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Chapter 3

Spin waves in cylinder of 1
mm in diameter

3.1 Spin waves

Spin waves refer to a collective excitation of spins in a system, for example electron
spins in a lattice. In analogy with lattice vibrations or phonons, which are collective
excitations of atomic positions in a lattice. Quantum mechanically one can speak
about magnons, which are then the quantized spin waves. In the case of *He, NMR
is the ideal technique to detect such spin waves, but the measured signal is the in-
tegrated magnetization of the spins of *He, which will average to zero !. However,
standing spin waves will give a detectable signal. One way to create standing spin
waves is to apply an inhomogeneous magnetic field, which allows even the detection
of spin waves in the normal phase of *He [56]. In the superfluid phases the inhomo-
geneity of the texture allows the existence of standing waves as well. Here the spin
waves are the Goldstone modes associated with the spontaneously broken rotational
symmetry in spin space 2.

The bulk isotropic superfluid B-phase of *He is not suitable to form standing spin
waves measurable with conventional NMR, techniques, since the n-vector has no pre-
ferred orientation, causing the integrated magnetization to average to zero. However,
walls and magnetic fields will introduce a preferred orientation for the n-vector, which
is explained in detail in section 3.3.

In confined geometries including magnetic fields the orientation of the n-vector
will be locally different, which results in the bending of the n-vector over the sample.
This bending occurs over a typical distance of the magnetic healing length £z, which is

1Technically one can measure a net magnetization if the NMR coils are of the same dimension as
the wavelength of the system, which is normally not the case.
2In the case of 3He-B the relative broken spin-orbit symmetry.
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3. Spin waves in cylinder of 1 mm in diameter

a few millimeters long [57] [58]. If the superfluid B-phase is formed in such geometry,
with at least one dimension close to the magnetic healing length, it will create a
texture which may act as a potential for standing spin waves. These spin waves can
be detected by transverse NMR experiments, and are observed as satellite peaks in
the absorption spectrum.

The very first experiment which observed spin waves in the superfluid B-phase was
performed by Osherhoff, see for example [59]. He used a slab geometry (separations of
the plates was L < £y) and a magnetic field Bg parallel to the plates. The transverse
NMR experiment found a more or less constant separation of the spin wave modes
(NMR resonances), of which the intensities dropped as function of k~! (k is the spin
wave mode). This was in good agreement (at least to first order) with the solutions
of the differential equation for this geometry [60] [61], see also section 3.5. It was seen
as the proof of the existence and possibility of spin waves in the superfluid B-phase.

Another convenient geometry to create spin waves is a cylinder with a radius of
few times the magnetic healing length. The cylindrical symmetry makes it relatively
easy to calculate the allowed textures and spin waves, see sections 3.4 and 3.5. One
of the first transverse spin wave experiments in a cylindrical geometry was performed
by Hakonen et al. [62]. The experiment also showed a nearly equal separation be-
tween the spin wave modes, of which the intensity decreased as a function of k. These
experiments could be explained by numerical calculations of Jacobsen and Smith [63].

The cylindrical geometries were also convenient to study vortices in the superfluid
B-phase. Consequently several groups build rotating nuclear refrigerators to study
this phenomena [64] [65] [66] [67] [68] [69]. Vortices affect the fi-vector mainly through
a change in the magnetic orientation energy, which results in a different textural con-
figuration compared to the non-rotational situation [70]. The effects show up in the
experiments by a change of intensity and spacing of the spin waves. In this way an
interesting discontinuity in the spin wave resonant frequencies was observed [58] [62],
which marks a transition between the two different vortex states in the B-phase.

Our interest concerns the non-rotating cylinder experiment. We are interested in the
textural configuration in the cylinder, which should be revealed by the spin waves.
The magnetic healing length decreases as a function of temperature, and with a suf-
ficiently small container radius one expects a textural transition. However, we found
that the n-texture formed a metastable configuration, which is unchanged to the
lowest temperature. Not only did this metastable texture create a temperature in-
dependent potential for the spin waves, but the form of the potential is close to a
quadratic function. This makes the potential interesting for two reasons. First, it is
pressure and temperature independent, which is different from the situation in earlier
spin wave experiments. However, modifying the pressure will still change the dipole
coherence length of the superfluid, which will increase (or decrease) the amount of
spin wave modes in the container. Meaning that we can now study this effect in the
same energy ’landscape’. Secondly, the differential equation describing this geom-
etry is analytically solvable for a quadratic potential, and allows us to explain the
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3.1 Spin waves

absorption intensities of the spin wave modes. This is a unique phenomenon in the
superfluid B-phase spin wave experiments.

The theory and the experiments of the spin waves in the metastable texture are
described in this chapter. Also the experiments with the textural transition to the
expected uniform texture is included in this chapter. From that experiment we con-
clude that the metastable texture could be realize if its growing speed is sufficiently
slow.
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3. Spin waves in cylinder of 1 mm in diameter

3.2 Transverse NMR in He-B

Normally, in the absence of magnetic field, the spin orientation in a sample is isotropic.
In that case, when cw-NMR is applied, there is resonance at the Larmor frequency
as described in section 2.4. However, the order parameter of *He can be anisotropic
(including the spin orientation), which induces a shift in the resonance frequency
compared to the Larmor frequency. In cw-NMR experiments a shift in the resonance
frequency will occur when a transverse oscillation €2, of the spins contributes to the
(transverse) oscillation of the rf-field from B;. The new transverse resonant frequency
wgo will then be

wo? =wr? + Q% (3.1)

As already mentioned before, the dipole energy (despite the fact that it is small
by itself) has strong influence on the orientation of the order parameter, and thus
on the frequency shift. From the Hamiltonian describing the spin orientation of the

system,
1
Hg = 57289(18 —~yS-H+ Hp, (3.2)
where x is the susceptibility tensor, the spin dynamics in the superfluid can be derived
[21], [71], [72]. From here the oscillator frequencies can be obtained. In the linear
regime, meaning small deviations from the equilibrium values (spatially homogenous

conditions), the oscillator frequencies get the form of

2 _ 7 %fp
o x 06,00,

If one would apply the dipole energy of the (zero field) B-phase (1.23) to this
equation one would not expect a transverse component, since the orientation of the
n-vector is isotropic. However, if we take the limit for the magnetic field H — 0,
keeping n parallel to the magnetic field H, equation (1.23) changes into

(3.3)

8 1\°
Fp = 5gD(T) (cos 0.+ Z) + const. (3.4)

From equation (3.3) and by putting 6, = 65, we get:

Qoo = Qyy =0, (3.5)

2

02, = 3;—BgD(T) =03, (3.6)

