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Abstract 

 

Animal research and computational modeling have indicated an important role for the 

neuromodulatory locus coeruleus-norepinephrine (LC-NE) system in the control of behavior. 

According to the adaptive gain theory, the LC-NE system is critical for optimizing behavioral 

performance by regulating the balance between exploitative and exploratory control states. 

However, crucial direct empirical tests of this theory in human subjects have been lacking. We used 

a pharmacological manipulation of the LC-NE system to test predictions of this theory in humans. 

In a double-blind parallel-groups design (N = 52), participants received 4 mg reboxetine (a selective 

norepinephrine reuptake inhibitor), 30 mg citalopram (a selective serotonin reuptake inhibitor) or 

placebo. The adaptive gain theory predicted that the increased tonic NE levels induced by 

reboxetine would promote task disengagement and exploratory behavior. We assessed the effects of 

reboxetine on performance in two cognitive tasks designed to examine task (dis)engagement and 

exploitative versus exploratory behavior: a diminishing-utility task and a gambling task with a non-

stationary pay-off structure. In contrast to predictions of the adaptive gain theory, we did not find 

differences in task (dis)engagement or exploratory behavior between the three experimental groups, 

despite demonstrable effects of the two drugs on non-specific central and autonomic nervous 

system parameters. Our findings suggest that the LC-NE system may not be involved in the 

regulation of the exploration-exploitation trade-off in humans, at least not within the context of a 

single task. It remains to be examined whether the LC-NE system is involved in random exploration 

exceeding the current task context. 
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Introduction 

 

The locus coeruleus (LC) is one of the major brainstem neuromodulatory nuclei, with 

widely distributed, ascending projections throughout the neocortex. LC activation results in the 

release of norepinephrine (NE) in cortical areas, which increases the responsivity of these areas to 

their afferent input (Berridge and Waterhouse, 2003; Servan-Schreiber et al., 1990). Traditionally, 

the LC-NE system has been associated with basic functions such as arousal and the sleep-wake 

cycle (Aston-Jones et al., 1984; Jouvet, 1969), but recent studies have suggested that this system 

also plays a more specific role in the control of behavior (Aston-Jones et al., 1997; Clayton et al., 

2004; Usher et al., 1999). According to an influential recent theory of LC function, the adaptive 

gain theory (Aston-Jones and Cohen, 2005), the LC-NE system plays an important role in 

regulating the balance between exploiting known sources of reward versus exploring alternative 

options.  

Neurophysiological studies in monkeys have revealed spontaneous fluctuations of tonic 

(baseline) LC activity over the course of a test session (Aston-Jones et al., 1996; Kubiak et al., 

1992). Interestingly, these variations in tonic LC activity were closely related to the monkeys’ 

control state: periods of moderate tonic LC activity were consistently associated with task 

engagement and accurate task performance, whereas periods of elevated tonic LC activity were 

associated with distractible behavior and poor task performance. Periods of very low or absent tonic 

LC activity were associated with drowsiness and inattention. Furthermore, periods of moderate 

tonic LC activity were accompanied by large phasic increases in LC activity following task-relevant 

stimuli, whereas such phasic LC responses were diminished during periods of elevated or low tonic 

LC activity. Thus, during alert task performance, the pattern of LC activity varied between 

moderate tonic/large phasic activity and elevated tonic/small phasic activity, which are referred to 

as the phasic and the tonic LC mode, respectively.  

According to the adaptive gain theory (Aston-Jones and Cohen, 2005), the phasic and tonic 

LC modes promote, respectively, exploitative and exploratory control states. In the phasic mode, 

NE is released selectively in response to task-relevant events, which promotes task engagement and 

the optimization of performance in the current task (exploitation). In the tonic mode the sustained 

release of NE indiscriminately facilitates processing of all events, including non-task-related events, 

which promotes task disengagement and exploration. The theory further proposes that transitions 

between the phasic and tonic LC modes are driven by assessments of task-related costs and rewards 

(task utility), carried out in ventral and medial frontal structures. 

The adaptive gain theory has been supported by computational modeling and 

neurophysiological studies in monkeys (Aston-Jones and Cohen, 2005; Usher et al., 1999) and, 

indirectly, by recent pupillometry studies in humans (Gilzenrat et al., 2010; Jepma and 

Nieuwenhuis, in press). However, crucial direct empirical tests of the theory in human participants 

have been lacking.  
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In the present study, we used a pharmacological manipulation to test in humans one of the 

central tenets of the adaptive gain theory, namely the assumption that the tonic LC mode promotes 

an exploratory control state. Participants received a single dose of reboxetine (a selective NE 

reuptake inhibitor), citalopram (a selective serotonin reuptake inhibitor) or placebo. Acute 

administration of reboxetine has opposing effects in the forebrain (increased NE levels via the 

inhibition of NE reuptake) and in the LC (reduction of firing activity via the increased activation of 

inhibitory α2-autoreceptors; Szabo and Blier, 2001). However, microdialysis studies have shown 

that the net effect of these two actions is an increase in NE levels in various regions of the brain (for 

a wide range of reboxetine doses; Invernizzi and Garattini, 2004; Page and Lucki, 2002), which 

supposedly resembles the effects of elevated NE release in the tonic LC mode. To determine whether 

potential effects were selective for manipulations of the LC-NE system, we used citalopram as a 

control drug; it increases serotonin but not NE levels (Bymaster et al., 2002). To confirm that these 

drugs at the doses employed in this study were pharmacologically active, we determined pupil size 

and several of the most drug-sensitive central nervous system (CNS) effects, including adaptive-

tracking performance (index of visuomotor coordination and vigilance; Van Steveninck et al., 1991, 

1993) and saccadic peak velocity (index of alertness; Van Steveninck et al., 1991, 1999). 

The adaptive gain theory predicted that the increased tonic NE levels that were presumably 

induced by reboxetine would result in more task disengagement and exploratory behavior in the 

reboxetine group compared to the citalopram and placebo groups. We used two cognitive tasks to 

test these predictions. We measured task (dis)engagement using a diminishing-utility task (Gilzenrat 

et al., 2010), in which task difficulty and potential reward—two determinants of task utility—

increased over time. Importantly, participants had the opportunity to reset the level of task difficulty 

and reward, and hence disengage from the current task set. We measured exploratory behavior using a 

gambling task with a gradually changing pay-off structure (Daw et al., 2006; Figure 2), in which 

optimal performance required a delicate balance between exploitative and exploratory choices.  

 

Materials and methods 

 

Participants 

Fifty-two healthy university students, aged 18–25 years, took part in a single experimental 

session in return for €100,-. After signing an informed consent, participants were medically 

screened within 3 weeks before study participation. Exclusion criteria included history or presence 

of psychiatric disease and evidence of relevant clinical abnormalities.  

