other half of the
blocks. The diffusion model has been shown to gi®wa good fit of lexical-decision data,
accounting for the effects of the experimentalatales on RTs for correct and error responses,
shapes of the RT distributions, and accuracy valRegcliff, Gomez, & McKoon, 2004;
Wagenmakers, Ratcliff, Gomez, & McKoon, 2008). Imtpatly, each letter string was preceded by
a warning signal, and the stimulus-onset asynchbatyeen the two stimuli, the foreperiod, was
varied between blocks (500 or 2700 ms). Our majorwas to examine which model parameter(s)
could best account for the corresponding differenodask performance.

Method

Participants.Fourteen students participated (11 women; ageddly@ars; mean age = 21.5;
all native Dutch speakers). All participants repdrhormal hearing and normal or corrected-to-
normal vision. Each participant completed two smssiof approximately 90 minutes each, on
separate days. Participants received either 1&eauroourse credits for participation.

Design and procedurdarticipants were tested individually in a dimtydom. Stimuli
were presented in silver on a navy blue backgramad personal-computer screen. Each trial
started with the presentation of a 200-ms astewyskbol (visual angle = 0.8°) in the center of the
screen, which marked the onset of the foreperibgs Warning signal was followed by the
remainder of the foreperiod (300 ms or 2500 msindwwhich a fixation plus (0.3°) was on the
screen. Then a letter string was presented (ColNeer font; visual angle = 2.7° for 4-letter words
and 4.0° for 6-letter words), and participants wiastructed to decide whether or not the letter
string was a Dutch word by pressing the z or tkey/ The key assignment was balanced across
participants. The letter string remained on theacmntil a response was made, after which the
fixation plus reappeared for an intertrial intereé1.1 +X) s, withX being a random variable that
followed an exponential distribution with a meanla$. This random interval was used to
emphasize the importance of the warning signaltas@oral reference for preparation (cf. Rolke
& Hofmann, 2007).

The word stimuli were 800 Dutch words and 800 namsoBoth the words and the
nonwords consisted of 4, 5 or 6 letters (195 4&te?51 5-letter and 354 6-letter words as well as
nonwords). The frequency of the words ranged frod7 @ 5.48 per million (mean = 3.47, SD =
1.28; Baayen, Piepenbrock, & Gulikers, 1995). Thewords were generated by replacing one
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letter of an existing word; vowels were replaced/bwels and consonants by consonants. The
words that were used to generate the nonwords negnesed as word stimuli.

In each of the two sessions, participants completedoractice blocks of 24 trials, followed
by 16 experimental blocks of 50 trials: 25 with ardrand 25 with a nonword. The combination of
speed-accuracy instructions and foreperiod chaafjedevery two blocks according to an ABCD
DCBA order that was the same in both sessions anddracross participants. Before the start of
each block, participants received an on-screenwamg@nent of the upcoming foreperiod (long or
short) and speed-accuracy instructions (focus oaracy or speed), after which they could press
the space bar to start the block. In speed blgEksicipants were instructed to respond as quickly
as possible, but without making a lot of errors] eesponses slower than 650 ms were followed by
a message TOO SLOW of 1 s. When a response was fhah 250 ms, the message TOO FAST
was displayed for 1 s. No accuracy feedback wasngiv these blocks. In accuracy blocks,
participants were instructed to respond as acdyrasepossible, but without taking more time to
respond than necessary, and incorrect responsedolleed by a message ERROR of 1 s.
Responses faster than 250 ms or slower than 120@emesfollowed by a TOO FAST or TOO
SLOW message. At the end of each block the meaari®Tthe proportion of correct responses
appeared on the screen, and participants couldatakert break before initiating the next block.

Diffusion-model analysig=or fitting the diffusion model to the data we dske Diffusion
Model Analysis Toolbox (DMAT; Vandekerckhove & Tuliackx, 2008). DMAT estimates
parameters by maximizing a multinomial likelihoaohétion. The data that are used to fit the
diffusion model are the RT distributions for cotrand incorrect responses, and the percentage
correct responses.

We fitted four different diffusion models to thetdaThe following parameter settings
applied to all models: 1) The intertrial variabyjlin nondecision timesf) was held constant across
all conditions. 2) The starting point of the difilms processZ) was set at a fixed proportion of the
boundary separation, such that the bias in stapiiigt was constant across conditions. 3)
Boundary separatiora) and the intertrial variability in starting poi(g2 were free to vary between
the speed and accuracy conditions (Ratcliff & Rouii®98, Experiment 1; Ratcliff, Thapar, &
McKoon, 2001, Experiment 2). 4) Mean drift rat &nd intertrial variability in drift rate;) were
free to vary between the word and nonword trialst¢if, Thapar, Gomez, & McKoon, 2004).The
four models differed with regard to the parametieas were free to vary as a function of foreperiod
duration. In one model (the All free modél),, a, andv were all left free to vary. In addition, there
were three models in which eith&y, a, orv could vary, whereas the other parameters were held
constant (th@ ¢ model,a model, ands model, respectively).

The models were fitted to the data in two wayssti-the models were fitted to each
participant’s data individually. When a participaméade 10 or fewer errors in a condition, the
participant’s error data for this condition werd mecluded in the fitting procedure. Second, the
models were fitted to the averaged data. The aedrdgta was obtained by calculating the
accuracy and the RTs for correct and error triggoeaiated with the .1, .3, .5, .7 and .9 quantdes
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each individual participant, and then averaging¢healues across participants. (Note that the
quantile RTs are not the mean RTs within bins [R§t€979], but the boundary RTs of each
quantile.)

