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Chapter 2

Pupil diameter predicts changes in the exploration-
exploitation trade-off. Evidence for the adaptiagtheory

This chapter is published as: Jepma, M., & NieuwgnIS. (in press). Pupil diameter predicts
changes in the exploration-exploitation tradeoffidence for the adaptive gain theory of locus
coeruleus functionlournal of Cognitive Neuroscience.

17



Abstract

The adaptive regulation of the balance betweerogafibn and exploration is critical for the
optimization of behavioral performance. Animal @®f and computational modeling have
suggested that changes in exploitative vs. exglograbpntrol state in response to changes in task
utility are mediated by the neuromodulatory locosraleus-norepinephrine (LC-NE) system. Recent
studies have suggested that utility-driven changesntrol state correlate with pupil diameter, and
that pupil diameter can be used as an indirectenafi_C activity. We measured participants’ pupil
diameter while they performed a gambling task aitfradually changing pay-off structure. Each
choice in this task can be classified as explogadr exploratory, using a computational model of
reinforcement learning. We examined the relatignbleitween pupil diameter, task utility and choice
strategy (exploitation vs. exploration), and fodinak (i) exploratory choices were preceded bygelar
baseline pupil diameter than exploitative choi¢@sndividual differences in baseline pupil diatee
were predictive of an individual's tendency to explt and (iii) changes in pupil diameter
surrounding the transition between exploitative exploratory choices correlated with changes in
task utility. These findings provide novel evidertleat pupil diameter correlates closely with
control state, and are consistent with a roleHerltC-NE system in the regulation of the
exploration-exploitation trade-off in humans.
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Introduction

Imagine you are in a restaurant, and are facedtivglilecision what food to order. One
option is to choose a familiar dish that you knowd &ike. Alternatively, you could try an
unfamiliar dish, and take the risk that you migbt like it. However, it is also possible that the
unfamiliar dish turns out to become your new fatenvhich you would never have discovered
when sticking to the familiar dish. This examplastrates the dilemma between exploiting well-
known options and exploring new ones. The traddsefiveen exploitation and exploration plays an
important role in all kinds of decisions, espegiatli unfamiliar or changing environments.
Although there has been a recent rise in studiessiigating the strategies that are used to handle
this trade-off and the neural mechanisms involfedd review see Cohen, McClure, & Yu, 2007),
these issues are still poorly understood.

One relevant line of research that addressessigisuggests that the locus coeruleus-
norepinephrine (LC-NE) neuromodulatory system pkysmportant role in regulating the balance
between exploitation and exploration (Aston-JonegSdhen, 2005; Usher, Cohen, Servan-
Schreiber, Rajkowski, & Aston-Jones, 1999). Astonek and Cohen have proposed that
exploitative and exploratorgontrol statesare mediated by two modes of LC activity, called t
‘phasic’ and the ‘tonic mode’, respectively. Theapit LC mode is characterized by an intermediate
level of LC baseline activity and large phasic @ases in activity in response to task-relevant
stimuli. The ensuing phasic release of NE in caltareas temporarily increases the responsivity (or
gain) of these areas to their afferent input, $elely potentiating the processing of these task-
relevant stimuli (Berridge & Waterhouse, 2003; Da3@02; Servan-Schreiber, Printz, & Cohen,
1990). Conversely, the tonic LC mode is characterizy an elevated level of LC baseline activity
and tonic NE release, and the absence of phagionses

According to the adaptive gain theory (Aston-Joé&ohen, 2005), the two LC modes
promote exploitation and exploration by adaptivadjusting the responsivity of cortical neurons:
the phasic mode produces selective increases nomauesponsivity in response to task-related
stimuli, thereby optimizing performance in the emtrtask (i.e. exploitation). In contrast, the toni
mode produces a more enduring and less discrimgatcrease in neuronal responsivity. Although
this degrades performance within the current tis&cilitates the disengagement of attention from
this task and the processing of other non-taske@lstimuli and/or behaviors (i.e. exploration). A
second assumption of the theory is that transitimt#/een the phasic and tonic LC modes and
corresponding control states are driven by onlgseasments of task-related utility carried out in
ventral and medial frontal structures (Aston-Jo&€3ohen, 2005). Consistent with this hypothesis,
anatomical studies have shown that the primarya#ioal projections to LC come from

! Whereas we discuss the phasic and tonic LC maldistinct, they likely represent the extremes obatinuum of
function. When we refer to the phasic or tonic L6d®, we mean morephasic or tonic LC mode, not necessarily the
extremes of the continuum.
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orbitofrontal and anterior cingulate cortex (Astbones et al., 2002; Rajkowski, Lu, Zhu, Cohen, &
Aston-Jones, 2000; Zhu, Iba, Rajkowski, & Aston€mr2004)—areas known to be responsive to
task-related rewards and costs of performance (Boky 2007; Ridderinkhof, Ullsperger, Crone,

& Nieuwenhuis, 2004). In order to adaptively regelthe balance between exploitation and
exploration, utility assessments are integrated bwéh short (e.g., seconds) and longer (e.g., tens
of seconds) timescales. If long-term utility isigemporary decreases in utility augment the
phasic LC mode, in order to restore task perforrma@onversely, long-term decreases in utility
drive the LC toward the tonic mode, which facisidisengagement from the current task and
exploration of alternative behaviors.

