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Cha p t e r 7

Phonon RIXS

Unpublished work. Determining the Electron-Phonon Coupling Strength in Cor-
related Electron Systems from Resonant Inelastic X-ray Scattering, with Michel
van Veenendaal and Jeroen van den Brink.

7.1 Introduction

Often novel electronic properties of materials can be understood by systemat-
ically unravelling the interaction between its electrons and phonons. Tunable
electric transport properties in molecular crystals, for instance, are explained by
the presence of a strong electron-phonon (e-p) coupling [225]. The dressing of
electrons by phonons is also responsible for the colossal magnetoresistance ef-
fect in manganites [226]. More delicate is the role that the e-p interaction plays
in high-Tc superconducting cuprates, which is the topic of a hot, persisting de-
bate [227–229]. The lack of a technique to measure the e-p coupling strength
perpetuates this controversy. Here we show that high resolution RIXS fills this
void and can provide direct, element-specific and momentum-resolved informa-
tion on the coupling between electrons and phonons. We provide the theoretical
framework required to distill e-p interaction strengths from RIXS, particularly
in strongly correlated transition metal oxides such as the high-Tc cuprates.

The state-of-the-art resolution of RIXS experiments is such that photon en-
ergy loss features on an energy scale of 25 meV can be distinguished at a copper
or nickel L3 edge [11,112]. This resolution has brought phonons within the energy
window of observation and indeed this year the first glimpses of phonons were
resolved in RIXS [11, 230]. To put this achievement in perspective, one should
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realize that the incident photons at the Cu L edge have an energy of around 930
eV, implying experiments have a resolving power of about 4 · 104. Developments
in instrumentation are driving this already impressive figure further up [3]. Here
we show how the progress in accuracy will allow the extraction of a number of
characteristics of the e-p interaction directly from RIXS, including spatial infor-
mation on the e-p coupling strength. No other experimental technique has access
to such e-p characteristics, particularly in strongly correlated 3d transition metal
oxides.

RIXS couples to phonons because the intermediate state in the RIXS process
has an altered charge distribution, which influences the lattice. Most core holes
decay very rapidly, and there is not enough time for the lattice to fully adjust to
the transient charge distribution. Therefore, the final states of the RIXS process
contain only few phonons; multi-phonon excitations are suppressed by the large
lifetime broadening Γ.

The advantage of RIXS is that X-ray photons carry an appreciable momen-
tum. This allows RIXS to sample the Brillouin zone and hence the phonon
dispersion. In contrast, Raman scattering in the optical range is restricted to
zero momentum transfer. Using Raman or neutron scattering, one can measure
the broadening of phonon peaks. Because of e-p coupling, the phonon decays
for instance in an electron-hole pair and consequently the lifetime of the phonon
is decreased. This adds to the broadening of the phonon peaks. Allen’s for-
mula [231] gives the connection between this broadening and the e-p coupling
constant. However, in the absence of low energy electron-hole excitations, like in
Mott insulators, this decay channel does not exist. Other methods to measure
the e-p interaction also do not have access to momentum-dependent informa-
tion. Electron tunneling for instance, has no momentum-dependence and thus
cannot probe how strong an electron couples to a particular phonon at a partic-
ular wavevector. Moreover, it is intrinsically surface sensitive and suffers from
the practical difficulty to make good yet partially transparent barriers [232–234].
Another asset of RIXS is its element-specificity: in a cuprate not only the copper-
related phonons can in principle be accessed at the Cu L edge, but also the
oxygen-related ones at the O K edge – resolution permitting.

Measuring phonon dispersions is a promising new utilization of RIXS but
as a technique it is up against inelastic neutron scattering and (non-resonant)
inelastic X-ray scattering, well-established experimental methods with the same
capacity. Here we make the case that what really sets RIXS apart is the way
phonons are excited, leading to the capability to measure momentum dependent
e-p couplings.