Results

Behavioral resultsFigure 2 shows the mean correct RT and mean pagegorrect as a
function of foreperiod duration, instruction andradype. RTs shorter than 250 ms or longer than
2500 ms were excluded from analysihich resulted in the exclusion of 0.6% of thalsi In
accordance with previous studies, RTs were shorteshort-foreperiod trials than on long-
foreperiod trials (573 ms vs. 625 nig1,13) = 53.6p < 0.001), yielding a reliable foreperiod effect
of 52 ms. Furthermore, RTs were shorter followipgesd instructions than following accuracy
instructions (563 ms vs. 635 nig;1,13) = 23.3p < 0.001), and shorter for words than for
nonwords (584 ms vs. 615 n#H(1,13) = 10.6p = 0.006). There were no significant interactions
between the three variables.

Percentage correct was lower on short-foreperiatstthan on long-foreperiod trials (80.7
vs. 82.4%, indicating that the increased speechort-$oreperiod trials was accompanied by a
small but reliable drop in accurady((,13) = 12.6p = 0.004). This drop in accuracy on short-
foreperiod trials was present in the accuracy damm{83.9 vs. 87.2%) but not in the speed
condition (77.6 vs. 77.7%), as reflected in a gigant interaction between foreperiod duration and
instruction,F(1,13) = 8.2p = 0.013. As expected, percentage correct was highen the
instruction emphasized accuracy than when it empbdspeed (85.5% vs. 77.7%(1,13) = 32.0,
p < 0.001).

Words Nonwords
700 - —=—accuracy ;g1 -
— --- speed
g 650 -\. 650 -
— 600 - 600 -
04 L
550 - 550 -
500 500
long FP short FP long FP short FP
3 90 1 HMlong FP 90 T
0] L short FP
S 85 85
o
g 80 - 80 -
: .
Q 75 | i—‘ ] 75 1
accuracy speed accuracy speed

Figure 2. Mean correct RT and proportion correct in Experitieas a function of word type, instruction
(speed/accuracy) and foreperiod duration.
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Experimental effects on the diffusion-model paranseTo assess which parameters were
affected by foreperiod duration, we analyzed thregeriod effect on the estimates of The aand
v parameters in the All free model. Table 1 shovesaverage parameter estimates across
participants. As expected, the boundary separatemsmaller when the instruction emphasized
speed than when it emphasized accur&y,(3) = 32.9p < 0.001). In addition, (absolute) drift
rates were higher for words than for nonworeEl(13) = 72.8p < 0.001). Importantly, neither
boundary separatiof(1,13) = 2.2p = 0.16) nor drift rateK(1,13) = 0.01p =0.91) was affected
by foreperiod. In contrast, the nondecision compbrig,, was significantly smaller on trials with a
short foreperiod than on trials with a long forepént(13) = 6.0,p < 0.001). These results suggest
that reducing temporal uncertainty shortens ormaare nondecision processes, but does not
substantially affect the decision process itself.

Table 1. Parameter estimates for the fit of the All freed®lo(SD in parentheses) in Experiment4.= non-decision
time (in seconds) comprising stimulus encoding Esponse execution;= boundary separatiom;= drift rate

parameter Short FP Long FP
Ter 446 (.045) 482 (.045)
a (speed) .078 (.011) .080 (.010)
a (accuracy) .102 (.018) 109 (.019)
v (words) .295 (.139) 314 (.171)

v (nonwords)  -.253 (.109) -.269 (.108)

Model selectionTo further assess the effect of foreperiod duratio the different model
parameters, we tested which model had the besttiite data. To compare the adequacy of the four
models (i.e. the All free model,, model,a model, ands model) in explaining the observed data we
used the Bayesian Information Criterion (BIC), a&istical criterion for model selection. The BIC is
a decreasing function of the goodness-of-fit fa ¢istimated model, and an increasing function of
the number of free parameters to be estimated., Thedest model is the model with the lowest
BIC value. In addition, the raw BIC values werensformed to a probability scale, enabling a more
intuitive comparison of the probabilities of eacbdel being the best model (Wagenmakers &
Farrell, 2004). The transformation of BIC valuegtobability values consists of three steps. First,
for each model i, the difference in BIC with respiecthe model with the lowest BIC value is
computed (i.e.Ai(BIC)). Second, the relative likelihood L of eaclodel i is estimated by means of
the following transformation: L (M data)o exp[-0.5A(BIC)], wherea stands for “is proportional
to”. Third, the model probabilities are computednmymalizing the relative model likelihoods,
which is done by dividing each model likelihoodthg sum of the likelihoods of all models. Table
2 summarizes the average BIC values and probasilii each of the four models. Thg model
was by far the best modét(3,39) = 18.3p <0.001). In the individual analyses, thg model was
the best model for 10 of the 14 participants.
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Since boundary separatioa) {varied as a function of instruction, and drifteré/) as a
function of word type, tha model andr model had more free parameters (13) thaTtheodel
(12). To examine the possibility that thg model was favored because of its fewer free patensie
we fitted an additionad model to each participant’s data in which the @fef instruction and
foreperiod ora were additive instead of fully free. Similarly, viitded an additiona¥ model to
each participant’s data in which the effects of avtiype and foreperiod onwere additive. These
additivea andv models had the same number of free parametehnge &s tmodel. The average
BICs of the additivea andv models were somewhat larger but did not diffenisigantly from the
fully-free versions of these modefs<£ 0.21 and = 0.98 for thea andv models, respectively).
Importantly, the additiva andv models had higher BICs than thg model s < 0.01), suggesting
that the conclusion in favor of tig, model was not due to the fewer free parametetisi®imodel.
For the sake of completeness we also examined dldelsin which combinations of two
parametersTr anda; Ter andv; a andv) were free to vary as a function of foreperiodadion. The
average BIC values of these three models weragiiehthan that of th&., model, suggesting that
the effects of temporal uncertainty could be exmdibest by a change in nondecision time alone.

