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Chapter 1

Theory

1.1 Normal Fermi liquid

The *He nuclei exist of two protons and one neutron, and has a total spin S = 1/2.
Half quantum numbers makes the particle a fermion, and an ensemble of spin 1/2
particles should (for low enough temperatures) behave as formulated by the Fermi-
Dirac statistics. At atmospheric pressure, *He becomes liquid at a temperature of 3.2
K, which is relatively close to the Fermi temperature T (~ 1 K). It is for this reason
that at the moment 3He is liquefied, it lets itself be described by the Fermi Liquid
Theory FLT. This section will not derive any of the quantum properties of a Fermi
system, for which there are good text books [1], [2], [3]. Here only the relevant FLT
relations for this thesis are summarized.

In the ground state of a Fermi system the energy fills up till the Fermi energy
ep. The energies can be expressed in k-space, where e corresponds to the Fermi
wave vector kp. Concerning N particles in a cubic box one can solve the Schrodinger
equation for the ground state, from here the relation kr is obtained as:

kp = V3n2n, (1.1)

where n is the particle density per unit volume.

The 3He atoms/particles have, because of its extensiveness, hard core repulsion
between each other. One can say: It creates a kind of ’screening cloud’ for the other
atoms. To include this interaction the mass m of the He atoms should be replaced
by an effective mass m*. This changes the 3He particles into ’quasi-particles’, which
is still described with the FLT, but with an effective mass m*. The ratio between the
effective mass m* and the mass m is given by:

*

m 1

=1+ =F}, 1.2
- 3 (1.2)
where F} is a Landau parameter, which is pressure dependent and listed in the ap-

pendix A.1.




1. Theory

The Fermi energy for (quasi)-particles is expressed as,

h2k2 2 m*v 2
=20k _Pr M OF T, (1.3)
2m* 2m* 2
where pp = hkp is the Fermi momentum, vy = pp/m* the Fermi velocity and Ty
the Fermi temperature.
The density of states for both spin components per unit volume per unit energy

is given by:

EF

m*kp pp? 3n 3nm*
N =2V(0) = Tk = P = = S (14)

where N(0) is the density of states for one spin component at the Fermi energy.

As shown empirically by experiments, see for example [4], the spin susceptibility
x of 3He is hardly dependent on temperature when 7' < Tx. The Pauli paramagnetic
spin susceptibility for normal liquid 3He is then

X~ = xn/(1+ Fg), (1.5)

where F{ is a Landau parameter, see appendix A.1, and x% the Pauli spin suscepti-
bility for (quasi)-particles with an effective mass m*.

1
X = 0’ Nr = 27°W*Nr, (1.6)

where yio is the magnetic moment and v the gyromagnetic ratio of the *He nucleus.
The gyromagnetic ratio v for 2He is —20.3801587 - 107 rad Hz T~!.

1.2 Superfluidity in bulk helium-3

The first understanding of pair correlations in an interacting Fermi system was de-
scribed by Bardeen, Cooper and Schrieffer [6]. They constructed a microscopic theory,
which could explain the phenomena of superconductivity. As liquid 3He is a Fermi
system, one can expect the same phenomena. However, the ratio between the critical
temperature T, compared to the Fermi temperature Tr is typically T./TF ~ 1073.
While the T of electrons is rather high, about 10.000 K, for 2He it is approximately 1
K. The low T, (~ 1 mK) could only be reached after the invention of dilution fridges
including a nuclear stage or Pomeranchuk cell. It is due to this technical difficulty
that there is more than 60 years difference between the first observations of super-
conductivity in 1911 by Kamerling Onnes [7] and the superfluidity in liquid *He by
Osheroff, Richardson and Lee [8].

