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Cha p t e r 6

RIXS in systems with strong
spin-orbit coupling

Published as ‘Resonant Inelastic X-ray Scattering on Spin-Orbit Coupled Insu-
lating Iridates’, arXiv:1008.4862, with Giniyat Khaliullin and Jeroen van den
Brink

6.1 Introduction

In the introduction of chapter 5, it was noted that one way to lift the ground
state orbital degeneracy is by relativistic spin-orbit coupling. Relativistic spin-
orbit coupling is strong in the heavier elements such as iridium – the subject of
this chapter.

More specifically, we focus on compounds where the Ir ion has a charge of
4+, i.e., it is in a 5d5 configuration. The Kramers degeneracy theorem states
that the energy levels of a system with an odd number of electrons remain at
least doubly degenerate in the absence of magnetic fields [211]. This implies that
spin-orbit coupling cannot remove all degeneracy of the Ir4+ ion. As a matter
of fact, as shown in Sec. 6.2, the ground state is a Kramers doublet: its two
degenerate states are each other’s time reversed states, and it can be represented
by a pseudo-spin-1/2.

Because the two states in the Kramers doublet have exactly the same charge
distribution, Jahn-Teller couplings cannot lift their degeneracy. Superexchange
coupling, however, is present in the Mott insulating Ir compounds.
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The strong spin-orbit interaction can cause entirely new kinds of ordering in
the combined orbital-spin sector which are of a topological nature. This was
recently proposed for certain iridium-oxides [212,213], members of a large family
of iridium-based materials. Na2IrO3, for instance, is predicted to be a topological
insulator exhibiting the quantum spin Hall effect at room temperature [212].
The topologically non-trivial state arises from the presence of complex hopping
integrals, resulting from the unquenched iridium orbital moment. This system
can also be described in terms of a Mott insulator, with interactions between the
effective iridium spin-orbital degrees of freedom that are given by the Kitaev-
Heisenberg model [214, 215]. In the pyrochlore iridates A2Ir2O7 (where A is
a 3+ ion), a quantum phase transition from a topological band insulator to
a topological Mott insulator has been proposed as a function of the electron-
electron interaction strength [213].

To establish whether and how such novel phases are realized in iridium ox-
ides it is essential to probe and understand their spin-orbital ordering and re-
lated elementary excitations. In this context it is advantageous to consider the
structurally less complicated, single-layer iridium perovskite Sr2IrO4. This ma-
terial is in many respects the analog of the high-Tc cuprate parent compound
La2CuO4 [214]. Structurally it is identical, with the obvious difference that the
Ir 5d valence electrons are, as opposed to the Cu 3d electrons, very strongly
spin-orbit coupled. The similarity cuts deeper, however, as the low energy sector
of the iridates is spanned by local spin-orbit doublets with an effective spin of
1/2, which reside on a square lattice and interact via superexchange – a close
analogy with the undoped cuprates. This observation motivates doping studies of
Sr2IrO4 searching for superconductivity [216, 217]. Experimentally, however, far
less is known about the microscopic ordering and excitations in iridates than in
cuprates. Inelastic neutron scattering, which can in principle reveal such prop-
erties, is not possible because Ir is a strong neutron absorber and, moreover,
crystals presently available tend to be tiny. As a consequence not even the in-
teraction strength between the effective spins in the simplest iridium-oxides is
established: estimates for Sr2IrO4, for instance, range from ∼50 meV [214] to
∼110 meV [218].

In this chapter we show that while for iridates neutron scattering falls short,
RIXS fills the void: RIXS at the iridium L edge offers direct access to the excita-
tion spectrum across the Brillouin zone, enabling one to measure the dispersion
of elementary magnetic excitations. Besides the low energy magnons related to
long-range order of the doublets, RIXS will also reveal the dynamics of higher
energy, doublet to quartet, spin-orbit excitations. This allows to directly test
theoretical models for the excitation spectra and extract accurate values of the
superexchange and spin-orbit coupling constants J and λ, respectively. This
chapter deals with the RIXS spectrum of insulating iridates in general, and of
Sr2IrO4 in particular. Sec. 6.2 reviews the different models for Sr2IrO4 (the strong
spin-orbit coupling model outlined above and the crystal field model for Ir ions in
a D4h crystal field). Sec. 6.3 describes the dipole operators that appear in RIXS
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at the Ir4+ L edge. In the remainder of that section, the local effective scattering
operators are derived, neglecting intermediate state dynamics. The results of this
section apply to all Ir4+ compounds with octahedral crystal fields (provided spin-
orbit coupling also dominates). Then, Sec. 6.3.3 calculates the RIXS spectrum of
Sr2IrO4 within the strong spin-orbit coupling limit. The Kramers doublet gives
single- and two-pseudo-magnon excitations, while excitations from the Kramers
doublet to the higher energy quartet are assumed to be local excitations.

6.2 Theory of Sr2IrO4

As noted in Sec. 2.2.2, the relativistic spin-orbit coupling in atoms is proportional
to Z4, where Z is the atomic number: in the heavier elements, spin-orbit coupling
becomes more and more important. In iridium, the element that is studied in
this chapter, the spin-orbit coupling λ is estimated to be as large as 380 meV
in Ir4+ ions [219]. When the crystal field and superexchange interactions are
small, the relativistic spin-orbit coupling can dominate the physics of materials
containing Ir. Examples of such materials are Sr2IrO4, which will be studied in
this chapter, Na2IrO3 [212, 214], and pyrochlore iridates A2Ir2O7 (where A is a
3+ ion) [213].

Sr2IrO4 is a Mott insulator, although not a very good one: the optical gap
is only ∼ 0.4 eV [220]. It is a layered perovskite compound: each layer consists
of a square lattice of Ir ions in a 5d5 configuration. The Ir ions are located
in octahedra of oxygen ions, who split the d levels by ∼ 3 eV into eg and t2g
states [221]. This 10Dq splitting is strong enough to enforce that the lowest
energy configuration is t52g [222, 223]. Thus, Sr2IrO4 can be regarded as the t2g
analog of La2CuO4 [214]. The local ground state of the hole in the t2g shell could
be dictated by the remaining crystal field (the octahedra are elongated along
the z direction, favoring |xy〉), by superexchange interactions (as in the titanates
described in chapter 5), or by the relativistic spin-orbit coupling.

