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General Introduction

Cardiovascular disease (CVD) is the primary cause of death in the Western 
world, accounting for up to 50% of all mortalities1-3. Atherosclerosis is the main 
cause of CVD, and is considered a chronic inflammatory disease, characterized 
by the focal accumulation of cells, fibrous tissue, lipids and inflammatory blood 
constituents in the vessel wall4,5. This results in narrowing of the arteries, which 
may subsequently cause clinical manifestations such as myocardial infarction 
and stroke. Several risk factors have been identified, such as dietary habits, age, 
gender, smoking, hypertension, stress, and physical inactivity3,6,7.

Sepsis, another inflammatory disease, occurs when a subject is unable to 
successfully contain an infection with microorganisms. This uncontrolled infection 
will lead to an exaggerated inflammatory response by the host, with organ failure 
and finally septic shock or death as a result. A full panel of microorganisms, 
as bacteria, parasites, fungi, and viruses, can trigger the pathophysiological 
cascade leading to sepsis. Sepsis is the leading cause of death in medical and 
surgical intensive care units with mortality rates ranging from 15-80% in critically 
ill patients8,9, and the incidence is still increasing, despite the development of 
new supportive therapies10,11.

Atherosclerosis and sepsis are related to each other, in that in both diseases 
the immune system plays a central role. In both diseases the immune system 
serves initially as a protective factor, but in the same manner may initiate 
damaging processes. In atherosclerosis, it is a critical player in the repair of 
damaged tissues, whereas at the same time the atherosclerotic lesion develops. 
During infection, the immune system is critical to combat the infection, but is 
getting harmful when the infection cannot be contained and progresses into 
sepsis.

Several apolipoproteins, which are proteins on circulating lipid sphericals 
in the bloodstream, have been shown to be potent modulators of inflammatory 
processes12-17. The function of apolipoproteins in lipid metabolism, atherosclerosis, 
and sepsis will be outlined in more detail in this introduction.

1. Lipid Metabolism
Cholesterol and triglycerides (TG), the most common lipids of a diet, are of vital 
importance in many different cellular processes in the human body. Cholesterol 
is essential for biosynthesis of cellular membranes, steroid hormones, and bile 
acids. TG-derived free fatty acids (FFA) can be used as an energy source in 
cardiac and skeletal muscle or they can be stored in adipose tissue. Since 
cholesterol and TG are hydrophobic, they are packaged into water-soluble 
spherical particles for their transport in the circulation. These spherical particles 
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are composed of a lipid-rich core containing hydrophobic cholesteryl esters and 
TG surrounded by a polar surface monolayer of phospholipids, unesterified free 
cholesterol, and one ore more amphiphatic proteins termed apolipoproteins. 
These apolipoproteins facilitate the formation of lipoproteins, modulate the 
activity of enzymes and lipid transfer factors involved in lipoprotein remodelling 
in the circulation, and modulate receptor-mediated binding and endocytosis of 
lipoproteins and/or their remnants.

1.1. Exogenous Pathway
Dietary TG and cholesteryl esters that are absorbed in the intestine are packaged 
into chylomicrons, and are transported from the lymph to the blood circulation 
23. Nascent chylomicrons are very large particles that consist mainly of TG but 

Table 1. Physical properties, lipid and apolipoprotein composition of human plasma 
lipoproteins.

Properties Chylomicron VLDL IDL LDL HDL

Source Intestine Liver VLDL VLDL Liver+intestine

Diameter (nm) 75-1200 30-80 25-35 18-25 5-12

Density (g/mL) <0.96 0.96-1.006 1.006-1.019 1.019-1.063 1.063-1.210

Electrophoretic
 Mobility* Origin pre-β slow pre-β β α

Composition**

  Triglycerides 87 54 27 11 10

  Phospholipids 8 19 23 23 31

  Cholesteryl esters 3 14 32 40 21

  Free cholesterol 1 7 8 8 7

  Protein 1 6 10 18 31

Apolipoproteins

  ApoA AI, AII, AIV, AV AV - - AI,AII,AIV,AV

  ApoB B48 B100 B100 B100 -

  ApoC CI,CII,CIII,CIV CI,CII,CIII,CIV CI,CII,CIII,CIV - CI,CII,CIII,CIV

  ApoE E E E - E

Main function Transport of 
exogenous 
cholesterol 

and TG

Transport of 
endogenous 

TG

Cholesterol 
transport to 
peripheral 

tissues

Cholesterol 
transport to 
peripheral 

tissues

Reverse 
cholesterol 
transport to 

liver

* According to electrophoretic mobility of plasma α- and β-globulins on agarose gel electrophoresis.
** Expressed as percentage of total weight.
Apo, apolipoproteins and TG, triglycerides. Modified from Gotto et al.18.
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also phospholipids, cholesterol, cholesteryl esters, and apolipoproteins (e.g. 
apoAI, apoAIV, apoB48, and apoCs) (Table 1). Upon entering the circulation, 
these chylomicrons are processed by lipoprotein lipase (LPL), thereby delivering 
FFA to peripheral tissues such as adipose tissue (for storage into TG), and 
skeletal muscle and heart (as energy source). The resulting cholesterol-enriched 
core remnants are subsequently taken up mainly via apoE-specific recognition 
sites on hepatocytes, including the LDL receptor (LDLr), LDLr-related protein 
(LRP), heparan sulphate proteoglycans (HSPG), and possibly also Scavenger 
receptor BI (SR-BI)24 (Figure 1).
 
1.2. Endogenous Pathway
Hepatocytes secrete cholesterol and TG packaged into VLDL. These lipids are 
either derived from incoming chylomicron remnants, IDL, LDL, and HDL, or 
from de novo synthesis25,26. The formation of VLDL is described as a two-step 
process27,28. In the first step, apoB100, the major structural apolipoprotein of VLDL, 
associates with the core lipids during formation of the particle. The microsomal 
TG transfer protein (MTP) catalyzes the transfer of lipids toward apoB100 and 
is in this way an essential link in the assembly of VLDL29,30. Thereafter, the 
particle fuses with a lipid droplet to become a mature VLDL particle, which can 
be secreted into the blood27,31. Nascent VLDL consists of TG, phospholipids, 
cholesteryl esters, cholesterol, and apolipoproteins (e.g. apoB100 and apoE) 
(Table 1). Upon entering the circulation the particle is further enriched with apoE 
and apoCs. These TG-rich VLDL particles serve, similarly as chylomicrons, as 
a source of FFA for extrahepatic tissues predominantly under fasting conditions. 
Hydrolysis of VLDL-TG by LPL results in the formation of IDL, which is partly 
taken up by the liver as mediated by apoE32. The remainder is extensively 
processed by LPL and hepatic lipase (HL) to become cholesterol-rich LDL with 
apoB100 as its sole apolipoprotein, which is recognized by the LDLr on the liver 
and peripheral tissues32 (Figure 1).

1.3. Reverse Cholesterol Pathway
To maintain cholesterol homeostasis, excess cholesterol in extrahepatic tissues 
is returned via HDL to the liver, which is classically known as the only organ 
capable of disposing cholesterol via the bile22. However, recent findings suggest 
that cholesterol is also secreted from the circulation directly into the intestine 
without the involvement of the liver (Groen AK, unpublished observations). In 
the liver and intestine, nascent discoidal HDL (HDL3) is formed from apoAI and 
phospholipids33. In the blood, discoidal HDL matures into spherical HDL (HDL1) 
by acquisition of phospholipids from chylomicrons and VLDL via phospholipid 
transfer protein (PLTP), and cholesterol from the liver and peripheral tissues via 
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ATP binding cassette transporter AI (ABCA1), SR-BI, and ABCG1. The cholesterol 
is subsequently esterified by lecithin:cholesterol acyltransferase (LCAT) into 
cholesteryl esters, which can then be taken up by the liver, either directly via 
SR-BI34, or indirectly via the LDLr, LRP, and/or HSPGs after transfer to VLDL 
and LDL in exchange for TG by the cholesteryl ester transfer protein (CETP)35,36 
(Figure 1). It is important to note that rodents normally do not express CETP37, 
and therefore in these species there is no bidirectional exchange of cholesteryl 
esters and TG between HDL and (V)LDL.

2. Role of ApoE and ApoCI in TG-rich Lipoprotein Metabolism
2.1. Synthesis, Structure, and Function of ApoE
In 1973, Shore and Shore39 identified apoE as a component of TG-enriched VLDL 
with a relatively high arginine content compared to other apolipoproteins known 
at that time, and referred to this protein as ‘arginine-rich protein’. Consistent with 
the nomenclature of the other known apolipoproteins (apoA, apoB, apoC, and 
apoD) Utermann suggested the designation ‘apoE’ in 197540.