Superfluidity itself was already discovered in 1930 for the isotope “He [9], however
here the phenomena is based on a different principle. For “He, which is a boson, the
fluid condenses into a Bose-Einstein condensate. While a lot of the phenomena are the
same, the superfluid phase diagram of *He is much richer. In both, superconductivity



1.2 Superfluidity in bulk helium-3

Figure 1.1: Phase diagram of bulk liquid ®He, as function of temperature, pressure
and magnetic field. The bulk shows the normal liquid helium-3 phase and 5 different
superfluid phases. Figure is taken from [5].

in type I superconductors and superfluidity in *He, there exist ’one kind’ of super-
conductivity /superfluidity, while in *He there exist 'more kinds’ of superfluidity. The
difference is due to higher symmetry in the liquid, which will be discussed in more
detail in the next sessions.

The variety of superfluid phases can already been seen in the bulk properties
of 3He, see phase diagram in figure 1.1. In zero magnetic field two stable phases
exist, named the A- and B-phase. They were observed for the first time in 1971 !,
when accurate measurements at the melting curve of *He were done. In magnetic
field a third phase was discovered, the A;-phase. Future studies pointed out that
the A- and B-phases do break symmetry when they are put in a magnetic field and
are in fact different phases. These phases are referred as the As- and Bs-phase.
The richness of different phases performs themselves already in the bulk properties
(including magnetic fields) of *He. Even more phases are predicted as one changes
the geometric dimensionality of the system.

All phases let themselves describe by a different order parameter. The difference
in isotropic (or better anisotropic) properties results in a preferable orientation of

Hnitially it was thought that it was a transition in the solid [10].
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the order parameter. A powerful technique to distinguish the different phases (order
parameter) is with the help of nuclear magnetic resonance NMR. The line shape of the
NMR spectrum gives good identification (fingerprint’) of each phase. The applied
NMR techniques to obtain the data of this thesis and predicted NMR spectra of
certain phases can be found in the chapters 3 and 4, respectively.

1.3 Ginzburg-Landau theory

In order to investigate the possibility of a possible new superfluid phase of liquid >He
in restricted geometry (Dimensions), we discuss shortly the Ginzburg-Landau theory.
Landau’s theory of second order phase transitions was together with Ginzburg [11]
extended to be able to describe the phenomena of superconductors and superfluids.
It is a macroscopic theory, in which the order parameter of the superconductor is
described with a wave function ¢. The order parameter has spatial properties and
is complex. The free energy density difference between the normal state F,, (ground
state of a Fermi system) and the superfluid state Fy is expanded into a power series
of the order parameter. In the case we neglect the spatial variation (homogenous or
bulk case) of the order parameter, we can write the free energy density as:

F, —F, =a® + §¢4- (1.7)
The most simple temperature dependence for this model is when a(T) = —ao(1 —

T/T.) and 3 is constant, which is a good description for temperatures near the tran-
sition temperature T.. Here the coefficients have the correct limits, and minimizing
the free energy with respect to the order parameter gives:

W=+ %Ml-T/TC. (1.8)

At zero temperature, the free energy density is maximally lowered. No more
Cooper pairs can then be formed. The average gap energy ? A(T) is then maximal
and the free energy density, or total condensation energy, can be simplified as:

F, - F, = %N(O)A(O)Q. (1.9)
(Here N (0) is the density of states for one spin component.) The product of 1/2 N(0)
A(0) corresponds with the total amount of formed Cooper pairs and every Cooper
pair lowers the free energy density with A(0).
If one wants to include the variation of the order parameter 1 (r), a gradient term
(or kinetic energy term) in the free energy density should be included.

2The average gap energy A(T) corresponds with ¢, but is the more general form for the order
parameter. Strictly spoken v of equation (1.8), only valid near T, may not be extrapolated to zero
temperature. To express the maximum condensation energy, equation (1.9), one should express it in
terms of the average gap energy.
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Fu— Fy = alb(®) + S| + ki@, (1.10)
where k is determined by the normalization of 1(r). The gradient term prevents
¥ (r) to change ’quickly’, which ’costs’ too much energy. Instead it smoothest the
order parameter over a typical size £, which we call the coherence length. Coherence
lengths are temperature dependent. In the case of superconductors they have the
form of &(T) = (k/a)'/?, which is proportional with (1 — T/T.)~'/? near T..