The spin-orbit coupling λ ≈ 380 meV [219] is much larger than intersite
exchange interactions could generate. Jackeli and Khaliullin [214] derive a su-
perexchange constant of 45 meV from the magnetic ordering temperature: an
order of magnitude smaller than λ. Further, resonant X-ray scattering (RXS)
data contradicts the crystal field scenario, and is in agreement with dominant
spin-orbit coupling [223].

We first investigate the case that spin-orbit coupling dominates the low en-
ergy physics of the t5

2g configuration. The 10Dq splitting is larger by an or-
der of magnitude than λ, and therefore we assume that the t2g hole does not
hybridize with the eg orbitals through the spin-orbit coupling. The orbital de-
gree of freedom of the hole is then described by an effective angular momentum
l = 1 [25]. The true orbital angular momentum L = −l, and when the spin-
orbit coupling term is projected to the t2g subspace, it becomes −λl · S with
λ > 0. Note that electron states are considered here, instead of hole state
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as in Ref. [214]. The eigenstates of the spin-orbit coupling single ion Hamil-
tonian H0 = −λl · S are characterized by the total effective angular momen-
tum Jeff = S + l: H0 = −λ

[
J2

eff − l2 − S2
]
/2 = −λ [Jeff(Jeff + 1)/2− 11/8].

The eigenstates form a doublet with Jeff = 1/2 at energy λ and a quartet with
Jeff = 3/2 at energy −λ/2. In the t52g ground state, the quartet is completely
filled while the doublet contains a single electron.

Next, we incorporate lattice distortions in the model. They add a term −∆l2z
to H0, with ∆ > 0 for elongation of the octahedra along the z axis. This lowers
the zx and yz states in energy, relative to the xy orbital. The Jeff = 1/2 Kramers
doublet remains unsplit and becomes [214]∣∣∣↑̃〉 = sin θ |0 ↑〉 − cos θ |+1 ↓〉 and

∣∣∣↓̃〉 = sin θ |0 ↓〉 − cos θ |−1 ↑〉 (6.1)

with tan 2θ = 2
√

2λ/(λ − 2∆), and where the orbital states are indexed by
lz = −1, 0,+1. The corresponding orbital annihilation operators d−1,0,1 are
defined by the relations

dyz = − 1√
2
(d1 − d−1),

dzx = i√
2
(d1 + d−1), (6.2)

dxy = d0.

The energy of the doublet is Ef = λ/(
√

2 tan θ). The Jeff = 3/2 quartet splits
into two doublets: {|1 ↑〉 , |−1 ↓〉} at energy Eg = −∆ − λ/2 and {cos θ |0 ↑〉 +
sin θ |1 ↓〉 , cos θ |0 ↓〉+ sin θ |−1 ↑〉} at energy Eh = −(λ tan θ)/

√
2.

The three doublets are conveniently denoted by the three fermions f, g, h,
where the pseudo-spin labels the two states within the doublets. We introduce
their annihilation operators

f↑ = sin θ d0↑ − cos θ d1↓,
f↓ = sin θ d0↓ − cos θ d−1↑,

g↑ = d1↑,
g↓ = d−1↓,

h↑ = cos θ d0↑ + sin θ d1↓,
h↓ = cos θ d0↓ + sin θ d−1↑.

(6.3)

Their energies were already denoted as Ef,g,h above.
Now, we take two limits: the one suggested by Ref. [214] and supported by the

RXS experiment of Ref. [223] which supposes that spin-orbit coupling dominates
(∆/λ � 1), and the other limit where lattice distortions dominate (∆/λ � 1).
For these limits, we find

lim
∆/λ→0

tan θ =
1√
2

and lim
∆/λ→±∞

tan θ = − λ√
2∆

. (6.4)

The ground state of the Ir ion is doubly degenerate in both cases. When lattice
distortions are absent, Jeff is a good quantum number and the g and h doublets
together form the Jeff = 3/2 quartet, while the hole occupies the f doublet with
Jeff = 1/2 [Eq. (6.1) has sin θ =

√
1/3 and cos θ =

√
2/3 in this limit]. The
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energies become Ef = λ and Eg = Eh = −λ/2, as noted above. When lattice
distortions dominate, θ → 0. The hole occupies the h doublet, which becomes
{|xy ↑〉 , |xy ↓〉}. The energies of the doublets in this limit are Ef = Eg = −∆
and Eh = 0.

The RIXS experiments proposed in this chapter enable one to distinguish
between the two scenario’s, and so can provide complimentary evidence to exist-
ing data. But from RIXS data, one could draw more conclusions since one can
probe the excitation spectrum. In the remainder of this section, the excitation
spectrum of Sr2IrO4 is discussed.

Collective behavior of the f doublet. When spin-orbit coupling dominates,
Sr2IrO4’s excitation spectrum of the f doublet is quite remarkable: the Jeff = 1/2
levels interact via superexchange and the low energy effective Hamiltonian is of
Heisenberg form, as described in, for instance, Ref. [214]. We briefly review this
Hamiltonian here. Starting from the spin-orbital superexchange Hamiltonian for
1 electron in the triply degenerate t2g orbitals (Eq. (3.11) from Ref. [160]), one
projects on the low energy Kramers doublet and obtains a low energy effective
superexchange Hamiltonian for these pseudo-spin-1/2 states:

Heff = J1S̃i · S̃j + J2(S̃i · rij)(rij · S̃j) (6.5)

where S̃ is the pseudo-spin-1/2 operator, rij is the unit vector directed along
the ij bond, and J1,2 are energies determined by Hund’s rule coupling JH . For
JH � U , we get J1 ≈ 4/9 and J2 ≈ 2JH/9U in units of 4t2/U , with t the Ir-Ir
hopping integral and U the same-orbital Coulomb repulsion. In this limit, the
result is a Heisenberg coupling with weak dipolar anisotropy [214].