2.1.1. Synthesis and Structure of ApoE
The APOE gene, located on human chromosome 19 in the APOE/APOC1/
APOC4/APOC2 gene cluster, is 3.7 kb in length and contains four exons and three 

Figure 1. Lipoprotein metabolism. See text for explanation. AI, apolipoprotein AI; ABCA1/ABCG1, 
ATP-binding cassette transporter AI or GI; B, apolipoprotein B; CI, apolipoprotein CI; CE, cholesteryl 
ester; CETP, cholesteryl ester transfer protein; E, apolipoprotein E; FC, free cholesterol; FFA, free 
fatty acids; HSPG, heparan sulphate proteoglycans; LCAT, lecithin:cholesterol acyltransferase; 
LDLR, LDL receptor; LRP, LDL receptor-related protein; PL, phospholipids; PLTP, phospholipid 
transfer protein; SRA, scavenger receptor class A; SR-BI, scavenger receptor class B type I; TG, 
triglycerides. Modified from Berbée et al.38.
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introns41. The primary product of the APOE gene is a 317 amino acid prepeptide 
that gives rise to the 299 amino acid mature protein by cotranslational cleavage 
of an 18-amino acid signal peptide42. This 34.2 kDa apoE protein is synthesized 
in most organs, including the liver, spleen, lung, adrenal, ovary, kidney, and 
muscle, primarily by macrophages and in the liver also by hepatocytes43,44. ApoE 
is not expressed in the intestine. In the circulation apoE is mainly present on 
chylomicrons, VLDL, and HDL (Table 1) at total plasma levels of about 4-7 mg/
dL45,46. The mouse apoe gene encodes a 285 amino acid mature protein, which 
has 70% homology with the human apoE protein47. Prediction of the secondary 
structure using the rules of Chou and Fasman48, showed that the predicted 
structures of human and mice apoE are nearly identical with α-helical regions 
comprising two-thirds of the protein in 14 areas, and β-sheets comprising ~10% 
of the protein in three areas47.

In the absence of lipids, apoE self-associates as a tetramer over a wide 
concentration range50,51. In contrast, self-association does not occur on lipid 
surfaces52. ApoE contains two domains that are joined by a protease-susceptible 
hinge region50,53. Thrombin digestion of apoE yields two fragments of which the 
10 kDa C-terminal fragment harbours the lipid-binding domain, whereas the 
LDLr-binding domain (residues 139-153) is situated in the 22-kDa N-terminal 
fragment54-56 (Figure 2). The C-terminal fragment contains three predicted α-
helical regions, of which the third (amino acids 268-289) is critical for tetramer 
formation as well as lipoprotein association57. The N-terminal domain contains an 
antiparallel four-helix bundle, with the LDLr-binding domain is located in helix 4. 
The unusually high content of basic amino acids (Arg, Lys, His) within this LDLr-
binding domain is important for binding to the LDLr, as has been demonstrated 
by chemical modifications58,59. Furthermore, apoE contains two heparin-binding 
sites of which one is located within the LDLr-binding site60. ApoE also interacts 
with HSPGs, which are suggested to be involved in both the secretion of apoE 
by hepatocytes and macrophages, as well as in the binding of lipoprotein-bound 
apoE61.

2.1.2. Polymorphisms of ApoE
APOE has three common alleles known as ε2, ε3, and ε462. This polymorphism 
results in six genotypes, three heterozygote (ε2/ε3, ε3/ε4, ε2/ε4) and three 
homozygote (ε2/ε2, ε3/ε3, ε4/ε4). In a typical Caucasian population, the 
frequency of the ε2, ε3, and ε4 alleles are approximately 8%, 80%, and 12%, 
respectively46,63. The encoded isoforms are distinguished from each other at 
two polymorphic sites: apoE2 (Arg112, Arg158), apoE3 (Cys112, Arg158), and apoE4 
(Cys112, Cys158)62,64 (Figure 2). These isoforms differ in terms of their association 
with the various lipoproteins65,66 and binding affinity for cell surface receptors 
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Figure 2. Ribbon model of the antiparallel N-terminal four-helix bundle of apoE. Highlighted are 
positions 112 and 158, which are either Arg or Cys residues in apoE2 (Arg112, Arg158), E3 (Cys112, 
Arg158), and E4 (Cys112, Cys158) isoforms (see text). The receptor-binding domain is located in helix 4 
(residues 139-153). A short helix, helix 1’, links helices 1 and 2. Adapted and modified from Weers 
et al.49.

(e.g. LDLr)67-70 and cell surface binding sites (e.g. HSPGs)71,72. While apoE3 and 
apoE2 are preferentially located on HDL, apoE4 preferentially interacts with large 
lipoproteins such as VLDL65,66. Furthermore, apoE2 exhibits lower affinity for the 
LDLr as compared to apoE367-70, resulting in dramatically reduced clearance of 
apoE and higher plasma apoE levels46,63,73-75. It is suggested that as a response 
the liver up-regulates the LDLr, resulting in lower cholesterol levels. Conversely, 
apoE4 is cleared more efficiently than apoE3, resulting in lower apoE levels, and 
concomitantly higher cholesterol levels46,63,75.

Next to these common ε2, ε3, and ε4 alleles, several rare APOE variants 
have been reported (reviewed by Greenow et al.76). Most of these mutations are 
associated with hyperlipidemia (e.g. hypertriglyceridemia, hypercholesterolemia, 
type III hyperlipoproteinemia) as a result of defective LDLr binding77-82 or as a 
result of apoE-deficiency83-85.

position 139

position 153

receptor binding site

2.1.3. Functions of ApoE
ApoE is one of the most extensively studied apolipoproteins and appears to 
have numerous functions. The major role of apoE is the transport of (dietary) 
lipids within the blood circulation and determining the receptor-mediated uptake 
of these lipids as discussed above, and will be discussed in more detail in 
section 2.3. Furthermore, apoE has been proposed to play a role in intracellular 
lipid redistribution86,87, VLDL-secretion88, LPL inhibition89 reverse cholesterol 
transport80, atherosclerosis (discussed in section 3.2), and immunomodulation 
(discussed in section 4.4.2). In addition, apoE may have a role within the central 
nerve system. The APOE4 gene is associated with familial and sporadic forms 



17

General Introduction

of late-onset Alzheimer’s disease, a neurodegenerative disorder associated with 
progressive dementia90-92. The reduced ability of the brain to respond to damage 
in ε4 carriers associated with not only the rate of progression and/or age of 
onset of Alzheimer’s disease, but possibly also with other neurodegenerative 
disorders (e.g. Parkinson’s disease, amyotrophic lateral sclerosis), as well as 
coma’s length following traumatic brain injuries93-95. Interestingly, the APOE4 
polymorphism shows strong linkage-disequilibrium with the Hpa I polymorphism 
in the APOC1 promotor45,96,97, which is also associated with risk for Alzheimer’s 
disease98. The consequence of this linkage-disequilibrium on causality for the 
above mentioned neurodegenerative disorders remains to be determined.

2.2. Synthesis, Structure, and Function of ApoCI
In the mid sixties, early seventies, three human apoCs were identified and 
characterized, apoCI99-102, apoCII99-101 and apoCIII101. They were initially referred 
to as apo-Val (later corrected to apo-Ser), apo-Glu and apo-Ala, respectively, 
as designated by their carboxyl terminal amino acids. These apoCs are often 
portrayed as members of one consistent protein family, because of their similar 
distributions among lipoprotein classes, their low molecular weights, and 
coincident purification. In 1995, Allan et al.103 identified and characterized apoCIV 
as a fourth member of this human apoC-family, which was first discovered in 
mice104. ApoCIV is less well studied than the other three apoCs. It is undetectable 
in human plasma103, and to date no major modulating role for apoCIV could be 
identified. The role of the other three apoCs, in particular as significant modulators 
of lipoprotein metabolism, has been extensively reviewed105,106. ApoCII is known 
as an essential cofactor of TG lipolysis by LPL107-111, whereas apoCIII is primarily 
known as the main endogenous inhibitor of LPL112-117. The function of apoCI will 
be outlined in more detail below.

2.2.1. Synthesis and Structure of ApoCI
The human APOC1 gene is located 4.3 kb downstream from the APOE gene on 
chromosome 19 in the same transcriptional orientation118,119. The APOC1 gene is 
about 4.7 kb in size and is primarily expressed in the liver, but also at low levels 
in a wide variety of other tissues, including lung, skin, and spleen, where it is 
primarily expressed by macrophages within these tissues118. ApoCI is synthesized 
with a 26-residue signal peptide, which is co-translationally cleavaged, resulting 
in the formation of mature apoCI that consists of only 57 amino acids. With a 
molecular weight of 6.6 kDa mature apoCI is the smallest known apolipoprotein. 
The mouse apoc1 cDNA contains an open reading frame encoding a protein 
of 88 amino acids, including a signal peptide of 26 amino acid residues, finally 
resulting in a mature apoCI of 62 amino acid residues120. The mature mouse 
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apoCI protein shares 67% homology with the human protein. Comparisons of 
amino acid sequence of apoCI from different species (human, baboon, mouse, 
rat, and dog) showed discrete regions with a high degree of conservation120.