This chapter is organized as follows: Sec. 7.2 reviews the general e-p cou-
pling Hamiltonian and how it relates to RIXS. In Sec. 7.3, the cross sections for
Einstein phonons and dispersive phonons are derived. These yield complicated
expressions, which simplify tremendously in the UCL expansion, as explained in
Sec. 7.3.1.
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7.2 Electron-phonon coupling

As an introduction to phonon scattering in RIXS, we start with a summary of
e-p coupling, closely following chapter 1.3.2 in Ref. [62]. Then we discuss how
the e-p Hamiltonian relates to the RIXS process, where the core hole and the
photo-excited electron form a potential that perturbs the lattice.

7.2.1 Theory of electron-phonon coupling

We will assume that the core hole binds the photo-excited electron (which is a
very good approximation at the Cu L edge [157]). The electron-phonon Hamil-
tonian for electrons localized at positions Ri is [62]

H =
∑
k,λ

[
ωkλb

†
k,λbk,λ +

∑
i

(
bk,λ + b†−k,λ

)
eik·Ri

∑
G

Mk+G,λη(k + G)eiG·Ri

]
(7.1)

The free phonon dynamics is governed by the first term. The second term of the
Hamiltonian couples the electrons to phonons with momentum ~k and branch
index λ, which are created by the operator b†kλ. Note that we have chosen units
such that ~ = 1. Further, we have

Mk+G,λ = −(k + G) · ξkλ

√
~

2ρVωkλ
Vei(k + G) (7.2)

η(k + G) =

∫
drei(k+G)·r∆ρ(r) (7.3)

with ∆ρ(r) the change in the charge distribution due to the electron (centered
at r = 0), V the volume of the crystal and ρ its density. ξkλ is the phonon
polarization. Vei(k) is the Fourier transform of the potential of an ion placed at
the origin. For an ion with a point-potential, Vei(k) ∝ 1/k2.

We assume that the crystal has inversion symmetry: ωkλ = ω−k,λ and ξkλ =
−ξ∗−k,λ. Since the Hamiltonian should be Hermitian, we obtain the condition
M∗−k−G,λη

∗(−k−G) =Mk+G,λη(k + G), which is indeed satisfied if V ∗ei(−k−
G) = Vei(k + G): Vei is invariant under inversion too.

Next, we assume that there is only one electronic excitation during the RIXS
process, as is the case in RIXS if we neglect the electronic intermediate state
dynamics. The unit cell is chosen such that the core hole is located at its center
(R ·G = 0).

The electronic degree of freedom can be written in second quantization, using
eik·R =

∑
i d
†
idie

ik·Ri where di annihilates the photo-excited electron at site i.
In momentum space, the Hamiltonian is

H =
∑
k,λ

[
ωkλb

†
kλbkλ +Mkλ

∑
p

d†pdp−k

(
bkλ + b†−k,λ

)]
(7.4)
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with

Mkλ =
∑
G

Mk+G,λη(k + G). (7.5)

Because of inversion symmetry M∗k,λ = M−k,λ.

7.2.2 Electron-phonon coupling in RIXS

To understand the capacity of RIXS to measure the momentum dependence of the
e-p interaction, we start with the e-p coupling Hamiltonian (7.4). For definiteness
we focus on the high-Tc cuprates which have all their Cu 3d orbitals filled apart
from a single hole in the x2-y2 orbitals, but our analysis is general. In the Cu
L edge RIXS process, the x2-y2 state is transiently occupied as an electron from
the core is launched into it. The change in the charge density ∆ρ(r) is given by
the shape of the x2-y2 orbital and the core hole. As mentioned before, the filled
x2-y2 state is very short-lived. There is then a certain probability that during
the lifetime of the core hole a phonon is excited and left behind in the final
state. Obviously this probability is related to the coupling of the x2-y2 electron
to this particular phonon. Note that the presence of the core hole ensures that
the intermediate state is locally charge neutral. Thus the phonons that couple
to the 3d x2-y2 state with its characteristic quadrupolar charge distribution light
up in L edge RIXS.