Table 2.BIC values for each model in Experiment 1 (SD angntheses).

Df BIC p(BIC)
All free model 16 7,112 (492) <0.01
Ter model 12 7,102 (492) >0.99
a model 13 7,131 (491) <0.0001
v model 13 7,195 (512) < 0.0001

Note:p = BIC model probability

Model fits.To examine the RT distributions, we averaged the3,15, .7 and .9 quantile
RTs across patrticipants. Figure 3 shows the mearatajuantile RTs as well as the mean
proportions correct in each condition. The predicjaantile RTs and proportions correct from the
best model (thd model) are indicated as well. Figure 3 shows dlidtve quantile RTs of the
correct responses were shorter on short-forepéni@d than on long-foreperiod trials. However,
the absolute foreperiod effect was small relatovéhe differences between the quantile Rillsich
makes visual inspection difficult. To examine tbesperiod effect in more detail, we calculated the
RT difference between short-foreperiod trials amthtoreperiod trials (i.e., the foreperiod effect)
for each of the five correct RT quantiles. We tp#itted the foreperiod effect as a function of
response speed (the average of the quantile Rifig ilong-foreperiod trials and short-foreperiod
trials).

The resultingdelta plotprovides a way of zooming in on the foreperiocteffat different
points of the RT distribution (e.g., Ridderinkh2@02). Figure 4 shows the delta plots for the
observed data and for the data produced by thefitesy T, aandv models. The foreperiod
effect is rather constant across the .1 - .7 glesntas is predicted by tfig, model, but is somewhat
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increased for the .9 quantile for the word condiioThea andv models both predict that the
foreperiod effect gradually increases as RTs bedonger. Most of the conditions in the observed
data did not show this pattern, which explains wieT,, provided a better account of the data than
thea andv models.
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Figure 3. The observed and predicted (by Ter model) .15,3,7 and .9 correct quantile RTs in Experimenplaited
against the corresponding proportions correct, ametion of word type, instruction (speed/accudaand foreperiod
duration.
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Discussion

We applied the diffusion model to the data fronexadal-decision experiment in which the
visual imperative stimuli (letter strings) were geeed by a short or long foreperiod. The diffusion-
model analysis of these data provided importardenge regarding the source of the foreperiod
effect. The fit of a model in which all critical raneters were left unconstrained showed that the
foreperiod effect was largely accounted for by argje in the nondecision compong&gt A
comparison of models in which only one parametes albbwed to vary between short and long-
foreperiod trials pointed in the same directiom:dbmost all of the participants tAg, model was
best able to explain the data. Themodel was also significantly better than a modethich all
three parameters were free to vary as a functidareperiod duration. Finally, consistent with
previous studies (Hohle, 1965; Leth-Steensen, 2@08)foreperiod effect was relatively constant
across the RT distribution. This implies that irased temporal certainty did not alter the shape of
the RT distribution but shifted the complete dtsiition to the left, which is consistent with an
effect on the nondecision component.

In contrast, the decision parameters drift ratkl@mundary separation, although sensitive to
other experimental variables, were not substagtéfected by foreperiod duration. In the
behavioral analyses, we did find a potential intiiiccafor a foreperiod effect on boundary
separation: there was a speed-accuracy trade-w¥eba short and long-foreperiod trials when
instructions emphasized accuracy, but not whemuasbns emphasized speed. As noted above, a
speed-accuracy trade-off in the empirical datapranide a diagnostic criterion for a change in
decision threshold. However, because this empigatiern was not accompanied by a reliable
foreperiod effect on the threshold model parameterpropose another explanation of the speed-
accuracy tradeoff. Laming (1979) has suggestedstliigects may anticipate the arrival of a
stimulus by starting sampling information from ferceptual display at the moment when they
think the stimulus will be presented. If subjedtrtssampling too early, responses will be fast but
also less accurate because they start with sampdiisg. We assume that subjects use this strategy
in blocks when the foreperiod is short and thecgpaited timing of the stimulus is relatively good,
but not in blocks with a fixed long foreperiod, whihie stimulus onset is much harder to anticipate.
In long-foreperiod blocks, subjects always waithwsampling until the target occurs, and errors due
to premature sampling do not occur. According te #tcount, accuracy is reduced on short-
foreperiod trials not because of a reduction infatawy separation but because subjects engage in
premature sampling (of noise) on a proportion efttials.