Just like apoCII and apoCIII, apoCI is mainly present on chylomicrons, 
VLDL and HDL (table 1), and circulates at levels in serum of about 8 mg/dL45,121.  
Predominantly due to its high lysine content (i.e. 16 mol%), human apoCI has 
the highest isoelectric point of all apolipoproteins (pI 6.5), a feature which is 
often used for the purification of the protein from other apolipoproteins122-124. 
Human apoCI has a boomerang shape, it contains two amphipathic α-helices, 
the N-terminal helix (residues 7-29) and the C-terminal helix (residues 38-52), 
separated by an unordered flexible linker125 (Figure 3). The N-terminal domain 
contains a mobile hinge involving residues 12-15. The hydrophobic side chains 
cluster on the nonpolar face of both helices, thus forming two discrete lipid binding 
sites in the N-terminal helix and one in the C-terminal helix. The C-terminal helix 
is tightly lipid-bound, while the N-terminal helix has lower lipid-binding affinity, but 
is more flexible and able to adjust to the lipoprotein size and composition125. In 
other words, the C-terminal helix may act as a lipid anchor, while the N-terminal 
helix may be located more on the surface of the lipoprotein able to hinge off the 
lipid surface.

2.2.2. Polymorphisms of ApoCI
So far, no apoCI-deficient humans have been reported. Until recently, no human 
structural mutations had been reported as well, however Wroblewksi et al.126 
recently described the first structural polymorphism of apoCI. This polymorphism 
involves the substitution of a tyrosine on position 45 for a serine, and could 
be found only in persons of American Indian, or Mexican ancestry, and not in 
individuals with ancestry of Europe, Africa and Asia. Within these American 
Indian, or Mexican ancestry about 14% of the individuals were carrier for this 

29 38

7

52

Figure 3. Structure of human apoCI. ApoCI consists of 2 α-helical structures, residues 7-29 (with a 
mobile hinge region involving residues 12-15) and residues 38-52, linked with a structurally unordered 
region (residues 30-37).
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mutation. Initial studies suggest that the S45 variant has higher preference for 
VLDL and lower preference for HDL as compared to normal apoCI, but additional 
studies are necessary to confirm these findings and to unravel whether this 
polymorphism also leads to functional changes of apoCI.

In contrast, a common Hpa I polymorphism has been described already 
two decades ago97,127,128. This polymorphism is produced by a 4-bp CGTT 
insertion 317 bp upstream of the transcription initiation site of apoCI. In vitro 
studies showed that this polymorphism decreased the binding of a negatively 
acting transcription factor, leading to increased expression of apoCI97. Follow up 
studies in human populations did confirm that circulating apoCI levels were (at 
least partly) dependent on the Hpa I polymorphism, however conflicting results 
have been obtained, as both negative and positive significant associations have 
been reported (even within the same study)45,121. The results suggest that the 
biological impact of the Hpa I polymorphism is largely dependent on factors as 
gender, age, ethnicity, and hyperlipidemic state. As mentioned above, the Hpa I 
polymorphism is in almost complete linkage-disequilibrium with both the APOE2 
and APOE4 alleles, but not the APOE3 allele, which are located in the same 
gene cluster45,96,97. Interestingly the Hpa I polymorphism has been associated 
with increased risk for Alzheimer’s disease98.

2.2.3. Functions of ApoCI
The first role ascribed to apoCI was by Havel et al.115, who showed that 

apoCI inhibited TG-hydrolysis by LPL. A few years later an inhibitory effect on 
HL activity was suggested as well129, but these studies comprise in vitro findings 
and conformational in vivo studies were thus required. The inhibitory functions 
of apoCI on LPL and HL will be discussed in more detail in the next section 
2.3. Others showed that apoCI was able to activate LCAT in vitro, resulting in 
increased formation of cholesteryl esters130-132. Importantly, both in vitro and 
in vivo studies showed that apoCI interferes with the apoE-mediated binding 
and/or uptake of TG-rich lipoproteins by lipoprotein receptors (e.g. LDLr and 
LRP)133-136, which will be outlined in more detail in section 2.3.3. Furthermore, 
apoCI has been shown to inhibit CETP137,138, and has been suggested to play a 
role in Alzheimer’s disease98, apoptosis of vascular smooth muscle cells139, and 
atherosclerosis (the latter discussed in section 3.3).
 
2.3. Role of ApoE and apoCI in TG-rich Lipoprotein Processing
The metabolism of TG-rich lipoproteins, such as chylomicrons and VLDL, in 
the circulation is complex, and not yet fully understood. Indisputably, TG-rich 
lipoproteins are converted into lipoprotein remnants by size reduction via the 
hydrolysis of the core TG by lipases, primarily  by LPL and HL. Subsequently, 
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these remnants are mainly taken up by the liver (~80%), but also by extrahepatic 
tissues, mediated via lipoprotein receptors. Most of the receptors participating 
in the uptake of TG-rich lipoproteins belong to the LDLr gene family (e.g. LDLr, 
VLDL-receptor (VLDLr) and LRP), but also binding sites outside this receptor 
family have been shown to be involved (e.g. HSPGs and SR-BI). Both apoE 
and apoCI have been proposed to play major roles in TG-rich lipoprotein 
processing.
 
2.3.1. Lipoprotein Lipase
As mentioned above, the hydrolysis of the core TG in chylomicrons and VLDL 
is an essential step in the processing, and the subsequent uptake, of these 
particles. The main enzyme responsible for this action is LPL, a member of a 
conserved lipase gene family, which included amongst others, HL, endothelial 
lipase, and pancreatic lipase140. By hydrolyzing TG, LPL liberates fatty acids, 
which can be used either directly as an energy source by the muscle and heart, 
or indirectly via storage as TG in adipose tissues. LPL is expressed in virtually all 
tissues, and is most abundant in adipose tissue, heart, and skeletal muscle141-143. 
LPL is not expressed in the adult liver143. Active LPL consists of a homodimer of 
two non-covalently linked glycoproteins of equal size144,145.

The role of LPL in lipid metabolism goes beyond the hydrolizing properties of 
the enzyme. Once LPL is released from the cell membrane it circulates in plasma 
mainly as a monomer. As a monomer, LPL is able the enhance the binding 
and/or internalization of lipoproteins via the LDLr146,147, LRP148-151, VLDLr152,153 
and HSPGs154,155, most likely by bridging the lipoprotein particle directly to the 
receptor148.

LPL requires apoCII as a co-factor to be catalytically active107-111. Also other 
apolipoproteins have been shown to influence the lipolytic activity of LPL. The 
main endogenous inhibitor of LPL is apoCIII112-117. Studies in transgenic mice and 
gene-targeted mice have documented the physiologic significance of the action 
of apoCIII in decreasing lipolysis156-161. A few years ago, apoAV was discovered 
as a novel apolipoprotein162,163. Recent work indicates that apoAV increases the 
LPL-mediated hydrolysis of TG by guiding VLDL and chylomicrons to HSPG-
bound LPL164,165. Since apoAV circulates in very low amounts in the human 
circulation (about 200-2000 ng/mL)166,167, the physiological relevance of the LPL 
activation by apoAV requires further investigation.

Besides apoCIII and apoAV, also apoE and apoCI have been suggested to 
modulate the lipolysis of TG by LPL. ApoE was shown to directly stimulate LPL 
activity in the absence of apoCII168,169, and was postulated to be required for 
the LPL-mediated metabolic conversion of VLDL into LDL170. However, in the 
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presence of the co-factor apoCII, apoE effectively inhibits LPL-mediated lipolysis 
of TG-rich particles in vitro171,172 and in vivo89. The physiologic importance of 
apoE-mediated inhibition of LPL is still subject of discussion. The role of apoCI 
in modulating the LPL-activity is much less described. A few decades ago, apoCI 
was shown to inhibit LPL in vitro115,173-176. However, apoCI was not as efficient 
as apoCIII, leading apoCIII as the main focus of investigation. Eventually, in 
the nineties apoCI transgenic133,159,177 and knockout178 mice were generated. The 
predominant hypertriglyceridemia in the apoCI transgenic mice133,159 is suggestive 
for apoCI-mediated inhibition of LPL in vivo as well; however no in vivo evidence 
has been reported so far.