The adaptive gain theory has been supported maynbpmputational modeling studies
(Usher et al., 1999) and neurophysiological stushe@aonkeys that have used relatively simple
tasks (Aston-Jones & Cohen, 2005). In contrast) wite notable exception (Gilzenrat,
Nieuwenhuis, Jepma, & Cohen, 2010), there have bedasts of this theory in humans yet. In
order to test the theory in humans, a non-invasieasure of LC activity is required. There is
preliminary evidence that pupil diameter can prevsdch a measure: although it does not appear to
be under direct control of the LC, pupil diametecorrelated with LC activity and thus may be
useful as a “reporter variable” (Nieuwenhuis, dei§& Aston-Jones, in press). Rajkowski,
Kubiak, and Aston-Jones (1993), for example, foarstirong correlation in monkeys between
baseline pupil diameter and tonic LC firing ratenthe course of 90 minutes of performance in a
target-detection task. Furthermore, a recent stiu@alyinvestigated how pupil diameter is related to
experimental manipulations of task-related utitityd behavioral indices of task (dis)engagement
showed that pupil diameter varied in a way constsigth predicted LC dynamics (Gilzenrat et al.,
2010). Specifically, this study showed that deagsas long-term utility and behavioral indices of
task disengagement were associated with increasditie pupil diameters and decreased pupil
dilations, mirroring the high tonic and low phaativity associated with the tonic LC mode.
However, although this study assessed pupil efeesteciated with task (dis)engagement, it did not
explicitly investigate the exploitation-exploratitmade-off since participants were not given the
opportunity to explore different task options.

Inspired by the recent evidence that pupil diametight be used as an indirect index of LC
activity, we measured participants’ pupil diamet#ile they performed a ‘four-armed bandit’ task
with a gradually changing pay-off structure in whibe trade-off between exploitation and
exploration is a central component (Daw, O'Dohddigyan, Seymour, & Dolan, 2006; Figure 1,
Appendix). Optimal performance in this task regsii@gedelicate balance between exploitative and
exploratory choices. We examined whether the iahip between pupil diameter, control state
and task-related utility was consistent with the twain assumptions of the adaptive gain theory,
namely that LC mode regulates the trade-off betveegaoitative and exploratory control states,
and that transitions between LC modes are driveasBgssments of task-related utility. The first
assumption predicts that exploratory choices valblssociated with a larger baseline pupill
diameter, possibly reflecting a more tonic LC matian exploitative choices. In addition, this
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assumption suggests that individual differencesvigrall pupil diameter might be correlated with
individual differences in exploratory choice betwmvparticipants with larger overall pupil
diameters, perhaps suggestive of a more tonic L@emmay make more exploratory choices. The
second assumption predicts that changes in usilityounding the transition between control states
will be accompanied by specific changes in baselunal diameter: a steady increase in baseline
pupil diameter as decreasing utility drives theipgrant toward exploration; a monotonic decrease
in baseline pupil diameter as utility increasesrattie participant has started a new series of
exploitative choices.

trial

Figure 1. The four-armed bandit task. Participants madeatepkechoices between four slot machines. Unlikedstal
slots, the mean pay-offs of the four machines cedrgyadually and independently from trial to t(falur colored
lines). Participants were encouraged to earn ay paints as possible during the experiment. Afteréxperiment,
each choice was classified as exploitative or eapboy, using a computational model of reinforcethearning.

Materials and Methods

Participants

Seventeen volunteers participated (11 women; ag§e2Blyears; mean age = 22.4). The
experiment was approved by the local ethics reWdieard and conducted according to the
principles expressed in the Declaration of Helsiiormed consent was obtained from all
participants.

Stimuli and Procedure

Participants performed a ‘four-armed bandit’ taghile their pupil diameters were
continuously measured. The task was a slightly fremtlversion of the task used by Daw et al.
(2006). Participants were presented with pictufdswr different colored slot machines (of equal
luminance) on a medium gray background. The slathimn&s stayed on the screen during the entire
experiment. Each trial started with a 4 s intedaiing which the slot machines were displayed, but
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participants could not select a machine yet. Attés, a black fixation cross appeared in the center
of the screen, indicating that participants codlést one of the slot machines, by pressing the ‘g’
‘W’'-, ‘a’- or ‘'s’- key. Participants had a maximuaf 1.5 s in which to make their choice; if no
choice was made during that interval, a ‘TIME OUiéssage appeared in the center of the screen
for 3 s to signal a missed trial (average numbenigked trials = 1.7). If participants responded
within 1.5 s, the lever of the chosen slot machwas lowered and the number of points earned was
displayed in the chosen machine. These points dispdayed until the end of the trial, which was 7
s after trial onset. Importantly, the number ofgsipaid off by the four slot machines gradually
and independently changed from trial to trial (Fey; Appendix).

The experiment was conducted at a slightly dimnfiechination level (room illumination
100 lux). We recorded pupil diameter at 60 Hz usinigpbii T120 eye tracker, which is integrated
into a 17-inch TFT monitor (Tobii Technology, Stbckm, Sweden). Participants were seated at a
distance of approximately 60 cm from the monitaroPto the start of the experimental session,
participants viewed visually presented instructjonsluding an instruction that the pay-offs of the
machines would change throughout the experimedtwaane given 24 practice trials to familiarize
them with the task. After the practice trials, gaptants were instructed that the machines had been
reset for the experimental session. The experirhsassion consisted of 180 trials, and lasted about
20 minutes. We instructed the participants thay theuld be paid according to how many points
they had earned during the experimental sessioral$éeinstructed them that on average
participants earned 2.50 euros in this experintdéotvever, we did not tell participants how the
number of points was converted into euros, or Wt cumulative point total was. At the end of
the experiment, each participant was paid 3 euros.