One might object that the phonons react to the core hole as well as to the
photo-excited electron. The contribution of the core hole to the electric poten-
tial outside the Cu ion is very small, however, as can be seen from a multipole
expansion of the potential of the core hole plus photo-excited electron (see, for
instance, Ref. [235], page 148):

V (r) =
1

4πε0

[
1

r

∫
dr′ ρ(r′) +

1

r2

∫
(r̂ · r′)ρ(r′)

+
1

2r3

∫
dr′[3(r̂ · r′)2 − r′2]ρ(r′) + . . .

]
(7.6)

where r = |r|r̂ = rr̂ and ρ(r) = e |〈r|2p〉|2 − e |〈r|3d〉|2, with |2p〉 and |3d〉 the
states of the core hole and the photo-excited electron, respectively. Since the core
orbitals have a very small radius compared to the valence orbitals, a first order
approximation would be |〈r|2p〉|2 ≈ δ(r), and the core hole only contributes to
the monopole of the potential. Outside the Cu ion, the total monopole contribu-
tion vanishes. Within this approximation, the only contributions to the electric
potential outside the Cu ion come from the 3d valence orbitals. Further, the
dipole contributions are zero by symmetry. We conclude that the lattice couples
mainly to the quadrupole potential of the photo-excited electron, and not to the
core hole. At the Cu K-edge, in contrast, the main contribution to the potential
comes from the core hole.
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7.3 RIXS cross section for phonons

To understand how the electron-phonon coupling is precisely reflected in the
RIXS intensity, we evaluate the RIXS amplitude for phonon scattering F in the
Kramers-Heisenberg equation (2.30). The polarization factor (2.42) describing
processes where only phonons are excited, is well approximated by the elastic
process, as the phonons modify the electronic states of the system only slightly.
Consequently, the dipole transition amplitudes are also marginally affected. In
the case of Cu L edge RIXS at the cuprates, the photo-excited electron fills the
only available hole, i.e., the hole in the 3dx2−y2 orbital. The polarization factor
for elastic processes and phonon scattering is given by

Tψ(ε′, ε) = 〈ψ| ε′∗ · r
∣∣3dx2−y2

〉 〈
3dx2−y2

∣∣ ε · r |ψ〉 (7.7)

where ψ is one of the resonant core states, see, e.g., Sec. 4.3.1. Since the lattice
(approximately) does not react to the core hole, the latter can be integrated out
from the scattering amplitude:

Ffi =
∑
ψ

Tψ(ε′, ε)
∑
i

eiq·Ri

∑
n

〈f | di |n〉 〈n| d
†
i |i〉

Ei + ~ωk − En + iΓ
. (7.8)

The sum over ψ can be performed and gives the atomic scattering factor for
elastic scattering Tel(ε

′, ε) =
∑
ψ Tψ(ε′, ε).

Due to the presence of the intermediate states, it is in general impossible to
evaluate RIXS scattering intensities exactly, even in model systems. One there-
fore often resorts to finite size cluster calculations to compute RIXS spectra [2,73].
The e-p problem at hand, however, is an exception. We have solved the RIXS
phonon spectrum exactly by means of a canonical transformation. The fact that
one is dealing with harmonic bosons allows for this solution.

Einstein phonons. In analyzing the general solution, it is instructive to con-
sider the Einstein model, which comprises a single non-dispersive phonon per site
of frequency ω0 with a coupling strength M . The e-p Hamiltonian reduces to

H =
∑
i

ω0b
†
i bi +Md†idi (b

†
i + bi ). (7.9)

This Hamiltonian can be diagonalized by a canonical transformation H̄ =
eSHe−S [62], with S =

∑
i d
†
idiSi where

Si =
M

ω0
(b†i − bi ). (7.10)

As there is a single core hole present, this results in

H̄ =
∑
i

ω0b
†
i bi −

M2

ω0
, (7.11)
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where the last term merely shifts the energy at which the resonance occurs.
The eigenstates of H̄ are all the possible occupations {ni} of the phonon states,
indexed by m, with energies Em =