2.3.2. Hepatic Lipase
Another enzyme that is postulated to be involved in remnant metabolism is HL. 
HL is primarily synthesized by hepatocytes, secreted, and mainly bound to the 
surface of parenchymal and hepatic endothelial cells associated with HSPG179-

181. The functional unit is a monomer in the liver, and may be a dimer in other 
tissues as the adrenal gland and ovary182. LPL and HL differ in their substrate 
preference and specificity. While LPL is mainly responsible for the hydrolysis of 
plasma TG, HL efficiently hydrolyzes phospholipids and has lower preference for 
TG183-187. In line with this, the preferred enzymatic substrates are IDL and HDL, 
but HL is also capable of processing chylomicrons and VLDL183,188-190. HL does not 
have an absolute requirement for a cofactor in order to be enzymatically active, 
but the activity can be modulated by several apolipoproteins. The effects of HDL 
apolipoproteins on HL activity are well described in vitro129,191,192. ApoAI191,192, 
apoCI129,192, apoCII129,193, and apoCIII129,192 have been suggested to inhibit HL-
mediated hydrolysis of TG, whereas for apoAII191,192,194 and apoE192,193,195,196 both 
inhibition and activation of HL-activity have been reported. apoE was suggested 
to activate HL-mediated hydrolysis of phospholipids in small HDL particles 
(with looser lipid packing), but not in larger VLDL particles (with tighter lipid 
packing), which could explain the inconsistencies found in earlier reports197. The 
physiologic relevance of HL-inhibition by apoCI in vivo remains to be elucidated. 
Recently it was suggested that apoCI-mediated inhibition of HL is responsible for 
the hypertriglyceridemic phenotype in apoCI transgenic mice198. Strikingly, HL-
deficient mice do not show any sign of disturbed TG metabolism199-201, arguing 
against HL-inhibition as a major determinant of the observed hypertriglyceridemic 
phenotype in APOC1 mice.

2.3.3. TG-rich Lipoprotein Uptake Mechanisms
Lipoprotein receptors like the LDLr, LRP, and VLDLr play crucial roles in lipid 
homeostasis by mediating the cellular uptake of primarily TG-rich lipoproteins. 
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These receptors belong to the LDLr gene family, which represents a class of 
endocytic receptors that is present in both vertebrate and non-vertebrate species. 
In the last years, these receptors have been identified and characterized202-204. 
The members of this family exhibit several distinct functional domains: 1) an 
amino-terminal ligand binding domain; 2) an epidermal growth factor precursor 
homology domain; 3) an O-linked sugar domain; 4) a transmembrane domain 
that is required for anchoring the receptor to the plasma membrane; and 5) a 
cytoplasmatic region with a signal (Asp-Pro-X-Tyr) for receptor internalization via 
coated pits205-207 (Figure 4).

2.3.3.1. LDLr
The LDLr (120 kDa) is the prototype of the LDLr family, is highly expressed in 
tissues that utilize lipoproteins, such as the liver and adrenals208, and recognizes 
both apoB100 and apoE209. The LDLr can contribute to the clearance of both 
chylomicrons and VLDL (remnants) in vivo in animals as well as in humans. 
The clearance of these particles is mainly mediated via apoE, which binds to 
the LDLr via its LDLr-binding domain (residues 139-153; Figure 2)58,59. The 
LDLr also recognizes apoB100, the sole apolipoprotein of (mainly cholesterol-
rich) LDL, and via this interaction the LDLr mediates the uptake of LDL from 
plasma (Table 1). ApoCI has been shown to inhibit the apoE-mediated hepatic 
uptake of TG-rich lipoprotein remnants by the LDLr, possibly by masking of the 
receptor binding domain of apoE135, or via displacement of apoE from lipoprotein 
particles136.

Figure 4. Schematic structures of several members of the LDLr family. See text for explanation. 
NPXY designates the tetraamino acid motif Asp-Pro-X-Tyr which directs the receptors into coated 
pits. EGF, endothelial growth factor. Adapted from Willnow et al.204.

LDL Receptor-
Related Protein

LDL 

Rec
ep

tor
VLDL 

Rec
ep

tor

Ligand binding type repeat

EGF precursor 
type repeat

YWTD spacer

EGF precursor 
homology 
domain

O-linked sugar 
domain
Membrane 
anchor
NPXY motif



23

General Introduction

2.3.3.2. LRP
Besides the LDLr, also LRP (i.e. LRP1) plays a role in TG-rich lipoprotein 
uptake. LRP (also known as the α2-macroglobulin receptor) is the largest (i.e. 
600 kDa) endocytotic receptor identified to date, and is expressed in a variety 
of tissues, such as the liver, intestine, lung, and brain, and in numerous cell 
types, such as fibroblasts, SMCs, monocytes/macrophages 210-212. LRP1 is a 
heterodimer consisting of a 515 kDa extracellular and an 85 kDa membrane 
anchored subunit213, and recognizes >50 structurally and functionally different 
ligands214,215, including apoE-containing lipoproteins216-219. Similarly as for the 
LDLr, apoCI also inhibits the apoE-mediated uptake by LRP, probably via the 
same mechanism136. Studies form our group suggested that the inhibiting 
properties of apoCI towards LRP may exceed those towards the LDLr, because 
the apoCI-associated hyperlipidemia was substantially more pronounced on an 
LDLr-deficient background as compared to a wild-type background133,134. 

2.3.3.3. VLDLr
The member of the LDLr family that most closely resembles the LDLr is the 
VLDLr220,221. The VLDLr enhances the binding and uptake of apoE-containing 
lipoproteins, such as chylomicrons, VLDL, and IDL, but not LDL152,220. Similar as 
for the other members of the LDLr family, the apoE-mediated binding of TG-rich 
lipoproteins to the VLDLr is inhibited by apoCI134. The VLDLr is most abundantly 
expressed in tissues active in FFA metabolism, such as the heart, skeletal 
muscle, and adipose tissue222-226, and only trace amounts are found in liver221,227. 
Within these tissues the VLDLr is mostly localized in endothelial cells and SMCs 
of arteries and veins228,229. Like LRP, the VLDLr is also a multiligand receptor, and 
is able to facilitate the uptake of fibrinolysis products153 and extracellulair matrix 
proteins230.

2.3.3.4. HSPG
HSPGs play also a role in TG-rich lipoprotein remnant clearance as part of 
the “HSPG/LRP pathway”231-233. HSPGs are components of the extracellular 
matrix within the Space of Disse, as well as collagen, fibronectin, laminin, and 
elastin. HSPGs are heterogenous, with respect to their number of chains per 
polypeptide, chain length, and extent of postpolymeric modifications, such as 
N-acetylation, N-sulfation, and O-sulfation234,235. Both in vitro61,236 and in vivo237,238 
studies showed that HSPGs are involved in TG-rich lipoprotein clearance. It is 
envisioned that TG-rich lipoproteins may initially sequester within the Space of 
Disse through interaction with apoE bound to HSPGs, which are found on the 
microvilli of parenchymal cells61,239-241. HSPGs are thought not to be involved 
in the actual ligand uptake process, but to transfer the TG-rich lipoproteins to 
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an internalizing receptor, such as the LRP and the LDLr242, although a direct 
low affinity HSPG-mediated internalisation of TG-rich particles has also been 
described243.

2.3.3.5. SR-BI
Recently, SR-BI, which is well known for mediating selective uptake of cholesteryl 
esters from HDL without concomitant uptake of HDL protein244, was shown to 
accelerate chylomicron metabolism245. Similar as for HSPGs, SR-BI probably 
mediates the initial capture of chylomicron remnants by the liver, whereby the 
subsequent internalization can be exerted by additional receptors like the LDLr 
and LRP. The role of apoE and other apolipoproteins in this SR-BI-mediated 
pathway still has to be elucidated.

3. Role of ApoE and ApoCI in Atherosclerosis
Atherosclerosis is the main cause of CVD such as myocardial infarction and 
stroke, and accounts for up to 50% of all mortality in Western countries3. 
Atherosclerosis has traditionally been viewed to simply reflect the deposition of 
lipids within the vessel wall. Classically, elevated cholesterol and/or TG levels, 
and in particular high LDL-cholesterol and low HDL-cholesterol levels, are the 
principal risk factors of atherosclerosis. However, nowadays atherosclerosis is 
considered not only as a disease of the lipids, but also as a chronic inflammatory 
disease of the intima, slowly developing in time starting from childhood, resulting 
in additional risk factors such as high C-reactive protein (CRP) for example3,6,246. 
Other risk factors for this multifactorial disease include age, gender, smoking, 
hypertension, stress, dietary habits, and physical inactivity3,6,7.