1.4 Free energy density of the superfluid phases

The Landau-Ginzburg theory, as described in the previous section, explains phe-
nomenologically the behavior of superconductors near the transition. A Cooper pair
formed by 2 electrons, which is an s-wave pair, is a relative simple system. Here
both, the angular momentum L and spin quantum number S of the Cooper pairs
are 0. In such systems only one symmetry is and can be broken, namely the Gauge
symmetry U(1)s. Consequently there can only exist one kind of superconducting
state. As shown in the previous section, it is described by a complex order parameter
(r) = 1o(r)e’?, where 9y is the amplitude and ¢ the phase.

Like an electron, *He is a spin 1/2 particle. The most important difference is
not the weight (the atom is ~ 5500 times heavier than the electron) but its spatial
extensiveness. The hard core repulsion between the atoms prevents the wave functions
to overlap. As a consequence the Cooper pairs prefer to form in p-wave pairs, instead
of s-wave pairs. For p-waves pairing the angular moment and spin quantum number
changes to L = S = 1. Such pairing systems have much more symmetry, next to the
Gauge symmetry it has three dimensional rotation symmetry for both the orbital and
spin space. The total symmetry G is given by a product of the three independent
symmetries.

G = SO(3)L X 50(3)5 X U(1)¢. (1.11)

The total symmetry can at least be broken in 13 different continuous subgroups,
and 4 discrete subgroups. All subgroups have a different order parameter structure
[12], [13], [14], [15], [16]. An illustration of the broken SO(3)r, x SO(3)s x U(1)4
into continuous subgroups is shown in figure 1.2, which is taken from Bruder and
Vollhardt [16].

All subgroups correspond to minima, local minima, stationary points or at worst
saddle points in the free energy density given by a Landau type of expression. The
order parameter is now a complex 3 x 3 matrix, and equation (1.7) should be up
graded for such order parameters. Obeying the restrictions of invariance under spin
and spatial rotations (and Gauge invariance) the free energy density for the homoge-
nous case, including strong coupling corrections, till fourth order is given by Mermin
and Stare [12], [17] as
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Fp— F, = a tr(AAY) + By |trAA? + B, [tr(AAD))? + 85 tr[(ATA)(ATA)Y]
+ B tr[(AAT)?] + B5 tr[(AAT)(AAT)"], (112)

where the 3 x 3 matrix A is related to the spin space matrix A,,. The coeflicients
in the limit of the BCS weak-coupling approach are given by:

a= —@ <1 - %) (1.13)
Bi = BiBscs = Bi ;féil N(0) (k:Bch) (1.14)

where §; = (—1,2,2,2,—2). Strong coupling effects are included as Ag; in ;.
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Figure 1.2: Scheme of SO(3)r, x SO(3)s x U(1), broken into continuous subgroups.
Broken relative symmetries arise in factorizations involving more than one group,
indicated by diagonal arrows. On the right name of phase (if any) is mentioned.
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1.5 B-phase

Most experiments on the superfluid >He in this thesis are done in the B-phase of >He.
This phase was for the first time described by Balian and Werthamer [18], and was
called the BW-state. It is the lowest energy state of the free energy density (1.12),
which corresponds with Mermin and Stare [12] when they investigate different gap
structures in the weak coupling BCS theory. The gap structure, like in the case of
type I superconductors, is isotropic (see figure 1.3). Here no preferred directions are
demanded in spin-space.

In the B-phase the symmetry of the rotation in spin- and orbital space are broken,
but not independently. The relative orientation is still ordered, and has still rotational
invariance (SO(3)L+s). This relative rotation lets itself be described with a rotation
matrix R characterized by n and #. The rotation axis n is perpendicular to the plane
formed by the L and S vectors of the Cooper pairs and 6 is the angle between those
two vectors.