∑
i ni(m)ω0 −M2/ω0. The transformation

can be thought of as shifting the origin of the lattice coordinate to the new
equilibrium position of the lattice: zero phonons in a transformed state describes
the lattice at rest in the new equilibrium position. The eigenstates

∣∣ψ̄m〉 of H̄

are related to the eigenstates |ψm〉 of H by |ψm〉 = e−S
∣∣ψ̄m〉. Inserting this

transformation in the scattering amplitude (7.8) gives

Ffi = Tel(ε
′, ε)

∑
i

eiq·Ri

∑
m

〈f | die−S
∣∣ψ̄m〉 〈ψ̄m∣∣ eSd†i |i〉

Ei + ~ωk − Em + iΓ

= Tel(ε
′, ε)

∑
i

eiq·Ri

∞∑
ni=0

〈n′i| e−Si |ni〉 〈ni| eSi
∣∣n0
i

〉
z +M2/ω0 − niω0

, (7.12)

where in the last step the photo-excited electron degree of freedom is integrated
out. We defined z = ~ωk − Eres + iΓ, where Eres is the peak energy of the
phonon-broadened XAS spectrum (see page 226 of Ref. [62]). n0

i , ni , and n′i are
the occupations in the initial, intermediate, and final states, respectively. In the
local model, the final states are indexed by the local phonon numbers {n′i}. Note
that final states where the phonon number has been changed at multiple sites
cannot be reached: phonons can only be created and annihilated at the core hole
site, and only contributions from this site remain in the numerator of Eq. (7.12).

The evaluation of the scattering amplitude is given in appendix C; the zero
temperature result is

Ffg = Tel(ε
′, ε)

∑
i

eiq·Ri

 n′i∑
n=0

Bn′in(g)Bn0(g)

z + (g − n)ω0
+

∞∑
n=n′i+1

Bnn′i(g)Bn0(g)

z + (g − n)ω0

 , (7.13)

with g = M2/ω2
0 . The Franck-Condon (FC) factors in the numerator are

Bab(g) =
√
e−ga!b!

b∑
l=0

(−1)a(−g)l
√
ga−b

(b− l)!l!(a− b+ l)!
. (7.14)

The zero temperature RIXS cross section is obtained by squaring the ampli-
tude. As argued above, final states where the phonon number has changed at
multiple sites cannot be reached with local phonons, so the sum over final states
in the Kramers-Heisenberg equation is

∑
i

∑∞
n′i=0. We get for the cross section

d2σ

dΩdω
∝
∑
f

|Ffg|2 δ(ω − n′ω0) = N |Tel(ε
′, ε)|2

∞∑
n′=0

∣∣∣∣∣∣
n′∑
n=0

Bn′n(g)Bn0(g)

z + (g − n)ω0

+

∞∑
n=n′+1

Bnn′(g)Bn0(g)

z + (g − n)ω0

∣∣∣∣∣
2

δ(ω − n′ω0) (7.15)
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Figure 7.1: RIXS phonon cross
section for Einstein phonons with
energy ω0, for different electron-
phonon couplings M . We take
Γ/ω0 = 5 (a typical value at the
copper L edge), and an incident
energy corresponding to the max-
imum in the XAS signal. The po-
larization dependence is omitted in
this plot, as well as the zero loss
peak, which shifts to the Bragg
peaks in an ideal crystal.

Note that the q dependence is lost, because of the local nature of the Einstein
phonons.

The resulting RIXS spectra for a typical weak, intermediate and strong cou-
pling case are shown in Fig. 7.1. It is clear that for stronger e-p interactions, a
larger number of multi-phonon satellites carry appreciable weight.