A prediction of the premature-sampling hypothesiterms of diffusion-model parameters
is that the inter-trial variability in starting pai(s2 will be larger in short-foreperiod blocks than in
long-foreperiod blocks, since premature samplinginflate estimates of starting-point variability.
To test this prediction, we fitted a diffusion motiethe data in which not only boundary
separation, drift rate and nondecision time, bsib akarting-point variabilityas free to vary as a
function of foreperiod duration. This analysis ralegl that estimated starting-point variability was
significantly larger when instructions emphasizpdexl than when instructions emphasized
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accuracyf(1,13) = 62.2p <0.001). In addition, there was a trend-level eftégdreperiod

duration £(1,13) = 3.72p =0.076), as well as a significant interaction betvkaeperiod duration
and instruction on estimated starting-point vatigb{F(1,13) = 16.8p = 0.001). Follow-up
contrasts indicated that starting-point variabiitgs larger in short-foreperiod blocks than in long
foreperiod blocks when instructions emphasized raayu(0.034 vs. 0.009(13) = 3.14p =0.008),
but not when instructions emphasized speed (0.862.0631(13) = 0.21p =0.84). Importantly,
these effects of instruction and foreperiod ontistgepoint variability parallel the effects of
instruction and foreperiod on behavioral accuracgirop in accuracy on short-foreperiod trials in
the accuracy condition but not in the speed camulitiThese results support the idea that the
observed speed-accuracy trade-off between shoitbageforeperiod trials in the accuracy
condition was due to premature sampling on a ptapoof the short-foreperiod trials.
Interestingly, this proportion of premature-samglirials may also be responsible for a part of the
observed decrease in the nondecision compdnerdn average, sampling (evidence accumulation)
starts earlier on short-foreperiod trials thanamgtforeperiod trials (when subjects always await
the onset of the stimulus), resulting in a shogtezoding phase. However, this account cannot
explain why perceptual sensitivity is improved twoi-foreperiod trials (Correa et al., 2005; Rolke
& Hofmann, 2007), indicating that there must beadditional, effective, shortening of encoding
time.

The results from Experiment 1 strongly suggestith@eased temporal certainty does not
affect the decision process itself, but insteagdpeip nondecision processes, consistent with our
literature review. However, based on the diffusmaodel analysis alone, it cannot be determined
whether the shortening of the nondecision comporedlcts a speeding of stimulus encoding or
response execution, or both.

Experiment 2

Besides the foreperiod paradigm, the effects optaal expectation on task performance
have been studied extensively with the temporailrguparadigm. In Experiment 2, we examined
whether our conclusion that temporal certaintyhia fixed-foreperiod paradigm affects mainly
nondecision processes can be generalized to thpotafrcueing paradigm. The temporal-cueing
paradigm is comparable to the variable-foreperiadgigm in the sense that the foreperiod varies
from trial to trial, but has the additional feattinat the warning signal (cue) predicts the foreker
duration with a large degree of certainty. In Expent 2, these temporal cues were presented in
the context of a simple-RT task, requiring rapidjéd detection; in choice-RT tasks temporal-
cueing effects are generally absent, presumablgusectarget discrimination interferes with the
processing of the cue (Correa et al., 2004). Oh &#al, a cue predicted with a validity of 75%
whether the cue-target interval was 400 or 1400Tragget brightness (bright or dim) was also

’ For this model, there were also significant efeftspeed vs. accuracy instruction on boundargrsgipn, of word
type on drift rate, and of foreperiod duration @mdecision time.
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varied between trials. We expected to find a cuahia effect on RT for the short cue-target
interval, because of differences in temporal prafan at the moment the target appears. A similar
validity effect is generally not observed for tload cue-target interval (Correa et al., 2004; C&ull
Nobre, 1998), because subjects have time to rddheir attention to the long cue-target interval
after they realize that a cue indicating the slag-interval is invalid (Correa et al., 2004; Kiayli
1959).

We analyzed the data using the shifted-Wald madklld, 1947; Figure 5), a model based
on the Wald distribution, which represents the dgrg the first passage times of a Wiener
diffusion process toward a single absorbing boundEne shifted-Wald model conceptualizes the
decision process as a single-boundary diffusiogs®, and successfully accounts for RT
distributions in paradigms in which there is onlgiagle response boundary, such as simple-RT
tasks (Luce, 1986, pp. 51-57), go/no-go tasks (rbedt, 2004; Schwarz, 2001; see Carpenter &
Williams, 1995, for a comparable, ballistic approac

This shifted-Wald distribution can be characteribgdhree parameters that correspond
closely to the three main parameters of the diffiusnodel: the drift rate of the diffusion process
(y), the separation between the starting point offiffasion process and the absorbing barrier (i.e.
the decision threshold), and a parameter that shifts the entire RT thistion and thus quantifies
the time needed for nondecision proces8égs (

N Response
(03 /
: Encodiné(/\/ :Respons:e
(0) execution
(6)

Figure 5. An illustration of the shifted-Wald model. The pareters area = distance between the starting point and the
decision threshold; = drift rate, and? = mean nondecision time.

Method

Participants.Sixteen students participated (14 women; aged 1@ea8s; mean age = 21.8;
all native Dutch speakers). Each participant coteplene session of approximately 100 minutes in
return for 13 euros or course credits.

Design and procedurdll stimuli were presented in the center of theeen on a black
background. Each trial started with a white fixatmoint that was displayed for a quasi-random
duration between 500-1500 ms (in steps of 200 Tis$ was followed by the 50-ms presentation
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of a grey, short (visual angle = 0.6° x 0.2°) ardd1.4° x 0.2°) horizontal rectangular bar in the
center of the screen. This cue provided informagibout the subsequent cue-target interval.
Specifically, the short bar indicated that the ¢éangould appear early (i.e., cue-target intervdDo
ms) on 75% of the trials (valid cue) and late (target interval = 1400 ms) on 25% of the trials
(invalid cue). The long bar indicated that the ¢éangould appear late (cue-target interval = 1400
ms) on 75% of the trials (valid cue) and early (target interval = 400 ms) on 25% of the trials
(invalid cue). The cue was followed by a blank sarér the remainder of the cue-target interval
(350 ms or 1300 ms). Then the target, a white (iyigr dark grey (dim) circle (visual angle = 1.0°)
was presented for 100 ms, followed by a blank scuewil the participant made a response. Then
the next trial began. When no response was regdstgithin 2 s of target onset, the message “You
have not responded” was presented for 1 s. Ifgorese with RT < 100 ms was registered, the
message “Too fast! Wait with responding until tivele appears” was presented for 2 s.