3.1. The Pathogenesis of Atherosclerosis
Endothelial cells can be exposed to many forms of injury, including infectious, 
immunological, chemical, radiation and mechanical injury, which has an impact 
on their cellular structure and function3,7. As a result, markers such as vascular 
cell adhesion molecule 1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1) 
and selectins (e.g. E-selectin and L-selectin) are expressed. These adhesion 
molecules attract monocytes, which start rolling on the endothelium leading to 
their attachment and infiltration into the intima, initiating the formation of the 
lesion or plaque247-249 (Figure 5). The presence of macrophage colony-stimulating 
factor in the vessel wall mediates the maturation of the infiltrated monocytes into 
macrophages, which are scavenging and antigen-presenting cells that secrete 
cytokines, growth-regulating molecules, chemokines, proteases, reactive 
oxygen radicals, and other inflammatory molecules250,251. These macrophages 
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may initially serve as a protecting factor, by playing a critical role in the repair 
and damaging processes while the lesion develops. However, scavenging of 
modified LDL results in lipid-laden macrophages, called foam-cells, which 
subsequently results in the formation of a fatty streak. This fatty streak is still 
completely reversible, but may progress into an advanced lesion by the influx of 
additional monocytes and T-cells, depending on the balance of proatherogenic 
and anti-atherogenic factors4. The resulting proatherogenic micro-environment 
in the lesion by the increased inflammation and tissue damage, stimulates 
migration of fibroproliferative vascular smooth muscle cells (SMCs), derived 
from the underlying media or circulating progenitor cells, to the endothelium to 
form a protective fibrous cap3,252. These SMCs are also capable of accumulating 
cholesterol and contribute to the foam cell formation. Further progression of the 
plaque includes the accumulation of foam cells and the formation of a lipid core. 
Also other immunocellular components as T-and B-cells, mast cells, natural killer 
cells, neutrophils and dendritic cells, present in the advanced atherosclerotic lesion 
are able to modulate the progression of the lesion. Subsequently, macrophage 
death by apoptosis or necrosis, as a consequence of cholesterol-toxicity, 
inflammatory cytokines, oxidative stress, and growth factor depletion, contributes 
to the formation of a necrotic core253,254. At this point the advanced fibrous lesion 
consists of a fibrous cap that covers a core of foam cells, macrophages and 
other inflammatory cells, SMCs, extracellular lipids, and a necrotic core.  The 
plaque is stable when a uniform thick fibrous cap is formed. On the other hand, 

Figure 5. Schematic overview of atherogenesis from early to advanced atherosclerotic lesion 
formation. See text for explanation. mLDL, modified LDL; SR, scavenger receptor. Adapted from De 
Winther et al.256.
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continuous influx and activation of macrophages, releasing metalloproteinases 
and other proteolytic enzymes in the plaque can result in thinning of the fibrous 
cap3,252,255. The concomitant instable cap can lead to rupture of the plaque, which 
in worst case can occlude the vessel and result in cardiovascular events such as 
myocardial infarction and stroke.

3.2. ApoE in Atherosclerosis
A major focus of recent research on CVD has been to understand the molecular 
basis of atherosclerosis in detail, and has resulted in the identification of a key, 
but complex, role for apoE in this process. ApoE has been ascribed many anti-
atherosclerotic functions (summarized in Figure 6), of which its central role in the 
regulation of lipid metabolism (discussed in section 1 and 2) is probably the most 
important and can be attributed to several actions: 1) Uptake and degradation of 
lipoprotein remnants by the liver79,80,257, 2) stimulation of the reverse cholesterol 
transport80,258,259, and 3) activation of enzymes involved in HDL-metabolism 
such as LCAT260 and possibly HL (discussed in section 2.3.2). These above 
functions of apoE in lipid metabolism can all be considered as anti-atherogenic 
mechanisms. However, apoE may also have a pro-atherogenic function in lipid 
metabolism by: 1) stimulating the hepatic VLDL production88,261, and 2) activating 
CETP262, which is considered a pro-atherogenic lipid transfer protein263-265. Since 
mice normally lack expression of CETP37 this is not relevant in mice, but may be 
of importance in the human situation.

Additional anti-atherosclerotic functions of apoE have been identified which 
are mostly anti-inflammatory of nature. ApoE expressed by macrophages inhibits 
platelet aggregation by interacting with a specific cell surface receptor, the apoE 
receptor 2 (apoER2), initiating a signalling cascade leading to activation of nitric 
oxide (NO) synthase and the subsequent decrease in NO266,267. In addition, 
via the same mechanism apoE inhibits VCAM-1 expression on endothelial 
cells268. Furthermore, apoE inhibits T-cell activation and proliferation269-271, and 
SMC migration and proliferation as induced by platelet-derived growth factor 
and oxidized LDL272-274. ApoE may prevent the accumulation of oxidized LDL 
by inhibiting lipid oxidation275-277, and is suggested to inhibit endothelial cell 
proliferation by modulating the availability of cytokines and growth factors retained 
in the pericellular proteoglycan matrix278. Data also support an anti-inflammatory 
role for apoE in suppressing acute inflammation by lipopolysaccharide (LPS)15,279-

281 or bacteria (e.g. Listeria monocytogenes282, Klebsiella pneumoniae280,283 as 
will be discussed in section 4.4.2, which is likely to also have anti-atherogenic 
consequences.

In contrast to these anti-inflammatory properties, apoE has also 
proinflammatory properties, which thus may aggravate atherosclerosis 
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development. Van den Elzen et al.16 showed that apoE is involved in enhancing 
the presentation of lipid antigens by dendritic cells. ApoE captures lipid antigens 
in the circulation, and, via an LDLr-mediated uptake route, these lipid antigens 
are subsequently presented on the surface of dendritic cells (also discussed in 
section 4.4.2).
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Most of the understanding of the role of apoE in atherosclerosis as described 
above has been generated by the use of apoE-deficient mice. Disruption of the 
apoe gene in mice is associated with hypercholesterolemia and spontaneous, 
severe atherosclerosis that can be further enhanced by cholesterol feeding284-286. 
The development from the fatty streak to the advanced plaque in this model is to 
a certain extent similar as in the human plaque development, and, therefore, this 
model is widely used in atherosclerotic research.

In humans, apoE-deficiency (characterized by less than 1% of the normal 
apoE concentration in plasma ) is associated with hyperlipidemia, mainly 
high VLDL, IDL, and LDL levels83,85,287-292, increased lipid storage in monocyte/
macrophages and phenotypic expression of xanthomas (massive foam-cell 
accumulation) early in life83,85,291, and premature development of atheroscleros
is83,85,291. Interestingly, heterozygous apoE-deficient subjects have normal lipid 
levels, although apoE concentrations are only approximately half of normal 

Figure 6. Proposed anti- (white boxes) and pro- (grey boxes) atherogenic roles of apoE. See text 
for explanation. CETP, cholesteryl ester transfer protein; HL, hepatic lipase; LCAT, lecitin:cholesterol 
acyltransferase; SMC, smooth muscle cell. Modified from Gilnow et al.76.
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levels85. Thus, only the nearly complete deficiency of apoE will result in increased 
risk to develop atherosclerosis.

A number of studies have investigated the impact of the common human 
apoE2, apoE3, and apoE4 isoforms on cardiovascular research293-296. These 
isoforms have distinct effects on lipid metabolism (discussed in section 2.1.2). 
ApoE2 is associated with higher plasma apoE levels, but lower cholesterol 
levels as compared to apoE3 subjects46,63,73-75, whereas in apoE4 subjects lower 
plasma apoE levels and higher cholesterol levels are found46,63,75. The results 
on the association of the ε2 allele with CVD have yielded conflicting results; 
both harmful and protective associations have been found293-296. On the other 
hand, the ε4 allele has been consistently associated with an increased risk of 
CVD293-296. Importantly, irrespective of the APOE genotype, high plasma apoE 
levels are associated with increased cholesterol levels63,73. This may indicate 
that in humans high plasma apoE levels are associated with increased CVD 
irrespective of the APOE genotype, but studies addressing this hypothesis have 
not yet been reported.

3.3. ApoCI in Atherosclerosis
The role of apoCI in atherosclerosis has been far less studied than the role 
of apoE. It appears that researchers only recently started to really appreciate 
the significant role of apoCI in lipid metabolism and started studies on the role 
of apoCI in atherosclerosis development. ApoCI has potent hyperlipidemic 
effects by inhibiting the hepatic apoE-mediated uptake of (atherogenic) remnant 
particles, and possibly also by inhibiting the processing of TG-rich lipoproteins 
by LPL (discussed in section 2). Besides its hypertriglyceridemic effects, in vitro 
studies have indicated that apoCI may also promote plaque rupture by inducing 
apoptosis of aortic SMCs, via recruitment of neutral sphingomyelinase139. In 
contrast apoCI may also possess anti-atherosclerotic properties by promoting 
cholesterol efflux from macrophages via ABCA1297, possibly via stabilisation of 
ABCA1. In addition, apoCI is the main endogenous inhibitor of CETP, which 
is a very promising anti-atherosclerotic characteristic122,138. Inhibition of this 
proatherogenic lipid transfer factor increases circulating HDL levels298-300 and 
subsequently may decrease atherosclerosis risk.

