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Abstract

Animal research and computational modeling havecatdd an important role for the
neuromodulatory locus coeruleus-norepinephrine RE)-system in the control of behavior.
According to the adaptive gain theory, the LC-NEtseyn is critical for optimizing behavioral
performance by regulating the balance between @aple and exploratory control states.

However, crucial direct empirical tests of thisadhein human subjects have been lacking. We used
a pharmacological manipulation of the LC-NE systertest predictions of this theory in humans.

In a double-blind parallel-groups design (N = §8rticipants received 4 mg reboxetine (a selective
norepinephrine reuptake inhibitor), 30 mg citalopr@ selective serotonin reuptake inhibitor) or
placebo. The adaptive gain theory predicted thatribreased tonic NE levels induced by
reboxetine would promote task disengagement ankbeatpry behavior. We assessed the effects of
reboxetine on performance in two cognitive tasksgieed to examine task (dis)engagement and
exploitative versus exploratory behavior: a dimnmg-utility task and a gambling task with a non-
stationary pay-off structure. In contrast to prédits of the adaptive gain theory, we did not find
differences in task (dis)engagement or explorab@tyavior between the three experimental groups,
despite demonstrable effects of the two drugs angpecific central and autonomic nervous
system parameters. Our findings suggest that thelEGystem may not be involved in the
regulation of the exploration-exploitation tradé-of humans, at least not within the context of a
single task. It remains to be examined whetheL@&NE system is involved in random exploration
exceeding the current task context.
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Introduction

The locus coeruleus (LC) is one of the major btaimsneuromodulatory nuclei, with
widely distributed, ascending projections throughtbe neocortex. LC activation results in the
release of norepinephrine (NE) in cortical aredsctvincreases the responsivity of these areas to
their afferent input (Berridge and Waterhouse, 2@8van-Schreibeat al.,1990). Traditionally,
the LC-NE system has been associated with basatituns such as arousal and the sleep-wake
cycle (Aston-Jonest al.,1984; Jouvet, 1969), but recent studies have stigg¢hat this system
also plays a more specific role in the control efiévior (Aston-Jonest al.,1997; Claytoret al.,
2004; Usheet al.,1999). According to an influential recent theofyL& function, the adaptive
gain theory (Aston-Jones and Cohen, 2005), the [ECsistem plays an important role in
regulating the balance between exploiting knowrrasesiof reward versus exploring alternative
options.

Neurophysiological studies in monkeys have revegpehtaneous fluctuations of tonic
(baseline) LC activity over the course of a tessgm (Aston-Jonest al.,1996; Kubiaket al.,

1992). Interestingly, these variations in tonic &€ivity were closely related to the monkeys’
control state: periods of moderate tonic LC agfiwere consistently associated with task
engagement and accurate task performance, whezgadgof elevated tonic LC activity were
associated with distractible behavior and poor fas#kormance. Periods of very low or absent tonic
LC activity were associated with drowsiness andt@mtion. Furthermore, periods of moderate
tonic LC activity were accompanied by large phaseceases in LC activity following task-relevant
stimuli, whereas such phasic LC responses werendilred during periods of elevated or low tonic
LC activity. Thus, during alert task performandes pattern of LC activity varied between
moderate tonic/large phasic activity and elevataictsmall phasic activity, which are referred to
as the phasic and the tonic LC mode, respectively.

According to the adaptive gain theory (Aston-Joared Cohen, 2005), the phasic and tonic
LC modes promote, respectively, exploitative angl@atory control states. In the phasic mode,
NE is released selectively in response to taskraglieevents, which promotes task engagement and
the optimization of performance in the current téskploitation). In the tonic mode the sustained
release of NE indiscriminately facilitates procagsof all events, including non-task-related events
which promotes task disengagement and explorafioa.theory further proposes that transitions
between the phasic and tonic LC modes are driveasbgssments of task-related costs and rewards
(task utility), carried out in ventral and mediedrital structures.

The adaptive gain theory has been supported by gtatpnal modeling and
neurophysiological studies in monkeys (Aston-Jares Cohen, 2005; Ushet al.,1999) and,
indirectly, by recent pupillometry studies in huredfsilzenratt al.,2010; Jepma and
Nieuwenhuis, in press). However, crucial direct armoal tests of the theory in human participants
have been lacking.
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In the present study, we used a pharmacologicaipukation to test in humans one of the
central tenets of the adaptive gain theory, nartteyassumption that the tonic LC mode promotes
an exploratory control state. Participants rece@ethgle dose of reboxetine (a selective NE
reuptake inhibitor), citalopram (a selective semaiaeuptake inhibitor) or placebo. Acute
administration of reboxetine has opposing effetthe forebrain (increased NE levels via the
inhibition of NE reuptake) and in the LC (reductioinfiring activity via the increased activation of
inhibitory a2-autoreceptors; Szabo and Blier, 2001). Howeveradialysis studies have shown
that the net effect of these two actions is angase in NE levels in various regions of the bréon (
a wide range of reboxetine doses; Invernizzi andatBai, 2004; Page and Lucki, 2002), which
supposedly resembles the effects of elevated Nfaselin the tonic LC mode. To determine whether
potential effects were selective for manipulatiohthe LC-NE system, we used citalopram as a
control drug; it increases serotonin but not NEeleyBymasteet al.,2002). To confirm that these
drugs at the doses employed in this study werenpheologically active, we determined pupil size
and several of the most drug-sensitive centralmergystem (CNS) effects, including adaptive-
tracking performance (index of visuomotor coordimatand vigilance; Van Steveninek al., 1991,
1993) and saccadic peak velocity (index of alegn®an Steveninckt al.,1991, 1999).

The adaptive gain theory predicted that the in@easnic NE levels that were presumably
induced by reboxetine would result in more taskiggagement and exploratory behavior in the
reboxetine group compared to the citalopram andgbla groups. We used two cognitive tasks to
test these predictions. We measured task (dis)engagt using a diminishing-utility task (Gilzenrat
et al.,2010), in which task difficulty and potential rexda-two determinants of task utility—
increased over time. Importantly, participants thedopportunity to reset the level of task difftgul
and reward, and hence disengage from the cursnsé. We measured exploratory behavior using a
gambling task with a gradually changing pay-oftisture (Dawet al.,2006; Figure 2), in which
optimal performance required a delicate balancedmt exploitative and exploratory choices.

Materials and methods

Participants

Fifty-two healthy university students, aged 18—2&rng, took part in a single experimental
session in return for €100,-. After signing an ifi@d consent, participants were medically
screened within 3 weeks before study participatitxtlusion criteria included history or presence
of psychiatric disease and evidence of relevantaal abnormalities.