Data Analysis

Behavioral Analysisin order to classify each choice as exploitativexploratory, we fitted
a reinforcement-learning model to the data of qaticipant. We used the same model as used by
Daw et al. (2006). This model consists of a meanking rule that estimates the mean pay-off of
each machine, and a choice rule that selects aingbhsed on these estimations (Appendix). The
choice rule we used was the ‘softmax’ rule. Thie mssumes that choices between different
options are made in a probabilistic manner, suahttie probability that a particular machine is
chosen depends on its relative estimated pay-bo#.&xploitation-exploration balance is adjusted
by a parameter referred to as gain, or inverse ¢éeatgre: with higher gain, action selection is
determined more by the relative estimated pay-affthe different options, whereas with lower
gain, action-selection is more evenly distributerbas the different options. We classified each
choice as exploitative or exploratory accordingvteether the chosen slot machine was the one with
the maximum estimated pay-off (exploitation) or (etploration).

Pupil Analysis Pupil data were processed and analyzed using Biiaion Analyzer (Brain
Products, Gilching, Germany). Artifacts and blinkare removed using a linear interpolation
algorithm. We assessed the baseline pupil dianpei@rto the selection of a slot machine, as well
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as the magnitude of the pupil dilation followingtbelection of a slot machine. To determine
baseline pupil diameter, we averaged the pupil atiae period from 2.5 s to 0.5 s before the key-
press. The pupil data during the 0.5 s immedigietgeding the key-press were not included in the
baseline period because most participants showedtaripatory increase in pupil diameter starting
about 0.5 s before their key-press response. Thit dlilation evoked by choosing a machine and
perceiving the received pay-off was measured akitifeest deviation from the baseline in the 3 s
following the key-press response.

We compared the average baseline pupil diametepapitldilation on exploitation versus
exploration trials. In addition, we calculated tteggree of exploration for each exploratory choice,
by subtracting the estimated pay-off of the chas@ehine from the maximum estimated pay-off.
We divided all exploration trials into three egyadized bins based on the degree of exploration
(low, medium and high), and assessed the averagdima pupil diameter for these three
exploration bins. Since the number of points eamas displayed immediately after the selection
of a slot machine, the pupil dilation on each tredlected both the selection of a machine and the
processing of the received pay-off. Due to thisfeond, we could not unequivocally interpret
differences in pupil dilation between exploitatimmd exploration trials, and focused our analyses
on the baseline pupil diameter.

Compared to exploitative choices, exploratory cesiwere more often preceded by other
exploratory choices. In addition, exploratory clesievere associated with a lower pay-off and more
negative prediction error on the previous triald alower expected pay-off and higher entropy on
the current trial (see Results). Entropy is anxnaolethe similarity of the four slot machines’
expected pay-offs; it increases as the expecteafiayf the four slot machines become more
similar. Entropy thus provides an estimate of thesl of uncertainty, or conflict, associated with
figuring out which slot machine is the most valwThe entropyd(X) on each trial was calculated
as:

H(X)==2_P(x)log, P(x)

whereP(x, )s the probability of choosing slot machixe To assess whether these potential

confounds could account for the differences in lr@sg@upil diameter on exploration and
exploitation trials, we subjected the single-thakeline pupil diameter values to a multiple linear
regression analysis, separately for each partitigztmoice strategy (explore vs exploit) and the fiv
above-mentioned nuisance variables (expected dagsifopy, and the pay-off, prediction error
and strategy on the previous trial) as well asrestant were included as explanatory factors. For
choice strategy and choice strategy on the previtalswe used binary factors that have a value of
1 on exploit trials and 0 on explore trials. Toessswhich variables were significant predictors of
baseline pupil diameter, we conducted a one-sat¥tpl on the regression coefficients of each
explanatory factor (Lorch & Myers, 1990).

We also assessed whether individual differencgsiml diameter predicted individual
differences in exploratory behavior. In this anaysie computed the between-subjects correlation
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between the average baseline pupil diameter angrdportion of exploratory choices, and between
the average baseline pupil diameter and the vdltleeaain/inverse temperature parameter of the
reinforcement learning model.

To assess the development of our utility measyrag-¢ff, expected pay-off and entropy)
and baseline pupil diameter surrounding the treomstietween exploitative and exploratory choice
strategies, we averaged trials as a function of gosition relative to the transition from an
exploitative to an exploratory choice strategy, aie versa. For this analysis, we only considered
the exploration trials that were preceded or fokdviby a minimum of three exploitation trials.

Results

Participants alternated between choosing the shmhme with the highest estimated current
pay-off (exploitation) and choosing slot machineta lower expected pay-off (exploration). In
comparison to the exploitation trials, explorattaals were more often preceded by other
exploration trials (Table 1), indicating that peipants tended to explore for several successive
trials before settling on a new slot machine. Tlamecharacteristics of the exploitation and
exploration trials are summarized in Table 1.