Before the start of the experiment, participantsendark-adapted for 5 min in a room sealed
from light. Dark adaptation increases the diffeeeincRTs between bright and near-threshold
stimuli (cf. J&kowski, Kurczewska, Nowik, van der Lubbe, & Verlegg007). The actual
experiment started with 16 practice trials, folla@A®y 16 blocks of 112 trials. Each block contained
28 trials with each combination of cue-target imééi(short, long) and target brightness (bright,
dim), 7 (25%) of which were invalidly cued. Therasva 1-minute break between blocks and a 5-
minute break halfway through the experiment. Pigidiats were instructed to press the space bar as
soon as they detected the target. They were ergedita use the cue to optimize performance. At
the end of each block the mean RT and the propodi@orrect responses (= non-anticipations)
appeared on the screen.

Shifted-Wald-model analysio assess the processing components that ar¢eaffieg
temporal uncertainty, the parametgrg, andd were left free to vary as a function of cue vaiidi
and cue-target interval. In addition, the paransetandd were free to vary as a function of target
brightness, but was not, reflecting the notion that subjects cammgiantaneously adjust the
decision threshold once the (dim or bright) targgiresented.

To reduce the impact of a few very short and l@agtion times on the parameter estimates,
we fitted to the data a mixture of the shifted-Waliskribution and a uniform distribution of
response contaminants (e.g., Ratcliff & Tuerlinc802; Zeigenfuse & Lee, 2010). The uniform
distribution of contaminants ranged from 100 m&@00 ms — the RTs below and above these
boundaries were excluded from analysis.

Participant heterogenity in the parameter estimiatethe mixture-shifted-Wald model was
taken into account using hierarchical Bayesian rioglée.g., Farrell & Ludwig, 2008; Gelman &
Hill, 2007; Rouder, Lu, Speckman, Sun, & Jiang,2@ouder, Sun, Speckman, Lu, & Zhou,
2003; Shiffrin, Lee, Kim, & Wagenmakers, 2008). Hiehical Bayesian methods reduce the
variability in the recovered parameters and produoee accurate parameter estimates than single-
level maximum likelihood estimation (Farrell & Ludlyy 2008; Rouder et al., 2005). The
hierarchical Bayesian approach assumes that tlaengders of individual participants are drawn
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from group-level distributions that specify how thdividual parameters are distributed in the
population. The group-level distributions thus defthe between-subjects variations of the
parameters and can themselves be characterizeddiyohparameters. One of the benefits of
hierarchical modeling is that knowledge from theugr-level distribution serves to shrink noisy
estimates for individual participants to less exteevalues.

In the Bayesian hierarchical model, individual paetersy;, a;, 6; —for the shifted-Wald
distribution— andr; —the mixture proportion— are assumed to come fyooap-level distributions
with meansu, p,, pe andp,. These distributions were assumed to be normé, fioo the shifted-
Wald parameters and for the probit-transformed aneproportion. The mean and standard
deviation of the group-level distributions neededé assigned prior distributions; these
distributions were uninformative in the sense thatposterior distributions were not noticeably
influenced by increasing or decreasing the widtthefprior distributions

Parameter estimation for the mixture-shifted-Walated was carried out by means of
Markov chain Monte Carlo (MCMC) sampling in the \BIUGS program (Lunn, Thomas, Best, &
Spiegelhalter, 2000; Lunn, Spiegelhalter, ThomaBe&t, 2009). The WinBUGS code that was
used to fit the model can be found at www.ejwagekersacom. For reasons of speed and
robustness, the likelihood function for the mixtbetween uniform and shifted-Wald distributions
was coded separately and made available via th&8W@&S Development Interface (WBDev; e.g.,
Wetzels, Lee, & Wagenmakers, 2010). The MCMC samgplised three separate chains; each chain
had a burn-in of 20,000 iterations, after which0B0, further samples were drawn with a thinning
factor of 10. This left 2,000 samples per chainadaotal of 6,000 samples for each posterior
distribution. Visual inspection and calculationtlbé R-hat statistic (Gelman & Rubin, 1992)
confirmed that the three chains had convergedds#éme distribution (i.e., for all group-level
parameters, R-hat = 1.00).

The results showed that the probability of a resparontaminant was very low; for the
group-level mean parameter, the mode of the postdistribution was only .004. Nevertheless,
inclusion of the contaminant distribution had armonced effect on the estimated nondecision time
6 — without the contaminant distributiothiwas estimated to be implausibly low. Note thatia
absence of a contaminant distribution, the enis&ildution oféd has to be lower than the minimum
observed RT. Thus, the inclusion of the contaminigsttibution made the model more robust to
misspecification due to the presence of outlievenghough the probability of observing an outlier
was very low.