The order parameter matrix of equation (1.12), for the B-phase, can be written
as:

A,; =372 R,;(1,0) (1.15)

R,; = (1 —cos@)n,n; + cosd §,; —sinb Z €pjkTn (1.16)
k
where ¢ is the overall phase variable.
It should also be emphasized that the B-phase, contains all the triplet components
for both the spin and the orbital angular momentum pairing, hence S = L = 1.
Concerning spin-space, it is convenient to combine the three spin components into
the order parameter vector of spin-space d(k). The energy gap matrix of spin space
Agop expanded in Pauli matrices is then

. —dy +ids  d Ay A
Akas = D du(k)(opion)as = | 7 jid?] = [AII AE]' (1.17)
m

The energy gap in k-space is shown in figure 1.3. At the equator the gap is formed
by combination of up-up and down-down spin pairs, while at the poles it is formed
by combination of up-down and down-up spin pairs. The anisotropy of the spin pairs
in the k-space mentions the B-phase also as 'pseudo’-isotropic.

1.6 Bs-phase

In the *He-B phase the gap parameter is isotropic, for which it can be referred to as
the spherical state. If an external magnetic field is applied to the B-phase, the gap
parameter becomes anisotropic. The gap in the z-direction (direction of magnetic
field) is flattened, and one may speak of the squashed spherical state. This is a
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Figure 1.3: Scheme of the energy gap, indicated by the shaded area, of the B-phase
in k-space. Ratio of Fermi energy Er and the gap A is not to scale. Figure is taken
from [19].

consequence of the fact that the Cooper pairs formed in a magnetic field prefer [$1>
and |}J> spins pairs instead of [t}> spin pairs. Here the SO(3)r4s symmetry gets
broken. The symmetry, which is conserved, is the rotation around the z-axis, hence
U(1)r.+s.. The phase corresponding with this symmetry is the Bs-phase, which was
first described by Barton and Moore [13]. The order parameter matrix is given by:

’ [A B 0]
Auj=pee® | B FA 0 (1.18)
o o ¢

where,
p2 = [2(|A] + |BI) + O] 71/
A= %(ATT +A4y)
B = _%i(ATT —Ay)
C = Ay,

1.7 Dipole energy

The dipole interaction, coupling of the nuclear spins of the *He atoms, has influence
on the relative orientation of L and S. However, this energy is so small that the
influence on the forming of the order parameter itself can be neglected. Nevertheless,
it is the most important orientation force in the superfluid, which cannot be 'turned
off” 3.

3in contrast with magnetic fields and surfaces.
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The standard expression for magnetic-dipole interaction is

ot [ e [ {2 _ller) @l e o))

|r — /|3 |r — r'|?
(1.19)
Where o(r) is the spin density operator. This Hamiltonian is solved for a p-wave

condensate by tremendous work of Leggett [20], [21], [22]. By expressing the dipole
energy density Fp in terms of the order parameter matrix, one obtains

2 *
= —gD Z[A i+ AjA - SAGAL), (1.20)

where gp(T) is the dipole coupling constant

gp(T) ~ %m“’iﬁ < R?>, BNFA(T) In (ﬁfo)ﬂ? (1.21)

The renormalization factor < R2 >,, is there because it is not entirely obvious
that the expression of equation (1.19) is the same for quasi-particles, as discussed by
Leggett and Takagi [22] [23] . However, experimentally it is shown that it should be
very close to 1 (in fact it might be 1), which is the reason we put it to 1 for the rest of
this thesis. The logarithm includes the cut off energy €., which is proportional with
the pair interaction potential:

2¢e, 1
. (A(O)) YNV (1.22)

The product N(0)V; can be obtained by fitting the experimentally found 7., and
is proportional with In(7T./T¥) [24]. So, the cut off energy . is hardly pressure
dependent and is roughly ~ 0.7kp [25]. Due to the logarithm, small deviations in €,
have little or no consequence and, for this reason, it is kept fixed for all pressures.