Participants received a single oral dose of 4 nbgxetine, 30 mg citalopram or placebo in a
double-blind, parallel-groups design. The dose®bbxetine and citalopram were based on
previous studies that have found significant betvaVieffects using these doses of reboxetine (e.g.,
De Martinoet al.,2008; Miskowiaket al.,2007; Tse and Bond, 2002) and citalopram (e.g.,
Chamberlairet al.,2006). Unfortunately, the random-block designmilied to produce equal
numbers of men and women in each treatment grogphwvearted by early dropouts and planning
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problems, causing a somewhat unbalanced sex distnib The reboxetine group (8 men, 10
women, mean age = 20.6), the citalopram group (8 ®evomen, mean age = 21.6) and the
placebo group (10 men, 8 women, mean age = 21dbgihalar mean age$(2,49) = 1.66p =
0.20). The study was approved by the medical ettoosmittee of the Leiden University Medical
Center and conducted according to the Declaratidgtetsinki.

Procedure

All participants came to the research centre at &#tdr an overnight fast (except from
water). We instructed participants to abstain fiaffeine, nicotine, alcohol and other psycho-
active substances from 10PM the night prior tostiuely day. On arrival, participants underwent a
medical screening. Approximately one hour afteivaly participants in the citalopram group
received a capsule with 2 mg granisetron, to prenansea as a potential side effect of citalopram.
Participants in the reboxetine and placebo groepsived a placebo capsule instead of granisetron.
Sixty minutes later, participants received a capsuth reboxetine, citalopram or placebo.

Peak plasma concentrations of reboxetine and pitaiho occur, respectively, 2 and 2-4
hours after drug administration (Dostettal.,1997; Edwardst al.,1995; Hyttel, 1994; Noble and
Benfield, 1997). Accordingly, the experimental taslesigned to measure task (dis)engagement and
exploratory behavior were performed between 2 ahg8st-treatment. All participants started with
the diminishing-utility task, followed by the garirig task. We measured participants’ pupil-iris
ratio (Twaet al.,2004) and subjective state at several time paoiatsg the study day. Subjective
state was assessed by means of sixteen 100-mnh &galague scales measuring alertness,
calmness and contentment (Bond and Lader, 1974Ydrtion, at several time points during the
study day, we measured participants’ adaptive-tngcherformance (Borland and Nicholson, 1984;
see Appendix for a description of the task) anadadic eye movements (Van Stevenietlal.,

1989). These measures were part of a more exte@diGetest battery, the results of which will be
reported more comprehensively elsewhere (te Beek,in preparation). To assess drug-related
effects on subjective state, pupil size, adaptigeking performance and saccadic eye movements,
we compared the pre-treatment values with the geevalues from the time points surrounding
performance of the diminishing-utility task and tjembling task (i.e., 2-3 h post-treatment). The
complete time courses of these measures will berteg elsewhere (te Beek al.,in preparation).

Diminishing-utility task

Participants performed an auditory pitch-discrinimatask (Gilzenragét al.,2010). Each
trial began with a sequence of two 250-ms sinusadaees: a reference tone, followed 3 s later by a
comparison tone. Participants were instructed dacate whether the comparison tone was higher

% Due to technical problems, three participantsmitcomplete one of the tasks and were excluded fhe
corresponding analyses. For the diminishing-utilityk this was the case for one female participatite citalopram
group and one male participant in the placebo graog for the four-armed bandit task this was #eedor one male
participant in the placebo group.
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or lower in pitch than the reference tone, and edupoints for each correct response. If particgpant
responded correctly on a particular trial, the eabfithat trial was added to the participant's|tota
score. In addition, in the next trial, the rewardttcould be earned increased by 5 points, and the
pitch discrimination was made more difficult by Viah the difference in pitch between the
reference and comparison tones. Following an iecbmesponse, the reward value of the
subsequent trial decreased by 10 points (but wikhoa value of O points), and the level of task
difficulty remained the same. Importantly, priordach trial, participants had the opportunity to
"escape” from the current series of discriminatisitout score penalty and receive a new
discrimination task (i.e., comparison against a nef@rence tone), with the point value reset to 5
points and the easiest pitch discriminability. Rgrants were instructed to maximize their total
score over the 20 minutes of the experiment.

The task procedure is illustrated in Figure 1.0 start of each trial participants were
shown a score/value screen that displayed thedotae accumulated thus far and the point value of
the next trial. Participants then indicated witkegy press whether they wanted to "accept"” thi$ tria
or "escape". If the participant accepted the taakference/comparison tone pair followed after a
delay of one second. Participants were instruaieddicate as quickly and accurately as possible
whether the comparison tone was lower or highgitch than the reference tone. After a delay of
one second, the accuracy of the participant’s respavas indicated by a 250-ms feedback sound: a
bell sound for correct responses and a buzzer simumalcorrect responses. Two seconds after the
feedback sound, the next trial started. If partioig pressed the "escape” button at the score/value
screen, a 250-ms "escape sound" was played, imtebdiallowed by a new score/value screen.
We refer to a series of trials accepted by a ppéit as an "epoch” of play. Electing to escape
begins a new epoch. We considered the average mwhty&ls in an epoch as an index of task
(dis)engagement.

In the first trial of each epoch, the differencepitth between the two tones was 64 Hz. As
noted above, this difference was halved followiaglecorrect response. If participants correctly
discriminated a Y4-Hz difference, the tones presemt¢he next trial were impossible to
discriminate (i.e., 0 Hz difference), and impossitiscrimination trials continued to be presented
until the participant elected to escape. Accordingarticipants would exhaust any real
discriminable differences between reference andpesison tone after nine correct trials; the tenth
and subsequent trials within an epoch were imptessobdiscriminate. The feedback signal on
impossible-discrimination trials was randomly pidk&he same reference tone was presented on
each trial within a given epoch. After an escapegwa reference tone was selected randomly
without replacement from the set [400, 550, 70@, 850 Hz]. The set was replenished if all
reference tones were exhausted. On 50% of ths,ttfed comparison tone was higher in pitch and
on the remaining trials it was lower in pitch thae reference tone.
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(Correct)
NEXT TRIAL: 25
Current Score: 45

(Wrong)
NEXT TRIAL: 10

Current Score: 25

(Escape) .
NEXT TRIAL:5 | =
Current Score: 25

time

NEXT TRIAL: 20
Current Score: 25

Figure 1. lllustration of a sample trial in the diminishingity task. See text for further details.