Participants received a single oral dose of 4 mg reboxetine, 30 mg citalopram or placebo in a 

double-blind, parallel-groups design. The doses of reboxetine and citalopram were based on 

previous studies that have found significant behavioral effects using these doses of reboxetine (e.g., 

De Martino et al., 2008; Miskowiak et al., 2007; Tse and Bond, 2002) and citalopram (e.g., 

Chamberlain et al., 2006). Unfortunately, the random-block design intended to produce equal 

numbers of men and women in each treatment group was thwarted by early dropouts and planning 
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problems, causing a somewhat unbalanced sex distribution. The reboxetine group (8 men, 10 

women, mean age = 20.6), the citalopram group (8 men, 8 women, mean age = 21.6) and the 

placebo group (10 men, 8 women, mean age = 21.5) had similar mean ages (F(2,49) = 1.66, p = 

0.20). The study was approved by the medical ethics committee of the Leiden University Medical 

Center and conducted according to the Declaration of Helsinki.  

 

Procedure 

All participants came to the research centre at 8AM after an overnight fast (except from 

water). We instructed participants to abstain from caffeine, nicotine, alcohol and other psycho-

active substances from 10PM the night prior to the study day. On arrival, participants underwent a 

medical screening. Approximately one hour after arrival, participants in the citalopram group 

received a capsule with 2 mg granisetron, to prevent nausea as a potential side effect of citalopram. 

Participants in the reboxetine and placebo groups received a placebo capsule instead of granisetron. 

Sixty minutes later, participants received a capsule with reboxetine, citalopram or placebo.  

Peak plasma concentrations of reboxetine and citalopram occur, respectively, 2 and 2-4 

hours after drug administration (Dostert et al., 1997; Edwards et al., 1995; Hyttel, 1994; Noble and 

Benfield, 1997). Accordingly, the experimental tasks designed to measure task (dis)engagement and 

exploratory behavior were performed between 2 and 3 h post-treatment. All participants started with 

the diminishing-utility task, followed by the gambling task3. We measured participants’ pupil-iris 

ratio (Twa et al., 2004) and subjective state at several time points during the study day. Subjective 

state was assessed by means of sixteen 100-mm visual analogue scales measuring alertness, 

calmness and contentment (Bond and Lader, 1974). In addition, at several time points during the 

study day, we measured participants’ adaptive-tracking performance (Borland and Nicholson, 1984; 

see Appendix for a description of the task) and saccadic eye movements (Van Steveninck et al., 

1989). These measures were part of a more extensive CNS test battery, the results of which will be 

reported more comprehensively elsewhere (te Beek et al., in preparation). To assess drug-related 

effects on subjective state, pupil size, adaptive-tracking performance and saccadic eye movements, 

we compared the pre-treatment values with the average values from the time points surrounding 

performance of the diminishing-utility task and the gambling task (i.e., 2-3 h post-treatment). The 

complete time courses of these measures will be reported elsewhere (te Beek et al., in preparation). 

 

Diminishing-utility task 

Participants performed an auditory pitch-discrimination task (Gilzenrat et al., 2010). Each 

trial began with a sequence of two 250-ms sinusoidal tones: a reference tone, followed 3 s later by a 

comparison tone. Participants were instructed to indicate whether the comparison tone was higher 
                                                 
3 Due to technical problems, three participants did not complete one of the tasks and were excluded from the 
corresponding analyses. For the diminishing-utility task this was the case for one female participant in the citalopram 
group and one male participant in the placebo group, and for the four-armed bandit task this was the case for one male 
participant in the placebo group. 
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or lower in pitch than the reference tone, and earned points for each correct response. If participants 

responded correctly on a particular trial, the value of that trial was added to the participant's total 

score. In addition, in the next trial, the reward that could be earned increased by 5 points, and the 

pitch discrimination was made more difficult by halving the difference in pitch between the 

reference and comparison tones. Following an incorrect response, the reward value of the 

subsequent trial decreased by 10 points (but with a floor value of 0 points), and the level of task 

difficulty remained the same. Importantly, prior to each trial, participants had the opportunity to 

"escape" from the current series of discriminations without score penalty and receive a new 

discrimination task (i.e., comparison against a new reference tone), with the point value reset to 5 

points and the easiest pitch discriminability. Participants were instructed to maximize their total 

score over the 20 minutes of the experiment. 

The task procedure is illustrated in Figure 1. At the start of each trial participants were 

shown a score/value screen that displayed the total score accumulated thus far and the point value of 

the next trial. Participants then indicated with a key press whether they wanted to "accept" this trial 

or "escape". If the participant accepted the trial, a reference/comparison tone pair followed after a 

delay of one second. Participants were instructed to indicate as quickly and accurately as possible 

whether the comparison tone was lower or higher in pitch than the reference tone. After a delay of 

one second, the accuracy of the participant’s response was indicated by a 250-ms feedback sound: a 

bell sound for correct responses and a buzzer sound for incorrect responses. Two seconds after the 

feedback sound, the next trial started. If participants pressed the "escape" button at the score/value 

screen, a 250-ms "escape sound" was played, immediately followed by a new score/value screen. 

We refer to a series of trials accepted by a participant as an "epoch" of play. Electing to escape 

begins a new epoch. We considered the average number of trials in an epoch as an index of task 

(dis)engagement.  

In the first trial of each epoch, the difference in pitch between the two tones was 64 Hz. As 

noted above, this difference was halved following each correct response. If participants correctly 

discriminated a ¼-Hz difference, the tones presented in the next trial were impossible to 

discriminate (i.e., 0 Hz difference), and impossible discrimination trials continued to be presented 

until the participant elected to escape. Accordingly, participants would exhaust any real 

discriminable differences between reference and comparison tone after nine correct trials; the tenth 

and subsequent trials within an epoch were impossible to discriminate. The feedback signal on 

impossible-discrimination trials was randomly picked. The same reference tone was presented on 

each trial within a given epoch. After an escape, a new reference tone was selected randomly 

without replacement from the set [400, 550, 700, and 850 Hz]. The set was replenished if all 

reference tones were exhausted. On 50% of the trials, the comparison tone was higher in pitch and 

on the remaining trials it was lower in pitch than the reference tone.  

 



 

 
 

43 

 

NEXT TRIAL: 25
Current Score: 45

NEXT TRIAL: 10
Current Score: 25

NEXT TRIAL: 5
Current Score: 25

(Correct) (Wrong)

. . .
(Escape)

Feedback

Comparison

Reference

NEXT TRIAL: 20
Current Score: 25

time

NEXT TRIAL: 25
Current Score: 45

NEXT TRIAL: 10
Current Score: 25

NEXT TRIAL: 5
Current Score: 25

(Correct) (Wrong)

. . .
(Escape)

FeedbackFeedback

ComparisonComparison

ReferenceReference

NEXT TRIAL: 20
Current Score: 25

time

 
Figure 1. Illustration of a sample trial in the diminishing-utility task. See text for further details. 