Table 1 Characteristics of exploration and exploitatidal$ (standard deviation in parentheses)

exploration  exploitation p-value

Proportion of total number of trials 0.31 (0.10) 69(0.10) <0.001
Proportion preceded by exploration trial 0.41 (.07 0.28 (0.13) 0.001
RT (ms) 492 (82) 508 (75) 0.15
RT variability (SD of RTSs) 150 (45.5) 151 (40.0) 902

RT trial N-1 (ms) 498 (72) 504 (79) 0.36
Pay-off (points) 48 (1.6) 63 (1.9) <0.001
Prediction error (points) -2.8 (6.5) -1.0 (5.1) 0.0
Expected pay-off (points) 51 (6.4) 64 (4.0) < 0.001
Entropy (bits) 1.5(0.14) 1.2 (0.33) <0.001
Pay-off preceding trial (points) 54 (2.4) 60 (3.1) <0.001
Prediction error preceding trial (points) 3.6 4.4 -1.0(5.9 0.001

Pupil Diameter on Exploitation versus Explorationals

First, we compared the baseline pupil diameterauieg exploitative and exploratory
choices. Baseline pupil diameters preceding exfmoyahoices were larger than those preceding
exploitative choices [3.93 vs. 3.88 mit1,6) = 3.0,p = 0.008; Figure 2, left panel]. Furthermore,
within the exploration trials, baseline pupil diaerancreased as a function of the degree of
exploration (Materials and Methods), as revealed bgpeated-measures linear-trend analysis
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[F(1,16) = 15.3p = 0.001; Figure 2, right panel]. We also examittedlpupil dilations evoked by
exploratory and exploitative choices. There wagad towards larger dilations on exploration than
exploitation trials [0.17 vs. 0.13 mn{16) = 2.1 p = 0.051]. This was probably due to the higher
incidence of negative prediction errors on expioratrials (Satterthwaite et al., 2007), since the
effect disappeared when only the trials with pasifrediction errors were includeg £ 0.14).
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Figure 2. Pupil diameter on exploration and exploitatioalsi (A) Time course of grand-average pupil diamete
aligned to the key-pres indicating the selectioa sfot machine, for exploratory and exploitatieices. (B) Average
baseline pupil diameter for exploitative choicels¢k bar), and exploratory choices with a low, no@diand high
degree of exploration (striped bars).

The difference in baseline pupil size between digdion and exploration trials already
started to develop during the pupil response oiptheeding trial (Figure 3): trials immediately
preceding exploration trials were associated widrger pupil dilation than trials immediately
preceding exploitation trials [0.17 vs. 0.13 nmi(@6) = 3.2,p = 0.006]. However, this effect on the
preceding trial could not (fully) explain the difémce in baseline pupil diameters between
exploitation and exploration trials, because thfetince remained significant when pupil dilation
on the previous trial was included as a covariathe analysisq(1, 15) = 4.69p = 0.047].
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Figure 3. Time course of grand-average post-choice pupitidih for the trials preceding exploration and exglkion
trials.
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Exploitation and exploration trials differed in se&l aspects other than choice strategy
(Table 1). Trials preceding exploration trials weharacterized by a larger proportion of
exploratory choices, a lower pay-off and a moreatigg prediction error than trials preceding
exploitation trials. In addition, exploration trsalvere characterized by a lower model-estimated
expected pay-off (of the chosen slot machine) aglen entropy than exploitation trials. We
investigated whether choice strategy (explore xglogt) could predict baseline pupil diameter
independently of these potential nuisance varidjaseans of a linear multiple regression
analysis (Materials and Methods). Importantly, whdfusted for all other variables, choice
strategy made a unique contribution to the preatictif baseline pupil diamete16) = 3.43p =
0.003]. The only other significant predictor of blise pupil diameter was the strategy on the
previous trial {(16) = 2.98p = 0.009]. Additional control analyses that yieldmahilar results are
reported in the Appendix.

Together, these findings confirm our first prediotithat exploratory choices are associated
with a larger baseline pupil diameter, while exahgda range of alternative interpretations for the
observed pupil effect.

Individual Differences in Pupil Diameter and Expatory Choice Behavior

Sofar we have examined pupil diameter as a funafdhe within-subject factor choice
strategy. We next assessed whether individualréifiges in overall pupil diameter were predictive
of individual differences in exploratory choice lwior. There was a positive correlation, across
participants, between the average pupil diameter aW trials and the proportion of exploratory
choices ( = 0.50,p = 0.04; Figure 4, left panel). Similarly, theresasanegative correlation between
the average pupil diameter and the value of the gaiameter of the reinforcement learning model
(r =-0.53,p = 0.03; Figure 4, right panel). These correlativaese also present when the baseline
pupil diameters on exploitation and exploratioalgiwere considered separately (pupil diameter on
exploitation trials and proportion exploratory ates:r = 0.49,p = 0.04; pupil diameter on
exploitation trials and gain parameter -0.52,p = 0.03; pupil diameter on exploration trials and
proportion exploratory choices= 0.48,p = 0.05; pupil diameter on exploration trials araing
parameterr = -0.53,p = 0.03). Unlike the gain parameter, the other rhpdeameters did not
correlate with pupil diameter (decay parameter:-0.24,p = 0.36; decay center:= 0.07,p =
0.78).

Obviously, individual differences in pupil diametetate to many factors other than control
state, such as age, personality and intelligerar@gSe, 1977). Importantly, these factors
presumably increased the between-subjects err@nar in our data, which decreased the power
for detecting a correlation. Thus, the fact thatfaend a correlation in spite of a presumably large
error variance in the between-subjects pupil diilares the existence of the correlation. However,
it is also possible that individual differencegumpil diameter reflect individual differences in
motivation or the amount of attention paid to thgkt Such motivational factors might influence
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choice strategy, which could provide an alternagéixplanation for the correlations between pupil
diameter and exploratory behavior across parti¢gpan
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Figure 4. Individual differences in pupil diameter and explory choice behavior. (A) Scatter plot of thevisstn-
subjects correlation between average baseline digiteter and the proportion of exploratory chai¢B3 Scatter plot
of the between-subjects correlation between avdrageline pupil diameter and the value of the gaimverse-
temperature parameter of the reinforcement-learmiadel. A lower value of this parameter indicatesae
exploratory choice strategy.