Expression of human apoCI in mice, that naturally do not express CETP37, 
aggravated atherosclerosis development198. To investigate the potentially important 
anti-atherosclerotic characteristic of apoCI as an inhibitor of CETP, studies using 
human CETP transgenic mice have been performed. Initial studies showed that 
human apoCI expression in CETP transgenic mice resulted in decreased specific 
CETP activity, but simultaneously increased total CETP mass as compared to 
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their controls301. Since the overall CETP activity was probably enhanced, this 
led to an even aggravated proatherogenic lipoprotein profile, with decreased 
HDL levels and markedly increased VLDL and LDL levels, indicating that the 
potential anti-atherogenic properties of apoCI are overruled by its proatherogenic 
properties in this model. However, this has to be confirmed in humans, since 
data on association of plasma apoCI levels with CVD or clinical endpoints 
are still lacking. However, human studies did reveal that the apoCI content of 
TG-rich lipoproteins in the postprandial state predicts early atherosclerosis in 
normolipidemic healthy men302-304. This proatherogenic effect of apoCI is most 
likely a result of reduced processing of the postprandial TG-rich lipoproteins by 
lipases and inhibited receptor binding, and the concomitant delayed uptake of 
(atherogenic) TG-rich lipoproteins, as evident from experimental studies (see 
also section 2). Recently, Kwiterovich et al.305 described the presence of an 
elevated large HDL particle enriched in apoCI, in infants of lower birth weight 
and younger gestational age. Although this apoCI-enriched particle disappears 
soon after birth, these infants have increased risk of CVD in adulthood306. The 
molecular mechanism behind this association remains to be elucidated.

4. Role of ApoE and Other Apolipoproteins in Inflammation 
and Sepsis
Sepsis is a major cause of morbidity and mortality. It affects approximately 
700,000 people annually and accounts for about 210,000 deaths per year in the 
United States10,11. In fact, it is the leading cause of death in medical and surgical 
intensive care units8,9. Due to advances in medical practice and technology, as the 
use of invasive equipment, implantation of prosthetic devices, and administration 
of corticosteroids and other immunosuppressive agents to patients with organ 
transplants or inflammatory diseases, the incidence is still rising at rates between 
1.5% and 8% per year10,11. 

4.1. Infection, Sepsis, and Lipopolysaccharide
Sepsis is currently viewed as a complex dysregulation of the inflammatory 
response arising when the host is unable to successfully contain an infection 
with microorganisms, as bacteria, parasites, fungi, and viruses11,307,308. Infection 
with microorganisms first results in a proinflammatory response, during which 
proinflammatory cytokines (e.g. tumor necrosis factor-α (TNFα), interleukin-1 
(IL-1), IL-6, and IL-12) are produced to effectively respond to the infection309-311. 
This first proinflammatory response is crucial to combat the bacterial infection 
in the early phase (Figure 7). When this initial proinflammatory response is 
inadequate and the invading microorganisms multiply, the proinflammatory 
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response enhances and develops into a systemic inflammatory response 
syndrome (SIRS). This response is counteracted by the compensatory anti-
inflammatory response syndrome (CARS), during which IL-4, IL-10, IL-13, and 
other cytokines are produced. The correct balance of SIRS and CARS, as well as 
the intensity of these responses greatly influences host survival309-311. Imbalance 
between these responses can result in host damage (Figure 7). If the balance is 
shifted towards SIRS, excessive proinflammatory cytokine production will cause 
direct host damage. A shifted balance towards CARS will result in increased 
proliferation of the infection, eventually leading to an excessive proinflammatory 
response. Thus, an efficient proinflammatory response is crucial to prevent rapid 
multiplication of the invading microorganism and to surmount the first phase of 
infection, whereas in a later phase a high proinflammatory response is often 
harmful and may lead to tissue damage and organ failure.

Most cases of sepsis are caused by bacteria. The occurrence of Gram-positive 
sepsis increased over the last decades and accounts for 30-50% of all cases, 
whereas the incidence of Gram-negative sepsis is somewhat lower, but still 
accounts for 25-30% of all sepsis cases307,308,312,313. While Gram-positive bacteria 
contain a number of immunogenic cell wall components (e.g. M protein), in 
addition to often highly deleterious exotoxins, such as lipoteichoic acid (LTA) 
and peptidoglycan, Gram-negative bacteria share LPS as their main pathogenic 
component314,315. In fact, injection of LPS alone causes the same clinical features 
as can be seen in patients with Gram-negative sepsis316. LPS is essential for 
the growth and structural integrity of the bacteria317-319, and, incorporated in the 

Figure 7. The U-shape relationship between the host inflammatory response and mortality. See 
text for explanation. Adapted from Cross et al. (Cross AS, International Endotoxin Society Meeting, 
Kyoto, Japan, 2004).
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bacterial membrane, activation of the immune cells is poor320. However, the 
release of LPS from the membrane during both cell division and death, exposes 
the toxic lipid A moiety to immune cells, evoking an immunological response321,322. 
The LPS molecule consists of 4 different parts: 1) lipid A, 2) the inner core, 3) the 
outer core, and 4) the O-antigen (Figure 8)319,322,323.

The lipid A moiety is the toxic part of LPS. It is the lipid component of LPS and 
consists of 6 or more fatty acid residues linked to 2 phosphorylated glucosamine 
sugars. Despite the common architecture, lipid A of different bacterial origin 
varies in their fine structure. These variations are: 1) the acylation pattern; 2) 
length of the fatty acid residues; 3) the presence of 4-amino-deoxy-L-arabinose 
and/or phosphoethanolamine linked to the phosphor groups on the glucosamine 
sugars; and 4) the number of fatty acids (most bacteria contain 6 fatty acid 
residues).

The inner core of LPS consists of two or more 2-keto-3-deoxyoctonic acid 
(KDO) sugars linked to the lipid A glucosamine. To these KDO sugars, 2 or 3 
heptose (L-glycero-D-manno-heptose) sugars are linked. Similar as for lipid A, 
the sugars of the inner core are also unique to bacteria. Re-LPS is the smallest 
LPS molecule produced by Gram-negative bacteria, and consists of lipid A with 
1 or 2 KDO sugar units.

Figure 8. General simplified overview of lipopolysaccharide (LPS) on the outer membrane of Gram-
negative bacteria. See text for explanation of the LPS components. Some bacterial species contain 
an outer capsule that protects the bacterium from host defenses such as complement, lysis, and 
phagocytosis (A). Outer lipid bilayer with LPS which is approximately 8 nm in width (B). Peptidoglycan 
layer (C). Inner bilipid membrane (D). S-LPS, smooth LPS; SR-LPS, semi-rough LPS; R-LPS, rough 
LPS. Adapted from Dixon et al.324.
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The outer core of LPS is more variable than the inner core and consists 
of common sugars. In most cases it is 3 sugars long with 1 or more covalently 
linked sugars as side chains. Serotypes of LPS that consist of lipid A, and the 
complete inner and outer core are denoted Ra-LPS, whereas the Rb- and Rc-
LPS serotypes only contain a part of the outer core.

The O-antigen is attached to the outer core and is composed of repeating 
units of common sugars. The O-antigen extends from the bacterial surface, and is 
also immunogenic. The interspecies and interstrain variations in the composition 
and length of the O-antigen are huge, and can vary from 0 to 40 repeating units, 
but in general consist of 20-40 repeating units. O-antigen-containing LPS differ 
from O-antigen-lacking LPS by their smooth appearance on agar plates, and are 
therefore indicated as S-LPS, whereas O-antigen-lacking LPS have a rough (R) 
appearance.

4.2. Host Response to Lipopolysaccharide
The immune response to LPS and Gram-negative bacteria consists of the innate 
and adaptive immunity325,326. The innate immunity is evolutionary ancient, whereas 
the adaptive immunity provides specific recognition and immunological memory. 
The innate immunity is the first line of defense. In particular the mononuclear 
cells (i.e. monocytes and macrophages), neutrophils, and mast cells are of great 
significance, since these cells are activated by LPS to differentiate rapidly into 
short-lived effector cells to combat infection325,327-329. Immature dendritic cells 
which are specialized antigen-presenting cells involved in innate immunity, 
present internalized LPS on their surface to activate T-cells and to provide 
instructions about the nature of the microbe 325,328-333. For complete activation of 
T-cells, dendritic cells need to deliver co-stimulatory signals, such as CD80 and 
CD86. The activated T-cells then start the adaptive immune response, in which 
cytotoxic T-cells, B-cells, and macrophages serve as effector cells. Macrophages 
play a major role in immunity, since these effector cells are thus involved in both 
the innate and adaptive immunity, as described above.

An important family of innate immune receptors are the Toll-like receptors 
(TLRs), named after the homologous Toll protein in Drosophila melanogaster334. 
These receptors can discriminate between different pathogens and self-antigens. 
To date, 10 different TLRs are described in humans and mice, which differ from 
each other in ligand specificities, expression patterns, and in the target genes 
they can induce335-338. Strict discrimination between pathogens and self-antigens 
by TLRs is required for a TLR response, because they play a crucial role in 
deciding whether to respond or not to an invading microorganism339.