As expected, the B-phase does not have transverse frequency components, but it

has a longitudinal one. This would not be observed in a transverse cw-NMR experi-

ment, but can be seen in longitudinal cw-NMR experiment, hence with the rf-field B,

parallel with By. These longitudinal resonances have been observed experimentally
[73], [36].
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3.2 Transverse NMR in 3He-B

In the By-phase one would expect, due to preferred orientation of the n-vector, a
transverse frequency shift from the Larmor frequency. Using the relations (1.24) and
(1.28) with (3.3) and including only small deviations around equilibrium, one obtains
the transverse components [21]

. . 2 o .
0, =05, = ZApNry'x (AL - Af). (3.7)
It implies two elliptical polarization modes with frequencies:
., 1. 1 : )
w? = Wi+ Qo Swiy/ (W] +493,). (3.8)

Because we do low-frequency NMR, in our experiments the difference in population
(A% — Aﬁ) is rather small. The transfer shift due to the orientation effects in the
Bs-phase can be neglected, especially because there is a much more dominating effect
on the transverse shift.

If one studies NMR in restricted geometries like cylinders, slabs, aerogel or pow-
ders, surface effects play a dominating role on the orientation of the order parameter
n, see section 3.3. The f-vector will orientate from equilibrium 1 || H to the normal
of the surface. This transverse shift wg can be expressed in the longitudinal resonance
frequency of the B-phase (see equation (3.6)) and the angle 3, which is the angle
between the n-vector and the (external) applied magnetic field [74]:

. 1, . . 1 .
Wi = 5(wi +0%) + \/Z(w% + 0%)2 — wi O cos? . (3.9)

The angle S is a function of position in the cell, so the total NMR spectrum from the
3He fluid, if we neglect field inhomogeneity and relaxation times, is then given by the
line shape function

Flw) = /V ol — wo(r)]. (3.10)
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3. Spin waves in cylinder of 1 mm in diameter

3.3 Orientation of the n-vector due to bulk and sur-
face effects

The orientation of the n-vector is determined by effects in the bulk liquid and by the
surface of the sample. The two most important orientation energies in the bulk are:
The bulk-field free energy Fpy and the bulk-bending free energy Fpp.

The bulk-field free energy Fppy equals the n - H dependency of the dipole energy
density (1.24) to lowest order. Higher orders are not needed, because they hardly
give any contribution to the bulk-field free energy.

Fpy = —a/d3r(ﬁ -H)2. (3.11)

The term (fn-H)? is described by Leggett [21] as a combination of the depairing effects
of the magnetic field and the dipole energy. The coupling strength a, in the case of
3He-B, is estimated to be |a| ~ 41072 erg cm™3 G2 [55] , [22], [75]. The magnetic
field in the bulk will try to orientate n in the same direction, for which the energy is
minimized.

The n-vector is oriented by local conditions, however the change of this orientation
can only be continuous. Fast changes (discontinuities) of the order parameter will
be energetically unfavorable. It means that all spatial variations should be smoothed
(out) over a finite distance, which is accomplished if Fgp is expressed as an invariant
combination of the gradients of the order parameter [76], [60]. Basically, the bulk-
bending free energy is obtained by integrating the bending free energy density (1.35)
over the whole volume.

Fpp = 1_03 @Br{16(f x (V x 0))2 + 13(V-0)? + 11(A - V x f)?

—2V/15(V - 2) (- V x a) + 16V - [(A - V)a — a(V - n)]}, (3.12)

where |¢| ~4-1071%p,/p) erg cm™!, and (ps/p) the fraction between the superfluid
and the normal liquid in a static configuration [55], [22], [75].

The most important energies, responsible for the orientation of the n-vector at the
wall, are the surface-dipole free energy Fsp and the surface-field free energy Fsp. The
surface-dipole free energy Fsp deals with the fact that the orbital angular momentum
L of the Cooper pairs at the wall are suppressed as:

Fsp = —b/d%«(ﬁ -8)?, (3.13)

where [b] ~ 1-10719A(T)/A(0) erg cm~2 and A(T)/A(0) indicates the amount of
Cooper pairs [55] , [22], [75]. § is the surface normal, and parallel alignment of n will
minimize the total energy.
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3.3 Orientation of the n-vector due to bulk and surface effects

When a magnetic field is included, there is a competition between the surface and
field aligning forces. The energies of this interplay are expressed in the surface-field
free energy Fsp [60] :

Fspy = —d/dzr(é-R-H)z

_ _%d/d%«[(ﬁ L8)(h-H) + \/gn (6 x H) — %(g CH), (3.14)

where R is the rotation matrix specified by n(r) and 6 (1.16). The second part
of the equation is obtained by insertion the rotation matrix with the angle 8§ =
6 = cos '(—%) (for which the dipole energy is minimized in the bulk liquid). The
coefficient d is approximately £(T)(xn — xB). The difference in susceptibility (xn —
xB) between the normal- and the B-phase (Balian-Werthamer state) is maximum
at zero temperature, which is approximately 2/3xnx. The temperature dependent
coherence length £(T") comes in as a length scale over which the order parameter can
recover.

The preferred orientation of n, for which Fsy is minimized, also depends on the
relative direction of H and §. In the case that H is perpendicular to §, as in the case
of our experiments, it is shown [60] that Fsp is minimized when i makes an angle
B = cos™'(1/4/5) ~ 63.4° with respect to both § and H. This situation is illustrated
in the figure 3.1, taken from the article by Spencer and IThas [77].

All these forces mentioned above (and other higher order forces) do want to align
the n-vector in the most (energetically) favorable orientation corresponding to that
force. However, the superfluid takes the configuration which minimizes the total free
energy over the whole sample. This results in continues change of the orientation
from the n-vector over the whole sample, which is called the n-texture [76].

Figure 3.1: The vectors H, §, and n shown relative to a plane perpendicular to n
when the surface normal § and magnetic field H are perpendicular. The angles are
given by n-§=n-H/H = cosff = 1/\/5 and cosf = —1/4. Rotation by 61, about
the axis n takes the § vector into the H vector.
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3. Spin waves in cylinder of 1 mm in diameter

From the four coefficients of the equations (3.11), (3.12), (3.13) and (3.14) we can
define one important characteristic length R. and two characteristic fields Hg and
Hp.

c

=< 1
Re= (3.15)

This length defines the typical sample size for which the surface-determined orienta-
tion of the n-vector is noticeable in the bulk liquid of the sample. When the size of the
sample is much bigger than this length, the surface energy becomes more important
than the bending energy.