Changes in Utility and Pupil Diameter Surrounding ensition between Choice Strategies

Sofar we have examined the difference in pupil @nbetween exploitation and
exploration trials. We next examined the changedility measures surrounding the transition
between exploitative and exploratory choice stiaegAs measures of utility, we used the model-
estimated expected pay-off of the chosen machneeseceived pay-off, and the entropy (Materials
and Methods). Subsequently, we tested whetherchaiges in utility were accompanied by
changes in pupil diameter.

Figure 5 (upper panel) shows the expected pay-@deived pay-off and entropy for the first
and the last of a series of exploration trials #redthree preceding and following exploitationlgia
During the three exploitation trials that precetlee switch to an exploratory choice strategy,
entropy gradually increaseB(fL, 16) = 10.16p = 0.006] and pay-off gradually decreasg(ll] 16)
=50.72,p < 0.001], as revealed by a repeated-measures-lirezal analysis. Expected pay-off also
showed a decrease over the three trials precelaenfyyst explore trial, but this effect missed
significance F(1, 16) = 2.85p = 0.11]. Thus, there was a gradual decreaselityygreceding the
switch from an exploitative to an exploratory clegtrategy, suggesting that, on average,
participants began exploring when task utility vahg minimum. In addition, during the three
exploitation trials following the last exploratidmal, entropy gradually decreasd€(1, 16) = 9.74,

p = 0.007] and expected pay-off gradually incredé€d, 16) = 13.72p = 0.002]. Thus, there was
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a gradual increase in utility following the swititbm an exploratory to an exploitative choice
strategy.

We next examined the development of baseline mli@iheter over the trials surrounding
the switch between exploitative and exploratoryichatrategies (Figure 5, lower panel). Baseline
pupil diameter did not differ significantly acrase three exploitation trials preceding the first
exploration trial F(2, 32) = 1.30p = 0.29]. However, baseline pupil diameter showedaalual
decrease over the three exploitation trials follaytihe last exploration triaF[1, 16) = 6.18p =
0.024], resembling the gradual decrease in entaoplyincrease in expected pay-off during these
trials. As predicted, baseline pupil diameter datexl negatively with expected pay-afff - 0.72,
p(1-tailed) = 0.023] and positively with entropy+4 0.68,p(1-tailed) = 0.032] across the eight trial
positions in Figure 5. These findings provide sawielence for our second prediction, that changes
in utility surrounding the transition between cahstates would be systematically correlated with
changes in baseline pupil diameter.
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Figure 5. Grand-average dependent measures for the firdiaahdf a series of exploration trials, and the¢h
preceding and following exploitation trials. (A) Omeasures of utility: expected pay-off, receiveg-pff and entropy.
(B) Baseline pupil diameter.
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Discussion

We investigated the relationship between pupil @ choice strategy (exploitation vs.
exploration) and task utility, in order to test ghitzions of the adaptive gain theory of LC function
in humans. This study was inspired by recent oladienvs that pupil diameter might be used as a
reliable index of LC activity. Our main findingsrche summarized as follows: (i) exploratory
choices were associated with a larger baselind gigmeter than exploitative choices; (ii)
individual differences in baseline pupil diameteggicted individual differences in exploratory
choice behavior: participants with a larger pupdindeter made more exploratory choices and were
characterized by a smaller gain parameter of ildoreement-learning model; and (iii) trial-to-tria
changes in baseline pupil diameter surroundingrtivesition between choice strategies correlated
systematically with changes in utility, at leastidg the transition from exploration to exploitatio
At the least, these findings provide novel evideiocea close relationship between pattern of
pupillary response and control state. More tenghithese findings provide indirect support for
the two main assumptions of the adaptive gain themmely that LC firing mode regulates the
trade-off between exploitative and exploratory colngtates, and that changes in LC mode are
driven by online assessments of task-relatedyfiiston-Jones & Cohen, 2005).