Gambling task

Participants performed a ‘four-armed bandit’ taBl et al.,2006). On each trial,
participants were presented with pictures of fatfeent-colored slot machines, and selected one
by pressing the ‘q’-, ‘w’-, ‘a’- or ‘'s’- key. Padipants had a maximum of 1.5 s in which to make
their choice; if no choice was made during thagnwal, a red X appeared in the center of the screen
for 4.2 s to signal a missed trial (average numb2i5). If participants responded within 1.5 s, the
lever of the chosen slot machine was lowered aadatimber of points earned was displayed in the
chosen machine for 1 s after which the next tteited. The task consisted of 300 trials.
Importantly, the number of points paid off by tloeif slot machines gradually and independently
changed from trial to trial (Figure 2; Appendix).

Before the start of the experimental session, gpents were given 24 practice trials. We
instructed the participants that, on top of thed#éad payment for participation in the study, they
would receive a bonus sum of money that dependedeonumber of points they would obtain in
this task, and that the average bonus earnedsnask was 9 euros. However, we did not tell
participants how the number of points was conveiriealeuros, or what their cumulative point total
was. After completion of the study, each participaceived a bonus of 10 euros.

Analysis We fitted three reinforcement-learning models @ diata. All models estimated
the pay-offs of each machine on each trial, anectetl a machine based on these estimations. The
models differed in how they calculated the estimguay-offs (Appendix). All models selected a
machine according to the ‘softmax’ rule. This raksumes that choices between different options
are made in a probabilistic manner, such that tbbability that a particular machine is chosen
depends on its relative estimated pay-off. Theatqtion-exploration balance is adjusted by a
parameter referred to as gain, or inverse tempreratith higher gain, action selection is
determined more by the relative estimated pay-affthe different options (exploitation), whereas
with lower gain, action-selection is more evenlgtdbuted across the different options
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(exploration). We classified each choice as exalvié or exploratory according to whether the
chosen slot machine was the one with the maximuimated pay-off (exploitation) or not
(exploration). In addition, we calculated the degoé exploration for each exploratory choice, by
subtracting the estimated pay-off of the chosenhim&cfrom the maximum estimated pay-off. We
assessed the value of the gain parameter anddpertion of exploratory choices as a function of
pharmacological treatment. Only the results fromlibst-fitting model are reported, although the
other models yielded similar results.

/F x
T WWMM

I

0 100 200 300
trial

Figure 2. The four-armed bandit task. Participants madeategkchoices between four slot machines. Unlikedsted
slots, the mean pay-offs of the four machines cedrggadually and independently from trial to t(falur colored
lines). Participants were encouraged to earn ay paints as possible during the task. Each cho&® elassified as
exploitative or exploratory, using a computatiomadel of reinforcement learning.

Results

Subjective state

The participants assigned to the three treatmentpgr did not differ in their pre-treatment
ratings of alertness, calmness or contentmenpgat 0.7; Table 1). To asses the effects of
reboxetine and citalopram on subjective state welaoted analyses of covariance (ANCOVAS) on
the subjective ratings of alertness, calmness antentment, with treatment and sex as between-
subject factors and the pre-treatment ratings aar@ie. There were no main effects of treatment
or sex, and no treatment by sex interactions orotiyese ratings (afis > 0.16), suggesting that
reboxetine and citalopram did not affect subjecstste.

44



Table 1.Pre- and post-treatment ratings of alertness, medsiand contentment in the placebo, citalopram and
reboxetine group (SD in parentheses)

Time of measurement Placebo Citalopram Reboxetine
Alertness (mm) Pre-treatment 51.2 (7.9) 52.2 (5.3) 50.6 (4.4)
Post-treatment 50.2 (8.9) 52.4 (6.4) 48.6 (5.5)
Calmness (mm) Pre-treatment 57.5(9.9) 57.9 (10.2) 56.2 (4.4)
Post-treatment 59.2 (10.7) 54.9 (9.4) 56.3 (6.1)
Contentment (mm) Pre-treatment 55.9 (7.4) 56.7(9.1 55.9(4.1)
Post-treatment 57.5 (8.3) 56.4 (8.6) 56.9 (5.2)

Non-specific central and autonomic nervous systiéects

Figure 3 (left panel) shows the adaptive-trackiegfgrmance pre-treatment (averaged
across 1.5 and 0.5 h pre-treatment) and post-tezdt(averaged across 2 and 3 h post-treatment)
for each treatment group. We conducted an ANCOVAhenpost-treatment adaptive-tracking
performance with treatment and sex as between-aghgctors and pre-treatment performance as
covariate. This analysis revealed a main effettegEtment F(2, 45) = 5.2p = 0.009]. There was
no main effect of sexq(1, 45) = 0.8p = 0.4] and no interaction between treatment ard B,

45) = 1.1 p = 0.3]. Follow-up comparisons indicated that thleaxetine group showed worse post-
treatment adaptive-tracking performance than taegiio groupH(1, 31) = 12.0p = 0.02],

whereas there was no difference between the cratoand the placebo group(lL, 29) = 0.5p =
0.5]. The difference in post-treatment adaptivekiag performance between the reboxetine and
the citalopram group just failed to reach signfifica F(1, 29) = 3.8p = 0.06]. These results
suggest that reboxetine led to a decrease in agafpéicking performance.

Figure 3 (middle panel) shows the saccadic peakcitglmeasured pre-treatment (averaged
across 1.5 and 0.5 h pre-treatment) and post-tezdt(averaged across 2 and 3 h post-treatment)
for each treatment group. An ANCOVA on the posatneent saccadic peak velocity with treatment
and sex as between-subjects factors and pre-treaigaecadic peak velocity as covariate revealed a
main effect of treatmen&[2, 45) = 15.3p < 0.001]. There was no main effect of sExl], 45) =
1.8,p = 0.2] and no significant interaction betweentimeant and sexH(2, 45) = 0.6p = 0.6].
Follow-up comparisons indicated that the reboxegireip showed smaller post-treatment saccadic
peak velocity than the placebo grotg], 31) = 5.1p = 0.03], whereas the citalopram group
showed larger post-treatment saccadic peak veltaity the placebo group(l, 29) = 8.6p =
0.007]. Thus, both reboxetine and citalopram affé daccadic eye movements, but the effects were
in opposite directions. The time courses of saacpdak velocity and adaptive-tracking
performance showed that the effects of reboxetiectalopram on these measures were maximal
at the time points surrounding performance of tinerdshing-utility task and the gambling task (te
Beeket al., in preparation), suggesting that the drug-rel&@Bi$ effects were maximal during
performance of these tasks.
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adaptive-tracking saccadic peak
performance (%) velocity (*/sec)

29 [] pre-treatment 500 - 507
W post-treatment

277 45 -
450 -
251 40-
23 400 35 W
PLA CIT  RBX

PLA CIT RBX PLA CIT RBX

pupil-iris ratio

Figure 3. Adaptive-tracking performance, saccadic peak velamd pupil-iris ratio pre-treatment and post-tneant,
separately for each treatment group (error baisétel standard errors of the mean). PLA = placéh,= citalopram,
RBX = reboxetine.