The definition of the characteristic field Hg is given by

Hs = \/g. (3.16)

This parameter indicates which surface energy, namely the surface-dipole or the
surface-field free energy, is dominating. In low fields the surface-dipole free energy
determines the orientation of the f-vector and in high fields the surface-field free
energy will.

Finally, the characteristic field

b2

Hp = (3.17)

ac’

This field indicates whether the bulk or the surface effects have most influence on the
orientation on the n-vector.

60



3.4 Orientation of the n-vector in cylindrical samples
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Figure 3.2: Orientation of the n-vector in cylindrical symmetry. (a) in-plane texture
and (b) the flare-out texture. Orientation of the cylinder is indicated.

3.4 Orientation of the n-vector in cylindrical sam-
ples

In general different textures (in different geometrically samples) seem to be possible.
Even in a cylindrical sample, many stable textures can be expected. However, in the
case of an axial magnetic field two stable textures are calculated by Smith, Brinkman
and Engelsberg [60]. In the absence of a magnetic field (or the limit to zero), the
n-vector’s orientation is determined by a competition of the bulk-bending free energy
and the surface-dipole free energy. If the radius R of the cylinder is close to the
characteristic length R, the in-plane texture is energetically favorable. Here the n-
vector has no component along the z-axis, see figure 3.2 (a) (figure is taken from
the article of Smith, Brinkman and Engelsberg [60]). The bulk-bending free energy
determines this texture as long as the radius of the cylinder is R < 10.0R.. However
for very small R there are some deviations to this texture, due to boundary conditions
at the surface.

If the radius of the cylinder is R > R,., than the surface energy gets more important
3. In this case the boundary conditions put fi || §, with § the normal to the cylinder
wall. As this is impossible in an in-plane texture, the consequence is that the n-vector
has to flare out into the z-direction of the cylinder, see figure 3.2 (b). In the absence
of a magnetic field the flare-out configuration is the lowest energy configuration as
long as R > 10.0R.. While it is intuitively clear that axial magnetic fields will favor
the flare-out texture, it is generally hard to calculate the reduction of R, for which
the crossover between the two textures occurs. However, perturbation theory is done

3The bulk-bending free energy increases like In(R/R..).
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3. Spin waves in cylinder of 1 mm in diameter
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Figure 3.3: The radial dependence of the azimuthal angle o and the polar angle 3 for
a cylinder of radius R. p = r/&y. The radius R = 46y = 4,/65/8¢y.

[60], and for small field (H <« Hs AN H < Hp) the crossover is at a radius of:

R =10.0R, — 137(H/Hg)*R,. (3.18)

For higher magnetic fields (H > Hg) the surface-field free energy is smaller than
the surface-dipole free energy. Here we expect that the n-vector is parallel to the
z-axis in the center of the cylinder and aligns itself over a typical length £y (magnetic
healing length) to the orientation directed by the surface-field free energy (i has an
angle with H and § of cos™'(1/v/5)). These two boundary conditions change the
n-vector orientation in a spiral-like configuration, which may be parameterized by

n = sin f cosar + sin S sina@ + cos fz (3.19)

in cylindrical coordinates. The angles a and  are functions of r only. Its behavior
has been studied analytically [78], [79] and numerically [63]. The dependence of a
and f# do matter on the cylinder size as well, it changes the boundary conditions for
a (it may vary between 60° to 38° for a(0)) and the way f varies over the sample.
At this point it is convenient to express the radius of the cylinder in terms of £p,
the magnetic healing length of *He-B. We know as long as there is sufficient magnetic
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3.4 Orientation of the n-vector in cylindrical samples
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Figure 3.4: Some views of the growing n-texture obtained from the experiment of
Spencer and Ihas. Figure is taken from [57].

field the flare-out configuration is favorable. In other words, as long as the radius is
at least a couple of times £ the texture should be in the flare-out configuration. So,
in the case we deal with cylinders where R > £g, the boundary conditions for g are:
B(R) = cos *(1/v/5) ~ 63.4° and B(0) = 0. The angle 3 changes quadratically for
small r with some exponential prefactor. On the other hand, a hardly changes as
function of r and is plotted together with 3, in the case R = 45}{ = 4,/65/8¢y, in
figure 3.3. This figure is taken from the article of Jacobsen and Smith [63]. Here the
two angles « and (3 are connected such that the total free energy was minimized.

Experimentally the r-dependence of the two angles was already found by Spencer
and Ihas in 1982 [57], and was later worked out in detail [77]. In their transverse NMR
experiments they could find the 3(r) and a(r) by deconvoluting their NMR spectra.
As explained in equation (1.39) the magnetic healing length £y grows with decreasing
temperature, which enabled them to model the texture growing as it is parameterized
by (3.19), see figure 3.4. It is interesting to see, and important for us as we will see
later, that the texture gradually grows in a spiral way to the center. The growing
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3. Spin waves in cylinder of 1 mm in diameter
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Figure 3.5: 3(r) for several values of £y /r¢. Figure taken from [79].

should be able to continue as long as the boundary conditions can be fulfilled, meaning
that the flare-out texture will grow as long it is the most energetically favorable
configuration.

As mentioned before, much effort is done to calculate the radial behavior of §.
The results of Maki and Nakahara [79], who calculated f for different ratios of {5 /g
are plotted in figure 3.5. All these simulations support the flare-out configuration.
Simulations for ratios g /r¢ > 0.5 become hard, as it cannot be approximate linearly.
However, one may assume that the most extreme form of the flare-out configuration
would be a straight line connecting the boundary conditions, which corresponds to a
gradual change of the n-vector over the sample. Not clear is how this is energetically
in proportion to other textures. Actually, because of complications in the calculations,
it is not clear at all how transitions to other textures should occur when £y > R. Of
course the qualitative answer for the limit £ > R is clear. The texture should be
completely uniform, and 3 should have an angle of cos™'(1/+/5), as is imposed by the
surface.
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3.5 Spin dynamics in a non-uniform texture

3.5 Spin dynamics in a non-uniform texture

The influence of non-uniform textures on spin dynamics can be solved with the Hamil-
tonian approach. In this case the Hamiltonian of equation (3.2) should be extended
with the gradient free energy density of equation (1.31). By assuming the following:
The equilibrium fn varies on a scale of g, 8, varies on a scale of {p (which is much
longer than &g, see section (1.8)), spin-orbit angle is fixed (§ = 1) and parameterize
the order parameter in terms of 6, the bending energy is given as [60] [80]

2

1 _ _
fbend = 5%9%612) KZ(VHQV)Q - K’ (320)
nv

> R (V.ub,)
iz

The coefficients are given by K' = Ky + K3 and K = 2K; + K' with K; =
K;jA?y?[(xQ%Eh). Rf, is the rotation matrix at the dipole-locked rotation angle
(8 = 1), which contains the information of the equilibrium n-vector (see equation
(1.16)).