Our finding that pupil diameter is predictive ofoate strategy, in a manner consistent with
the adaptive gain theory, corroborates recentfiigglby Gilzenrat et al. (2010) that pupil diameter
is related to behavioral indications of the tomd @hasic LC mode. Gilzenrat et al. found thatdarg
baseline pupils were associated with slower, mar&kle reaction times and less accurate
performance in a target-detection task, and wik thsengagement in a task in which participants
were given the opportunity to disengage from theeeru task context when utility decreased.
Furthermore, several pharmacological studies hawe/s that drug-induced activation of the LC-
NE system increases cognitive flexibility and bebeal disengagement. For example, drugs that
increase tonic NE levels (i.e. mimic the effecteleivated NE release that characterize the tonic LC
mode) have been found to improve attentional-séirghand reversal learning in rats and monkeys
(Devauges & Sara, 1990; Lapiz & Morilak, 2006; La@ondi, & Morilak, 2007; Seu, Lang,
Rivera, & Jentsch, 2008; Steere & Arnsten, 1997 ske Chamberlain et al., 2006). In humans,
increased NE levels induced by the selective Nipteke inhibitor atomoxetine have been found to
improve the ability to stop an ongoing motor regwwhen cued to do so (Chamberlain et al.,
2006). A possible explanation for this findinghsit the drug-related increase in cognitive flexipil
facilitates disengaging from one task (respondarg) switching to a new task (stopping the
response). In addition, increased NE levels indumetihe selective NE reuptake inhibitor
reboxetine have been found to enhance social fligxiim human participants, as indicated by
increased social engagement and cooperation atlietion in self-focus (Tse & Bond, 2002).
Although none of these studies directly investidadeploitative versus exploratory behaviors, their
findings support the idea that the tonic LC modedpices an enduring and largely nonspecific
increase in responsivity, which promotes a flexiblgploratory control state.
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Modeling studies have started to investigate thaiomship between LC mode and task-
related utility, integrated over different timesesAston-Jones & Cohen, 2005, Figure 10;
McClure, Gilzenrat, & Cohen, 2005). However, toedtitere has been hardly any empirical
research on the temporal dynamics of utility-drigkanges in LC mode. We addressed this issue
by assessing the trial-to-trial changes in utiityd baseline pupil diameter surrounding the switch
between exploitative and exploratory choice stiatedrhe switch to an exploratory choice strategy
was preceded by a gradual decrease in utilityabwtbrupt increase in baseline pupil diameter.
When patrticipants started to exploit a new machiter a period of exploration, utility gradually
increased and baseline pupil diameter graduallyedsed again. This pattern suggests that the
transition from the tonic to the phasic mode iseatgradual, whereas the transition from the phasic
to the tonic LC mode is more abrupt. A somewhailampattern was found by Gilzenrat and
colleagues: Baseline pupil diameter showed a magkadual decrease when participants started to
engage in a new task; the increase in baseline giapneter leading up to task disengagement was
less gradual and less pronounced. The implicatbtisese data for our understanding of the
specific mechanisms by which changes in short-lamgtterm utility control LC mode remain a
matter for further research. One possibility ig th@ baseline activity abruptly increases when
long-term utility falls below a certain value. Castent with this possibility, there is some evidenc
that tonic LC activity in monkeys can increase allguafter a change in task contingency (Aston-
Jones, Rajkowski, & Kubiak, 1997) or during thensi@on from a drowsy to an alert behavioral
state (Rajkowski, Kubiak, & Aston-Jones, 1994)aiy case, more empirical data is needed to
determine how different measures of utility aregrated over different timescales and to specify
the function relating overall utility to changesLi@ mode. Such knowledge will also inform the
implementation of a utility-sensitive adaptive genechanism in reinforcement-learning models.
This will present a significant advance compareduaent models, such as the model used here, in
which the gain parameter is estimated for eachqiaaint but fixed across the experiment.

The abrupt increase in baseline pupil diametenrpa an exploratory choice might also be
related to the specific task that we used. An dspiethe task that could be important in this respe
is the high learning rate (see Appendix). A comphraigh learning rate was found in a previous
study using this task (Daw et al., 2006), so ins®é0 be characteristic of participants’ choice
behavior in this task. Such high learning rateslyntipat participants base their expectations
regarding the slot machines’ pay-offs primarilytbeir most recent experience with each machine.
Accordingly, a single bad outcome on a certair tsidikely to be experienced as a substantial
decrease in utility and to promote the explorabbanother machine. This possibly explains the
abrupt increase in baseline pupil diameter we ofeseimmediately preceding the first of a series of
exploratory choices. Thus, it will be importantassess in future studies whether tasks that are
associated with lower learning rates will resulaimore gradual increase in pupil diameter
preceding the switch to an exploratory choice st

Because the evidence for a close relationship lestyeepil diameter and LC activity is
currently limited (Gilzenrat et al., 2010; Nieuwendet al., in press; Rajkowski et al., 1993), more
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neurophysiological studies are needed to furthiatéish this relationship. In addition, the neural
mechanism underlying this putative relationshipaera to be determined. To date, there are no
known direct connections from the LC to the autoimorenters that regulate pupil size. It is more
likely that pupil diameter and LC activity are aidglinked because they receive downstream
influences from a common afferent source. This com@aifferent might be the
paragigantocellularis (PGi) nucleus of the ventnaldulla, which plays a pivotal role in controlling
both the LC and the sympathetic axis of the autoa@r@rvous system (Aston-Jones, Ennis,
Pieribone, Nickell, & Shipley, 1986; Nieuwenhuisatt in press). The notion that the LC and the
autonomic nervous system receive their major ififguh a common source is consistent with
several findings that suggest a strong temporaétairon between LC-NE activity and sympathetic
nervous system activity (Elam, Svensson, & Thot&86; Abercrombie & Jacobs, 1987; Reiner,
1986). Anatomical studies have revealed widespaffadents to the PGi from numerous brain
areas, including the medial prefrontal cortex, iashypothalamus and periaqueductal grey,
suggesting that activity in these areas might arilee pupil diameter by way of the PGi (Aston-
Jones et al., 1986). Consistent with this posghilMRI studies in humans and single-cell
stimulation/recording studies in animals have shtven activity in this afferent network (including
prefrontal cortex) is related to changes in pughteter (Critchley, Tang, Glaser, Butterworth, &
Dolan, 2005; Loewenfeld, 1993; Siegle, Steinha8&gnger, Konecky, & Carter, 2003).