TLR4, together with its indispensable unit MD2, is essential for the recognition 
and inflammatory response towards LPS340-344. This LPS-signalling receptor was 
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identified after cloning of the defective gene in the LPS-unresponsive C3H/HeJ 
and C57BL/10ScCr mice340,345,346. Only few exceptions of LPS are known to be 
undetected by TLR4, these are the LPS of Porphyromonas gingivalis347 and 
Leptospira interrogans348 bacteria. The LPS of these bacteria differ in structure 
from other Gram-negative bacteria, and are recognized by TLR2. TLR4, however, 
is not the sole receptor involved in LPS recognition. Transport of LPS in the 
circulation is mainly mediated by LPS-binding protein (LBP), which catalyzes 
the movement of free LPS or LPS from the outer membrane of Gram-negative 
bacteria directly to HDL and other lipoprotein particles349, but also to CD14350,351. 
CD14 is either expressed on the surface of myelomonocytic cells as a glycosyl
phosphatidylinositol (GPI)-anchored molecule (membrane CD14, mCD14), or is 
present in the circulation as a soluble molecule (sCD14)352. CD14 then delivers 
the LPS to TLR4. CD14 appears not to be essential for LPS responses, but 
probably has a role in their amplification353.

LPS processing by LBP and sCD14 does not necessarily result in LPS 
responses, but also in LPS clearance. Transfer of LPS to lipoproteins can result 
in neutralization and subsequently clearance via the liver349,354-356 (discussed in 
section 4.4). Therefore, both LBP and CD14 have a dual role in LPS responses; 
they not only trigger LPS responses, but can also terminate them357-359, which 
might explain the complex phenotypes of mice that lack these molecules. 
For instance, LBP-deficient mice are susceptible to Gram-negative bacterial 
infection, but are resistant to experimentally LPS-induced shock349, while LPS-
stimulated TNFα production in vivo is not impaired360. Similarly, CD14-deficient 
mice are highly resistant to LPS- and Gram-negative bacteria-induced shock361. 
Surprisingly, these mice also show reduced circulating bacteria levels, suggesting 
a role for CD14 in facilitating the dissemination of Gram-negative bacteria362. 
LPS clearance by CD14 might attenuate local inflammation and hereby could 
permit bacterial replication. 

4.3. Lipid Metabolism in Inflammation and Sepsis
Accumulating evidence indicates that lipoprotein metabolism is strongly 
influenced by inflammation, infection, and sepsis363. In human sepsis, plasma 
TG are increased364-367, phospholipids are maintained at near normal levels364, 
while total cholesterol is decreased364,366-369. The decrease in cholesterol, caused 
by a reduction in cholesteryl esters, and not unesterified cholesterol364, can be 
attributed to reductions of LDL365-367 and mainly HDL365-367,369. The decrease in 
HDL is accompanied by a loss of mainly large apoAI-containing particles, an 
almost total loss of apoCI, and an increase in apoE-containing HDL, which does 
not contain significant amounts of apoAI, apoAII, or apoCI365. In addition, apoAI-
containing HDL also shows an increased content of the inflammation-associated 
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isoforms of SAA, which may inhibit the selective uptake of HDL-cholesteryl esters 
by SR-BI370. Also, plasma LBP is strongly increased, albeit that the disposition 
of LBP in the circulation (i.e. HDL versus apoB-containing lipoproteins) remains 
quite controversial. Initially, LBP was suggested to be bound to HDL based on 
removal of LBP from plasma by anti-apoAI immunochromatography371. However, 
more recent studies have indicated that LBP is mainly associated with apoB-
containing lipoproteins as evidenced by co-migration during separation of 
lipoproteins by electrophoresis365,372. Intravenous infusion of a single dose of 
LPS into healthy volunteers can mimic many of the effects observed in septic 
patients, including a transient increase in plasma FFA and TG, and a decrease 
in cholesterol, LDL-cholesterol and apoB373.

The mechanisms underlying the effects of sepsis on lipid metabolism have 
been mainly derived from studies in animals, by mimicking the septic conditions 
as seen in patients. Injection of LPS or bacteria into rats leads to a marked 
hyperlipidemic response, caused primarily by an increase of VLDL-TG374. Low 
doses of LPS increase the hepatic VLDL production, as related to an increased 
hepatic synthesis of TG375 and cholesterol376. In contrast, high doses of LPS 
inhibit VLDL clearance375, which may be related to a decrease in plasma LPL 
activity377,378, VLDL-apoE content379, or hepatic LDLr expression380. In addition, 
LPS has been shown to affect a wide range of HDL-associated apolipoproteins, 
plasma enzymes, lipid transfer proteins, and receptors that are involved in plasma 
HDL metabolism. Besides a decrease in HDL-associated apoAI and an increase 
in HDL-associated SAA, apoAIV, apoAV, apoE363, and apoJ381,382, LPS affects 
LCAT378, HL383, PLTP384, CETP385, macrophage ABCA1386, macrophage SR-BI387, 
and hepatic SR-BI388, as summarized in Figure 9. Since PLTP is decreased in 
LPS-treated mice384 and increased in human sepsis365, the actual significance of 
some of these findings for human sepsis remains to be established. Nevertheless, 
despite some potential species’ differences, both sepsis and LPS thus affect 
plasma lipoprotein levels by modulating lipoprotein production and clearance 
through their effect on apolipoproteins, lipolytic enzymes, lipid transfer factors, 
and lipoprotein receptors363,389.

4.4. Lipoproteins and the Lipopolysaccharide Response
In addition to the effects of LPS and sepsis on lipid metabolism, all lipoprotein 
classes have been demonstrated to bind LPS. LPS, when added to whole 
human normal blood, mainly binds to HDL (60%), in addition to LDL (25%) and 
VLDL (12%)364,390. In septic blood, in which HDL levels are decreased, LPS 
binding shifts towards VLDL364. Biophysical studies showed that LPS interacts 
with HDL through its lipid A moiety, in particular involving the diglucosamine-
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their formation, secretion, and clearance, as shown by the arrows in the boxed items. See text 
for explanation. AI, apolipoprotein AI; ABCA1/ABCG1, ATP-binding cassette transporter AI or GI; 
B, apolipoprotein B; CI, apolipoprotein CI; CE, cholesteryl ester; CETP, cholesteryl ester transfer 
protein; E, apolipoprotein E; FC, free cholesterol; FFA, free fatty acids; HSPG, heparan sulphate 
proteoglycans; LCAT, lecithin:cholesterol acyltransferase; LDLR, LDL receptor; LRP, LDL receptor-
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phosphate region391. However, the mode of interaction may strongly depend on 
the composition of HDL, especially with respect to its apolipoprotein pattern, 
which is drastically altered in inflammation and sepsis (as discussed in the 
previous section 4.3). The binding of LPS to lipoproteins modulates the 
biological response to LPS, as demonstrated in vitro and in rodents392,393. Both 
chylomicrons and VLDL were able to protect mice and rats against a lethal dose 
of LPS354,393. In fact, chylomicrons were able to prevent septic death resulting 
from cecal ligation and puncture (CLP) in rats394. TG-rich lipoproteins appeared 
to redirect LPS to hepatocytes354,355, where LPS was secreted into the bile in 
a de-activated form, as shown in rats356. The cholesterol-rich lipoproteins LDL 
and HDL can also bind LPS and neutralize its biological activity392. Transgenic 
mice expressing human apoAI, resulting in a 2-fold elevated plasma HDL level, 
exhibited lower cytokine levels and improved survival rates after LPS challenge 
as compared to control mice395. Based on the LPS-neutralizing properties of 
HDL, it was hypothesized that reconstituted HDL (rHDL), built from phospholipids 
and apoAI, may constitute a valuable therapeutic agent in the protection and 
treatment of septic shock. Indeed, rHDL reduced LPS-induced TNFα production 
in mice395, rabbits396,397, and dogs398. In humans, infusion of rHDL reduced the 
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LPS-induced release of TNFα, IL-6, and IL-8, while the release of inhibitors of 
proinflammatory cytokines (i.e. IL-1 receptor antagonist, soluble TNF receptors, 
and IL-10) were only marginally affected399.

4.4.1. Lipoprotein Constituents and the Lipopolysaccharide Response
The amphiphilic structure of LPS would suggest that LPS associates with 
lipoproteins merely by intercalation of the highly lipophylic lipid A moiety into 
the particle’s phospholipid shell. Indeed it has been shown that the ability of the 
various lipoprotein classes to neutralize the bioactivity of LPS in vitro depends 
on their phospholipid content and not on their content of cholesterol or TG400. 
LPS can be directly transferred into phospholipids by LBP in the presence401 or 
absence402 of sCD14. The LBP-induced intercalation of LPS into phospholipid 
liposomes may also be enhanced by HDL391. Moreover, infusion of phospholipid-
rich lipid emulsion has been shown to improve survival in a porcine model of septic 
peritonitis, as related to an increased phospholipid content of lipoproteins403. 
Finally, in vitro studies, in which LPS was added to the serum of septic patients, 
has shown that the distribution of lipoprotein-bound LPS among the major 
lipoprotein classes paralleled the phospholipid content of those classes364.