The spin equations (dynamics) can now be solved from the effective Hamiltonian,
hence

ihS =[S, Hs + frend)- (3.21)

Considering a weak rf-field By in a static uniform magnetic field By (determining
the z-axis), Theodorakis and Fetter [81] showed that the following differential equation
is obtained

1

= gz [(W* —mwwr — Q)0 — iwyHip), (3.22)
B

(Dm + Vm)am

where V,,, = =1+ |n),|? and D,,, = D,:
Dy =& | =6 KV? + K'Y (RE\VA)(RE V)| - (3.23)
AN

The differential equation can be rewritten in the form of the Schrédinger equation
(assuming that there is a no spin super current through the surface)

(Dm + Vm)d)ch = Echd)ch- (324)

Here D,, and V,,, play the role of the kinetic and the potential energy, respectively.
The polarization of the vector field is indicated with m. Transverse components
coincide with 4+ and - , and the longitudinal component with m = 0. The two
equations can be connected by expressing 6 in terms of eigenfunctions ), j:

am(r) = Z cm7k’l/}m,k (325)
k
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3. Spin waves in cylinder of 1 mm in diameter

where ¢y, i is chosen such that equation (3.22) can be regained. The relations of the
(kth) eigenfrequencies and energies are then given by.

wfn’k — MW kw1, — V% = Epy 1 Q%. (3.26)

It is this set of frequencies, which correspond to spin waves, which can be experimen-
tally accessed.

3.5.1 Cylindrical geometry

Spin waves can be expected if one goes to restricted geometries, where the surface
plays an important role in the orientation of the n-vector. In general the differential
equation (3.24) for a given geometry is not trivial to solve. However, for the parallel-
plate and cylindrical geometries the differential equation, to a certain extent, can be
solved. In the case of slab geometry (separation of the plates L < £y) and By parallel
to the plates, transverse NMR experiments could detect spin waves [59]. Here the
spacing between the spin waves (NMR resonances) was (more or less) constant, and
the intensity dropped as a function of k~!. This is in good agreement (at least to
first order) with the solution of the differential equation (3.24) for this geometry [82].

Our experiments are performed in a cylindrical geometry in a transverse NMR
configuration. The effective potential V;,,, see equation (3.22), for the transverse case
(m = +), where the equilibrium n-vector for long circular cylinders is parameterized
as in equation (3.19), is axially symmetric and given as:

1
Vi=-l+3 sin® 3. (3.27)

In this axially symmetrical case the differential equation (3.24) is given by [79]:

(=K + K'|R,1))éD [%d% (Tdii)] Yip— (1 - %SiHQ Bbs k= Exptppn (3.28)
If we are in the experimental situation, illustrated in figure (3.3), the potential V.
varies (determined by its boundary condition) between —1 (r = 0) and —3/5 (r =
R). Tt has a quadratic behavior near its center, and one may want to replace the
1/2sin® B part with (r/L1)?, where L; is a measure for the curvature bounded by
the boundary conditions. By taking |R%,|? = 1/2 (which is its value at r = 0),
the differential equation reduces to the Schrédinger equation for the two dimensional
harmonic oscillator. One may consider these approximation a bit rough (errors over
10% far from the center can be expected). However, it is, as shown later in this
thesis, interesting to investigate which features a quadratic potential would show in
the transverse NMR experiments.

The eigenvalues of the two dimensional harmonic oscillator are given by

_ 1 -
Eip=-1+2 (K - EK’) i—D(k +1). (3.29)
1
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3.6 The magnetic healing length of 3 He-B

Only the s-wave states couple to the homogeneous rf-field, or with other words: only
the I = 0 modes have non-vanishing intensities in experiments using uniform rf-
fields [63]. Consequently, only the even k modes couple to the corresponding NMR
frequencies. It means for the eigenvalues that they are equally spaced, like in the case
of slab geometry. However, the relative intensity is given by:

Ii/Ig=1 for k=2,4,6, ... (3.30)

Where I, is the intensity of the k" spin wave mode. The NMR absorption lines
for the excited modes should all show the same intensity. This is in sharp contrast
with the planar n-textures, here the intensity drops as k~!. However, experiments
performed with cylindrical geometries do show a decrease of intensity with increasing
k [62]. Jacobsen and Smith [63] did numerical calculations, where the configuration of
the texture (which determines the effective potential) was determined by minimizing
the appropriate free energy and solving the resulting Euler-Lagrange equations. It
explained the experimental data, for which the quadratic potential approximation
seemed to be too crude.

3.6 The magnetic healing length of *He-B

In section 1.8 a rough estimation of the magnetic healing length in the B-phase was
performed. It shows the physical properties but it fails to describe the healing length in
detail. The experimentally found magnetic healing length as function of temperature
near melting curve pressures ~ 30 bar and 30 mT, as fitted by Maki and Nakahar
[79], are put in figure 3.6. The fit was obtained from data at temperatures between
the transition temperature T, and 0.7 T.. At lower temperatures an extrapolation
of these fit functions was used. However, for the lowest temperatures it will more
likely be proportional with the gap energy. Both fits show the same behavior before
extrapolation and are approximately 0.5 mm for temperatures at 0.7 7. and magnetic
fields of 30 mT. In our experiments the magnetic field was half this value (15 mT), and
according to (1.39) one should than expect a healing length of 1.0 mm. In addition
equation (1.39) shows a &, dependence, which is 5 times longer for zero pressure
compared to the melting pressures. It is reasonable to believe that our magnetic
healing length is at least 5 mm for zero pressure, and ~ 2.5 mm for 6 bar at 0.7 T,
and 15 mT *.

3.7 NMR absorption in cylinder of 1 mm diameter
The NMR experiments performed in the cylindrical part of the cell with a cross section

of 1 mm in diameter are done at relatively low pressures. Several measurements
were done with a pressurized cell between 0 and 6 bar. The data is obtained by

4The data of Spencer and Ihas indeed show (roughly) 3 times longer magnetic healing length £B
for the low pressure data (2.89 bar) compared to the melting curve pressure.
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3. Spin waves in cylinder of 1 mm in diameter
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Figure 3.6: Fit of the magnetic healing length as function of temperature, obtained
from the data from Spencer and Thas [57] and Ikkala et al. [58]. Both have comparable
systems with pressures around ~ 30 bar with magnetic fields of ~ 30 mT. The fit
is obtained from data between T, and 0.7 T.. The curves at lower temperatures are
extrapolates of the fit functions. Both areas are separated by the green line in the
figure.

increasing temperature sweep, which gives ’better’ thermal equilibrium and minimizes
the hysteresis effects of the superfluid.