8 Because of numerical underflow errors for thelii@d, the Wald distribution does not allow oneuse completely
uninformative prior distributions. For this reaserg used prior distributions that were uninformatwithin a range
that is plausible for data from a simple-RT taske 8/ww.ejwagenmakers.com for a precise specifioatfahe prior
distribution, the model code, and the model output.
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Results

Behavioral resultsRTs shorter than 100 ms and longer than 1000 ms ecluded from
analysis which resulted in the exclusion of 1.8% of thal#i The proportion of trials on which
participants failed to respond was 0.6% (<1.5% esger all participants). The number of misses
was larger on invalid than on valid trialg1,15)=2.3 p=.002. Figure 6 shows mean RT as a
function of cue-target interval, cue validity, atiagiget brightness. RTs were faster for bright terge
than for dim targets (282 ms vs. 351 agt,15) = 274.6p < 0.001); and faster for the long cue-
target interval than for the short cue-target vae(307 ms vs. 326 m&j(1,15) = 13.2p = 0.002).
Furthermore, as expected, RTs were faster on yatigkd than on invalidly cued trials (308 ms vs.
324 ms;F(1,15) = 29.5p < 0.001), indicating that participants used the ¢oesptimize their
performance. As expected, the effect of cue valiias much larger for the short cue-target
interval (28 ms) than for the long cue-target a6 ms;F(1,15) = 12.2p = 0.003). This 2-way
interaction effect was qualified by a significartvay interaction(1,15) = 13.6p = 0.002),
indicating that the cue-validity effect was thegkest when the cue-target interval was short (i.e.
when participants could not reorient their attemtom invalidly cued trials) and the target was dim
(i.e. when there was room for improvement in RTiqranance).
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Figure 6. Mean RT in Experiment 2 as a function of cue-tanggerval (CTI), cue validity, and target brightse
(bright, dim).

Experimental effects on the shifted-Wald model patars The results for the parameters
of substantive interest are shown in Table 3. Aseeted, drift rate was higher for bright than for
dim targetsF(1,15) = 76.91p < 0.001, but was not affected by cue-target inteawval cue validity
(ps > 0.8). Decision threshotdtended to be lower for the long cue-target intettvan for the short
cue-target intervak(1,15) = 3.711p = 0.07. Importantly, cue validity only affected the
nondecision componeft Thed parameter was significantly smaller on validly dueals than on
invalidly cued trialsF(1,15) = 7.7p = 0.01. Furthermore, there was an interaction eetwcue
validity and cue-target intervdf(1,15) = 24.4p < 0.001, indicating that the validity effect 6n
was present on trials with a short cue-target watiefmean = 24 ms) but not on trials with a long
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cue-target interval (mean = -3 ms), mimicking tlaidity effects on RT (28 ms and 6 ms,
respectively). Finallyd was smaller for bright targets than dim targe(g,15) = 32.6p < 0.001.

Table 3. Parameter estimates for the fit of the mixturdteiWald model in Experiment 2. The upper halftaf table
reports the averages of the individual parametkerega(SD in parentheses), and the lower half ofdabée reports the
posterior means of the group-level normal distiing from which the individual parameters were drafv= non-
decision time (in seconds) comprising stimulus el and response executiory decision threshold; = drift rate.

Short cue-target interval

Long cue-target interva

Parameter Invalid cue Valid cue Invalid cue Valick
Averages of the 0 (dim) 156 (.153) .131 (.066) .152 (.068) .156 (.075)
individual 6 (bright) .118 (.036) .095 (.050) 122 (.040) 0.175%4)
parameter y (dim) 6.26 (1.12) 6.44 (1.50) 6.40 (1.31) 6.31.0).
values y (bright) 8.01 (1.84) 7.58 (1.61) 7.79 (2.06) 8.0186)

o 1.37 (.26) 1.34 (.26) 1.17 (.34) 1.14 (.34)
Means of the Ly (dim) .156 (.016) 132 (.019) .152 (.020) .156 (.021)
group-level e (bright) 118 (.011) .095 (.015) 123 (.012) J205)
parameter 1, (dim) 6.28 (.35) 6.47 (.43) 6.44 (.41) 6.33 (.33)
distributions w, (bright) 8.01 (.55) 7.59 (.47) 7.81 (.59) 8.01 .53

L, 1.37 (0.09) 1.34 (.09) 1.17 (0.11) 1.14 (.10)

Note: dim = dim target; bright = bright target

Model fit. Figure 7 shows the mean observed .1, .3, .5, .7%qdantile RTs in each
condition, as well as those predicted by the stitald model. The model provided a generally
good fit to the empirical RT quantiles; the largéi$terence between the observed and model-
predicted quantile RTs was 15 ms, and the averdigeethce was 6 ms. For the short cue-target
interval, all five quantile RTs associated withghti and dim targets were shorter on validly cued
trials than on invalidly cued trials. This cue-dly effect was less pronounced or absent for the
long cue-target interval. To examine in more deteel cue-validity effect at different points of the
RT distribution, we plotted the observed and priedicue-validity effect for each of the five RT
guantiles as a function of response speed (thageaf the quantile RTs in the validly cued trials
and invalidly cued trials). The resulting deltatplare shown in Figure 8. For the bright targéts, t
cue-validity effect at the short cue-target intémwas rather constant across the five RT quantiles,
which suggests that cue validity mainly affecteel tiondecision time (i.e., paramefesf the
shifted-Wald model). For the dim targets, howetteg, cue-validity effect at the short cue-target
interval increased with increasing RTs. To assdssther this increase was significant, we
subjected the cue-validity effect at each quamtila linear-regression analysis with mean quantile
RT and a constant as explanatory factors, sepgprfate¢ach participant (Burle, van den
Wildenberg, & Ridderinkhof, 2005; De Jong, Liangl&uber, 1994). We then tested whether the
average regression coefficient of mean quantil€iReT, the slope of the delta plot) was
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significantly different from 0, using a one-samplest. This test just reached significance (mean
regression coefficient = 0.12; SD = 0.2{;5) = 2.2,p = 0.044), suggesting that, for the dim targets,
part of the cue-validity effect was attributableato effect on the decision process. Because target
brightness was varied on a trial-by-trial basisgesssing of bright and dim targets could differ in
drift rate but not in decision threshold. Therefdahe increasing validity effect with increasing RT
for the dim targets was likely due to a cue-vajidiffect on drift rate (i.e., parameteof the
shifted-Wald model).
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Figure 7. The observed and predicted .1, .3, .5, .7 anda®tie RTs in Experiment 2 as a function of tatgéghtness
(bright, dim), cue-target interval (CTI) and cudididy.
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Figure 8. Observed and predicted delta plots showing thevalidity effect on RT as a function of mean quEnRT,
cue-target interval (CTI) and target brightnesggtiir dim) in Experiment 2.