Although our study focused on a possible role efltE-NE system, it is unlikely that this is
the only brain system involved in regulating thelexation-exploitation tradeoff. There is some
evidence that the dopamine system also influereaasd of exploration or task (dis)engagement
(Dreisbach et al., 2005; Frank, Doll, Oas-Terpstr&joreno, 2009). For example, in one study,
individuals with high spontaneous eyeblink rateméaker of central dopaminergic activity)
showed enhanced cognitive flexibility, as measumgthe tendency to disengage from previously
task-relevant stimuli and orient to novel stimidr¢isbach et al., 2005). Furthermore, this effect
was modulated by the D4 dopamine receptor genemmiyhism. Another study reported that the
vall158met polymorphism of COMT, a gene that sulisthy affects prefrontal dopamine levels,
could account for individual differences in uncertgbased exploration (Frank et al., 2009). In
addition to other neuromodulator systems, recemties have implicated the frontopolar cortex in
the control of exploratory behaviors (Daw et ab0@&; Bourdaud, Chavarriaga, Galan, & Millan,
2008), although the specific computations perfortmgthe frontopolar cortex in this context are a
topic of ongoing debate (Boorman, Behrens, WooJrd&Rushworth, 2009). A key objective for
future research is to specify the distinct contiidms and interactions of the dopamine and LC-NE
systems and the prefrontal cortex in the regulatioime exploration-exploitation tradeoff.

Our experimental design enabled examination ob#seline pupil diameter but, due to the
overlap of the decision and outcome processingndidllow examination of the decision-induced
pupil dilation. Hence, the hypotheses we testedwestricted to the adaptive gain theory’s
assumptions about tonic LC activity. To provide pbementary data with regard to phasic LC
responses, an important aim for future studies isse a task in which the decision and outcome
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presentation are separated in time such that tpié gilations associated with these two processes
can be isolated.

The present study tested specific predictions cBggithe relationship between pupil
diameter, utility measures and choice strategydasea mechanistic theory about the role of the
LC-NE system in regulating control state, and pneiary evidence from previous studies for a
close relationship between LC activity and pupélrdeter. Given the specificity, and therefore the
intrinsic unlikelihood, of our predictions, the fdabat the predicted effects were observed lends
provisional support to the hypotheses that droeeptiedictions. However, since this is an inductive
argument, it is important to note that we canntd aut the possibility that the observed
relationships were not related to LC-mediated matitrh of control state. Thus, future studies
using more direct measures or manipulations of. @éNE system are needed to either confirm or
invalidate the conclusions from the present study.

For a long time, the LC-NE system has been assatiaith basic functions such as arousal
and the sleep-wake cycle. Only recently, reseaschave begun to examine its involvement in
more specific cognitive functions, such as attentrmemory, perceptual selection and the signaling
of unexpected uncertainty (Einhéuser, Stout, K&@8arter, 2008; Robbins, 1997; Sara, 2009; Yu
and Dayan, 2005). The present study contributésisovork by addressing, albeit indirectly, the
role of the LC-NE system in the control of humahdaor. Specifically, the findings reported here
support the adaptive gain theory (Aston-Jones &€DoR005), which posits an important role for the
LC-NE system in the optimization of behavioral pemiance by regulating the balance between
exploitative and exploratory control states.
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Appendix

Pay-off structure of the gambling task
The number of points paid off by slot machiran trialt ranged from 1 to 100, drawn from
a Gaussian distribution (standard deviatmn= 4) around a megn, and rounded to the nearest

integer. On each trial, the means diffused in agi®g Gaussian random walk:

Higa =AM+ A=) +v .

The decay parameterwas 0.9836, the decay cenflavas 50, and the diffusion noigewas zero-
mean Gaussian (standard deviatmn= 2.8). We used one instantiation of this pro¢esgure 1).

Reinforcement-learning model
We used a Bayesian mean-tracking rule (i.e. a Kalfitar) that tracked the mean expected
pay-off of each maching ) and the variance of these pay-oﬁﬁét). On the first trial of the task,

2pre

all four machines had the same prior m¢zf and variancé; ™. These start values were based on

the pay-offs received during the practice blocld erere determined separately for each participant
(meani’;°=51.9, SD = 2.7; mead}"*= 52.3, SD = 14.9). When a participant chose mauahim

ost & 2 post

trial t and received pay-off the estimated pay-off distribution/{;*,.**') was updated
according to:

Iuptost
'\2post - (1 K ) '\2pre

Wlth prediction error5 =r,— A% and learning rate, = 52" /(52" +57).

= [l + KO

The estimated pay-off distributions for the unchosechines did not change.
Then, the estimated prior pay-off distributionstba subsequent trial (trigt1) were updated in
time according to:
5 = A+ (- 1)6
a.ztaae = /12 2post +0’*.§ )
We modeled the choice of the participants by ansatrule. The probabiliti , of choosing
machineg on trialt was given by:

_exp(Bie)
Zexp(ﬂﬂp“e

with exploration paramet¢t (often referred to as gain, or inverse temperature)

For a discussion of the Kalman filter and the saftrrule, we refer the reader to Anderson and
Moore (1979), and Sutton and Barto (1998), respelsti
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We fitted the model to each individual participanthoice data. The trials in which no
response was made within the 1.5-s time limit veenétted. The parameteﬂs g and LBwere

estimated per participant by maximizing the loglikood of the observed choices (Supplemental
Table 1). Parametey, was fixed at 4. Estimation of paramet&[ resulted in extreme values for

most of the participants (values larger than 1@0dQdn of the seventeen participants), suggesting
unreliable fits. Therefore, we fixed this parameteb0, which is similar to the best fittirg,
parameter found in a previous study (Daw, O'Dohd@fgyan, Seymour, and Dolan, 2006). This
large value ofg, implies that participants overestimate the spdetiffusion in the pay-offs. Large
values of g, induce high learning rates, indicating that thpezted pay-offs are determined

primarily by the most recent experience with eacthme.

Supplemental Table 1.Mean parameter estimates and negative log liketiHor the fit of the softmax model to the
choice data of each participant. The parameteregalised to generate the pay-offs, and the nedatiMéelihood of a
model in which choices are made randomly are dlsws.