 

Gambling task 

Participants performed a ‘four-armed bandit’ task (Daw et al., 2006). On each trial, 

participants were presented with pictures of four different-colored slot machines, and selected one 

by pressing the ‘q’-, ‘w’-, ‘a’- or ‘s’- key. Participants had a maximum of 1.5 s in which to make 

their choice; if no choice was made during that interval, a red X appeared in the center of the screen 

for 4.2 s to signal a missed trial (average number = 2.5). If participants responded within 1.5 s, the 

lever of the chosen slot machine was lowered and the number of points earned was displayed in the 

chosen machine for 1 s after which the next trial started. The task consisted of 300 trials. 

Importantly, the number of points paid off by the four slot machines gradually and independently 

changed from trial to trial (Figure 2; Appendix).  

Before the start of the experimental session, participants were given 24 practice trials. We 

instructed the participants that, on top of the standard payment for participation in the study, they 

would receive a bonus sum of money that depended on the number of points they would obtain in 

this task, and that the average bonus earned in this task was 9 euros. However, we did not tell 

participants how the number of points was converted into euros, or what their cumulative point total 

was. After completion of the study, each participant received a bonus of 10 euros.  

Analysis. We fitted three reinforcement-learning models to the data. All models estimated 

the pay-offs of each machine on each trial, and selected a machine based on these estimations. The 

models differed in how they calculated the estimated pay-offs (Appendix). All models selected a 

machine according to the ‘softmax’ rule. This rule assumes that choices between different options 

are made in a probabilistic manner, such that the probability that a particular machine is chosen 

depends on its relative estimated pay-off. The exploitation-exploration balance is adjusted by a 

parameter referred to as gain, or inverse temperature: with higher gain, action selection is 

determined more by the relative estimated pay-offs of the different options (exploitation), whereas 

with lower gain, action-selection is more evenly distributed across the different options 
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(exploration). We classified each choice as exploitative or exploratory according to whether the 

chosen slot machine was the one with the maximum estimated pay-off (exploitation) or not 

(exploration). In addition, we calculated the degree of exploration for each exploratory choice, by 

subtracting the estimated pay-off of the chosen machine from the maximum estimated pay-off. We 

assessed the value of the gain parameter and the proportion of exploratory choices as a function of 

pharmacological treatment. Only the results from the best-fitting model are reported, although the 

other models yielded similar results. 
 

0

20

40

60

80

100

0 100 200 300

?

trial

pa
y-

o
ff

0

20

40

60

80

100

0 100 200 300

?

trial

pa
y-

o
ff

 
Figure 2. The four-armed bandit task. Participants made repeated choices between four slot machines. Unlike standard 

slots, the mean pay-offs of the four machines changed gradually and independently from trial to trial (four colored 

lines). Participants were encouraged to earn as many points as possible during the task. Each choice was classified as 

exploitative or exploratory, using a computational model of reinforcement learning. 

 

Results 

 

Subjective state 

The participants assigned to the three treatment groups did not differ in their pre-treatment 

ratings of alertness, calmness or contentment (all ps > 0.7; Table 1). To asses the effects of 

reboxetine and citalopram on subjective state we conducted analyses of covariance (ANCOVAs) on 

the subjective ratings of alertness, calmness and contentment, with treatment and sex as between-

subject factors and the pre-treatment ratings as covariate. There were no main effects of treatment 

or sex, and no treatment by sex interactions on any of these ratings (all ps > 0.16), suggesting that 

reboxetine and citalopram did not affect subjective state. 
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Table 1. Pre- and post-treatment ratings of alertness, calmness and contentment in the placebo, citalopram and 

reboxetine group (SD in parentheses) 

 Time of measurement Placebo Citalopram Reboxetine 

Alertness (mm) Pre-treatment 51.2 (7.9) 52.2 (5.3) 50.6 (4.4) 

 Post-treatment 50.2 (8.9) 52.4 (6.4) 48.6 (5.5) 

Calmness (mm) Pre-treatment 57.5 (9.9) 57.9 (10.2) 56.2 (4.4) 

 Post-treatment 59.2 (10.7) 54.9 (9.4) 56.3 (6.1) 

Contentment (mm) Pre-treatment 55.9 (7.4) 56.7 (9.1) 55.9 (4.1) 

 Post-treatment 57.5 (8.3) 56.4 (8.6) 56.9 (5.2) 

 

 

Non-specific central and autonomic nervous system effects 

Figure 3 (left panel) shows the adaptive-tracking performance pre-treatment (averaged 

across 1.5 and 0.5 h pre-treatment) and post-treatment (averaged across 2 and 3 h post-treatment) 

for each treatment group. We conducted an ANCOVA on the post-treatment adaptive-tracking 

performance with treatment and sex as between-subjects factors and pre-treatment performance as 

covariate. This analysis revealed a main effect of treatment [F(2, 45) = 5.2, p = 0.009]. There was 

no main effect of sex [F(1, 45) = 0.8, p = 0.4] and no interaction between treatment and sex [F(2, 

45) = 1.1, p = 0.3]. Follow-up comparisons indicated that the reboxetine group showed worse post-

treatment adaptive-tracking performance than the placebo group [F(1, 31) = 12.0, p = 0.02], 

whereas there was no difference between the citalopram and the placebo group [F(1, 29) = 0.5, p = 

0.5]. The difference in post-treatment adaptive-tracking performance between the reboxetine and 

the citalopram group just failed to reach significance [F(1, 29) = 3.8, p = 0.06]. These results 

suggest that reboxetine led to a decrease in adaptive-tracking performance.  

Figure 3 (middle panel) shows the saccadic peak velocity measured pre-treatment (averaged 

across 1.5 and 0.5 h pre-treatment) and post-treatment (averaged across 2 and 3 h post-treatment) 

for each treatment group. An ANCOVA on the post-treatment saccadic peak velocity with treatment 

and sex as between-subjects factors and pre-treatment saccadic peak velocity as covariate revealed a 

main effect of treatment [F(2, 45) = 15.3, p < 0.001]. There was no main effect of sex [F(1, 45) = 

1.8, p = 0.2] and no significant interaction between treatment and sex [F(2, 45) = 0.6, p = 0.6]. 

Follow-up comparisons indicated that the reboxetine group showed smaller post-treatment saccadic 

peak velocity than the placebo group [F(1, 31) = 5.1, p = 0.03], whereas the citalopram group 

showed larger post-treatment saccadic peak velocity than the placebo group [F(1, 29) = 8.6, p = 

0.007]. Thus, both reboxetine and citalopram affected saccadic eye movements, but the effects were 

in opposite directions. The time courses of saccadic peak velocity and adaptive-tracking 

performance showed that the effects of reboxetine and citalopram on these measures were maximal 

at the time points surrounding performance of the diminishing-utility task and the gambling task (te 

Beek et al.,, in preparation), suggesting that the drug-related CNS effects were maximal during 

performance of these tasks. 
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Figure 3. Adaptive-tracking performance, saccadic peak velocity and pupil-iris ratio pre-treatment and post-treatment, 

separately for each treatment group (error bars indicate standard errors of the mean). PLA = placebo, CIT = citalopram, 

RBX = reboxetine. 