However, the first important observation is that the intensity of the zero loss
peak is dominant even in the strong e-p coupling regime, as is clear from Figs. 7.2
and 7.3. Its spectral weight is larger than the weight of all phonon loss peaks
combined when M/Γ . 1.5. As at the Cu L3 edge Γ = 280 meV [100], this
corresponds to the physical situation. This observation is empirically supported
by the fact that a dispersion of magnon [11, 19, 21] and bimagnon [14, 51–53]
excitations has been observed in L and K edge RIXS. Such dispersion would
be absent if these magnetic excitations were always accompanied by (multiple)
phonons, see Sec. 7.4.

It is interesting to note that in the case of an infinitely fast scattering process
(Γ → ∞), the lattice has no time to react to the transient electronic excitation,
and no phonons are excited in the final state.

The exact intensity for exciting a single phonon in the RIXS process is

I(1) = N |Tel(ε
′, ε)|2 e

−2g

g

∣∣∣∣∣
∞∑
n=0

gn(n− g)

n!(z + (g − n)ω0)

∣∣∣∣∣
2

, (7.16)

In leading order in the e-p coupling g this is I(1) ≈ N |Tel(ε
′, ε)|2M2/|z|4 so that

in this limit the single-phonon RIXS scattering intensity is directly proportional
to the dimensionless e-p coupling constant g, see Fig. 7.3. Increasing z by tuning
away from the absorption edge reduces the single-phonon scattering intensity.

Even when the e-p coupling g is not small, we can obtain the RIXS amplitude
in approximate form by using the fact that the timescale of a typical phonon (80
meV ∼ 52 fs) is much slower than the ultrashort RIXS timescale (1.6 eV ∼ 2.6
fs at the Cu K edge). This separation of timescales suggests that the scattering
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Figure 7.2: Calculated RIXS intensities for phonon loss as a function of loss
energy ω and detuning from the maximum of the absorption spectrum ωdet =
Re{z} in the case of (a) strong coupling and very long core-hole lifetime, (b)
strong e-p coupling and (c) intermediate/weak e-p coupling.
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Figure 7.3: Relation of the multiple phonon RIXS cross section to the electron-
phonon coupling strength M on an absolute energy scale. The ratio of the single-
phonon I(1) to zero-phonon I(0) cross section is shown in the left panel. The right
panel shows the two-phonon to single-phonon cross section ratio. The curves are
universal in the sense that they do not depend on the phonon frequency ω0 as
long as Γ � ω0 (for instance, Γ/ω0 = 5). The UCL expansion (straight line)
gives accurate results for M/Γ . 0.2 and Γ/ω0 � 1, i.e., when Γ is the dominant
energy scale. This corresponds to the physical regime of the e-p interaction at the
Cu K edge (Γ ≈ 1.5 eV) and to the intermediate and weak e-p coupling regime
at the Cu L edge (Γ ≈ 280) meV.
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process contains a viable expansion parameter, which is small even for a fast
phonon. The UCL expansion (see Sec. 2.5) formalizes this observation, and the

result, obtained in Sec. 7.3.1, is F (1)
UCL = Tel(ε

′, ε)Mz2 〈f |
∑
i e
iq·Ri(b†i + bi ) |i〉. So,

also in this limit, the single-phonon intensity is proportional to g.

Dispersive phonons. The exact solution of the cross section for Einstein
phonons can be generalized to the case of several dispersive phonon branches
λ. The e-p coupling is given by Eq. (7.4). Again we use the canonical transfor-
mation [62] H̄ = eSHe−S with S =

∑
i,k,λ Sikλ, where

Sikλ = d†idi
Mkλe

ik·Ri

ωkλ
(b†−k,λ − bkλ). (7.17)

so that now
H̄ =

∑
k,λ

ωkλ

(
b†kλbkλ − gkλ

)
, (7.18)

with gkλ = |Mkλ/ωkλ|2, and where we assumed that there is a single core hole
present. Note that this transformation does not diagonalize the kinetic term for
the electrons. However, this is no problem at excitonic edges, where the photo-
excited electron is not itinerant, and at the Cu K-edge, where the coupling is
mediated by the core hole. In close analogy with Eq. (7.12) for the Einstein
phonon, this transformation can be inserted in the scattering amplitude:

Ffi = Tel(ε
′, ε)

∑
i

eiq·Ri

∑
m

∏
k,λ 〈n′kλ| e−Sikλ |nkλ(m)〉 〈nkλ(m)| eSikλ

∣∣n0
kλ

〉
z +

∑
k,λ[gkλ − nkλ(m)]ωkλ

,

(7.19)

where n0
kλ, nkλ, and n′kλ are the occupation numbers of the modes indexed by k

and λ in the ground, intermediate, and final states, respectively. Together with
the FC factors this is an exact, closed expression for the RIXS response.

We can simplify this expression by assuming that the initial state is close
to the ground state, which is a good approximation up to temperatures of the
order of 80 meV ≈ 930 K for optical phonons in cuprates. Since the FC overlap
between the ground and intermediate states follows a Poisson distribution with
mean gkλ, the scattering channels with largest overlap have small nkλ(m)− gkλ.
Effectively, we replace

z +
∑
k,λ

[gkλ − nkλ(m)]ωkλ ≈ z
∏
k,λ

(1− [nkλ(m)− gkλ]ωkλ/z) (7.20)

and obtain

Ffg ≈
Tel(ε

′, ε)

z

∑
i

eiq·Ri

∏
k,λ

∞∑
nkλ=0

〈n′kλ| e−Sikλ |nkλ〉 〈nkλ| eSikλ
∣∣n0

kλ

〉
1− (nkλ − gkλ)ωkλ/z

. (7.21)
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The matrix elements can be evaluated analytically using the displaced harmonic
oscillator transformation, resulting in (we suppress the branch index λ)

Ffg ≈ Tel(ε
′, ε)

δq,
∑

k n
′
kk

z

∏
k

 n′k∑
n=0

Bn′kn(gk)Bn0(gk)

1− (n− gk)ωk/z
+

∞∑
n=n′k+1

Bnn′k(gk)Bn0(gk)

1− (n− gk)ωk/z

 .

(7.22)

7.3.1 UCL expansion of the phonon scattering amplitude

The UCL expansion can be employed to obtain a very compact, approximate
expression that is also valid at finite (but low) temperatures. We start from
the general case of a dispersive phonon, whose approximate low temperature
scattering amplitude (7.21) is expanded as

Ffi ≈
Tel(ε

′, ε)

z

∑
i

eiq·Ri

∏
k

∞∑
nk=0

〈n′k| e−Sik |nk〉 〈nk| eSik
∣∣n0

k

〉
×
∞∑
l=0

[(nk − gk)ωk/z]
l
, (7.23)

which is only valid for nkωk < |z|. For nkωk > |z|, the sum over l diverges
independently of the Franck-Condon quenching of the amplitude. Clearly, such
a divergence is unphysical: for nk large, the amplitude should vanish. To avoid
this problem, we only retain terms up to the first order in l. For high nk, the
vanishing Franck-Condon overlap removes any contribution, while for low nk

cutting the expansion is a natural approximation. We get

Ffi ≈
Tel(ε

′, ε)

z

∑
i

eiq·Ri

∏
k

〈n′k| e−Sik
[
1 +

ωk

z

(
b†kbk − gk

)]
eSik

∣∣n0
k

〉
≈ Tel(ε

′, ε)
Mqλ

z2
〈f |
(
b†qλ + b−q,λ

)
|i〉 (7.24)

to first order in Mkλ/z, where we neglected terms giving rise to elastic scattering.
Again, multi-phonon contributions to Ffi are suppressed as Mkλ/Γ.

This result implies that momentum dependent RIXS harbors the potential
to directly map out the q dependence of the e-p coupling strength Mqλ. With
this information one can determine, for instance, the spatial range of the e-p
interaction Mrλ: it is simply the Fourier transform of Mqλ.