If the B-phase order parameter matrix (1.15) is substituted in de dipole free energy
density (1.20) we obtain:

2
FE = ggD(T) (cosﬂ + i) + const. (1.23)
The angle 6 = 0, = cos™!(—1/4) ~ 104° minimizes the dipole energy (and of course
0 = 27 — 01). The L refers to Leggett and the angle 6y, is in the literature known
as the Leggett angle. Consequently the angle between L and S in the B-phase will
be 0;,. The n-vector does not have a preferred orientation in the bulk B-phase, so it
does not contribute to lower the dipole energy.
In the case of the By-phase the n-vector does have a preferred orientation, which
influences the total dipole energy. Putting the Bo-phase order parameter matrix (1.18)
in equation (1.20) we obtain:

10



1.7 Dipole energy

F5 = DoNe {o6) + £O)0 B + @0 B} +const,  (1.24)

where
ApNr = gp(T)/A(T)?, (1.25)
and

fo(0) 8A7 (cosf + 1/4)* + 8(A — AL)A L cosf(cos 6 + 1/4)
+ Q(A” — Ai)2 cos? 0,
f1(0) = 2(A) = AL)[AL(3+ cosb —4cos®§) (1.26)
+2(A = AL)cosf (1 —cosb)],
f200) = 2(A) —AL)*(1 —cosb)>.
Here the relations Ay = A = Ay and Ay = Ay = A are used.
Equation (1.24) is minimal in energy, if the n-vector and the magnetic field H
are parallel. This is true for all configurations of A; and A and at the minimum
equation (1.24) becomes:

1A\ .
F£2 = g/\DNF <cost9—+— ZA—E) + const. , n = +H. (1.27)

Thus the total dipole energy is now minimized if the angle between L and S is [26],
[27], [28]
o(H) =cos™ [ —=— | . 1.28
R (1.28)

The angle, now depending on the ratio of A /A, varies between 6, (if populations
are the same, as in the case of the B-phase) and 90° (4 is unoccupied).

Magnetic fields change the population ratio, but also influence the orientation of
the ni-vector. From equation (1.24) we can determine the orientation energy density
due to magnetic field. The magnitude given to second order:

(A —A)AL

Aff? = ApNrp e

(h-H)?, (1.29)
where [19]

(AL —A))AL

2 sWC

-2 ( yhi ) si5 T (1.30)
12 \1+ Fy B345 T¢

Two points should be emphasized which are relevant for the experiments presented
in this thesis. First the orientation energy density A fﬁz is a fraction of the dipole
energy Fp (which is already small by itself) and makes it only temperature depen-
dent to the lowest order. Secondly, the magnetic fields used in our experiments are
kept small for purpose to stay close to the B-phase. Consequently, the difference in
population is negligible, and also the angle 6 is nearly equal to 1. Nevertheless, the
effect of the magnetic field on the direction of n is important for the forming of the
textures, which will be discussed later.

11
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1.8 Coherence lengths

If we deal with spatial inhomogeneity in the superfluid, hence gradients in the order
parameter, we should include the gradient free energy density part in equation (1.12).
It is the equivalent of the gradient part in the Ginzburg Landau theory, see equation
(1.10), and is given by:

1 * *
Fyraa = 5 D KLV Au) (Vi A5) + Ko (ViAu) (VAL)
Jlu
+ K3(V;A4,5) (VAL (1.31)

In the Ginzburg-Landau regime the coefficients do not depend on the order parameter,
and are isotropic. However in a more general case the coefficients can be anisotropic
in orbital and spin spaces. In the weak-coupling regime the coefficients * have been
calculated [29]

1

where N is again the density of quasi-particle states of both spin components in the
normal phase at the Fermi energy and &; the coherence length at zero temperature.
This length is corresponding to the size of the Cooper pair. The coherence length
expressed in natural constants, Fermi velocity vy and critical temperature T, is given
by:

7c(3)} Y2 g

= . 1.33
b0 [48712 kpT, (1.33)
At higher temperatures the coherence length grows and its temperature dependence
is given by:

§T) = &1 —T/T.) /7, (1.34)

showing how it diverges at the transition temperature.