 

Figure 3 (right panel) shows the pupil-iris ratio measured pre-treatment (averaged across 1.5 

and 0.5 h pre-treatment) and post-treatment (averaged across 2, 2.5 and 3 h post-treatment) for each 

treatment group. An ANCOVA on the post-treatment pupil-iris ratio with treatment and sex as 

between-subjects factors and pre-treatment pupil-iris ratio as covariate revealed a main effect of 

treatment [F(2, 45) = 22.1, p < 0.001]. There was no main effect of sex [F(1, 45) = 0.1, p = 0.7] and 

no significant interaction between treatment and sex [F(2, 45) = 2.8, p = 0.07]. Follow-up 

comparisons indicated that both the reboxetine group and the citalopram group had larger post-

treatment pupil-iris ratios than the placebo group [F(1, 31) = 7.1, p = 0.01 and F(1, 29) = 44.4, p < 

0.001, respectively]. In addition, post-treatment pupil-iris ratio was larger in the citalopram group 

than the reboxetine group [F(1, 29) = 13.7, p = 0.001]. Thus, consistent with previous studies 

(Phillips et al., 2000; Schmitt et al., 2002), both citalopram and reboxetine led to an increase in 

pupil diameter, and this effect was more pronounced in the citalopram group. There is no reliable 

evidence for direct projections from the LC to the autonomic nuclei that control the pupil (Aston-

Jones, 2004), but there are a number of possible indirect pathways by which LC manipulation could 

affect the sympathetic nervous system (cf. Berntson et al., 1998). Therefore, it is possible that the 

increase in pupil diameter in the reboxetine group reflects drug-induced changes in LC activity. 

However, it is also possible that the pharmacological effects on pupil diameter were produced at the 

level of the autonomic nuclei controlling the pupil, and thus reflect other drug actions than changes 

in LC activity.  

 

Diminishing-utility task 

The progressive increase in both task difficulty and potential reward during each series of 

tone discriminations produces a nonlinear development of task-related utility. Initially, the increases 
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in reward value for correct performance outpace the increases in difficulty, such that the expected 

value (utility) of task performance progressively increases. However, after several trials, the 

increases in difficulty will lead to sufficient number of errors as to reduce the expected value of 

performance, even in the face of increasing reward value for correct responses.  

To examine changes in performance and task-related utility leading up to and following 

participants’ choice to ‘escape’ (i.e., abandon the current series and start a new one), we averaged 

trials as a function of their position relative to the escape events. For this analysis, we considered 

only escape events that were preceded and followed by a minimum of four regular (i.e., non-escape) 

trials. As a measure of task utility, we calculated an estimate of expected value for each trial. For a 

given trial, expected value was computed individually for each participant by multiplying the point 

value of the trial (representing the potential reward value if the trial was accepted) by the expected 

accuracy on that trial for that participant. Expected accuracy was defined as the probability that the 

participant would give a correct response, given the level of difficulty of the required pitch 

discrimination. To determine this, we averaged the accuracy of all other trials for that participant 

with the same frequency difference between reference and comparison tones.  

Figure 4 (left panels) shows the average accuracy and RT on the trials flanking an escape for 

each treatment group. All treatment groups showed a sharp decrease in accuracy and an increase in 

RT over the trials leading up to an escape, which was confirmed by significant linear trends 

[F(1,44) = 462.5, p < 0.001 and F(1,44) = 14.3, p < 0.001, respectively]. As expected, performance 

was best on the first trial following an escape, after which accuracy gradually decreased and RT 

increased again [F(1,44) = 54.5, p < 0.001 and F(1,44) = 35.1, p < 0.001, respectively]. Figure 4 

(right panels) shows how our measure of expected value and the actual point value varied across the 

trials surrounding an escape. In all treatment groups, participants on average selected to escape 

when expected value approached the start value of a new series of discriminations. Both expected 

value and point value gradually decreased over the trials leading up to an escape [F(1,44) = 100.1, p 

< 0.001 and F(1,44) = 30.5, p < 0.001, respectively], and gradually increased again over the trials 

following an escape [F(1,44) = 422.1, p < 0.001 and F(1,44) = 1079.0, p < 0.001, respectively]. 

Importantly, the effects of peri-escape trial position on performance and task utility did not interact 

with treatment or sex (all ps > 0.3). 

We next examined the average number of accepted trials in an epoch. The average number 

of trials in an epoch did not differ between the three treatment groups [F(2,44) = 0.26, p = 0.77]. 

There was no main effect of sex either [F(1,44) = 1.08, p = 0.30], and no interaction between 

treatment and sex [F(2,44) = 0.33, p = 0.72]. Furthermore, there was no significant across-subject 

correlation between the mean epoch length and the reboxetine-related change in adaptive-tracking 

performance [r = 0.43, p = 0.08]. Note that, if anything, this correlation showed a trend in the 

opposite direction than predicted by the adaptive gain theory. Mean epoch length was not 

significantly correlated with the drug-related increase in pupil diameter either [r = -0.13, p = 0.62 in 

the reboxetine group; r = 0.24, p = 0.38 in the citalopram group].  
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Figure 4. Dependent measures for peri-escape trials in the three treatment groups. Trial number “0” indicates the escape 

trial. Left panels: accuracy and response time (RT). Right panels: Trial value and its computed expected value. Note 

that no measures of accuracy and RT are available for escape trials, because, on these trials, no comparison tone was 

presented.  

 

There were no effects of treatment or sex on the total number of trials completed or total 

number of points obtained (all ps > 0.3), except for a significant interaction between treatment and 

sex on the total number of point obtained [F(2,44) = 3.68, p = 0.03]. Follow-up contrasts indicated 

that the male participants obtained significantly more points than the female participants in the 

reboxetine group [t(16) = 3.08, p = 0.007], whereas there were no significant sex effects in the 

placebo and citalopram groups (ps > 0.48). An overview of the dependent variables in this task as a 

function of treatment and sex is shown in Table 2. An analysis of the improvement in tone-
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discrimination performance over the course of the task (i.e., learning curve) is reported in the 

Appendix.  

 
Table 2. Overview of the dependent variables in the diminishing utility task, as a function of treatment and sex (SD in 

parentheses). 