Although we showed that the single Einstein phonon cross section is propor-
tional to g in the limit of small g and in the limit of large Γ, it is in practice
near-impossible to measure the absolute RIXS intensity. However, RIXS pro-
vides the means to determine the e-p coupling strength M on an absolute energy
scale in another way. From the UCL expansion one finds that the ratio of the
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one and two-phonon loss amplitude directly reflects the e-p coupling constant:
F (2)/F (1) =

√
2M/z in the Einstein phonon case, where we assumed Γ� ω0,M .

This result is confirmed by the exact solution, see Fig. 7.3. The figure shows the
exact curves that relate the (multi-)phonon scattering intensities I(2)/I(1) to the
e-p interaction strength M/Γ for arbitrary M . This method to determine the
e-p coupling on an absolute energy scale is particularly powerful in the case of
weakly dispersive optical phonons, for instance the much debated phonon modes
around 80 meV in the high-Tc cuprates [236–238].

7.4 dd excitations dressed by phonons

Hancock et al. [239] find that the charge transfer excitation in the zero-
dimensional cuprate CuB2O4 (which is at 6.8 eV) is screened by phonons, ex-
plaining the Gaussian line shape of the spectra and yielding a dependence of the
charge transfer peak position on the incident energy. In close analogy to their
approach, we calculate here the RIXS spectrum of dd excitations that couple to
phonons.

Because the scattering process itself is very fast, the lattice has little time to
adjust in the intermediate state (as shown in Sec. 7.3) and will approximately be
in the same state before and after the scattering process. This is certainly true for
small e-p couplings or large core hole lifetime broadenings. The main difference
with the preceding sections of this chapter is that the final state has a different
charge distribution than the initial state. Therefore, the RIXS process has a
lasting influence on the lattice, instead of the transient force when the system
returns to its electronic ground state after scattering the photon. The final state
corresponds to a displaced oscillator, and the overlap of the initial lattice state
with the displaced final states is given by the Franck-Condon factors.

Our starting point is the simple Hamiltonian for a single phonon coupled to
a dd excitation (from orbital ν′ to ν1):

H =
∑
k

[
ωkb
†
kbk +

∑
i

d†iνdiνdiν′d
†
iν′e

ik·RiMk

(
bk + b†−k

)]
(7.25)

We consider RIXS processes where the final state has a single dd excitation,
which gets dressed by phonons. The Hamiltonian can be diagonalized as done
for dispersive phonons in Sec. 7.3: using Sik = d†iνdiνdiν′d

†
iν′

Mk

ωk
eik·Ri(b†−k − bk),

we obtain H̄ =
∑

k ωk(b†kbk − gk).

The RIXS cross section is given by the finite temperature Kramers-Heisenberg
equation (2.41). In accordance with the idea that the lattice has no time to
respond to the transient charge distribution in the intermediate state, we use the

1Each dd excitation has its own e-p coupling Mk →Mν′ν,k. For simplicity, we only consider
a single dd excitation here.
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UCL expansion to zeroth order:

d2σ

dωdΩ
≈ |Tdd(ε′, ε)|2

Γ2

∑
f,i

e−βEi

∣∣∣∣∣∣〈f |
∑
j

eiq·Rjdjν′d
†
jν |i〉

∣∣∣∣∣∣
2

δ(ω −Ef +Ei) (7.26)

where Tdd(ε′, ε) is the polarization factor (2.42) corresponding to exciting the
specific dd excitation (ν′ → ν) by two consecutive dipole transitions. The core
hole is integrated out. By retaining only the zeroth order of the UCL expansion,
the incident energy dependence is lost, and this is different from the work of
Hancock et al. [239]. In the case of copper 3d9, ν can only assume one value:
the photo-excited electron fills the 3dx2−y2 hole and creates a 3d10 intermediate
state. The similarity to the non-resonant inelastic X-ray scattering cross section
is striking.