1.8.1 Coherence lengths of different interactions

The gradient energy density is minimized when the transition of the orientation of
the order parameter is as smooth as possible. Typical length scales of this transition
are indicated with a coherence length £. To give an estimation for the order of
magnitude of such coherence length it is convenient to use the London Limit. Here
the order parameter attains its equilibrium structure everywhere in bulk, where weak
perturbation does not change its structure but merely influence the preferred direction
in orbital and spin space (and phase) [19]. The gradient free energy density can be

4The weak-coupling limit is valid when the strongest interaction parameter Vi, forming the
Cooper pairs, times the density of states N(0), equals N(0) | V | < 1.

12
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rewritten in terms of gradients of the symmetry variables only, and will be referred
as the bending free energy density Fpeng.

This bending free energy density for the B-phase, where ¢ is kept constant and
f = 6y, is then given by:

13
4

(V-n)2 + E(ﬁ -V xn)? (1.35)

2 4

1
Fyena = 27 <2

1[{A(T)2> {4(ﬁ x (V x @))? +

Ut

(V-0)(8-V x0)+4V - (- V)i - a(V - ﬁ)]} ~ %KA(Tyé,

where A(T) is the energy gap of the B-phase and &, is the healing length, which
corresponds to the spatial variation of the texture. Comparing other energy densities
with the bending energy density, one can make an estimation of the coherence length
corresponding to that energy.

Dipole healing length

By comparing the dipole free energy (1.20) with the bending free energy (1.35) we
find

1 1\* 3
“KA(T)? (=] = Zgp(D). 1.36
55807 (g5) ~ Fon(0) (1.36)
Using the definition of the dimensionless dipole coupling parameter Ap (1.25) and K
(1.32), the dipole healing length ® can be expressed as:

&p ~ (1.37)

1
D §o-
While the expression is most accurate in the Ginzburg-Landau regime, the most
important identity is that the healing length ¢5 is temperature independent. However,
it does depend on pressure, since it is proportional with &;. Staring from melting
pressure to zero bar, it varies between approximately 7 to 32 pm.

Magnetic healing length

The order of magnitude of the magnetic healing length ¢£ ¢ can be derived by compar-
ing the magnetic field orientation energy (1.29) with the bending free energy (1.35).

1 L[ 1Y)? 5 ( vhH \*BWE¢ T
—KAT2<—) ~ ApN —( > e E 1.38
s KA ¢B PR \1+F¢) PBas 1. (1.38)

5Also called: dipole coherence length.

6Technically one should put 51132, however there should be no difference between the two, since
the isotropic B-phase does not have a preferred direction, so it does not have a magnetic healing
length.

13
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Using the definition of K (1.32), the magnetic healing length can be expressed as:

2 (1+ Fy) 5345 o \/7 1.39
\/7\/_ vh 345 (1.39)

Due to the approximations 7 the model is not accurate in detail for the whole
temperature range. The limits, especially temperature near zero temperature, do not
agree with the empirically found relations published in literature (see section 3.6 of
this thesis.) However, it does describe the physical behavior. The healing length is
zero at T, and grows as temperature decreases. With the exception close to 7, the
magnetic healing length ¢2 is longer than the dipole coherence length ¢5. The inverse
relation of the strength of the magnetic field H seems to be natural to first order, as
one expects that the healing length will become smaller with higher field.

"Till second order of the magnetic field orientation, approximations in the relation (A — ApDA
and derived in the Ginzburg-Landau regime.

14