Discussion

We applied the shifted-Wald model to the data feosimple-RT experiment in which the
targets were preceded by a cue that validly orlidlyandicated the cue-target interval: short (400
ms) or long (1400 ms). As expected we found a sumlisi cue-validity effect on RT for the short
cue-target interval but not for the long cue-taigedrval, because the participants had time to
reorient their attention to the long cue-targetimal after they realized that a cue indicating the
short-cue interval was invalid (Correa et al., 200drlin, 1959). The model analysis provided
useful evidence regarding the source of the cugityakffect: Cue validity significantly affected
thed parameter, but not the parameters of the decwiocessy anda. Indeed, the effects of cue
validity on the estimated duration of nondecisiongesses were very similar in size to the cue-
validity effects on RT, both at the short and thweg cue-target interval. The delta plots showed a
somewhat more complicated pattern: in one condibiort cue-target interval, bright targets) the
cue-validity effect was relatively constant acrties RT distribution, suggesting that increased
temporal certainty decreased the duration of thelacision component. In another condition (short
cue-target interval, dim targets) the cue-valigtfect showed an increase across RT bins,
suggesting that increased temporal certainty iser@#he rate of evidence accumulation. However,
the absence of an effect of cue validity onytharameter, and the nonsignificant interactions
between cue validity and the other variabley,asuggest that this effect was relatively minor.
Thus, the cue-validity effect was largely accourftadby a change in the nondecision compordent

Another interesting finding in Experiment 2 was ttend-level effect of cue-target interval
on estimated decision threshold (parametgr= .07): the decision threshold was lower for the
long cue-target interval than for the short cugeainterval. At first blush, this finding seems
inconsistent with the absence of an effect of fereyg on boundary separation in Experiment 1.
But on closer thought, the two experiments areeratiifferent in terms of the effect of warning
interval. In the simple-RT task of Experiment 2rtjgpants could substantially lower the decision
threshold if the target had not appeared afteshioet cue-target interval: there was no more
uncertainty about the timing of the target, theglane-target interval was relatively short (1400 ms
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and hence easier to anticipate, and the identitgefesponse was known. Accordingly, in
Experiment 2 participants responded faster whemwtleetarget interval was long compared to when
it was short. Conversely, in the choice-RT tasExperiment 1, the long foreperiod was relatively
long (2700 ms) and hence harder to anticipate tlzer@ was always the risk of making choice
errors if the boundary separation was set too satiordingly, in this experiment participants
responded slower when the foreperiod was long coedp® when it was short. Therefore, the
effects of warning interval on temporal certaintgni/in opposite directions in the two experiments,
which mirrors the opposing effects of long and slareperiods on temporal certainty in fixed and
variable-foreperiod paradigms (Bertelson, & Tiseey968; Vallesi, McIntosh, & Stuss, 2009).

General Discussion

Preparing the system to respond to an upcomingiBisns energy-consuming and
maintaining such a state of readiness, becauselsg8onset time is uncertain, can be experienced
as an aversive state (Gottsdanker, 1975; Naatd8&R). This indicates the importance of using
cues to predict stimulus onset and time the systgm&paration accordingly. We conducted two
experiments, using the foreperiod paradigm (Expeniid) and the temporal-cueing paradigm
(Experiment 2), to assess which components of mé&bion processing are speeded when subjects
use such temporal cues to reduce uncertainty. dhdts from these two experiments were
consistent: temporal certainty affected the duratibnondecision processes but had little effect on
the two critical components of the decision proeedscision-threshold setting and the rate of
evidence accumulation.

Our findings are consistent with two previous stgdihat examined correct-RT distributions
(Leth-Steensen, 2009) and speed-accuracy tradeuffibns (Bausenhart, et al., 2010) in the
foreperiod paradigm, and found that manipulation®eperiod mainly shifted these distributions
while having very little effect on their shapes €Titovel contributions of our study are that we
analyzed temporal certainty effects in both thepeariod paradigm and the temporal-cueing
paradigm, using sequential-sampling models of d@tisaking that took into account response
accuracy and RT distributions on correct and drials. Our findings therefore provide the
strongest evidence to date that temporal cert@iffigts on simple-RT and choice-RT reflect a
change in the duration of nondecision processds;hranges in the decision process.