 Placebo Citalopram Reboxetine 

 men women men women men women 

Mean epoch length  

(trials) 

10.3 (2.3) 12.1 (4.3) 9.9 (2.5) 10.9 (4.1) 11.0 (3.8) 11.0 (2.3) 

Number of escapes 12.8 (3.1) 11.5 (4.0) 13.4 (3.7) 12.9 (5.1) 13.3 (5.9) 11.8 (4.7) 

Total score 1694 (380) 1749 (418) 1496 (537) 1674 (404) 1904 (353) 1356 (391) 

Total number of 

trials 

136 (3) 136 (3) 135 (3) 136 (3) 138 (3) 132 (3) 

 

Gambling task  

Each participant’s tendency to make exploratory choices is reflected in the estimated gain 

parameter of the reinforcement-learning model: a lower value of the gain parameter indicates a 

more exploratory choice strategy (Materials and Methods; Appendix). The value of the gain 

parameter did not differ between the three treatment groups [F(2,45) = 0.70, p = 0.51; Supplemental 

Table 1] or between the male and female participants [F(2,45) = 2.50, p = 0.12]. In addition, we 

classified each choice as exploitative or exploratory according to whether the chosen slot machine 

was the one with the maximum estimated pay-off (exploitation) or not (exploration). The proportion 

of exploratory choices did not differ between the three treatment groups [28%, 32% and 27% in the 

placebo, citalopram and reboxetine group, respectively; F(2,45) = 0.92, p = 0.41] or between male 

and female participants [26% vs. 31%; F(2,45) = 2.43, p = 0.13]. The three treatment groups did not 

differ in the degree of exploration of the exploratory choices either (section 2.4.1); the degrees of 

exploration in the placebo, citalopram and reboxetine groups were 0.39, 0.37 and 0.37, respectively 

(F(2,45) = 0.43, p = 0.65). 

Neither the value of the gain parameter nor the proportion of exploratory decisions was 

significantly correlated with the reboxetine-related change in adaptive-tracking performance [gain 

parameter: r = 0.41, p = 0.09; proportion exploration: r = -0.25, p = 0.32]. Our measures of 

exploration were not significantly correlated with the drug-related increase in pupil diameter either 

(ps > 0.15 in the reboxetine group; ps > 0.35 in the citalopram group).  

There were no across-subject correlations between our measure of task disengagement in the 

diminishing-utility task (mean epoch length) and our measures of exploration in the gambling task 

(value gain parameter and proportion of exploratory choices; ps > 0.8). This suggests that the 

disengagement and exploration measures in these tasks reflect separate aspects of the exploratory 

control state hypothesized to be mediated by the tonic LC mode. 
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Discussion 

 

The present study provided the first direct test in humans of one of the central tenets of the 

adaptive gain theory of LC function (Aston-Jones and Cohen, 2005), namely the assumption that an 

elevated level of tonic LC/NE activity (tonic LC mode) promotes a more exploratory control state. 

Contrary to predictions of the adaptive gain theory, we found no evidence that the increased NE 

levels induced by reboxetine were associated with task disengagement or exploratory behavior in 

our experimental tasks.  

Our null effects cannot be explained by a general ineffectiveness of our pharmacological 

manipulations, since there were significant drug effects on several central and autonomic nervous 

system parameters. Reboxetine caused reductions in adaptive-tracking performance and in saccadic 

peak velocity, which corroborates previous findings suggesting the involvement of the 

noradrenergic system in visuomotor control of movements (Wang et al., 2009). Citalopram 

increased saccadic peak velocity, which is in line with the mild stimulating properties of the SSRI 

on the electroencephalogram (Itil et al., 1984; Saletu et al., 2002). The time course of the effects 

suggests that reboxetine was maximally effective during performance of the diminishing-utility task 

and gambling task (te Beek et al., in preparation). In addition, both citalopram and reboxetine 

resulted in an increase in pupil diameter, but it is unknown whether these pupil modulations were 

produced by changes in LC activity or by other drug influences peripheral to the LC (e.g., on lower 

medullary NE cell groups or autonomic nervous system). Furthermore, previous studies using the 

same dose of reboxetine, between-subject designs and similar group sizes have found significant 

group differences in behavioral measures (De Martino et al., 2008; Miskowiak et al., 2007; Tse and 

Bond, 2002). The absence of significant across-subject correlations between our measures of 

disengagement/exploration and the reboxetine-related effects on adaptive-tracking performance 

suggests that the effectiveness of the reboxetine manipulation in individual participants did not 

predict their tendency to disengage or explore.  

The two experimental tasks we used to measure exploratory behavior and task 

(dis)engagement seem well suited for detecting individual differences in control state. The n-armed 

bandit task with non-stationary pay-off structure is the most commonly used paradigm for studying 

the exploration-exploitation trade-off in reinforcement-learning research (Sutton and Barto, 1998). 

Combined with computational modeling, it allows a formal description of participants’ choice 

behavior and provides an index of their tendency to explore. The diminishing-utility task is a more 

novel paradigm in which task engagement is modulated by means of dynamic changes in task-

related utility. Importantly, the opportunity to “escape” from the current task set provides an overt 

behavioral index of disengagement. In line with a previous study using this task (Gilzenrat et al., 

2010), we found that participants behaved optimally on average, and chose to disengage from the 

current task set when estimated task utility approached the baseline utility of a new task set. In 

addition, in a recent study using the same gambling task as used here (Jepma and Nieuwenhuis, in 

press) we have found that changes in utility measures and pupil diameter leading up to the switch 
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from an exploitative to an exploratory choice strategy were similar to those leading up to an 

“escape” in the diminishing-utility task (Gilzenrat et al., 2010). This suggests that disengagement in 

the diminishing-utility task and exploration in the gambling task are both driven by decreases in 

task utility. That said, optimal exploration strategies in our experimental tasks may differ from those 

needed in the real world; the changes in pay-offs and task-related utility in our tasks developed 

gradually and relatively slowly over time, which may not correspond to the dynamics of utility 

changes in real-world environments (Cohen et al., 2007).  

Although disengagement and exploration are both considered behaviors indicative of an 

exploratory control state associated with the tonic LC mode, it is important to note that 

disengagement in the diminishing utility task (i.e., choosing to “escape” from the current series of 

tone discriminations) is not equivalent to exploration in the gambling task, which may explain the 

absence of a correlation between our measures of disengagement and exploratory behavior. The 

development of a computational model for the diminishing-utility task is an important objective for 

future studies, as this will allow a more formal description of participants’ behavior in this task and 

a better comparison with exploratory behavior in other tasks. 