Next, the rotation of the octahedra (by an angle α ≈ 11◦) are taken into
account, resulting in a Dzyaloshinsky-Moriya (DM) interaction. The DM inter-
action rotates the spins by an angle φ ≈ 8◦. The difference between α and φ is
controlled by the distortion along the z axis. In the limit of no distortion along
the z axis, α = φ. The Hamiltonian on the bond ij with JH = 0 but non-zero
DM interaction is

Hij = J S̃i · S̃j + JzS̃
z
i S̃

z
j + D · S̃i × S̃j (6.6)

where D = (0, 0,−D) (which flips sign on alternating bonds) and the energies
J, Jz and D are defined in terms of the octahedron rotation angle α and the dis-
tortion parameter θ as in Ref. [214]. The DM interaction term can be transformed
away by rotating the spin operators around the z axis over the spin canting angle
±φ (alternating with sublattice) with tan 2φ = −D/J . We define the unitary
transformation U(φ) = ⊗i exp{−i(±1)iφSzi } where (±)i = 1 on the sublattice A,
where the octahedron are rotated over +α, and −1 on sublattice B (−α). The
transformed Hamiltonian is

H̃ = U(φ)HU−1(φ) = J̃ S̃i · S̃j , (6.7)
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where J̃ = J + Jz. Note that the isotropic form is only retreived when there
is a special relation between J, Jz and D. When JH/U = 0, the degeneracy of
the ground state is not lifted by the DM interaction1. A more extended version
including Hund’s rule exchange is given in Ref. [214].

It is remarkable that Sr2IrO4 is not only structurally identical to La2CuO4,
it also has the same low energy excitation spectrum. However, the physical form
and origin of these excitations are are not at all similar.

Local behavior of the g and h doublets. Excitations to the g and h doublets
are very interesting because it is conjectured that Sr2IrO4 is a Mott insulator only
because of the large spin-orbit coupling [222,224]. The Jeff = 1/2 doublet consists
of small orbitals, which have small hopping amplitudes, therefore confining the
charges and making the system Mott insulating. The Jeff=3/2 quartet consists of
larger orbitals with larger hopping amplitudes, which would perhaps be enough
to form metallic bands. If that picture is correct, then the g and h excitations
should be very broad in RIXS: the excited electrons come from all the occupied
g and h bands, and the spectrum is a convolution over all these widely dispersing
states. In contrast, if Sr2IrO4 is a conventional Mott insulator, the g and h
excitations will be localized and have more sharply defined energies. Since J
is small compared to λ, these excitations will disperse very little. They have
an energy slightly larger than the Mott gap, and decay via electron-hole pairs
reduces their lifetime. Also, superexchange processes will often result in decay to
Jeff = 1/2 states. In practice, this will make it very hard to distinguish between
the two theories for the insulating behavior. On the other hand, the coupling of
the inter-spin-orbit multiplet excitations to charge modes enables RIXS to also
probe the latter.

6.3 Iridium L edge cross section

The spin-orbital degrees of freedom can be probed with direct RIXS at the Ir L
edge. This process involves two (dipole) transitions connecting the 2p core states
to the 5d valence ones. Here, we consider the case that the incident photons are
tuned to excite a core electron into the empty t2g state.

The intermediate state (5d t62g) has a filled shell. The dominant multiplet
effect comes from the core orbital’s spin-orbit coupling Λ: the 2p core states split
into J = 1/2 (the L2 edge) and J = 3/2 states (the L3 edge), like at the Cu L
edge. Since the L2 and L3 edge are separated by 1.6 keV [223], their interfere is
negligible, given the much smaller lifetime broadening (a few eV [100]).

1This can be understood as follows: the Jeff = 1/2 Kramers doublet states are each others’
time-reversed states. This implies that their charge distributions are the same, and therefore
also the hopping amplitudes to the neighboring oxygens (possibly up to a sign, although this
sign cannot be affected by a continous rotation of the octahedra). By symmetry, rotation of the
octahedra does not change the equality of the hopping amplitudes. This means there cannot
be a preferential state and preferential direction, and thus no anisotropy.
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The lifetime broadening at the Ir L edge is still quite large compared to the
dynamics of the 5d electrons. Therefore, the UCL expansion should work quite
well. We employ the UCL expansion to zeroth order. To obtain the cross section,
one only needs the dipole operators.

6.3.1 Dipole operators

We introduce the electron annihilation operators for the 2p orbital angular mo-
mentum eigenstates

px = − 1√
2
(p1 − p−1)

py = i√
2
(p1 + p−1) (6.8)

pz = p0,

analogous to Eqs. (6.2). The core electron eigenstates are easily obtained from
Sec. 6.2, because both the valence and the core electrons are spin-orbit coupled
and have orbital angular momentum 1. The J = 1/2 states are lowest in energy,
which means that the L2 edge is higher in energy than the L3 edge. In analogy to
the valence electrons, we introduce the 2p electron annihilation operators F↑,↓ for
the L2 wave functions and G↑,↓, H↑,↓ for the L3 ones. For symmetry of notation,
we introduce a tetragonal distortion δ for the core levels too, which splits the
J = 3/2 quartet into two doublets G and H. We find, in analogy to Eqs. (6.3),

F↑ = sin Θ p0↑ − cos Θ p1↓,
F↓ = sin Θ p0↓ − cos Θ p−1↑,

G↑ = p1↑,
G↓ = p−1↓,

H↑ = cos Θ p0↑ + sin Θ p1↓,
H↓ = cos Θ p0↓ + sin Θ p−1↑,

(6.9)
where tan 2Θ = 2

√
2Λ/(Λ− 2δ).