Figure 3 (right panel) shows the pupil-iris ratieasured pre-treatment (averaged across 1.5
and 0.5 h pre-treatment) and post-treatment (aedragross 2, 2.5 and 3 h post-treatment) for each
treatment group. An ANCOVA on the post-treatmentipiris ratio with treatment and sex as
between-subjects factors and pre-treatment pupitatio as covariate revealed a main effect of
treatmentF(2, 45) = 22.1p < 0.001]. There was no main effect of sexl], 45) = 0.1p = 0.7] and
no significant interaction between treatment and[5€2, 45) = 2.8p = 0.07]. Follow-up
comparisons indicated that both the reboxetinefgend the citalopram group had larger post-
treatment pupil-iris ratios than the placebo grffel, 31) = 7.1p = 0.01 and~(1, 29) = 44.4p <
0.001, respectively]. In addition, post-treatmempipiris ratio was larger in the citalopram group
than the reboxetine group(l, 29) = 13.7p = 0.001]. Thus, consistent with previous studies
(Phillips et al.,2000; Schmitet al.,2002), both citalopram and reboxetine led to @neiase in
pupil diameter, and this effect was more pronounoedbe citalopram group. There is no reliable
evidence for direct projections from the LC to thegonomic nuclei that control the pupil (Aston-
Jones, 2004), but there are a number of possibieesst pathways by which LC manipulation could
affect the sympathetic nervous system (cf. Bernttaal., 1998). Therefore, it is possible that the
increase in pupil diameter in the reboxetine grmiffects drug-induced changes in LC activity.
However, it is also possible that the pharmacoklgéfects on pupil diameter were produced at the
level of the autonomic nuclei controlling the puyjgihd thus reflect other drug actions than changes
in LC activity.

Diminishing-utility task
The progressive increase in both task difficultg @otential reward during each series of

tone discriminations produces a nonlinear developroktask-related utility. Initially, the increase
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in reward value for correct performance outpacedrnheeases in difficulty, such that the expected
value (utility) of task performance progressivaigreases. However, after several trials, the
increases in difficulty will lead to sufficient nurar of errors as to reduce the expected value of
performance, even in the face of increasing rewakhde for correct responses.

To examine changes in performance and task-reldiiy leading up to and following
participants’ choice to ‘escape’ (i.e., abandondheent series and start a new one), we averaged
trials as a function of their position relativeth@ escape events. For this analysis, we considered
only escape events that were preceded and folltwyedminimum of four regular (i.e., non-escape)
trials. As a measure of task utility, we calculadéedestimate of expected value for each trial.aor
given trial, expected value was computed indiviufar each participant by multiplying the point
value of the trial (representing the potential redealue if the trial was accepted) by the expected
accuracy on that trial for that participant. Exgecaccuracy was defined as the probability that the
participant would give a correct response, givenlével of difficulty of the required pitch
discrimination. To determine this, we averagedateuracy of all other trials for that participant
with the same frequency difference between refer@mc comparison tones.

Figure 4 (left panels) shows the average accuradyra on the trials flanking an escape for
each treatment group. All treatment groups showsltbap decrease in accuracy and an increase in
RT over the trials leading up to an escape, whiak @onfirmed by significant linear trends
[F(1,44) = 462.5p < 0.001 and~(1,44) = 14.3p < 0.001, respectively]. As expected, performance
was best on the first trial following an escapégraivhich accuracy gradually decreased and RT
increased agairF[1,44) = 54.5p < 0.001 and~(1,44) = 35.1p < 0.001, respectively]. Figure 4
(right panels) shows how our measure of expectkd\and the actual point value varied across the
trials surrounding an escape. In all treatment gsoparticipants on average selected to escape
when expected value approached the start valusmeieseries of discriminations. Both expected
value and point value gradually decreased ovetrifile leading up to an escagg],44) = 100.1p
< 0.001 and~(1,44) = 30.5p < 0.001, respectively], and gradually increasealragver the trials
following an escapeH(1,44) = 422.1p < 0.001 and~(1,44) = 1079.0p < 0.001, respectively].
Importantly, the effects of peri-escape trial positon performance and task utility did not intérac
with treatment or sex (atis > 0.3).

We next examined the average number of acceptdd tnian epoch. The average number
of trials in an epoch did not differ between theethtreatment group&(2,44) = 0.26p = 0.77].

There was no main effect of sex eithig¢],44) = 1.08p = 0.30], and no interaction between
treatment and seX¥(2,44) = 0.33p = 0.72]. Furthermore, there was no significanbasfsubject
correlation between the mean epoch length andethexetine-related change in adaptive-tracking
performancerf = 0.43,p = 0.08]. Note that, if anything, this correlatisinowed a trend in the
opposite direction than predicted by the adaptaia theory. Mean epoch length was not
significantly correlated with the drug-related iease in pupil diameter eitherf -0.13,p = 0.62 in
the reboxetine group;= 0.24,p = 0.38 in the citalopram group].
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Figure 4. Dependent measures for peri-escape trials irhttee treatment groups. Trial number “0” indicates éscape
trial. Left panels: accuracy and response time (RIght panels: Trial value and its computed expeetalue. Note
that no measures of accuracy and RT are availablestape trials, because, on these trials, no @isom tone was
presented.

There were no effects of treatment or sex on tted tumber of trials completed or total
number of points obtained (gdé > 0.3), except for a significant interaction betw treatment and
sex on the total number of point obtain&@,44) = 3.68p = 0.03]. Follow-up contrasts indicated
that the male participants obtained significantlyrenpoints than the female participants in the
reboxetine groupt(16) = 3.08p = 0.007], whereas there were no significant séecef in the
placebo and citalopram grougss (> 0.48). An overview of the dependent variabtethis task as a
function of treatment and sex is shown in TablAr2analysis of the improvement in tone-
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discrimination performance over the course of #sk {(i.e., learning curve) is reported in the
Appendix.