Based on the findings of Ref. [239], we expect the dd excitation to excite many
phonons, and consequently we do not care if the initial state has a few phonons
already present. For simplicity, we therefore set T = 0. For optical phonons, this
is in any case a good approximation. Then, we find

〈f | djν′d
†
jν |i〉 =

(∏
k

〈n′k,dd|

)
eSdjν′d

†
jν |0〉 =

∏
k

e−gk/2

(
Mke

−ik·Rj

ωk

)n′k√
n′k!

,

(7.27)
where n′k is the number of phonons in the final state with wave vector k, and
dd indicates that a dd excitation is present at site j in the final state. Because
the final state dd excitation is local, the sum over j in Eq. (7.26) has only one
non-zero term, and the q dependence is lost.

Now we obtain the zero temperature cross section,

d2σ

dωdΩ
≈ |Tdd(ε′, ε)|2

Γ2

∑
f=j,{n′k}

∣∣∣∣∣eiq·Rj

∏
k

e−gk/2√
n′k!

(
Mke

−ik·Rj

ωk

)n′k∣∣∣∣∣
2

δ(ω − Ef )

≈ N |Tdd(ε′, ε)|2

Γ2

∏
k

∞∑
n′k=0

(
e−gk

g
n′k
k

n′k!

)
δ(ω − Ef ) (7.28)

where the final state energy Ef is the dd excitation energy Edd plus the phonon

contribution
∑

k n
′
kωk.

The calculation is easily repeated for local phonons. The result is

d2σ

dωdΩ
≈ N |Tdd(ε′, ε)|2

Γ2
e−g

∞∑
n′=0

gn
′

n′!
δ(ω − Edd − n′ω0), (7.29)

which is a Poisson distribution with phonon number average g = (Mdd/ω0)2 and
variance σ2 = g. Mdd is the coupling of the dd excitation to phonons. In the limit
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of large g, it is approximated by a Gaussian distribution. We conclude that the
width of the RIXS spectra of dd excitations yields Mdd once the phonon energy
is known (with an extremely high energy resolution, ω0 can be measured with
RIXS).

In the cuprates, one could study, for instance, the 3z2-r2 to x2-y2 dd ex-
citation, which is an intra-eg transition. The splitting of these levels is partly
due to the crystal field of the layered structure, and partly to Jahn-Teller (JT)
distortions. Above, we found that the JT contribution is EJT = 2Mdd. If we
assume that the dd peak broadening is only due to phonons, then the full width
at half maximum of the peak directly gives EJT. This way, we can determine
what part of the dd excitation energy can be attributed to the JT effect and
what part cannot. In practice, other factors also might contribute to the peak
width, such as superexchange interactions, and the peak width thus gives only
an upper bound to EJT and Mdd.

7.5 Conclusions

In the analysis above we concentrated on transition metal L edge RIXS, which
has the advantage of a photo-electron launched directly into the 3d state. A
certain 3d orbital can be selected by choosing the polarization of incident and
outgoing X-rays [110], so that the e-p characteristics related to this particular
3d orbital can be measured, as long as the 3d orbital is not fully occupied in
the ground state. We extended the theory to include final state dd excitations
coupling to the lattice [169], which is of great importance in the study of Jahn-
Teller polarons. Also oxygen related phonons can be probed at the O K edge, but
as this edge is at lower energy, the photons have less momentum and a smaller
part of the BZ can be probed, which is also true for the Cu M edges. As hard
X-ray transition metal K edges do not suffer this disadvantage, they provide an
even more potent method to measure e-p interactions [230].

The theoretical analysis that we advance here bestows on RIXS the unique
potential to provide direct, element-specific and momentum-resolved information
on the interaction between electrons and phonons on an absolute scale. In weakly
correlated electron systems these properties can be computed with modern ab
initio electronic structure methods, for instance in the newly discovered iron
pnictide superconductors [240], and our framework to distill them from RIXS
allows a direct comparison. In strongly correlated materials, particularly the
high-Tc cuprates, these assets make high resolution RIXS a unique tool to unravel
the interaction between its electrons and phonons.
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