Now, we calculate the dipole matrix elements for the Ir L edge. We write the
dipole operator in second quantization (p†x creates a 2px electron, d†xy creates a
5dxy electron, etc.), and use the octahedral symmetry of Sr2IrO4 to simplify the
expression:

x · ε =
∑
i,j,k,σ

d†kσ 〈5dk|xi |2pj〉 εipjσ + h.c.

=
∑
σ

d†yzσ 〈5dyz|
(
y |2pz〉 εypzσ + z |2py〉 εzpyσ

)
+ ..zx..+ ..xy..+ h.c.

= −i 〈5dyz| y |2pz〉
∑
σ

[
ε+(d†−1p0 − d

†
0p1) + ε−(d†1p0 − d

†
0p−1)

+εz(d
†
1p−1 − d

†
−1p1)

]
+ h.c. = (D2 +D3) + h.c. (6.10)

where ε± = (εx ± iεy)/
√

2, and the spin label σ is suppressed in the last lines
but implied for every electron operator. The dipole operators for the L2 and L3
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edge, respectively, are

D2 = −i 〈5dyz| y |2pz〉
[
ε+

({
(ss′ + cc′)h†↓ + (sc′ − cs′)f†↓

}
F↑ + s′g†↓F↓

)
+ ε−

({
(ss′ + cc′)h†↑ + (sc′ − cs′)f†↑

}
F↓ + s′g†↑F↑

)
+εzc

′
(
g†↓F↑ − g

†
↑F↓

)]
, (6.11)

D3 = −i 〈5dyz| y |2pz〉
[
ε+

(
c′g†↓H↓ +

{
(sc′ − cs′)h†↓ − (ss′ + cc′)f†↓

}
H↑

−
{
sf†↑ + ch†↑

}
G↑

)
+ ε−

(
c′g†↑H↑ +

{
(sc′ − cs′)h†↑ − (ss′ + cc′)f†↑

}
H↓

−
{
sf†↓ + ch†↓

}
G↓

)
+ εz

(
s′g†↑H↓ +

{
sh†↑ − cf

†
↑

}
G↓ −

{
sh†↓ − cf

†
↓

}
G↑

−s′g†↓H↑
)]

(6.12)

where we abbreviated sin Θ = s′ and sin θ = s (and similar for the cosines).

6.3.2 Local RIXS scattering operator

The expressions for the dipole operators at the L2,3 edges [Eqs. (6.11) and (6.12)]
can be inserted in Eq. (2.41), and give, to zeroth order in the UCL expansion,

Ffi =
1

iΓ

∑
i

eiq·Ri 〈f | (D†2,3)i(D2,3)i |i〉 (6.13)

We define the single site RIXS scattering operators O2,3 = D†2,3D2,3 (the site
index is suppressed in the following). Projecting out the core hole degrees of
freedom, these become

O2 = sin(θ −Θ)
∑

σ∈{↑,↓}

[
ε′∗σ̄ εσ̄ sin(θ −Θ)fσf

†
σ + ε′∗σ εσ̄s

′gσ̄f
†
σ

−(−1)σε′∗z εσ̄c
′gσf

†
σ + ε′∗σ̄ εσ̄ cos(θ −Θ)hσf

†
σ

]
(6.14)

at the L2 edge. The factor |〈5dyz| y |2pz〉|2, which is just a positive number, is
dropped. We define (−1)σ to be 1 for σ = ↑ and −1 for σ = ↓. Further, ε↑ = ε+
and ε↓ = ε−. Note that ε′∗+ = (ε′x + iε′y)∗/

√
2. For the L3 edge,

O3 =
∑

σ∈{↑,↓}

[{
ε′∗σ εσs

2 + ε′∗σ̄ εσ̄ cos2(θ −Θ) + ε′∗z εzc
2
}
fσf

†
σ+
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+
{

(−1)σ(ε′∗σ̄ εz − ε′∗z εσ)sc
}
fσ̄f

†
σ

−
{

(−1)σε′∗z εσ̄s
′ cos(θ −Θ)

}
gσf

†
σ − ε′∗σ εσ̄c′ cos(θ −Θ)gσ̄f

†
σ

+

{
(ε′∗σ εσ − ε′∗z εz)

1

2
sin 2θ − ε′∗σ̄ εσ̄

1

2
sin 2(θ −Θ)

}
hσf

†
σ

+
{

(−1)σ(ε′∗z εσs
2 + ε′∗σ̄ εzc

2)
}
hσ̄f

†
σ

]
. (6.15)

When spin-orbit coupling dominates, θ = Θ and the inelastic scattering intensity
at the L2 edge completely vanishes, in addition to the vanishing elastic inten-
sity [223]. In the presence of a large crystal field, this no longer holds: the
core electrons are much less affected by the crystal field than the 5d ones. In
the following, we split the local scattering operator into three parts that create
excitations in the f , g and h doublets.

Excitations within the f doublet. When λ � ∆, excitations within the
Jeff = 1/2 doublet are lowest in energy. The single site RIXS scattering operator
for intra-f doublet excitations can be written in terms of Pauli matrices that act
on the pseudo-spin of the f fermion. At the L2 edge,

O
(f)
2 =

1

2
sin2(θ −Θ)

[(
PA1g

+
1√
3
Q3

)
112 − Pzσz

]
, (6.16)

and at the L3 edge

O
(f)
3 =

[
1

6
cos2(θ −Θ)

(
3PA1g

+
√

3Q3

)
+

3

2
PA1g

−
√

3

6
(2c2 − s2)Q3

]
112

− 1

2

(
cos2(θ −Θ)− s2

)
Pzσz +

sin 2θ

2
√

2
(Pxσx + Pyσy), (6.17)

where we introduced polarization factors

Px = i
(
ε′∗y εz − ε′∗z εy

)
, Tx = ε′∗y εz + ε′∗z εy, PA1g

= 2
3

(
ε′∗x εx + ε′∗y εy + ε′∗z εz

)
,

Py = i
(
ε′∗z εx − ε′∗x εz

)
, Ty = ε′∗x εz + ε′∗z εx, Q2 = ε′∗y εy − ε′∗x εx, (6.18)

Pz = i
(
ε′∗x εy − ε′∗y εx

)
, Tz = ε′∗x εy + ε′∗y εx, Q3 = 1√

3

(
ε′∗x εx + ε′∗y εy − 2ε′∗z εz

)
.