These measurements were all done in the same way. First the cell was put at the
desirable pressure, same temperature far above the T, of the superfluid. Then the
whole system was cooled down by adiabatic cooling of the nuclear stage. Typically
till temperatures of 0.3 T.. At this point we waited till the whole system was in
thermal equilibrium, as observed from the melting curve thermometer and the tuning
fork. To increase the temperature, the magnetic field of the nuclear stage was slowly
increased. Simultaneously, the cw-NMR measurements were started, and the data
were collected nonstop by a labview controlled system.

The benefit to warming up the system adiabatically is that, at least ideally, the
total amount of entropy is conserved. Measurements could be repeated much faster,
without the time consuming pre-cooling of the nuclear stage. The disadvantage of this
method is that stray fields of the magnet are not constant. While compensation coils
reduce almost all the field at the experimental space, still a small fraction (around
0.01 %) can be seen in the NMR spectrum as a contribution to Bg. Practically it is
not a problem to compensate for this effect, especially considering the benefits of this
method.

Increasing (slowly) the field constantly in time, results in a proportional increase

68



3.7 NMR absorption in cylinder of 1 mm diameter

of the temperature °.

T*
T=T"+ - AB(t), (3.31)

where T* and B* are the initial temperature and magnetic field and AB(t) the field
added at B* after t = 0. Typically the temperature was increased by 0.31 mK h—1!.
The sweep time for the cw-NMR was typically 7 minutes, which means that the
temperature increases by ~ 35 pK from start to end. Significant changes in the NMR
spectra happen at much longer temperature scales. Meaning that temperature sweep
is sufficient to map a good temperature dependence with the NMR technique.

A typical temperature sweep of the NMR spectrum is plotted in figure 3.7. Here
the measurement is performed at 6 bar, and the temperature is swept between 0.57
mK and 1.56 mK (transition temperature).

At and above T, the resonance frequency occurs at the Larmor frequency. Below
T, and at this pressure, the He will have a transition from the normal phase to
the B-phase. Technically, due to the magnetic field of NMR, it is in the Bs-phase.
However, the NMR frequencies are low, meaning the population differences are ap-
proximately zero, see equation (1.30). To a very good approximation the values of the
spin susceptibility and 67 can be taken from the B-phase as well. Still the fi-vector
has a preferred orientation, due to magnetic field and surface effects, and a resonance
frequency shift, as described in equation (3.9), can indeed been seen in the figure.

Section 3.4 explained that for a cylindrical symmetric container with an axial
magnetic field, in which the radius is at least a few times the magnetic healing length
¢p, a flare-out texture can be expected. For temperatures near 7, the healing length
is indeed smaller than the diameter (1 mm) of the cylinder. However, as explained
in the previous section, the healing length increases to approximately 2.5 mm at 0.7
T, for 6 bar, which is 5 times the radius of the cylinder. One should expect, from
energetic arguments, a uniform texture where all the fi-vectors have an angle § (angle
between the fi-vector and external applied magnetic field Bg) of cos™' (1/v/5).

The line shapes in figure 3.7 show that such a uniform texture is not created. As
the temperature decreases ¢ the absorption spectrum becomes wider, meaning that
the orientation of the fi-vector radially changes in the cylinder. A more peculiar
phenomenon becomes clear for temperatures below 0.7 T,.. One can notice spin waves
in the NMR spectrum. The spin waves are more or less equally separated, but more
importantly they have approximately the same intensities. This effect, as described
in section 3.5.1, is expected for textures in a flare-out configuration, which forms a
quadratic potential. For the lowest temperatures (at 6 bar) one can clearly distinguish
5 spin wave modes, lower pressures reduce the amount of modes. This pressure
dependence will be worked out in detail in the following section.

5In an ideal adiabatical magnetization system the ratio between magnetic field and temperature
is constant, B/T = B*/T*. If one starts with a magnetic field B* the current magnetic field can be
expressed as B = B* + AB(t), where AB(t) is the increased amount of magnetic field after ¢ = 0.

6Technically the data is obtained with increasing temperature, but has the same behavior for
decreasing temperatures. See remark next paragraph.
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3. Spin waves in cylinder of 1 mm in diameter

10

NMR Absorption / 1V

Figure 3.7: NMR absorption scans of helium in a cylinder with a radius of 0.5 mm
at 6 bar for various temperatures. The absorption is expressed in ¢V, which is the
signal measured with the pick-up coil. The temperature range is between 0.57 mK
and T, (1.56 mK). At the transition temperature the absorption peak is in resonance
at the Larmor frequency, lower temperatures show a shift of the resonance frequency

due to texture effects. At even lower temperatures, T/T, < 0.7, several spin waves
modes become visible.

At this point it should be emphasized that the cell was always pressurized in
the normal phase. So, before the start of every measurement, the liquid was cooled
from the normal phase to the superfluid phase. The data presented in this thesis are
obtained at increasing temperature sweeps, which gives quantitatively better tem-
perature reliability, however decreasing temperature sweeps show qualitatively the
same results. Beginning the cool down above T, starts the texture in the flare-out
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3.8 Metastable texture

configuration. Increasing the magnetic healing length 7 does not show any textural
transition. Somehow the texture seems to get stuck in this configuration.

3.8 Metastable texture

From the data shown in figure 3.7 one can conclude that the fi-vector finds itself still
in the flare-out configuration. Somehow it does not make a transition to another
textural distribution. It may be that such a transition corresponds with sharp jumps
of the fi-vector, which will definitely be discouraged by the bulk-bending free energy.
If that is the case, one can consider the flare-out configuration, at low temperatures,
as a metastable state.

Assuming the state is still in the flare out configuration for such long magnetic
healing lengths, it is unclear how the angle 8 radially distributes over the cylinder,
except that the boundary conditions determine that 8 should increase from 0 at
the center to cos™'(1/v/5) ~ 63.4° degrees at the surface. From figure 3.5 one can
see that for increasing magnetic healing lengths the curve becomes straighter. Here
simulations for magnetic healing lengths up to half of the radius were presented,
which could still be performed in a linear regime. Longer magnetic healing lengths
make these calculations hard or unreliable. However, by extrapolating the curves, one
can assume that in the most extreme case of a flare-out configuration § will increase
proportionally with 7. In other words, the fi-vector changes gradually from the surface
to the center, which is also the distribution giving the lowest bending free energy.