Table 2. Overview of the dependent variables in the dinmimig utility task, as a function of treatment amct $§SD in
parentheses).

Placebo Citalopram Reboxetine
men women men women men women

Mean epoch length  10.3 (2.3) 12.1 (4.3) 9.9 (2.5) 10.9 (4.1) 11.@)Y3. 11.0(2.3)
(trials)
Number of escapes 12.8 (3.1) 11.5 (4.0) 13.4 (3.712.9 (5.1) 13.3(5.9) 11.8 (4.7)

Total score 1694 (380) 1749 (418) 1496 (537) 1em4) 1904 (353) 1356 (391)
Total number of 136 (3) 136 (3) 135 (3) 136 (3) 138 (3) 132 (3)
trials

Gambling task

Each participant’s tendency to make exploratoryicd®is reflected in the estimated gain
parameter of the reinforcement-learning modelveelovalue of the gain parameter indicates a
more exploratory choice strategy (Materials andhdds; Appendix). The value of the gain
parameter did not differ between the three treatrgeups F(2,45) = 0.70p = 0.51; Supplemental
Table 1] or between the male and female particgpf{R,45) = 2.50p = 0.12]. In addition, we
classified each choice as exploitative or explagad@cording to whether the chosen slot machine
was the one with the maximum estimated pay-off l@tqtion) or not (exploration). The proportion
of exploratory choices did not differ between theee treatment groups [28%, 32% and 27% in the
placebo, citalopram and reboxetine group, respalgtit(2,45) = 0.92p = 0.41] or between male
and female participants [26% vs. 31F42,45) = 2.43p = 0.13]. The three treatment groups did not
differ in the degree of exploration of the explorgtchoices either (section 2.4.1); the degrees of
exploration in the placebo, citalopram and rebaeegroups were 0.39, 0.37 and 0.37, respectively
(F(2,45) = 0.43p = 0.65).

Neither the value of the gain parameter nor th@@mion of exploratory decisions was
significantly correlated with the reboxetine-rethtehange in adaptive-tracking performance [gain
parameterr = 0.41,p = 0.09; proportion exploratiom:= -0.25,p = 0.32]. Our measures of
exploration were not significantly correlated witie drug-related increase in pupil diameter either
(ps > 0.15 in the reboxetine groyss > 0.35 in the citalopram group).

There were no across-subject correlations betwaemeasure of task disengagement in the
diminishing-utility task (mean epoch length) and measures of exploration in the gambling task
(value gain parameter and proportion of exploratdrgicesps > 0.8). This suggests that the
disengagement and exploration measures in thdsereftect separate aspects of the exploratory
control state hypothesized to be mediated by thie iocC mode.
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Discussion

The present study provided the first direct testumans of one of the central tenets of the
adaptive gain theory of LC function (Aston-Joned @&ohen, 2005), namely the assumption that an
elevated level of tonic LC/NE activity (tonic LC m@) promotes a more exploratory control state.
Contrary to predictions of the adaptive gain thearg found no evidence that the increased NE
levels induced by reboxetine were associated &gk tisengagement or exploratory behavior in
our experimental tasks.

Our null effects cannot be explained by a genelfectiveness of our pharmacological
manipulations, since there were significant drdga$ on several central and autonomic nervous
system parameters. Reboxetine caused reducti@daptive-tracking performance and in saccadic
peak velocity, which corroborates previous findisgggesting the involvement of the
noradrenergic system in visuomotor control of mogeta (Wanget al.,2009). Citalopram
increased saccadic peak velocity, which is in Vuith the mild stimulating properties of the SSRI
on the electroencephalogram (#tlal.,1984; Saletwet al.,2002). The time course of the effects
suggests that reboxetine was maximally effectivenduperformance of the diminishing-utility task
and gambling task (te Beek al.,in preparation). In addition, both citalopram aaboxetine
resulted in an increase in pupil diameter, bug iinknown whether these pupil modulations were
produced by changes in LC activity or by other dnftwences peripheral to the LC (e.g., on lower
medullary NE cell groups or autonomic nervous sygté-urthermore, previous studies using the
same dose of reboxetine, between-subject desighsiamlar group sizes have found significant
group differences in behavioral measures (De Masiral.,2008; Miskowiaket al.,2007; Tse and
Bond, 2002). The absence of significant acrossestilgjorrelations between our measures of
disengagement/exploration and the reboxetine-itkeffects on adaptive-tracking performance
suggests that the effectiveness of the reboxetar@pulation in individual participants did not
predict their tendency to disengage or explore.

The two experimental tasks we used to measure etply behavior and task
(dis)engagement seem well suited for detectingviddal differences in control state. Thearmed
bandit task with non-stationary pay-off structusetie most commonly used paradigm for studying
the exploration-exploitation trade-off in reinforsent-learning research (Sutton and Barto, 1998).
Combined with computational modeling, it allowsoamhal description of participants’ choice
behavior and provides an index of their tendenogx@ore. The diminishing-utility task is a more
novel paradigm in which task engagement is moddlbiemeans of dynamic changes in task-
related utility. Importantly, the opportunity toseape” from the current task set provides an overt
behavioral index of disengagement. In line withr@vpus study using this task (Gilzeneatal.,
2010), we found that participants behaved optimalyaverage, and chose to disengage from the
current task set when estimated task utility apgied the baseline utility of a new task set. In
addition, in a recent study using the same gamltéiek as used here (Jepma and Nieuwenhuis, in
press) we have found that changes in utility messand pupil diameter leading up to the switch
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from an exploitative to an exploratory choice gyt were similar to those leading up to an
“escape” in the diminishing-utility task (Gilzenrettal.,2010). This suggests that disengagement in
the diminishing-utility task and exploration in tgambling task are both driven by decreases in
task utility. That said, optimal exploration stigitss in our experimental tasks may differ from #os
needed in the real world; the changes in pay-aftstask-related utility in our tasks developed
gradually and relatively slowly over time, which ymaot correspond to the dynamics of utility
changes in real-world environments (Cole¢ml.,2007).

Although disengagement and exploration are botlsidened behaviors indicative of an
exploratory control state associated with the t&w@icmode, it is important to note that
disengagement in the diminishing utility task (ighoosing to “escape” from the current series of
tone discriminations) is not equivalent to explamatn the gambling task, which may explain the
absence of a correlation between our measuresengiagement and exploratory behavior. The
development of a computational model for the dishimg-utility task is an important objective for
future studies, as this will allow a more formasdeption of participants’ behavior in this taskdan
a better comparison with exploratory behavior imeottasks.