The polarization factors are chosen such that they are normalized as Tr(Γ2) = 2,

where the matrices Γ are defined by the polarization factors P as P = ε′∗i Γijεj .
In the cubic limit, O2 vanishes, while at the L3 edge one finds

O
(f)
3 = PA1g

112 +
1

3
(Pxσx + Pyσy − Pzσz). (6.19)

This is not a scalar product, which might be surprising because of the octahedral
symmetry. However, the 5d t2g orbitals do not transform as a vector: they have
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effective angular momentum l = −L. The Zeeman energy B ·S, projected on the
f doublet, transforms in a similar way:

B ·S = cos 2θ Bzσz−s2(Bxσx+Byσy)
∆→0−−−→ −1

3
(Bxσx +Byσy −Bzσz) (6.20)

These combinations become scalar products when we flip the sign of either f↑ or
f↓ in Eq. (6.3). Note that the Hamiltonians (6.5) and (6.6) are invariant under
such a sign change. In the following, we will flip the sign of f↓. The inelastic
parts of the scattering operators become

O
(f)
2

∆→0−−−→ 0, (6.21)

O
(f)
3

∆→0−−−→ −1

3
(Pxσx + Pyσy + Pzσz) . (6.22)

Excitation of g and h doublets. For the L2 edge,

O
(g)
2 = sin(θ −Θ)

[
is′

2

(
Q2σ

(g)
y + Tz σ

(g)
x

)
− c′

2
√

2
(Ty − iPy )11

(g)
2

+
ic′

2
√

2
(Tx + iPx)σ(g)

z

]
, (6.23)

O
(h)
2 =

1

4
sin 2(θ −Θ)

[(
PA1g

+ 1√
3
Q3

)
σ(h)
z − Pz 11

(h)
2

]
, (6.24)

where, for instance, σ
(h)
z = h↑f

†
↑ − h↓f

†
↓ , and where the sign flip on f↓ discussed

above is incorporated.

At the L3 edge,

O
(g)
3 = cos(θ −Θ)

[
− s′

2
√

2
(Ty − iPy )11

(g)
2 +

is′

2
√

2
(Tx + iPx)σ(g)

z

− ic
′

2
Q2σ

(g)
y +

ic′

2
Tz σ

(g)
x

]
, (6.25)

O
(h)
3 =

1

4

[√
3 sin 2θ Q3 − sin 2(θ −Θ)

(
PA1g

+ 1√
3
Q3

)]
σ(h)
z

+
i

4
[sin 2θ + sin 2(θ −Θ)]Pz11

(h)
2 +

1

2
√

2
[Ty + i cos 2θ Py]σ(h)

x

+
1

2
√

2
[Tx − i cos 2θ Px]σ(h)

y . (6.26)

In the cubic limit, one obtains

O
(g)
2 = O

(h)
2 = 0 (6.27)
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O
(g)
3 =

1√
6

[
−1

2
(Ty − iPy)11

(g)
2 +

i

2
(Tx + iPx)σ(g)

z − iQ2σ
(g)
y + iTzσ

(g)
x

]
(6.28)

O
(h)
3 =

1

3
√

2

[
iPz11

(h)
2 +

√
3Q3σ

(h)
z +

3

2

(
Tyσ

(h)
x + Txσ

(h)
y

)
+
i

2

(
Pyσ

(h)
x − Pxσ(h)

y

)]
. (6.29)

6.3.3 Iridium L edge RIXS cross section

Up to this point, the discussion is general and applies to all materials with an Ir4+

ion in an octahedral crystal field, including Kitaev-Heisenberg model compounds.
To obtain the RIXS cross sections for a certain material from the scattering
operators O2,3 is straightforward once the Hamilonian governing the interactions
between the Ir ions in that material is given.

In the remainder of this chapter, we specify to the case of Sr2IrO4. As laid
out in Sec. 6.2, we distinguish between the low energy Kramers doublet, which
shows collective behavior in the limit of strong spin-orbit coupling, and the high
energy quartet, which does not.

Cross section of intra- f doublet excitations. It should be noted that
the local scattering operators O2,3 are derived in the local axes of a rotated
octahedron. The Hamiltonian (6.6), however, is written in global coordinates.
Therefore, the polarization and spin vectors should be rotated back over an angle
α to obtain the scattering operator in global coordinates too. Reserving primes
for the local axes, one gets

P ′x = cosα Px + sinα Py, T ′x = cosα Tx − sinα Ty,

P ′y = cosα Py − sinα Px, T ′y = cosα Ty + sinα Tx,

P ′z = Pz, T ′z = sin 2α Q2 + cos 2α Tz,

Q′2 = cos 2α Q2 − sin 2α Tz, Q′3 = Q3, P ′A1g
= PA1g , (6.30)

for the polarization factors. α flips sign on sublattice B, which is rotated in the
opposite direction. The rotated spin operators are

S′xi = U(−α)SxU−1(−α) = cosα Sx − (±1)i sinα Sy,

S′yi = U(−α)SyU−1(−α) = cosα Sy + (±1)i sinα Sx, (6.31)

S′zi = U(−α)SzU−1(−α) = Szi ,

where (±1)i is 1 on sublattice A and −1 on sublattice B. After this rotation,
the spins are transformed by U(φ) to the basis in which the Hamiltonian is of
Heisenberg type. Since α ≈ φ, the unitary transformation nearly cancels the
rotation over α. For α = φ, the cancellation is complete. In the following, we
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work in the cubic limit, so α = φ, and obtain for the complete, multi-site, inelastic
scattering operator:

Oq =
∑
i

eiq·Ri(O
(f)
3 )i = −1

3

∑
i

[
sinα ei(q+Q)·Ri (Pyσx − Pxσy)