The potential of equation (3.27), assuming that 3(r) is proportional with r, is plot-
ted together with a quadratic potential in figure 3.8. The maximal relative difference
between those two potentials is 6.5%. To analyze our data we do not consider this
difference problematic, so that we can replace the potential in the differential equa-
tion (3.28) by a quadratic potential, to get an analytically solution. By combining
the equations (3.26), (3.29) and (3.6) we get:

(Wi — wi,)wg = il;gD(T) ( - % )f’j( +1). (3.32)

In literature [83], [62], [79] one of the most important temperature dependency con-
cerning the spin waves modes is the growing (or decreasing) magnetic healing length.
As in our case the texture appears to be ’stuck’, the effective magnetic healing
length seems to stay constant for temperatures of T/T. < 0.7, and so should L;.
In this quadratic potential and cylindrical cell with a radius of 0.5 mm the length

=5/2R~179-10"" m

The dominating temperature dependencies are coming from the gap energy A(T)
and the spin susceptibility xg(7"). By combining the equations (1.3), (1.4), (1.5),
(1.6), (1.21), (1.32), (1.33), (1.36), (3.6) and using the definitions of K and K' from

It is increasing by decreasing the temperature.
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3. Spin waves in cylinder of 1 mm in diameter
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Figure 3.8: The potential V; and a quadratic potential in a cylindrical symmetric
container of radius R are plotted as function of . Here it is assumed that 8(r) is
proportional with 7. The only requirement for the quadratic potential is that it has
the same boundary conditions as V., meaning it varies from —1 in the center to —3/5
at the surface.

(3.20) we can rewrite (3.32) as

14¢(3) 9 oy [VE3 m*
(wk — wL)wk ~ 6 24073 (176) ’)/(]. + FO) Fk}BTCL—IX

2e. X A(T)?
In <1.76kBTC> XBé\ZT) A(0)2 (k+1). (3.33)

The equation is now expressed in natural constants and pressure dependent observ-
ables as listed in the appendix A.1. The temperature dependence of A(T")/A(0) and
xB(T)/xn are plotted and fitted in appendices A.2 and A.3, respectively.

The following two graphs (figures 3.9 and 3.10) contain the (average) position
of the spin wave modes, as function of temperature, for 0 and 6 bar, respectively.
Also the theoretically expected positions, according to equation (3.33), are plotted.
The position is expressed as their frequency multiplied with the difference between
the Larmor frequency. Data of the spin waves peaks are from temperatures below
T < 0.7T,, for which the overlap of the peaks is reduced enough, so they can be
distinguished from each other.

The separations of the peaks are not perfectly equal. However, at higher pressures
this seems to improve, which probably means that the potential is better approx-
imated by a quadratic one. The maximal relative difference between the data and
theory is over 20 %, however the essence of measurements can be explained by theory.
More important the number of modes seems to grow as function of pressure. For zero
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Figure 3.9: Here the spin wave data, at 0 bar, are plotted as function of reduced
temperature. The data points correspond to the positions of the spin wave modes as
observed in the measurement. The lines correspond to the positions of the peaks as
predicted by theory. In total 3 modes are detected.
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Figure 3.10: Here the spin wave data, at 6 bar, are plotted as function of reduced
temperature. The data points correspond to the positions of the spin wave modes as
observed in the measurement. The lines correspond to the positions of the peaks as
predicted by theory. In total 5 modes are detected.
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3. Spin waves in cylinder of 1 mm in diameter

pressure 3 modes are observed, to 5 modes for 6 bar.

The geometrical pre-factors and L; 8 are constant. The dipole coherence length
&p, see equation (1.37), is proportional to the coherence length &y, which depends on
pressure. We use equation (3.29) to calculate the amount of spin waves that can be
formed in this potential. In the weak-coupling Ginzburg-Landau limit the eigenvalues
are only pressure dependent. Than K and K' are 8/5 and 4/5, respectively. In this
limit only the dipole coherence length ¢p change as function of pressure, which can be
tuned between 32 (zero pressure) and 7 pum (melting pressure). The energy difference
between the modes of equation (3.29) is decreasing as function of pressure and as the
potential (at least for T/T. < 0.7) is unchanged more spin waves can exist in the
system by higher pressures. Of course only discreet numbers of modes can exist.

The spin wave modes for several different pressures obtained at the lowest achiev-
able temperatures are shown in figure 3.11 and their relative intensities in figure 3.12.
The theoretically predicted positions of the spin wave peaks at zero temperature °
are plotted as well.

The measurements are in good qualitative agreement with the theory. Still the
trend is that the theory predicts smaller spacing between the frequencies of the spin
modes. Higher spin wave frequencies (bigger spacing) are expected for steeper increas-
ing potentials, and as shown in figure 3.8, V is indeed steeper than the quadratic
potential (except close to the cell wall). This may explain the mismatching between
the two. Also the amount of spin modes is as predicted by theory. There is one
exception, for zero pressure one would expect 2 spin wave modes, however we see 3
modes. The frequency of the highest mode, see green line in figure 3.9, has the largest
differences from the theory and its intensity, which is different from the normal trend,
as we will show later. Somehow it seems to be a half mode, a spin wave which is seen
to be into the system. Another possibility is that it is a side effect due to the finite
length in the z-direction. Nevertheless, the reason is not very clear and the effect is
only visible for zero pressure. At higher pressures (above 1 bar) such artifacts do not
appear and seem to be in (reasonable) agreement with theory.

The width of the absorption peaks gets wider for higher k£ and increases maximally
by a factor of 5. We believe that the most important cause of this is due roughness
at the wall. The cell is made of the plastic Polyetherimide PEI of which the surface
is relatively rough. As the transverse component is maximal at R (at the wall) one
would expect to see the most surface effects for higher k, for which the weight of the
wave function is closer to the surface. More peculiar is that the intensity of each mode
is increasing as function of k, as is shown in figure 3.12. Here the relative intensity
can increase to 2.5 - 3 times. For a 2D harmonic oscillator in a cylindrical symmetry
one would expect the same intensity for all k-modes (solid lines of figure 3.12), a
consequence of the behavior of the density of states in this 2D system (with quadratic
potential), which is then a constant. An increase of the intensity for the higher k-

8 As we have assumed.

9The obtained data is from temperatures lower than 0.3 T.. As can be seen from appendices A.2
and A.3 only very small changes due to temperature are expected, which makes to data suitable to
compare with zero temperature theory.
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Figure 3.11: Spin wave absorptions peaks as function of magnetic field by pressures
of 0, 1.5, 4 and 6 bar. The absorption is expressed in arbitrary units and corresponds
with temperatures below 0.3 T.. The longest peak corresponds with mode k = 0, the
neighboring peak to the mode k£ = 2, and so on. The curves are the theoretically
predicted spin wave frequencies at zero temperature. Black, red, green, blue and
cyan correspond with the mode 0, 2, 4, 6 and 8, respectively. All curves are plotted
(dotted) for increasing pressures (started from 0 pressure), but become solid when
theory predicts the mode to exist.

modes is what one would expect if the potential would increase faster compared to a
quadratic potential (and a constant density of states).