Although our results cannot distinguish betweeeraf of temporal certainty on encoding
and motor processes, the literature suggestshbaturation of both types of processes is affected.
Temporal certainty modulates many aspects of paorefNobre et al., 2007), including perceptual
sensitivity in the foreperiod paradigm and tempataing paradigm (Correa et al., 2005; Rolke,
2008; Rolke & Hofmann, 2007), and the duration efogeptual processing in a clock paradigm
(Seifried et al., 2010). Temporal certainty alsaduates various aspects of motor preparation
(Davranche et al. 2007; Miniussi, Wilding, Coull,Nobre, 1999; Riehle et al., 1997) and decreases
the duration of motor preparation and executiothoaigh effect sizes are small (Tandonnet et al.,
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2003, 2006). Naatanen's (1971) model suggeststihgicts may use temporal cues to anticipate
the arrival of the imperative stimulus by incregsihe level of ‘motor readiness’, such that theetim
to reach the ‘motor action limit’ is reducedhis model is supported by findings that increlase
temporal certainty reduces the force generateddoige the response (Mattes & Ulrich, 1997) and
the activation of the corresponding primary motortex (Tandonnet et al., 2006).

Our conclusions stand in sharp contrast with theaehed by Hackley (2009) on the basis
of a review of ERP studies with the foreperiod paga. Hackley’'s main argument against an
encoding account is that temporal certainty h#éle litr no effect on the latency of the P1 and N1,
two early perceptual brain potentials (reviewe@orrea et al. 2006; see Hackley et al., 2007 for a
significant but very small effect), and the lateméy¥he N2pc (Hackley et al., 2007), an
electrophysiological index of the allocation of 8alkattention. A possible explanation of these
findings is that the latency of early ERP composeasinot a reliable index of the duration of task-
relevant encoding processes. For example, becétise parallel organization of the visual system,
the processes underlying these ERP components obdig in the pathway that determines the RT.
Hackley et al. (2007) reject this hypothesis with argument that N2pc latency has been found to
correlate highly with RT in a number of studieswéwer, a problem with this argument is that
these N2pc-RT correlations were found in experim&nth an important spatial component (i.e.,
requiring the N2pc process to perform the taskgmels the non-significant effect of foreperiod on
N2pc latency was found in a study in which stimdagation played a negligible role (Hackley et
al., 2007). Another possible explanation, suggeltedackley (2009), is that increased temporal
certainty leads to increased visual-cortex actrain response to the visual imperative stimulss, a
reflected in increased P1 and N1 amplitudes @.@gnchronometric change), changes that then
propagate forward to produce a greater speed aksuient encoding processes. This proposal is
consistent with P1/N1 amplitude effects of tempaosatainty (Correa et al., 2006) and with our
recent proposal regarding the temporal locus oatloessory stimulus effect (Jepma et al., 2009).

Hackley’s (2009) argument against the motor prejaraccount is that foreperiod duration
has little or no effect on the interval between LétiBet and the overt response (e.g., Hackley,et al.
2007; Muller-Gethmann, Ulrich, & Rinkenauer, 2008hwever, a limitation of the LRP double-
subtraction measure is that it is blind to the eeige contributions of each individual motor carte
To address this limitation, Tandonnet et al. (2AIK)6) used Laplacian-transformed ERP
waveforms to obtain separate estimates of theaigsdl and contralateral motor cortex response,
and found that increased temporal certainty deeckti®e duration of motor preparation of the
responding hand (by 25 ms and 18 ms in the 20082806-studies, respectively). Because the
same data showed no reliable effect of foreperiothe (Laplacian and monopolar) LRP-to-
response interval, Tandonnet and colleagues sieghtsit the effect of interest (i.e., timing of
preparation of the responding hand) may be maskétei LRP by preparatory effects on activation
in the ipsilateral, non-involved motor cortex.dtunclear whether similar subtle latency effects

° This change in the distance to the motor threshwmliich is not modeled in the sequential-sampliragiels used here,
must be distinguished from response-threshold asigthe decision process.
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were also present in the constituent ERP wavefamrttse LRP studies reviewed by Hackley
(2009). In any case, future ERP research needstive the issue of how the onset of motor
preparation processes should be measured.

Our conclusion that temporal certainty has litfiee on the decision threshold might
appear incompatible with occasional findings (inhg in Experiment 1) that temporal certainty
causes a speed-accuracy tradeoff, a phenomendmahateen taken as diagnostic of decision-
threshold modulations. However, on the basis afltesn Experiment 1, we have suggested that a
speed-accuracy tradeoff can be explained by amatiee hypothesis: when temporal certainty is
high and the moment of stimulus onset is relatieagy to anticipate, subjects may engage in
premature sampling of stimulus information on gpartion of the trials. Such premature sampling
will lead to faster but less accurate responseausecsubjects will start with sampling noise. Thus,
behavioral speed-accuracy trade-offs may be exgdlanot only by changes in decision threshold
but also by changes in premature sampling, whiemigteresting topic for future research.

Our results provide important clues about the camepts of information processing that are
speeded when people use temporal cues to anti¢hgateset of an imperative stimulus. But
ultimately we also need to understand the neurahar@sms underlying this voluntary control of
temporal expectation. Neuroimaging and patientistudave suggested an important role for
prefrontal structures in controlling temporal exga¢gion in the foreperiod paradigm (Hackley et al.,
2009) and the temporal-cueing paradigm (Coull & ol 998; Triviiio, Correa, Arnedo, &
Lupiafiez, 2010). Other studies have identified pioiephrine as a key neuromodulator underlying
temporal certainty effects (Coull, Nobre, & FrigQ01; Witte & Marrocco, 1997), consistent with
the finding that the firing rate of locus coerulewgsirons increases during the warning interval in
the foreperiod paradigm (Yamamoto & Ozawa, 1989)ill be a challenge for future studies to
determine the exact mechanisms by which prefratitattures and/or the locus coeruleus-
norepinephrine system control the duration of norgie@n processes as a function of degree of
temporal expectation.
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