+ eiq·Ri (cosα {Pxσx + Pyσy}+ Pzσz)
]

(6.32)

where Q = (π, π). Following Eq. (6.13), the RIXS cross section is then

d2σ

dΩdω
∝
∑
f

|〈f |Oq |g〉|2 δ(~ω − ~ωf ), (6.33)

where ~ωf is the energy of the final state |f〉.
To describe the pseudo-spin flip excitation spectrum of the pseudo-spin

Heisenberg model, Holstein-Primakoff bosons are introduced, in analogy to the
magnetic Heisenberg model in Sec. 4.2. The reference state is taken to be
the Néel state with ordering direction [110] [223], and accordingly, the vectors
n̂1 = (−1, 1, 0)/

√
2, n̂2 = (0, 0, 1), n̂3 = (1, 1, 0)/

√
2 are introduced. The scat-

tering operator becomes

Oq = −1

3

∑
i

[
sinα√

2
ei(q+Q)·Ri {(Py − Px)n̂3 · σi − (Px + Py)n̂1 · σi}

+ eiq·Ri

(
cosα√

2
{(Px + Py)n̂3 · σi + (Py − Px)n̂1 · σi}+ Pzn̂2 · σi

)]
.

(6.34)

The Holstein-Primakoff bosons are naturally introduced in the new coordinate
frame spanned by n̂1, n̂2 and n̂3:∑

i

eiq·Ri n̂1 · σi =
√
N(uq − vq)(α†q + α−q) (6.35)∑

i

eiq·Ri n̂2 · σi = i
√
N(uq − vq)(α†q+Q − α−q−Q) (6.36)

∑
i

eiq·Ri n̂3 · σi = δq,Q

(
N − 2

∑
k

v2
k

)
+ 2

∑
k

[
uk+qvk

(
α†k+q+Qα

†
−k

+αkα−k−q−Q

)
+ (vkvk+q − ukuk+q)α†k+q+Qαk

]
(6.37)

with uk and vk defined as in Eq. (4.10). The ground state is approximated by
the (pseudo-)magnon vacuum |0〉. The scattering operator consists of a single-
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magnon part

O(1)
q =

√
N

3

[
sinα√

2
(Px + Py )(uq + vq)

(
α†q+Q + α−q−Q

)
+

cosα√
2

(Px − Py )(uq − vq)
(
α†q + α−q

)
−iPz (uq − vq)

(
α†q+Q − α−q−Q

)]
(6.38)

and a double-magnon part

O(2)
q = −

√
2

3

∑
k

uk+qvk

[
sinα (Py − Px)

(
α†k+qα

†
−k + αkα−k−q

)
+ cosα (Px + Py )

(
α†k+q+Qα

†
−k + αkα−k−q−Q

)]
. (6.39)

The part of the scattering operator that does not change the number of magnons
is not considered here.

The single-magnon intensity then becomes

I(1) ∝ N

9

[∣∣∣∣ sinα√2
(Px + Py)(uq + vq)− iPz(uq − vq)

∣∣∣∣2
+

1

2
cos2 α |Px − Py|2 (uq − vq)2

]
δ(ω − ωq), (6.40)

and the two-magnon intensity

I(2) ∝ 2

9

∑
k

[
sin2 α |Px − Py|2 (uk+qvk + ukvk+q)

2

+ cos2 α |Px + Py|2 (uk+qvk − ukvk+q)
2
]
δ(ω − ωk+q − ωk). (6.41)

Note that for non-zero α there will be single-magnon weight at q = 0, in contrast
to our calculations for the cuprates, where the rotation of the octahedra was not
included.

Cross section of g and h excitations. For the g and h excitations, one
only has to consider the polarization dependence, because in a Mott insulating
state there is no collective behavior expected. The excitations decay rapidly via
particle-hole excitations and through superexchange coupling to, amongst others,
the f doublet on neighboring sites. Rapid decay eliminates collective behavior,
and therefore all q dependence. In a metallic state, the g and h excitations will
be broad convolutions over the bands they form, and are thus also q-independent.
Both excitations will be broadened quite strongly.
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For local excitations, it is convenient to express the RIXS intensity in terms
of Green’s functions:

I ∝
∑
f

|〈f |Oq |g〉|2 δ(ω − ωfi) = − 1

π
Im {Gq(ω)} (6.42)

with

Gq(ω) = −i
∫ ∞

0

dteiωt 〈g|O†q(t)Oq(0) |g〉 , (6.43)

where |g〉 is the ground state. In the case of local excitations, G(ω) is a quite
simple quantity. For instance, for g excitations one gets

G(g)
q (ω) = −i

∫ ∞
0

dtei(ω−ωg)t 〈g|
∑
j

e−iq·RjO†j
∑
i

eiq·RiOi |g〉 (6.44)

= lim
η→0

1

ω − ωg + iη

∑
i

〈g|O†iOi |g〉 (6.45)

where ~ωg = λ/
√

2 tan θ − (−∆ − λ/2) (the energy splitting between the local
ground state and a hole in the g states). We also define ~ωh = λ/

√
2 tan θ −

(−λ tan θ)/
√

2 for the h excitations. For simplicity, we have neglected the su-
perexchange coupling for the f states so that the energy of the g and h excita-
tions are given by the local considerations of Sec. 6.2, i.e., without corrections
for the broken superexchange bonds between neighboring f holes, etc. Also, we
neglect the rotation of the octahedra.