Estimated values  Generative values

Jé; 0.160 (0.066)

A 0.894 (0.083) 0.9836
6 56.9 (17.6) 50
g, 50 (fixed) 2.8
a, 4 (fixed) 4
-LL 153.1 (34.8)

-LL randomly choosing model 247.2 (2.0)

Note: SD in parentheses; -LL = negative log liketid

Additional control analysis

Besides the multiple regression analyses, we paddra second set of control analyses to
investigate whether differences in each of theaeconfound variables could account for the
different baseline pupil diameter on exploratiod &nploitation trials (and hence might provide an
alternative interpretation of the effect). We repdahe comparison of baseline pupil diameter on
exploitation and exploration trials while, in segi@ analyses, controlling for differences in eakch o
the potential confound variables (pay-off on theywus trial, prediction error on the previousliria
expected pay-off on the current trial and entropyhee current trial), by matching the values of
these variables across exploration and exploitdtials (Bernstein, Scheffers, & Coles, 1995). We
sorted each participant’s exploitation and exploratrials by one of these variables, and then
successively removed the most extreme exploitai@hexploration trials, thereby reducing the
difference between the mean value of this conforaréhble on exploitation and exploration trials.
After each trial removal, we calculated the diffeze between the mean values of the confound
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variable on exploitation and exploration trialsgame stopped the removal process when this
difference was not further decreased by removal @ibsequent trial (Supplemental Table 2). We
also controlled for choice strategy on the previwizs, by including only the trials that were
preceded by an exploitation trial. Finally, in orde control more explicitly for the possibilitydh
the higher incidence of negative prediction erpreceding exploratory choices was driving the
effect, we repeated the analysis while only inahgdhe trials that were preceded by a positive
prediction errof.

Importantly, none of the potential confound varesbtould account for the larger baseline
pupils preceding exploratory compared to exploigatihoices: the critical effect remained
significant after correction for choice strategytba previous trialt{16) = 2.5p = 0.026]; pay-off
on the previous trialt(16) = 2.9,p = 0.009]; prediction error on the previous tfi#l6) = 2.5p =
0.025]; expected pay-off(fL2) = 3.1,p = 0.010]; and entropy(L6) = 3.5,p = 0.003]. Furthermore,
the effect remained significant when only the githlat were preceded by a positive prediction error
were considered((L2) = 2.3,p = 0.037), suggesting that the larger baselinel mupexplore
compared to exploit trials was not due to the langeiddence of negative prediction errors
preceding explore trials.

Supplemental Table 2.The number of excluded trials and the values efabtential confound variables on exploration
and exploitation trials after correction.

# excluded trials Exploration  Exploitationp-value

Expected pay-off 83.8 (13.5) 60.0 (4.1) 60.1 (4.0) .29
Entropy 27.0 (14.0) 1.25 (0.30) 1.26 (0.29) .02
Pay-off preceding trial 23.2 (15.9) 57.8 (2.0) 52D) 13
Prediction error preceding trial 14.3 (9.6) -1.8124) -1.83 (5.28) 40

Note: SD in parentheses. The difference in entaffsr correction is in the opposite direction (Ergntropy on
exploitation trials) compared to the original effec

Uncertainty-driven exploration and pupil diameter

In the softmax rule described above, the prolightiiat a particular machine is chosen is
determined by its relative mean estimated payafti(the value of the gain parameter), but not by
the uncertainty about its potential pay-offs (ilte variance of the estimated pay-off
distributiong””®). On the other hand, modeling studies have sugdesat exploration might be

directed towards particular choices in proportiothte uncertainty about their outcomes, which can
be implemented by adding an ‘uncertainty bonushtexpected value of options with uncertain
outcomes (e.g., Sutton, 1990). It has recently lsbemvn that individual differences in uncertainty-

2 Four participants had to be excluded from theyaimthat corrected for expected pay-off, becahedifference in
expected pay-off between their exploration and @#ggion trials was so large that no exploratigalsrwere left using
this procedure. Similarly, four participants wereleded from the analysis in which only the tripleceded by a
positive prediction error were considered, sinas kan ten explore and/or exploit trials wereflafthese participants.
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based exploration are associated with the val15@wlgtmorphism of the COMT gene, which
substantially affects prefrontal dopamine levela(ik, Doll, Oas-Terpstra, & Moreno, 2009).
According to the adaptive gain theory, the incrddsg level in the tonic LC mode indiscriminately
facilitates processing of all stimuli and/or betwagj which promotes a nonspecific type of
exploration. Hence, the theory predicts that irdlinal differences in tonic LC activity (as indexed
by baseline pupil diameter in this study) will legated to individual differences in exploratory
behavior (Results section), but not to individuiffiedences in uncertainty-specific exploration.

To asses this last prediction, we considered tansof rule in which an ‘uncertainty bonus’
of ¢ standard deviations was added to the estimated peganffs:

_ exXp(BLAE +957)
TS exp(BLE + 96 D)
i

The best fitting uncertainty bonus parameter ia thodel varied across participants: four
participants had a positive bonus and thirteeri@paints had a negative bonus (mean bonus =
-0.117, SD = 0.336). Thus, for the majority of gegticipants, uncertainty about the potential
outcomes of a machirdiscouragedexploration of that machine. Importantly, the vatii¢he
uncertainty bonus parameter did not correlate ébeline pupil diameter € 0.05,p = 0.86),
consistent with the assumption that the tonic LQlenis not associated with uncertainty-specific
exploration.
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