One possible explanation for the absence of rebuxeffects on our measures of task
disengagement and exploratory behavior is that @¥\E system is not involved in regulating the
balance between exploitative and exploratory céstades in humans. The adaptive gain theory is
based on findings from neurophysiological studresionkeys using relatively simple target-
detection tasks, and it is possible that the redrdin these studies cannot be generalized to the
regulation of control state in humans. Moreovehaigh it is intuitively appealing to interpret the
observations of increased distractibility, labiteeation and impaired focused performance during
elevated tonic LC/NE activity in animals as reflens of an exploratory control state (Aston-Jones
and Cohen, 2005), it is important to note thatrteerophysiological studies did not explicitly
investigate the exploration-exploitation trade-difie proposed link between the tonic LC mode and
an exploratory control state is an assumption. Beeave did not find evidence for this assumption,
it seems appropriate to consider alternative exgtians for the distractible behavior associated
with the tonic LC mode. When taking a reinforcemleatrning model perspective, it may be
possible to explain the behaviors observed indhectLC mode by changes in reinforcement-
learning parameters other than the explorationmpeatar. One possibility is that high LC/NE
activity increases the rate at which action valmresupdated based on new information (i.e., the
learning rate parameter). This hypothesis woulddrepatible with a recent proposal that increased
NE levels boost the learning of new task continggs€Yu and Dayan, 2005). In line with this
hypothesis, the estimated learning rate of thdasement-learning model that we fit to the choice
data of the gambling task was somewhat largerarréboxetine group than in the other treatment
groups (Appendix, Supplemental Table 2; Suppleméigare 2). However, because of the very
high learning rates associated with this task, rémssilt must be interpreted with caution.
Alternatively, high LC/NE activity may increase timeportance attached to immediate vs. delayed
rewards (i.e., the future-reward discount fact8g)pport for this hypothesis comes from findings
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from a recent study in mice that suggest that dndgced increases in NE levels impair the ability
to take future rewards into account, which woukiti¢o the impulsive selection of options with
short-term rewards (Luksys et al., 2009). Luksyalesuggested that the distractible behavior
observed in animals with elevated LC/NE activity ¢ produced by an increased devaluation of
future, relative to immediate, rewards combinedhighexploitation(as opposed to exploration;
see Doya, 2002, for a similar proposal).Thus, #ieabiors associated with the tonic LC mode that
have been interpreted as indices of an exploratonyrol state by the adaptive gain theory may also
be explained by modulations of other reinforcemeatning parameters. To further address this
issue, future studies need to dissociate the rfdleeo. C-NE system and other neuromodulatory
systems in the regulation of different componefitemforcement learning and decision making.

Another possibility is that the tonic LC mode prdewma type of exploratory behavior and
disengagement that was not measured in the pregeht It is likely that exploration is not a siag|
process but comprises several distinct functiomwsluing different neural mechanisms. An
important aspect may be whether exploration isadrivy top-down motives or by bottom-up
stimulation. Exploratory behavior in the four-armehdit task may be referred to as ‘controlled’ or
‘systematic’ exploration, since it is aimed at abitag information in order to optimize performance
in the current task. Similarly, disengaging frore tturrent task set in the diminishing-utility task
serves the higher-level goal of maximizing theltetare obtained in the task. Such controlled, top-
down driven exploration and disengagemeithin the current task contertight be mediated by
different neural mechanisms and/or neuromodulatgsyems than random, bottom-up driven
explorationexceeding the current task contebntrolled exploration presumably requires
cognitive control functions that rely on the preftal cortex (PFC), which is supported by the
finding of PFC activation during exploratory deoiss in the four-armed bandit task (Datal.,
2006). There is also some evidence that the dopasyistem plays a role in the regulation of a
particular type of controlled exploration (Fraekal.,2009). Our findings suggest that the LC-NE
system may not be involved in controlled explonatidowever, our study leaves open the
possibility that the LC-NE system is involved imd@m exploration exceeding the current task
context. Random exploration is likely to be assetlavith an increased sensitivity to bottom-up
activation, resulting from a global increase innogal responsivity. The widespread projection
system of the LC and the neuromodulatory effectdBfon cortical neurons suggest that the LC-
NE system is well suited to produce such globahgea in responsivity.

The idea that the tonic LC mode promotes a mordaamntype of exploration outside the
current task context is supported by findings thrag-related increases in tonic NE levels improve
attentional-set shifting and reversal learningats and monkeys (Devauges and Sara, 1990; Lapiz
and Morilak, 2006; Lapiet al.,2007; Setet al.,2008), whereas noradrenergic lesions impair
attentional-set shifting (McGaugley al.,2008; Newmaret al.,2008; Taitet al.,2007). These
functions require the adaptation of behavior acogrtb unexpected changes in the task
environment, which depends on a shift of attentmpreviously irrelevant stimulus dimensions.
These types of attention shifts are likely to balifated by random exploration (although an
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increased learning rate may provide an alternaiy@anation). Investigating the noradrenergic
modulation of random exploration outside the curtask context in humans is an important
objective for future studies.

The distinction between controlled and random engtion might be related to the proposed
distinction between expected and unexpected unori@’'u and Dayan, 2005). Yu and Dayan
have proposed that acetylcholine signals expeatedrtainty (i.e., anticipated variation in task
outcome), whereas NE signals unexpected uncert@iatyunanticipated changes in the task
context resulting in strong violations of top-doexpectations; see Bouret and Sara, 2005, for a
similar account). Yu and Dayan have also propokatithe NE-related signaling of unexpected
uncertainty facilitates the learning of predictretationships within a behavioral context, and
therefore accelerates the detection of a chantgskicontingencies, which could explain the
improvements in attentional-set shifting associatét increased tonic NE levels. Yu and Dayan’s
account thus suggests that the tonic LC mode béemtsing about new predictive relationships in
noisy and changing environments. This accountasety related to the adaptive gain theory’s
assumption that the tonic LC mode promotes exptoraat least when applied to random
exploration exceeding the current task contextesthis type of exploration is likely to facilitate
the learning of contextual changes. The detectiamexpected uncertainty might be an important
factor in driving the LC towards a more tonic LC a¢eo However, how assessments of unexpected
uncertainty interact with assessments of taskedlatility on different timescales to regulate LC
mode and control state remains to be investig&ednteresting speculation is that the degree of
unexpected uncertainty determines how much wegbivien to assessments of long versus short-
term utility, such that long-term utility has reladly less influence in situations of high unexmelct
uncertainty. In terms of reinforcement-learning misdthis would be similar to the suggested
modulation of the learning rate parameter by thatitiy of the environment (Behreret al.,

2007).