One possible explanation for the absence of reboxetine effects on our measures of task 

disengagement and exploratory behavior is that the LC-NE system is not involved in regulating the 

balance between exploitative and exploratory control states in humans. The adaptive gain theory is 

based on findings from neurophysiological studies in monkeys using relatively simple target-

detection tasks, and it is possible that the results from these studies cannot be generalized to the 

regulation of control state in humans. Moreover, although it is intuitively appealing to interpret the 

observations of increased distractibility, labile attention and impaired focused performance during 

elevated tonic LC/NE activity in animals as reflections of an exploratory control state (Aston-Jones 

and Cohen, 2005), it is important to note that the neurophysiological studies did not explicitly 

investigate the exploration-exploitation trade-off; the proposed link between the tonic LC mode and 

an exploratory control state is an assumption. Because we did not find evidence for this assumption, 

it seems appropriate to consider alternative explanations for the distractible behavior associated 

with the tonic LC mode. When taking a reinforcement-learning model perspective, it may be 

possible to explain the behaviors observed in the tonic LC mode by changes in reinforcement-

learning parameters other than the exploration parameter. One possibility is that high LC/NE 

activity increases the rate at which action values are updated based on new information (i.e., the 

learning rate parameter). This hypothesis would be compatible with a recent proposal that increased 

NE levels boost the learning of new task contingencies (Yu and Dayan, 2005). In line with this 

hypothesis, the estimated learning rate of the reinforcement-learning model that we fit to the choice 

data of the gambling task was somewhat larger in the reboxetine group than in the other treatment 

groups (Appendix, Supplemental Table 2; Supplemental Figure 2). However, because of the very 

high learning rates associated with this task, this result must be interpreted with caution. 

Alternatively, high LC/NE activity may increase the importance attached to immediate vs. delayed 

rewards (i.e., the future-reward discount factor). Support for this hypothesis comes from findings 
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from a recent study in mice that suggest that drug-induced increases in NE levels impair the ability 

to take future rewards into account, which would lead to the impulsive selection of options with 

short-term rewards (Luksys et al., 2009). Luksys et al. suggested that the distractible behavior 

observed in animals with elevated LC/NE activity can be produced by an increased devaluation of 

future, relative to immediate, rewards combined with high exploitation (as opposed to exploration; 

see Doya, 2002, for a similar proposal).Thus, the behaviors associated with the tonic LC mode that 

have been interpreted as indices of an exploratory control state by the adaptive gain theory may also 

be explained by modulations of other reinforcement-learning parameters. To further address this 

issue, future studies need to dissociate the role of the LC-NE system and other neuromodulatory 

systems in the regulation of different components of reinforcement learning and decision making.  

Another possibility is that the tonic LC mode promotes a type of exploratory behavior and 

disengagement that was not measured in the present study. It is likely that exploration is not a single 

process but comprises several distinct functions involving different neural mechanisms. An 

important aspect may be whether exploration is driven by top-down motives or by bottom-up 

stimulation. Exploratory behavior in the four-armed bandit task may be referred to as ‘controlled’ or 

‘systematic’ exploration, since it is aimed at obtaining information in order to optimize performance 

in the current task. Similarly, disengaging from the current task set in the diminishing-utility task 

serves the higher-level goal of maximizing the total score obtained in the task. Such controlled, top-

down driven exploration and disengagement within the current task context might be mediated by 

different neural mechanisms and/or neuromodulatory systems than random, bottom-up driven 

exploration exceeding the current task context. Controlled exploration presumably requires 

cognitive control functions that rely on the prefrontal cortex (PFC), which is supported by the 

finding of PFC activation during exploratory decisions in the four-armed bandit task (Daw et al., 

2006). There is also some evidence that the dopamine system plays a role in the regulation of a 

particular type of controlled exploration (Frank et al., 2009). Our findings suggest that the LC-NE 

system may not be involved in controlled exploration. However, our study leaves open the 

possibility that the LC-NE system is involved in random exploration exceeding the current task 

context. Random exploration is likely to be associated with an increased sensitivity to bottom-up 

activation, resulting from a global increase in neuronal responsivity. The widespread projection 

system of the LC and the neuromodulatory effects of NE on cortical neurons suggest that the LC-

NE system is well suited to produce such global changes in responsivity.  

The idea that the tonic LC mode promotes a more random type of exploration outside the 

current task context is supported by findings that drug-related increases in tonic NE levels improve 

attentional-set shifting and reversal learning in rats and monkeys (Devauges and Sara, 1990; Lapiz 

and Morilak, 2006; Lapiz et al., 2007; Seu et al., 2008), whereas noradrenergic lesions impair 

attentional-set shifting (McGaughy et al., 2008; Newman et al., 2008; Tait et al., 2007). These 

functions require the adaptation of behavior according to unexpected changes in the task 

environment, which depends on a shift of attention to previously irrelevant stimulus dimensions. 

These types of attention shifts are likely to be facilitated by random exploration (although an 
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increased learning rate may provide an alternative explanation). Investigating the noradrenergic 

modulation of random exploration outside the current task context in humans is an important 

objective for future studies. 

The distinction between controlled and random exploration might be related to the proposed 

distinction between expected and unexpected uncertainty (Yu and Dayan, 2005). Yu and Dayan 

have proposed that acetylcholine signals expected uncertainty (i.e., anticipated variation in task 

outcome), whereas NE signals unexpected uncertainty (i.e., unanticipated changes in the task 

context resulting in strong violations of top-down expectations; see Bouret and Sara, 2005, for a 

similar account). Yu and Dayan have also proposed that the NE-related signaling of unexpected 

uncertainty facilitates the learning of predictive relationships within a behavioral context, and 

therefore accelerates the detection of a change in task contingencies, which could explain the 

improvements in attentional-set shifting associated with increased tonic NE levels. Yu and Dayan’s 

account thus suggests that the tonic LC mode boosts learning about new predictive relationships in 

noisy and changing environments. This account is closely related to the adaptive gain theory’s 

assumption that the tonic LC mode promotes exploration, at least when applied to random 

exploration exceeding the current task context, since this type of exploration is likely to facilitate 

the learning of contextual changes. The detection of unexpected uncertainty might be an important 

factor in driving the LC towards a more tonic LC mode. However, how assessments of unexpected 

uncertainty interact with assessments of task-related utility on different timescales to regulate LC 

mode and control state remains to be investigated. An interesting speculation is that the degree of 

unexpected uncertainty determines how much weight is given to assessments of long versus short-

term utility, such that long-term utility has relatively less influence in situations of high unexpected 

uncertainty. In terms of reinforcement-learning models, this would be similar to the suggested 

modulation of the learning rate parameter by the volatility of the environment (Behrens et al., 

2007). 