We note that

〈g| 11(g,h)†
2 11

(g,h)
2 |g〉 = 〈g|σ(g,h)†

a σ(g,h)
a |g〉 = 〈g| 11(f)

2 |g〉 ,

〈g|σ(g,h)†
a σ

(g,h)
b |g〉 = iεabc 〈g|σ(f)

c |g〉 = 0, (6.46)

〈g| 11(g,h)†
2 σ(g,h)

a |g〉 = 〈g|σ(f)
a |g〉 = 0,

where {a, b, c} = {x, y, z} and σ
(f)
z = f↑f

†
↑ − f↓f

†
↓ etc. Writing the scatter-

ing operator as the inner product (A0, A1, A2, A3) · (11(g,h)
2 , σ

(g,h)
x , σ

(g,h)
y , σ

(g,h)
z )

with appropriate complex numbers A, and using Eqs. (6.46), one obtains for the
correlation function:

O†O =

(
|A0|2 +

∑
i

|Ai|2
)

11
(f)
2

+
∑
i

{A∗0Ai +A0A
∗
i }+ i

∑
j,k

εijkA
∗
jAk

σ
(f)
i . (6.47)
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Since the σx,y,z are summed over all sites and the order is alternating, the
only contribution that is left is from the 112 term. What remains is

G
(g)
L2

= N
sin2(θ −Θ)

ω − ωg + iη

[
c′2

8
(|Ty − iPy|2 + |Tx + iPx|2) +

s′2

2
(|Tz|2 + |Q2|2)

]
,

G
(h)
L2

=
N

16

sin2 2(θ −Θ)

ω − ωh + iη

(
|Pz|2 +

1

3

∣∣∣√3PA1g
+Q3

∣∣∣2) ,
G

(g)
L3

= N
cos2(θ −Θ)

ω − ωg + iη

[
s′2

8
(|Ty − iPy|2 + |Tx + iPx|2) +

c′2

4
(|Q2|2 + |Tz|2)

]
,

G
(h)
L3

=
N

8

1

ω − ωh + iη

[
1

2
(sin 2θ + sin 2(θ −Θ))2 |Pz|2

+ |Ty + i cos 2θ Py|2 + |Tx − i cos 2θ Px|2

+
1

2

∣∣∣√3 sin 2θ Q3 − sin 2(θ −Θ)
(
PA1g + 1√

3
Q3

)∣∣∣2] . (6.48)

In the cubic limit, this reduces to

G
(g)
L2

= G
(h)
L2

= 0,

G
(g)
L3

=
N

6

1

ω − ωg + iη

[
1

4
(|Ty − iPy|2 + |Tx + iPx|2) + (|Q2|2 + |Tz|2)

]
, (6.49)

G
(h)
L3

= N
1

ω − ωh + iη

[
1

6

(
1

3
|Pz|2 + |Q3|2

)
+

1

8

∣∣∣∣Ty +
i

3
Py

∣∣∣∣2 +
1

8

∣∣∣∣Tx − i

3
Px

∣∣∣∣2
]
.

In the limit of strong spin-orbit coupling, the g and h doublets have the
same energy. Because quite some broadening is expected for these high energy
excitations even in the Mott insulating state (as discussed in Sec. 6.2), the two
peaks are probably not resolvable and merge into one big peak. In that case, it
is more interesting to study the total spectral weight of the g and h excitations.

The total spectral weight is obtained by integrating the cross sections of the
g and h excitations over energy loss, and adding them up. In the formula for the
cross section, the imaginary part of the Green’s function yields

− 1

π
lim
η→0

Im{ 1

ω − ωg + iη
} = − 1

π
lim
η→0

−η
(ω − ωg)2 + η2

= δ(ω − ωg). (6.50)

In the cubic limit with unrotated octahedra, one finds

I
(g+h)
L3

=
N

6

 ∑
i∈{x,y,z}

(
|Ti|2 +

1

3
|Pi|2

)
+ |Q2|2 + |Q3|2

 . (6.51)
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The polarization factors nicely group together, yielding the Oh invariants∑
i

|Ti|2 = 1− 2
∑
j

ε∗j εjε
′∗
j ε
′
j + |ε · ε′|2 , (6.52)

∑
i

|Pi|2 = 1− |ε · ε′|2 , (6.53)

∑
i

|Qi|2 = 2
∑
j

ε∗j εjε
′∗
j ε
′
j −

2

3
|ε′∗ · ε|2 , (6.54)

which add up to

I(g+h)(ε′, ε) =
N

9

[
2 + |ε′ · ε|2 − |ε′∗ · ε|2

]
. (6.55)

In case of linear incoming or outgoing polarization, the intensity is indepen-
dent of the polarization vectors. This entails that when the outgoing polarization
is not measured, as is the case in all RIXS experiments done so far, the intensity is
independent of the polarization vectors2. A non-trivial polarization dependence
can only arise when both incoming and outgoing X-rays are circularly polarized.

6.3.4 Iridium L edge cross section – Special cases

We now specialize the cross sections obtained above to some geometries often
used in experiments. We consider transferred momenta along the Γ −M and
Γ−X directions [Γ = (0, 0), X = (π, 0) and M = (π, π)], and take the scattering
angle to be 90◦. The incoming polarization is chosen to be linear, while the
outgoing polarization is not detected. Along the Γ−X path through the BZ, the
polarization vectors are

επ =

cosϕ
0

sinϕ

 , εσ =

0
1
0

 , ε′π =

− sinϕ
0

cosϕ

 , ε′σ = εσ. (6.56)

π and σ mean, respectively, polarization parallel and perpendicular to the scat-
tering plane. ϕ is the angle of the incoming X-rays with the normal to the IrO2

planes. Along the Γ−M path,

επ =

 1√
2

cosϕ
1√
2

cosϕ

sinϕ

 , εσ =
1√
2

−1
1
0

 , ε′π =

− 1√
2

sinϕ

− 1√
2

sinϕ

cosϕ

 , ε′σ = εσ. (6.57)

The angle ϕ is related to q. In 90◦ scattering geometry, the total transferred
momentum (at an incident energy of 11.2 keV at the L3 edge [223]) is ≈ 8.05 Å−1

2This can be seen as follows: when the outgoing photon’s polarization is not measured, it
is summed over. One can choose to sum over two orthogonal linear polarization vectors, which
makes ε′∗ = ε′, and the polarization vectors cancel in Eq. (6.55).
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while the X-point is at≈ 0.808 Å−1 [223]. The X-rays carry an order of magnitude
more momentum than needed to probe the BZ. It is therefore reasonable to
approximate ϕ ≈ 45◦ as constant: it varries 5.7◦ around 45◦ (assuming one stays
in the first 2D Brillouin zone). This fact greatly diminishes the asymmetry effects
between +q and −q that are so important in the cuprates (see Secs. 4.5.2 and
4.6.2).