Finally, it is important to note that although nadralysis studies have shown that a single
dose of reboxetine increases NE concentrationsetsidies, due to their limited temporal
resolution, do not provide unequivocal evidence thia reflects purely an increase in tonic NE
levels. Since the effects of selective NE reupiakéitors on the phasic LC response in awake
animals are not known, we cannot exclude the pibisgithat our reboxetine manipulation also
affected phasic LC activity and NE release, fomepke via modulations of the electrotonic
coupling strength between LC neurons (Alvaeeal.,2002). Thus, determining the exact effects of
selective NE reuptake inhibitors on the phasictamit components of LC/NE activity will be
important for a better understanding of their @8ean cognition. In addition, the effects of
pharmacologically increasing NE levels on conttates might depend on individual differences in
baseline (pre-treatment) NE level. Accordingly,ividual differences in baseline NE level could
have been partly responsible for the absence afpgdifferences on our measures of
disengagement and exploration. Consistent withgbssibility, a recent study in mice has shown
that pharmacological manipulations of the LC-NEtsgsinteract with several other factors, such as
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individual differences in genotype and trait anyjettress and motivation, in modulating the
exploration-exploitation trade-off (Luksyd al.,2009). Thus, it seems that multiple factors need t
be taken into account to enable predictions of@gpbry behavior and its modulation by NE.

To conclude, our findings suggest that the acutadhon of an elevated tonic NE level does
not affect people’s tendency to explore or disergat)least not within the current task context.
These findings challenge the adaptive gain theangisn that the LC-NE system regulates the
balance between exploitative and exploratory céistaies (Aston-Jones and Cohen, 2005). It
remains to be examined whether the LC-NE systanvived in random exploration outside the
current task context, possibly driven by the dédacdf unexpected uncertainty. The present study
contributes to our understanding of the noradranengdulation of human control state, and
hopefully encourages further investigation of tigic.
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Appendix

Adaptive-tracking task

The adaptive-tracking task is a pursuit-trackingktéBorland and Nicholson, 1984). A
target circle moves randomly on a computer scraed,the participant must try to keep a marker
dot inside the moving circle by operating a joysti®he mean velocity of the moving circle is
automatically adjusted to match the participarkiB. 4f the participant is successful in maintaigi
the dot inside the circle, the velocity of the mmyicircle gradually increases. Conversely, if the
participant cannot maintain the dot inside thelejr¢he velocity is reduced. The task lasts 3.5
minutes, including a run-in period of 0.5 minuteaidg which no data is recorded. Performance is
measured as the percentage of time that the peticis able to keep the dot in the circle. The
adaptive-tracking task has proved to be usefuhfeasurement of CNS effects of alcohol, various
psychoactive drugs and sleep deprivation (Cohah 985; Van Steveninck et al., 1991, 1999).

Pay-off structure of the gambling task

The number of points paid off by slot machiran trialt ranged from 1 to 100, drawn from
a Gaussian distribution (standard deviatmn= 4) around a megn, and rounded to the nearest
integer. At each trial, the means diffused in aagetwy Gaussian random walk:
fya = Mb, + (A= 2)0+v
The decay parameterwas 0.9836, the decay cenflawas 50, and the diffusion noigewas zero-
mean Gaussian (standard deviatmn= 2.8). We used three instantiations of this pgscene is
illustrated in Figure 2.

Description of the reinforcement-learning models
We fitted three reinforcement-learning models #® ¢hoice data of the gambling task. All

models consisted of a mean-tracking rule that gddke expected pay-offs of each mackying) ,

and a choice rule that selected a machine bas#tesa estimations. The estimated pay-offs were
calculated as follows:

Model 1 (mean pay-off estimation without decay; Baand Abbott, 2001)
When a participant chooses machiren trialt and receives pay-off the estimated pay-off of the
chosen machine is updated according to:

7, post

~pre |
ct tuc,t + Kdt

with prediction errord, =r, - fI,, and learning rate parameter. The estimated pay-offs of the

unchosen machines do not change.
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Model 2 (mean pay-off estimation with decay)
The chosen machine’s estimated pay-off is updated model 1:

post

tuct

In addition, the estimated pay-offs of all maclsinegardless of choice, are updated in time
according to:

B = M+ (1= 1)8

pre ,
_tuct +K5t

in whichA is the decay parameter (a smaller valué ioflicates a faster decay rate) #hib the
decay-center parameter.

Model 3 (Kalman filter; Daw et al., 2006)
The pay-offs of the machines are updated as in hibhde addition to tracking the mean pay-offs

(f,), this model also tracks the uncertainties abcegeipay-off¢d;, i.e., the variance of the

expected pay-off distributions) which determine tti@-specific learning rates,. When a
participant chooses machin@n trialt and receives pay-off the estimated pay-off distribution of

ost 2 post

the chosen machingf;*, ) is updated according to:

post

#ct
A2post - (1 K ) '\2pre
pre

Wlth prediction erroré't =1, — il

pre
- tuct +Kt5t

and learning rate, = 3.7 /(2P +G7) .
Then, the estimated prior pay-off distributionsaifmachines on the subsequent trial (tr#dl) are
updated in time according to:

A5 = A + A= A)6

~2pre 2 A 2post A2
Ut+1 =0 +0y

In all models, the selection of a machine on eaehwas determined by a softmax rule; the
probabilityP, , of choosing machineon trialt as the function of the estimated pay-offs was:

_exp(Bae)
Zexp(ﬂﬂ"’e

with exploration parametgt (referred to as the gain, or inverse temperature).

We fitted each model to the participants’ choiceadsy maximizing the log-likelihood of
the observed choices. To optimize the parameten used a nonlinear optimization algorithm
(Matlab’s fminsearch function; Lagarias et al., 899ogether with a search of different starting
values. The trials in which no response was mademihe 1.5-s time limit were omitted. The pay-

off tracking parameters;?(,j and é?) were shared by all participants that had recethiedsame
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pharmacological treatment, whereas the explorggazameter [f) was estimated separately for
each participant. Parametér in model 3 was fixed at 4. Estimation of parametgrin model 3

resulted in extreme values for most of the paréiotp, suggesting unreliable fits. Therefore, we
fixed this parameter at 50, which is similar to Hest fitting g, parameter found in a previous

study (Daw et al., 2006). Large valuegipfinduce high learning rates, indicating that thpezted

pay-offs are determined primarily by the most ré@xperience with each machine. Given that the
estimated learning rate parameters in models Ramere very near or even slightly above 1 as
well (Supplemental Table 1), and that previousissitlave also associated this task with high
learning rates (Daw et al., 2006; Jepma and Niebwisnin press), the oversensitivity to the most
recent pay-off of each machine seems to be chaistatef participants’ choice behavior in this
task.