Finally, it is important to note that although microdialysis studies have shown that a single 

dose of reboxetine increases NE concentrations, these studies, due to their limited temporal 

resolution, do not provide unequivocal evidence that this reflects purely an increase in tonic NE 

levels. Since the effects of selective NE reuptake inhibitors on the phasic LC response in awake 

animals are not known, we cannot exclude the possibility that our reboxetine manipulation also 

affected phasic LC activity and NE release, for example via modulations of the electrotonic 

coupling strength between LC neurons (Alvarez et al., 2002). Thus, determining the exact effects of 

selective NE reuptake inhibitors on the phasic and tonic components of LC/NE activity will be 

important for a better understanding of their effects on cognition. In addition, the effects of 

pharmacologically increasing NE levels on control state might depend on individual differences in 

baseline (pre-treatment) NE level. Accordingly, individual differences in baseline NE level could 

have been partly responsible for the absence of group differences on our measures of 

disengagement and exploration. Consistent with this possibility, a recent study in mice has shown 

that pharmacological manipulations of the LC-NE system interact with several other factors, such as 
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individual differences in genotype and trait anxiety, stress and motivation, in modulating the 

exploration-exploitation trade-off (Luksys et al., 2009). Thus, it seems that multiple factors need to 

be taken into account to enable predictions of exploratory behavior and its modulation by NE.  

To conclude, our findings suggest that the acute induction of an elevated tonic NE level does 

not affect people’s tendency to explore or disengage, at least not within the current task context. 

These findings challenge the adaptive gain theory’s claim that the LC-NE system regulates the 

balance between exploitative and exploratory control states (Aston-Jones and Cohen, 2005). It 

remains to be examined whether the LC-NE system is involved in random exploration outside the 

current task context, possibly driven by the detection of unexpected uncertainty. The present study 

contributes to our understanding of the noradrenergic modulation of human control state, and 

hopefully encourages further investigation of this topic. 
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Appendix 

 

Adaptive-tracking task 

The adaptive-tracking task is a pursuit-tracking task (Borland and Nicholson, 1984). A 

target circle moves randomly on a computer screen, and the participant must try to keep a marker 

dot inside the moving circle by operating a joystick. The mean velocity of the moving circle is 

automatically adjusted to match the participant's skill. If the participant is successful in maintaining 

the dot inside the circle, the velocity of the moving circle gradually increases. Conversely, if the 

participant cannot maintain the dot inside the circle, the velocity is reduced. The task lasts 3.5 

minutes, including a run-in period of 0.5 minute during which no data is recorded. Performance is 

measured as the percentage of time that the participant is able to keep the dot in the circle. The 

adaptive-tracking task has proved to be useful for measurement of CNS effects of alcohol, various 

psychoactive drugs and sleep deprivation (Cohen et al. 1985; Van Steveninck et al., 1991, 1999).   

 

Pay-off structure of the gambling task 

The number of points paid off by slot machine i on trial t ranged from 1 to 100, drawn from 

a Gaussian distribution (standard deviation oσ  = 4) around a mean ti ,µ  and rounded to the nearest 

integer. At each trial, the means diffused in a decaying Gaussian random walk: 

νθλλµµ +−+=+ )1(,1, titi   

The decay parameter λ was 0.9836, the decay centerθ was 50, and the diffusion noiseν  was zero-

mean Gaussian (standard deviation dσ  = 2.8). We used three instantiations of this process; one is 

illustrated in Figure 2.  

 

Description of the reinforcement-learning models 

We fitted three reinforcement-learning models to the choice data of the gambling task. All 

models consisted of a mean-tracking rule that tracked the expected pay-offs of each machine)ˆ( ,tiµ , 

and a choice rule that selected a machine based on these estimations. The estimated pay-offs were 

calculated as follows: 

 

Model 1 (mean pay-off estimation without decay; Dayan and Abbott, 2001) 

When a participant chooses machine c on trial t and receives pay-off r, the estimated pay-off of the 

chosen machine is updated according to: 

t
pre
tc

post
tc δκµµ ˆˆˆ ,, +=  

with prediction error tctt r ,µ̂δ −=   and learning rate parameter κ̂ . The estimated pay-offs of the 

unchosen machines do not change.  
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Model 2 (mean pay-off estimation with decay) 

The chosen machine’s estimated pay-off is updated as in model 1: 

t
pre
tc

post
tc δκµµ ˆˆˆ ,, +=  

 In addition, the estimated pay-offs of all machines, regardless of choice, are updated in time 

according to: 

θλµλµ ˆ)ˆ1(ˆˆˆ ,1, −+=+
post
ti

pre
ti  

in whichλ̂ is the decay parameter (a smaller value ofλ̂ indicates a faster decay rate) andθ̂  is the 

decay-center parameter. 

 

Model 3 (Kalman filter; Daw et al., 2006) 

The pay-offs of the machines are updated as in model 2. In addition to tracking the mean pay-offs 

)ˆ( ,tiµ , this model also tracks the uncertainties about these pay-offs 2
,ˆ( tiσ , i.e., the variance of the 

expected pay-off distributions) which determine the trial-specific learning rates tκ . When a 

participant chooses machine c on trial t and receives pay-off r, the estimated pay-off distribution of 

the chosen machine ( post
tc

post
tc

2
,, ˆ,ˆ σµ ) is updated according to:  

tt
pre
tc

post
tc δκµµ += ,, ˆˆ   

 

with prediction error pre
tctt r ,µ̂δ −=   and learning rate )ˆˆ/(ˆ 22

,
2
, o

pre
tc

pre
tct σσσκ += . 

Then, the estimated prior pay-off distributions of all machines on the subsequent trial (trial t+1) are 

updated in time according to: 

 θλµλµ ˆ)ˆ1(ˆˆˆ ,1, −+=+
post
ti

pre
ti  

22
,

22
1, ˆˆˆˆ d

post
ti

pre
ti σσλσ +=+  

 

In all models, the selection of a machine on each trial was determined by a softmax rule; the 

probability tiP, of choosing machine i on trial t as the function of the estimated pay-offs was: 

∑
=

j

pre
tj

pre
ti

tiP
)ˆexp(

)ˆexp(

,

,
, µβ

µβ
 

with exploration parameterβ (referred to as the gain, or inverse temperature).  

We fitted each model to the participants’ choice data by maximizing the log-likelihood of 

the observed choices. To optimize the parameter fits, we used a nonlinear optimization algorithm 

(Matlab’s fminsearch function; Lagarias et al., 1998), together with a search of different starting 

values. The trials in which no response was made within the 1.5-s time limit were omitted. The pay-

off tracking parameters (κ̂ , λ̂ and θ̂ ) were shared by all participants that had received the same 

pre
tct

post
tc

2
,

2
, ˆ)1(ˆ σκσ −=
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pharmacological treatment, whereas the exploration parameter (β ) was estimated separately for 

each participant. Parameter oσ̂  in model 3 was fixed at 4. Estimation of parameter dσ̂  in model 3 

resulted in extreme values for most of the participants, suggesting unreliable fits. Therefore, we 

fixed this parameter at 50, which is similar to the best fitting dσ̂  parameter found in a previous 

study (Daw et al., 2006). Large values ofdσ̂  induce high learning rates, indicating that the expected 

pay-offs are determined primarily by the most recent experience with each machine. Given that the 

estimated learning rate parameters in models 1 and 2 were very near or even slightly above 1 as 

well (Supplemental Table 1), and that previous studies have also associated this task with high 

learning rates (Daw et al., 2006; Jepma and Nieuwenhuis, in press), the oversensitivity to the most 

recent pay-off of each machine seems to be characteristic of participants’ choice behavior in this 

task.  