By taking the density of states constant, the potential energy is known at the
boundary (surface) and using the relative increase of the intensities as given in figure
3.12, we could reconstruct the potential, as plotted in figure 3.13, in our cell as it
should be according to our data. The reconstruction of the potential was done for all
four pressures. However, we believe that data for the higher pressure is more reliable,
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Figure 3.12: The relative intensities of the k£ modes from the data of figure 3.11. The
scattered data are the estimations of the measurements, well the lines correspond to
the theoretical prediction if the potential is perfectly quadratic. Black, red, green and
blue squares corresponds to the pressures of 0, 1.5, 4 and 6 bar, respectively.
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Figure 3.13: The reconstructed potential from the data of figure 3.12. The data points
are calculated values of the potential as function of the radius for different pressures.
Black, red, green and blue squares correspond to the pressures of 0, 1.5, 4 and 6 bar,
respectively. The solid lines are the potentials discussed in figure 3.8.

since the reconstructed data points of the potential coincide with the amount of spin
waves modes. If one can compare more absorption peaks with each other, the errors
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3.9 Textural transition

will reduce. Also the spatial dependencies become clearer with more data points.

The potential (especially clear for the higher pressures) seems to follow the po-
tential of 1/2sin? B(r) for r > 0.5R, for small 7 there seems a trend to drop faster.
However, the lack of sufficient data makes it hard to give a strong statement. To inves-
tigate the potential at small 7, measurements at higher pressures should be performed.
Presently we can conclude that our results are consistent with a proportionality of 3
with r for r > R/2.

3.9 Textural transition

The textural configuration described in the previous section is from energetic point
of view not the expected state. However, it seems to be a stable state and once the
superfluid is in this configuration no transition to another textural configuration is
observed. Most cool downs were executed with a relatively slow speed rate, to be
sure that the nuclear stage was cooled adiabatically. Faster '© cool downs would
sometimes show, at least initially, a more uniform shift of the absorption peak. This
phenomenon made us realize that the creation of a flare-out texture is correlated with
a sufficiently slow enough cool down. As already mentioned in the previous section,
the slowly growing texture is forced to stay in this configuration, as the threshold to
jump to a different may be too high.

If one would cool down more rapidly, the magnetic healing length ¢£ would grow
and oversize the radial dimension of the system much faster than in normal procedure.
At the moment the superfluid is formed the fi-vector is not given the time to grow
smoothly into the flare-out configuration. The surface will dominate the forming of the
configuration, and a completely uniform texture would be expected. One of the fastest
ways to cool down the liquid would be to cool the system to lowest temperatures, and
then locally (while the rest of the system is kept cold) warm the superfluid above T..
At the moment the liquid is in the normal state one should stop the heat input, so
that the locally heated liquid will cool down to the initial temperature. The heat only
needs to be removed locally, instead from the whole system, which makes the cooling
of the liquid considerably faster.

By doing NMR, one always heats the sample locally. As explained in section 2.4
the absorption signal actually shows the change in the fractional resistance AR/ Ry.
The AR is the dissipation due to NMR and the average power dissipated in the liquid
is then equal with
P =i*AR, (3.34)
with i the average alternating current through the coil. As the field lines of B,
are almost uniform over the whole sample, most dissipation (at least till first order)
occurs in the volume between the two coils of the Helmholtz tank coil, see figure 2.15.
Increasing the voltage over the tank circuit, would increase the power absorbed into
the liquid in this volume. The energy needed to make the superfluid (at ' = 0 K)

10The speed rate of the cool down should still be in the adiabatically regime, but faster than the
usually procedure.
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Figure 3.14: Local heating of the superfluid with NMR. The black and red curves
show the absorption spectrum of 6 bar at 300 uK before and after heating the sample,
respectively. The corresponding values of both absorption curves are put on the left
y-axis. The green curve corresponds with the absorption curve while heating the
sample, absorption values are put on the right y-axis. Here the values are 2 orders of
magnitude higher, so enough energy is dissipated to locally warm up the liquid to the
normal state, as is indicated by a jump of the peak to the Larmor frequency. After
the local heating, the texture is changed from flare-out to a uniform configuration.

normal, is roughly equal the product of the volume and the energy density of equation
(1.9). For 6 bar this is approximately equal to

1
F,—F)Va~-Np(l76 kg T.)> V ~2.58-107? J. 3.35
4

To overcome this energy threshold one should dissipate sufficiently long, since the
power is low. However, 3He in the superfluid state is a good thermal conductor and to
be sure that the liquid is only heated locally, one should pump the energy relatively
fast into the system. In principle one could calculate how much voltage should be put
over the tank circuit to dissipate enough power, but it is a complicated problem since
the increasing voltage changes the parameters like the @ '! of the tank circuit. In
practice one can easily notice when enough energy is dissipated, as one can see that
the frequency of the absorption peak(s) shift back to the Larmor frequency.

Let us start from the situation at 6 bar (around 300 pK) with the usual spin waves,
which correspond to the black curve in figure 3.14. From here the excitation is inflated

U Higher voltage increases the current in the tank circuit. More current give more dissipation,
and a new situation where heat in- and output are in equilibrium need to be established. For the
usual excitations, the current is small enough that it is not the dominating dissipation factor, and
no effects on the Q can be seen.
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Figure 3.15: Absorption spectrum convert to 8 dependency. Here the data for 4 and
6 bar (at 300 uK) are presented. The data show a Lorentzian behavior, for where
the center is around 64.7°. FWHM is around 10.5° and is considered mainly due to
surface roughness.

to ~ 6.4 mV, which is 100 times more than in the usual NMR experiments. The result
is the green curve, from which one can estimate AR (4.57 - 10~* ). As described
in section 2.4, one can calculate the current i through the coil (2.24 - 10~* A). The
average power dissipated is then P = 2.29 - 10~'! W. The sweep through resonance
takes about a minute, so the total amount of dissipated energy is ~ 1.37-107° J.
If one compares this with the upper limit (3.35), it is certain that the amount of
heat dissipated in the superfluid is enough to put it in the normal state. This is
corroborated by the fact that the absorption peak jumps to the Larmor frequency,
where the width is mostly determined by the inhomogeneity of the magnet.