To compare the adequacy of the three models iraaxp the observed data we used the
Bayesian Information Criterion (BIC; Raftery, 1998)statistical criterion for model selection. The
BIC is an increasing function of the residual sumsguares from the estimated model, and an
increasing function of the number of free paransetembe estimated. Thus, the best model is the
model with the lowest BIC value. In addition, tleewBIC values were transformed to a probability
scale (BIC model weights or “Schwarz weights”), ldimvy a more intuitive comparison of the
probabilities of each model being the best modekrgthe data and the set of candidate models
(Wagenmakers & Farrell, 2004). Supplemental Taldbdws the estimated parameter values and
the BIC values and model weights of each model. &1@dmean pay-off estimation with decay)
provided by far the best fit to the choice data.
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Supplemental Table 1.Mean parameter estimates and fit information lierthree models, separately for each

treatment group (SD in parentheses). Model 2 peabitie best fit to the data.

Model 1

Model 2

Model 3

B Placebo
Reboxetine
Citalopram
Placebo

o,

Reboxetine
Citalopram
Placebo

>

Reboxetine
Citalopram
K Placebo
Reboxetine
Citalopram
-LL Placebo
Reboxetine
Citalopram
BIC Placebo
Reboxetine
Citalopram
p Placebo
Reboxetine
Citalopram

0.095 (0.028)
0.105 (0.039)
0.093 (0.035)

0.93
1.03
0.86
4380
4415
4349
8913
8994
8842
<0.001
<0.001
<0.001

0.137 (0.042)
0.152 (0.081)
0.135 (0.053)
0.73
0.73
0.85
45.9
45.6
49.7
1.07
1.17
1.01
3789
3751
3858
7757
7691
7885
> 0.999
> 0.999
> 0.999

0.197 (0.058)
0.245 @.12
0.157 (0)06

0.70

0.65

0.84

45.6

45.3
49.5

3821
3780
3901
7804
7732
7954
<0.001
<0.001
<0.001

Note: Model 1 = mean pay-off estimation without aggdviodel 2 = mean pay-off estimation with decaydél 3 =
pay-off distribution estimation with decay; -LL =gative log likelihood (smaller values indicateteefit); BIC =
Bayesian information criterioqy = BIC model weight.

Tone discrimination learning curves in the diminmgutility task
To examine whether the three treatment groups stholferent rates of improvement in
tone-discrimination performance over the courstheftask (i.e., different learning curves), we
divided all trials in four equally sized consecaetivial bins, separately for each participant aache
level of task difficulty, and assessed the meang@nge of correct tone discriminations in each
trial bin (Supplemental Figure 1). The trials withpossible discriminations (i.e, 0 Hz tone
differences) were excluded from the analysis. Theas a significant main effect of trial bin on
tone-discrimination performancg(3,132) = 10.1p < 0.001], which was best described by a linear
improvement over the four sequential biR¢1[,44) = 15.9p < 0.001]. This learning effect
interacted with treatment at a trend lev&]d,132) = 2.1p = 0.057], but did not differ between the
male and female participanis € 0.48). Follow-up comparisons indicated thatl#aning curve in
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the reboxetine group differed from those in theeko and citalopram groups(B,93) = 2.5p =
0.07 and~(3,87) = 2.7p = 0.05, respectively]; whereas the placebo aradaptam groups showed
a significant linear improvement over the four aangive bins (linear trend effeps < 0.002 for
both groups), the effect of trial bin in the rebtme group was best described by a cubic trend
[F(1,17) = 11.8p = 0.003] reflecting the initial decrease in penfi@ance in trial bins 2 and 3
followed by an increase in performance in the lbast

90 -
—s—placebo
—e -reboxetine
----citalopram
§ 80 -
)
(&}
x
70 -
60 . .
1 2 3 4
trial bin

Supplemental Figure 1.Learning curves illustrating the change in torsedimination performance over the four

consecutive trial bins in the diminishing-utilitgsk, separately for each treatment group (errar indlicate standard
errors of the mean).

Bootstrap analysis of the shared parameters inréieforcement-learning model

To approximate the distribution of the shared pmtaams(/f, éand/?), we conducted a
bootstrap analysis (Efron & Tibshirani, 1993). leach treatment group, the computer generated
2162 bootstrap sets by sampling with replacemem fihe original group of participants; each
bootstrap set had the same number of "participastshe original data set. Model 2 was fitted to

the choice data from each bootstrap set, whicHtezbin a bootstrap sampling distribution for each
parameter in each treatment group (Supplemental&ig).

To assess whether thed andk parameter values differed between the three tredtme
groups we determined the 95% confidence intervaboh parameter in each group (Supplemental

Table 2). The distributions of thiqoarameter suggest thais larger in the citalopram group than in
the other two groups, indicating a slower decag (a¢., slower forgetting of the estimated values)
in the citalopram group. However, the bootstrapede#5% confidence interval of the citalopram
group partly overlaps with that of the other trearingroups, hence the difference misses
significance. The trend for a slower decay ratthencitalopram group may be consistent with
findings that serotonin manipulations affect thiessvity for short- vs. long-term consequences of
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actions (e.g., Schweighofer et al., 2008). Theamiof @ andk did not differ significantly between
the three groups, although there was a trend son@ewhat higher learning rate in the reboxetine

group.

Supplemental Table 2 The 2.5, 50 and 97.5 percentile of the bootsteappling distributions of th@, @ andk
parameters. The 2.5 and 97.5 percentiles indibatéotver and upper bound of the 95% confidencevate

percentile
2.5 50 97.5
) Placebo 0.31 0.73 0.85
Reboxetine 0.20 0.73 0.84
Citalopram 0.78 0.85 0.89
P Placebo 42.4 45.9 49.6
Reboxetine 40.1 45.7 49.9
Citalopram 45.1 49.7 53.5
K Placebo 0.17 1.05 1.22
Reboxetine 0.49 1.16 1.30
Citalopram 0.89 1.00 1.09
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Supplemental Figure 2 Bootstrap distributions of thd (decay parameter; larger values indicate sloweaylec

rate),d (decay center) and (learning rate) parameters in each treatment group
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