To compare the adequacy of the three models in explaining the observed data we used the 

Bayesian Information Criterion (BIC; Raftery, 1996), a statistical criterion for model selection. The 

BIC is an increasing function of the residual sum of squares from the estimated model, and an 

increasing function of the number of free parameters to be estimated. Thus, the best model is the 

model with the lowest BIC value. In addition, the raw BIC values were transformed to a probability 

scale (BIC model weights or “Schwarz weights”), enabling a more intuitive comparison of the 

probabilities of each model being the best model, given the data and the set of candidate models 

(Wagenmakers & Farrell, 2004). Supplemental Table 1 shows the estimated parameter values and 

the BIC values and model weights of each model. Model 2 (mean pay-off estimation with decay) 

provided by far the best fit to the choice data.  
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Supplemental Table 1. Mean parameter estimates and fit information for the three models, separately for each 

treatment group (SD in parentheses). Model 2 provided the best fit to the data. 

  Model 1 Model 2 Model 3 

β  Placebo 0.095 (0.028) 0.137 (0.042) 0.197 (0.058) 

 Reboxetine 0.105 (0.039) 0.152 (0.081) 0.245 (0.129) 

 Citalopram 0.093 (0.035) 0.135 (0.053) 0.157 (0.061) 

λ̂  Placebo - 0.73 0.70 

 Reboxetine - 0.73 0.65 

 Citalopram - 0.85 0.84 

θ̂  Placebo - 45.9 45.6 

 Reboxetine - 45.6 45.3 

 Citalopram - 49.7 49.5 

κ̂  Placebo 0.93 1.07 - 

 Reboxetine 1.03 1.17 - 

 Citalopram 0.86 1.01 - 

-LL Placebo 4380 3789 3821 

 Reboxetine 4415 3751 3780 

 Citalopram 4349 3858 3901 

BIC Placebo 8913 7757 7804 

 Reboxetine 8994 7691 7732 

 Citalopram 8842 7885 7954 

p Placebo < 0.001 > 0.999 < 0.001 

 Reboxetine < 0.001 > 0.999 < 0.001 

 Citalopram < 0.001 > 0.999 < 0.001 

Note: Model 1 = mean pay-off estimation without decay; Model 2 = mean pay-off estimation with decay; Model 3 = 

pay-off distribution estimation with decay; -LL = negative log likelihood (smaller values indicate better fit); BIC = 

Bayesian information criterion; p = BIC model weight. 

 

Tone discrimination learning curves in the diminishing-utility task 

To examine whether the three treatment groups showed different rates of improvement in 

tone-discrimination performance over the course of the task (i.e., different learning curves), we 

divided all trials in four equally sized consecutive trial bins, separately for each participant and each 

level of task difficulty, and assessed the mean percentage of correct tone discriminations in each 

trial bin (Supplemental Figure 1). The trials with impossible discriminations (i.e, 0 Hz tone 

differences) were excluded from the analysis. There was a significant main effect of trial bin on 

tone-discrimination performance [F(3,132) = 10.1, p < 0.001], which was best described by a linear 

improvement over the four sequential bins [F(1,44) = 15.9, p < 0.001]. This learning effect 

interacted with treatment at a trend level [F(6,132) = 2.1, p = 0.057], but did not differ between the 

male and female participants (p = 0.48). Follow-up comparisons indicated that the learning curve in 
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the reboxetine group differed from those in the placebo and citalopram groups [F(3,93) = 2.5, p = 

0.07 and F(3,87) = 2.7, p = 0.05, respectively]; whereas the placebo and citalopram groups showed 

a significant linear improvement over the four consecutive bins (linear trend effect ps < 0.002 for 

both groups), the effect of trial bin in the reboxetine group was best described by a cubic trend 

[F(1,17) = 11.8, p = 0.003] reflecting the initial decrease in performance in trial bins 2 and 3 

followed by an increase in performance in the last bin. 
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Supplemental Figure 1. Learning curves illustrating the change in tone discrimination performance over the four 

consecutive trial bins in the diminishing-utility task, separately for each treatment group (error bars indicate standard 

errors of the mean). 

 

Bootstrap analysis of the shared parameters in the reinforcement-learning model 

To approximate the distribution of the shared parameters, ,ˆ(λ θ̂ and )κ̂ , we conducted a 

bootstrap analysis (Efron & Tibshirani, 1993). For each treatment group, the computer generated 

2162 bootstrap sets by sampling with replacement from the original group of participants; each 

bootstrap set had the same number of "participants" as the original data set. Model 2 was fitted to 

the choice data from each bootstrap set, which resulted in a bootstrap sampling distribution for each 

parameter in each treatment group (Supplemental Figure 2).  

To assess whether the ,λ̂ θ̂ andκ̂ parameter values differed between the three treatment 

groups we determined the 95% confidence interval of each parameter in each group (Supplemental 

Table 2). The distributions of theλ̂ parameter suggest thatλ̂ is larger in the citalopram group than in 

the other two groups, indicating a slower decay rate (i.e., slower forgetting of the estimated values) 

in the citalopram group. However, the bootstrap-based 95% confidence interval of the citalopram 

group partly overlaps with that of the other treatment groups, hence the difference misses 

significance. The trend for a slower decay rate in the citalopram group may be consistent with 

findings that serotonin manipulations affect the sensitivity for short- vs. long-term consequences of 
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actions (e.g., Schweighofer et al., 2008). The values of θ̂ andκ̂ did not differ significantly between 

the three groups, although there was a trend for a somewhat higher learning rate in the reboxetine 

group. 

 

Supplemental Table 2. The 2.5, 50 and 97.5 percentile of the bootstrap sampling distributions of the,λ̂ θ̂ andκ̂  

parameters. The 2.5 and 97.5 percentiles indicate the lower and upper bound of the 95% confidence interval. 

percentile  

2.5 50 97.5 

Placebo 0.31 0.73 0.85 

Reboxetine 0.20 0.73 0.84 
λ̂  

Citalopram 0.78 0.85 0.89 

Placebo 42.4 45.9 49.6 

Reboxetine 40.1 45.7 49.9 
θ̂  

Citalopram 45.1 49.7 53.5 

Placebo 0.17 1.05 1.22 

Reboxetine 0.49 1.16 1.30 

κ̂  

Citalopram 0.89 1.00 1.09 
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Supplemental Figure 2. Bootstrap distributions of the λ̂ (decay parameter; larger values indicate slower decay 

rate),θ̂ (decay center) andκ̂ (learning rate) parameters in each treatment group 
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