To limit the total amount of heat input, the voltage is immediately reduced to
its initial value if the jump to the Larmor frequency is observed. The local heated
liquid starts to cool and the absorption peak moves uniformly to the left as the liquid
becomes superfluid. The red curve in figure 3.14 shows the equilibrium result, when
the liquid is cooled back to 300 uK. The spin wave modes have disappeared, and the
NMR absorption signal only shows a single peak, indicating that the superfluid is in a
uniform texture. The total absorption (intensity) of both line shapes are equal, which
is expected as the total amount of atoms is equal.

This procedure is repeated for several different pressures and all show the same
behavior. Using equation (3.9), which gives the relation between the signal frequency
and the angle § of the fi-vector with respect to By, we can plot the absorption
spectrum as function of . This is done for 4 and 6 bar in figure 3.15.

The curves show a Lorentzian behavior, whose center is around 64.7° with a
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3. Spin waves in cylinder of 1 mm in diameter

FWHM of 10.5°. The angle is sufficient close to the expected 63.4°. The deviation is
most likely dominated by the imperfect alignment between cylinder axis and magnetic
field. It seems reasonable that 1.5° difference, compared to perfect parallel alignment,
is noticeable. So, we indeed see a uniform texture with the angle as expected from
energetically arguments. The width of the peak is wide compared to the absorption
peaks from the spin waves. As now the direction of the texture is completely deter-
mined by the cell wall, one would expect a full reflection of the roughness in the NMR,
spectrum. It is understandable that roughness broadens out the NMR signal, but it
is hard to make a quantitative conclusion from the width, as different wall roughness
can give the same width.

Once this new texture is created it seems to be a stable state as well, even if
the superfluid is warmed up (of course one stays under the T, of the superfluid),
no transition is noticeable. However, we do see a change as the helium bath of the
cryostat is refilled. The filling line (capillary) of the cell goes through the bath and
there was no possibility to close this capillary near the cell. The pressure in the
capillary is thus the pressure which pressurizes 2 the cell. At the moment we start
filling the helium bath, (relative) warm gas flows over the capillary and later when the
refilling continues liquid *He surrounds it. In other words the equilibrium situation is
disturbed. At each liquid helium transfer, the fluctuation in the pressure gets enough
that the liquid is warmed up to the normal phase. The moment the fluctuations
are small enough that the system can be cooled again 3, it grows into the flare-out
texture.

The nuclear stage may warm up by vibrations '4 created due to filling. It is
considered to be a small effect, even in this case the temperature of the environment
is already cold. However, the fact that the liquid as a whole had to be cooled again
seems to be sufficient to let the texture grown into the flare-out configuration. We
did not study systematically the influence of the cooling rate on the type of texture,
as that was too difficult concerning the configuration of our cryostat.

3.10 Discussion

From what we have encountered in our experiments, we were able to create a stable
flare-out texture till the lowest temperatures. From the energetically point of view it
was a surprising effect, and as pointed out by the experiments of local heating, the
cooling rate played an important role of the forming of the texture. The configuration
of our experimental cell made it too difficult to do better quantitatively cool down
experiments. Better cooling experiments should be achieved in cells such as the

12The pressures used in the experiments are such that no plug (solid) is formed in the capillary as
in contrast with the melting curve thermometer.

13Qur experience is that the warm gas through the transfer tube is responsible for the increase of
the fluctuations. Once the transfer tube is cooled enough, so liquid *He is transferred, the fluctuations
are reduced enough that the liquid in the cell cools again.

14\Most dissipation induced by vibrations arises when the magnet and nuclear stage move with
respect to each other, which creates eddy current heating.
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Pomeranchuk cell.

It seems that the texture, where the order parameter is given enough time to
grow into the flare-out configuration stretched over the sample, is incredibly stable.
Using the knowledge we have of the magnetic healing length &g, it is clear that
other textural configurations must cost less energy. However, to go to this ‘new’
configuration there should be a transition between the two textures. A spontaneous
transition to the uniform texture (as founded by local heating) will coincide with
sharp jumps of the fi-vector, such transition which will definitely not be appreciated
by the bulk-bending free energy, maybe a possible reason why the texture will stay
in the flare-out configuration. The dynamics of transitions is in general hard, and in
the case of static experiments not much is reported in literature.

The stable flare-out texture gives us a good opportunity to study spin waves over
the whole temperature regime. The cylindrical geometry in combination with a diam-
eter of 1 mm gives us a constant (transverse component) potential below temperatures
of 0.7 T,. This constant potential !> made it possible to observe how spin waves grow
in our sample. Also the relative intensities of the spin waves did not decrease for the
higher spin modes, this in contrast with the reported spin waves in similar config-
urations. This effect is maybe desirable in experiments concerning the dynamics of
vortices in such a cylinder, since now the higher modes have too bad signal to noise
ratio and no information can be retracted of them.

The spin waves let themselves describe in good agreement as is derived from the
spin dynamics in cylindrical symmetry. While we compare the data presuming we
had a quadratic potential, which gave the advantage that the model was analytically
solvable, we could reconstruct to a large extent the actual potential by comparing the
data and theory. Naturally the two potentials did not differ too much, but we could
note that (at least for big r) § is proportional with r. This would correspond with
a gradually change of the fi-vector between the two boundary conditions, a scenario
which seems imaginable as an extreme flare-out configuration.

The local heating experiment showed that it was possible to create the uniform
texture in our cell, and not unimportant showed to have an average angle close to
63.4°. Good confirmation that the surface-field free energy has strong influence on
this texture, and that it is in agreement with theory. This technique may be used to
create two different textures close to each other, for which the dynamics or transition
between them can be studied.

3.11 Conclusion

In conclusion, with the carefully chosen geometry in combination with low pressures
and low magnetic fields, we could make a metastable fi-texture. The texture was

15Most spin wave experiments are done in cylinders with a diameter of few times ours, and often
performed at higher pressures. Consequently the ratio between radius and magnetic healing length
&g is bigger than in our case, and thus the shape of the potential changes with decreasing tem-
perature. In the analysis of those spin waves the change of £y was considered the most important
temperature effect, a temperature dependence we could exclude from our analysis.
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stable and unchanged for a significant part in the pressure and temperature ranges.
It functions as a potential to create spin waves, which made it now possible for us
to study them for several pressures in exactly the same texture (potential). As this
potential (texture) is close to a quadratic one, and this is essentially a two dimensional
system, the intensities of all spin wave modes are nearly equal. This is an excellent
system to observe the grow of spin waves modes in our cell by increasing the pressure.
The theory, which we adapted for our geometries and boundary conditions, could very
well describe the found results, making our physical understanding of this phenomenon
complete.

Finally we were able to make a textural transition to the in advance expected
texture, for which we conclude that the metastable texture could be realized if the
growing speed is sufficiently slow.
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