Note that the integrated weight of the Jeff = 3/2 excitations are polarization-
independent for linearly polarized light: I(g+h) = 2N/9. For the Jeff = 1/2
excitations, we calculate 4 different cases: q towards X and M , and incoming
π and σ polarization. Abbreviating cosα = cα etc, the single- and two-magnon
intensity in each case is

I
(1)
Xπ ∝

N

18

[
s2
α

2
(1 + s2

ϕ)(uq + vq)2 +
c2α
2

(1 + s2
ϕ)(uq − vq)2 + c2ϕ(uq − vq)2

]
× δ(ω − ωq), (6.58)

I
(2)
Xπ ∝

1

9
(1 + s2

ϕ)
∑
k

[
s2
α

(
uk+qvk + ukvk+q

)2

+ c2α

(
uk+qvk − ukvk+q

)2
]

× δ(ω − ωk+q − ωk), (6.59)

I
(1)
Xσ ∝

N

18

[
s2
α

2
c2ϕ(uq + vq)2 +

c2α
2
c2ϕ(uq − vq)2 + s2

ϕ(uq − vq)2

]
δ(ω − ωq),

(6.60)

I
(2)
Xσ ∝

1

9
c2ϕ
∑
k

[
s2
α

(
uk+qvk + ukvk+q

)2

+ c2α

(
uk+qvk − ukvk+q

)2
]

× δ(ω − ωk+q − ωk), (6.61)

I
(1)
Mπ ∝

N

18

[
s2
αs

2
ϕ(uq + vq)2 + c2ϕ(uq − vq)2 + c2α(uq − vq)2

]
δ(ω − ωq), (6.62)

I
(2)
Mπ ∝

2

9

∑
k

[
s2
α

(
uk+qvk + ukvk+q

)2

+ c2αs
2
ϕ

(
uk+qvk − ukvk+q

)2
]

× δ(ω − ωk+q − ωk), (6.63)

I
(1)
Mσ ∝

N

18

[
s2
αc

2
ϕ(uq + vq)2 + s2

ϕ(uq − vq)2
]
δ(ω − ωq), (6.64)

I
(2)
Mσ ∝

2

9
c2αc

2
ϕ

∑
k

(
uk+qvk − ukvk+q

)2

δ(ω − ωk+q − ωk). (6.65)

The resulting spectra are displayed in Fig. 6.1, assuming ϕ ≈ 45◦ and α = 8◦.
The (pseudo-)magnon results are very similar to the cuprates: the single-magnon
intensity peaks strongly at the antiferromagnetic ordering vector (π, π). Also,
the two-magnon intensity at (0, 0) is suppressed while the two-magnon DOS is
highest there [see Fig. 4.5(b)]. The doublet to quartet excitations have an energy
of (3/2)λ. Although λ is measured to be around 380 meV, the exact ratio of λ
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to J is not known. The rough theoretical estimate J ≈ 45 meV [214] would put
(3/2)λ/J at 12.7, but that could well be off by 50% or more. High resolution
RIXS experiments would be a much better way to precisely determine this ratio.
We therefore regard the ratio as a free parameter in our theory, and put it at 8
for the moment. In Fig. 6.2, spectra at several transferred momenta are shown.
These figures are vertical cuts through Fig. 6.1. The spectral weight of the
different types of excitations is compared in Fig. 6.3.
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Figure 6.1: RIXS spectra of Sr2IrO4 at the Ir L3 t2g edge, including single-
and two-magnon Jeff = 1/2 excitations and Jeff = 3/2 excitations. The latter
are put at an energy of 8J with a phenomenological broadening of J (half-width
at half-max). We have assumed that the system is dominated by 5d spin-orbit
coupling, ϕ = 45◦ and α = 8◦. The left panel shows the spectrum for incoming
π polarization, and the right one for incoming σ polarization.
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Figure 6.2: RIXS spectra of Sr2IrO4 at the Ir L3 t2g edge, including single- and
two-magnon Jeff = 1/2 excitations and Jeff = 3/2 excitations. These spectra are
vertical cuts through Fig. 6.1. The left panel shows several spectra for incoming
π polarization, and the right one for incoming σ polarization.

A very striking feature of dominating spin-orbit coupling is the absence of
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Jeff = 1/2 to Jeff = 3/2 Figure 6.3: RIXS spectral weight of
Sr2IrO4 at the Ir L3 t2g edge, obtained
by integrating the different features of
the spectra of Fig. 6.1 over energy loss.
The units on the vertical axis are chosen
such that the Jeff = 1/2 to Jeff = 3/2
excitations have spectral weight 1.

excitations in L2 edge spectra. Looking at the L3 edge with low energy resolution
(∼ 0.6 eV), it is impossible to see any details of the L3 excitation spectra of
Figs. 6.1 and 6.2 except for the total spectral weight. As is clear from Fig. 6.3,
the total spectral weight strongly peaks at q = (π, π) and is lowest (but non-
zero) at q = (0, 0). With a better energy resolution, one might be able to see the
dispersion of the magnon excitations: at q = (π, π), the intense single-magnon
peak disperses down to zero energy loss, from about 2J ≈ 90 meV at q = (π, 0)
and (π/2, π/2). RIXS can determine the values of λ and J up to the energy
resolution of the experiment.

The results obtained in this chapter can easily be applied to other Ir com-
pounds with octahedral crystal fields, such as the hexagonal Kitaev-Heisenberg
model compounds A2IrO3 (A = Li, Na) [214, 215]. The collective response will
be different, but the local scattering operators derived in Sec. 6.3.2 still apply.
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