On the other hand, it has also been reported that LPS aggregates do 
not intercalate into phospholipid membranes in a non-specific hydrophobic 
manner404, indicating the necessity for proteins for association of LPS with 
lipoproteins. Although protein-free, TG-rich emulsion particles are able to bind 
LPS as shown by mobility shift assay on an agarose gel, the interaction between 
the emulsion particles and LPS is not strong enough to prevent dissociation 
of LPS in the blood15. Pre-incubation of high doses of emulsion particles with 
LPS before intravenous injection into rodents did not affect the kinetics of LPS 
15 nor the proinflammatory reaction to LPS281 (Figure 10). Likewise, continuous 
infusion of a commercial protein-free, TG-rich, lipid emulsion (i.e. Intralipid) did 
not attenuate inflammatory responses to LPS in humans, albeit that plasma TG 
levels were 9-fold elevated prior to LPS administration405.

4.4.2. ApoE and the Lipopolysaccharide Response
The data thus indicate that the interaction between LPS and lipoproteins may not be 
mediated by simple intercalation of LPS into the amphiphilic phospholipid bilayer 
of lipoproteins, and that lipoprotein-associated apolipoproteins are important for 
the LPS binding properties of lipoproteins. Indeed, it was found that emulsions 
enriched with apoE, or even lipid-free apoE, avidly bind to LPS as evidenced by 
co-localization of 125I-LPS and apoE upon agarose gel electrophoresis15. As with 
TG-rich lipoproteins354-356, apoE-enriched, TG-rich, emulsion particles, but not 
protein-free, emulsion particles, were able to prevent the association of LPS with 
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macrophages in the liver (i.e. Kupffer cells) and spleen, and enhance the uptake 
of LPS by hepatocytes15. Strikingly, the same effect was observed with lipid-free 
apoE15, indicating that apoE may be a key lipoprotein component to mediate the 
protective effect of lipoproteins in endotoxemia and sepsis. Indeed, subsequent 
studies confirmed that apoE-emulsions and lipid-free apoE, but not protein-
free emulsions, largely inhibited LPS-induced serum levels of proinflammatory 
mediators TNFα, IL-1α, and IL-6. In fact, apoE was able to protect mice against 
LPS-induced mortality (Figure 10)281.

Accordingly, apoE-deficient mice showed increased plasma levels of 
TNFα279-281, IL-6279, IL-12279, and interferon-γ (IFNγ)279 on intravenous challenge 
with LPS, and increased plasma TNFα levels after intravenous K. pneumoniae 
injection280. Concomitantly, apoE-deficient mice were more susceptible to death 
from intravenous LPS or K. pneumoniae280, the latter accompanied by increased 
bacterial outgrowth in their organs283. Since lipoprotein levels are severely 
increased in the apoE-deficient mice, as evident from 8-10-fold elevated plasma 
cholesterol levels, this indicated that increased lipoprotein levels per se do 
not necessarily lead to LPS neutralization. Interestingly, hypercholesterolemic 
LDLr/apobec-1 double knockout showed similar responses as wild-type mice279, 
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Figure 10. Effect of apoE on the biological response to LPS. ReLPS (Salmonella Minnesota; 25 µg/
kg) was intravenously injected into rats, in the absence or presence of protein-free emulsion particles 
(20 mg triglycerides/kg) and/or human apoE (800 µg/kg). Concentrations of TNFα (A), IL-1β (B), and 
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effects of LPS alone (P<0.05).
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whereas for LDLr single knockout mice even opposite results were reported as 
compared to apoE-deficient mice406. Since these mice accumulate apoE-rich 
lipoproteins in their plasma, it is tempting to speculate that protection of these 
mice against endotoxemia is at least partly mediated by apoE.

Besides attenuating inflammatory responses by direct binding to LPS, 
apoE may also exert direct immunomodulatory effects by initiating a signalling 
cascade in macrophages, thereby down-regulating macrophage activation 
after exposure to a variety of structurally diverse stimuli279,407-409. Recently, an 
unexpected proinflammatory property of apoE was described. Van den Elzen 
et al.16 showed that apoE was able to deliver lipid antigens via LDLr-mediated 
uptake into endosomal compartments in antigen presenting dendritic cells. Via 
this route, apoE mediates the presentation of serum-borne lipid antigens to initiate 
immunological response to these antigens. Since dendritic cells are capable of 
presenting LPS, a lipid antigen, on their surface to activate T-cells331-333, apoE 
may also stimulate the presentation of LPS by dendritic cells. However, if so, the 
anti-inflammatory effects of apoE overrule this proinflammatory action279-281.

4.4.3. Other Apolipoproteins and the Lipopolysaccharide Response
Besides apoE, other apolipoproteins have now also been shown to modulate the 
response to LPS, either by direct binding to LPS or by modulating the function of 
LPS-responsive cells. For example apoAI was shown to inhibit the LPS-induced 
release of cytokines by monocytes392. Recently, apoAI was reported to bind LPS13, 
reduce cytokine levels in serum12,17,410, and improved survival rates after LPS 
challenge12,13,17. In addition, apoAI-deficient mice show increased LPS-induced 
serum levels of cytokines (e.g. TNFα, IL-1β, IL-4, IL-6, IL-10), but this could also 
be attributable to the almost complete lack of circulating HDL in these mice410. 
The effects of apoAI may be partially explained by direct effects of apoAI on LPS-
responsive cells, since both apoAI17,411,412 and apoAII412 have been reported to 
down-regulate neutrophil adhesion, oxidative burst and degranulation. Another 
explanation for the in vivo findings with apoAI was proposed by Massamiri et 
al.413, who showed that apoAI facilitates binding of the LBP-LPS complex to HDL. 
Blocking apoAI with antibodies directed against specific epitopes within apoAI 
reduced binding of LBP to HDL. In addition to apoAI itself, also apoAI mimetic 
peptides (i.e. L-4F) reduces LPS-induced cytokines, chemokines, and adhesion-
molecules by macrophages in vitro414.

Recently, it has been shown that apoAIV reduced the inflammatory response 
during experimental acute colitis (i.e. infection of the colon), presumably 
involving the inhibition of P-selectin-mediated leukocyte and platelet adhesive 
interactions414,415. Moreover, Recalde et al.14,414 showed that apoAIV strongly 
inhibits monocyte activation as evident from a strong reduction in LPS-induced 
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TNFα production, while no effect of apoAI was detected under the applied 
experimental conditions14,414. Although the mechanism remains unclear as yet, 
expression of human apoAIV in hyperlipidemic apoE-deficient mice reduced 
the development of LPS-stimulated atherosclerosis, as related to a reduced 
production of proinflammatory cytokines14.

5. Outline of this Thesis
In the first part of this thesis the role of apoCI in lipid metabolism will be further 
addressed. The severe hypertriglyceridemia, as observed in human apoCI 
transgenic mice133,159,416, can not be completely explained by only the inhibitory 
effects of apoCI on the apoE-mediated uptake of TG-rich lipoproteins. Therefore, 
in chapter 2 we aimed at elucidation of the main mechanism responsible for 
this apoCI-mediated severe hypertriglyceridemic phenotype. In chapter 3, we 
studied whether this main hypertriglyceridemic effect of apoCI was dependent of 
the VLDLr and/or apoCIII.

In the second part of this thesis the role of apoE in CVD in humans will be 
investigated. Human studies on apoE and CVD mortality have only focused on 
the role of the APOE genotype. However, independent of this genotype, plasma 
apoE levels are positively correlated with plasma cholesterol levels, indicating 
that irrespective of the APOE genotype high plasma apoE levels may be 
associated with increased CVD. Since the relation between plasma apoE levels 
and CVD mortality has not been studied yet, we investigated the association 
between plasma apoE levels and CVD independent of the APOE genotype in the 
Leiden 85-plus Study in chapter 4.

Finally, since we found by sequence alignment analysis that apoCI contains 
a putative LPS-binding domain in its C-terminal domain, we studied in the third 
part of this thesis the role of apoCI in Gram-negative sepsis. In chapter 5 we 
assessed whether apoCI is indeed able to bind LPS, and whether apoCI is able 
to modulate the biological response towards LPS and survival in a murine Gram-
negative sepsis model. These studies are extended in chapter 6, where we 
studied the structure-function relationship of apoCI with respect to modulating 
LPS by using apoCI-derived peptides. Since Barlage et al.365 showed that apoCI 
was virtually absent from HDL during human sepsis, we studied in chapter 7 the 
time course of plasma apoCI levels in severely septic patients and correlated 
these plasma apoCI levels with survival. In chapter 8 we investigated whether 
high plasma apoCI levels could protect against mortality from infection in the 
Leiden 85-plus Study, a prospective population based follow-up study.

The results obtained from these studies as well as implications for future 
research are discussed in chapter 9. 
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