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Cardiovascular disease (CVD) is the fi rst cause of death in the Western world and 
its prevalence is increasing in Eastern Europe and developing countries.1 Several 
factors such as diabetes, hypertension, cigarette smoking, obesity, and lipid ab-

normalities are associated with an increased risk of atherosclerosis development. The 
research described in this thesis was performed to gain more insight into lipid metabo-
lism. Dietary triglycerides (TG) are absorbed by the intestine to end up in metabolically 
active tissues (e.g. heart or skeletal muscle) to serve as energy source or in adipose tis-
sue for storage. Cholesterol is derived both from the diet and from de novo synthesis in 
the liver and is used for cellular membrane synthesis (most tissues) and as precursor 
for steroid hormones (produced by endocrine glands such as the adrenal cortex and the 
gonads) and bile acids (liver). For transport from the site of absorption or synthesis, via 
the blood circulation towards their destination, cholesterol and TG are packaged into 
lipoproteins.2,3

1. Lipoproteins and Lipid Metabolism

1.1. Lipoprotein Classes

Lipoproteins are complex, spherical particles that consist of a hydrophobic inner core 
of neutral lipids, which mainly consist of TG and cholesteryl esters (CE), and a polar 
outer shell, which is formed by proteins (e.g. apolipoproteins), cholesterol, and phos-
pholipids (PL) (Fig. 1).2 Since lipoproteins constitute a heterogeneous population of 
particles, they are traditionally classifi ed and separated according to their densities. 
The fi ve main categories that are distinguished in human plasma are chylomicrons, 
very low-density lipoproteins (VLDL), intermediate-density lipoproteins (IDL), low-
density lipoproteins (LDL) and high-density lipoproteins (HDL) (Table 1). These lipo-
protein classes have individual functions in lipid metabolism as will be discussed in the 
next paragraphs and is schematically represented in fi gure 2.

1.1.1. Chylomicron Metabolism
Dietary lipids are absorbed in the intestinal lumen, and CE are packaged with TG into 
large, lipid-rich chylomicron particles, via microsomal triglyceride transfer protein 
(MTP)-mediated lipidation of apolipoprotein (apo)B-48.4 These particles, containing 
primarily apoB-48, apoAI, apoAII and apoAIV, are secreted into the lymph and subse-
quently enter the blood circulation. Here, the chylomicrons undergo several modifi ca-

Figure 1. Schematic illustration of a lipoprotein 

particle. Reproduced with permission from http://www.

peprotech.com. CE, cholesteryl esters; TG, triglycerides. 



General Introduction

11

tions. Within the capillary beds of skeletal muscle, heart, and adipose tissue, their TG 
are hydrolyzed by the lipolytic action of lipoprotein lipase (LPL), thereby generating 
free fatty acids (FFA) that are used as energy source (muscle) or for storage (adipose 
tissue), respectively. 

Upon entering the circulation, apoAIV rapidly dissociates from the chylomicrons. 
A small fraction of apoAIV becomes associated with HDL, while more than 90% of the 
apolipoprotein exists free in the circulation.5,6 Similarly, apoAI and apoAII are trans-

Chylomicrons VLDL IDL LDL HDL

Density (g/ml) <0.95 0.95-1.006 1.006-1.019 1.019-1.063 1.063-1.210

Diameter (nm) 75-1200 30-80 25-35 18-25 5-12

Composition (%dry weight)

proteins 1-2 8 19 22 47

TG 86 55 23 6 4

TC 5 19 38 50 19

PL 7 18 20 22 30

Apolipoproteins

apoA AI, AII, AV12 AV - - AI, AII, AIV, AV

apoB B-48 B-100 B-100 B-100 -

apoC CI, CII, CIII CI, CII, CIII CI, CII, CIII - CI, CII, CIII

apoE E E E - E

Source intestine Liver VLDL IDL/VLDL Liver/Intestine

Main function Transport of 

exogenous TG 

and TC

Transport of 

endogenous 

TG

Transport of 

endogenous 

TG

Transport of 

endogenous 

TC

Reverse choles-

terol transport

Table 1. Density, size, and composition of human plasma lipoproteins

Apo, apolipoproteins; VLDL, very low-density lipoprotein; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; 

HDL, high-density lipoprotein; TG, triglycerides; TC, total cholesterol; PL, phospholipids. In this table only the main apolipo-

proteins are given. Modifi ed from Wasan and Cassidy.210 
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ferred to HDL, while the chylomicrons acquire apoCs (i.e. apoCI, apoCII, apoCIII) and 
apoE from circulating lipoproteins. Sequential delipidation steps, which causes deple-
tion of the particles from TG and PL and enrichment in apolipoprotein such as apoE, 
result in the formation of chylomicron remnants.2,3 ApoE is a crucial factor for facilitat-
ing the subsequent rapid clearance of the remnants from the circulation by the liver via 
remnant receptors (e.g. low-density lipoprotein receptor [LDLr] and the LDLr-related 
protein [LRP]).7,8 The receptor-mediated internalisation of remnants may be preceded 
by the “secretion-recapture role” of apoE as was suggested by Ji et al.9 This process 
starts with the secretion of apoE by hepatocytes and its accumulation in the space of 
Disse. There, apoE binds to heparan sulfate proteoglycans (HSPG) that are abundantly 
present on the surface of hepatocytes. Remnants may initially be sequestered in the 
space of Disse by apoE-mediated binding to HSPG and subsequently be internalised 
via lipoprotein receptor-mediated clearance routes (i.e. LDLr and LRP). In addition, 
recent results suggest that, at least in mice, scavenger receptor class B type I (SR-BI) is 
involved in the hepatic uptake of chylomicron remnants, probably by functioning as an 
initial recognition site.10

1.1.2. VLDL Metabolism
The liver, in its turn, generates VLDL particles, consisting of cholesterol (derived from 
internalized remnants or de novo synthesis) and TG (derived from remnant uptake, 
plasma FFA uptake, or lipogenesis) via MTP-mediated lipidation of apoB, which are 
subsequently secreted into the circulation.2,3 Whereas VLDL in humans is formed by 
lipidation of apoB-100, mouse VLDL results from lipidation of both apoB-100 and 
apoB-48.11 Nascent VLDL mainly carries apoB and small amounts of apoCs, apoE and 
the recently identifi ed apoAV.12 Similarly to chylomicrons, TG in VLDL are hydrolyzed 
by LPL, thereby generating FFA, while VLDL is processed into VLDL remnants (i.e. 
IDL). These particles become enriched in apoCs and apoE and will be partly cleared 
from the plasma via the hepatic remnant receptors (i.e. LDLr and LRP). The remainder 
are processed further, which leads to loss of TG, PL, apoCs and apoE from the particles. 
This results in the formation of the relatively CE-rich LDL particles, characterized by 
one apoB-100 molecule as the sole protein constituent.2,3 

ApoB-100 is a ligand for the LDLr. About 70% of the LDLr activity is concentrated 
in the liver, leading to the hepatic uptake of LDL. Part of the remaining LDL is taken up 
in extrahepatic tissues for maintenance of membrane integrity and for the production 
of steroids in steroidogenic tissues (e.g. adrenal cortex and gonads).13 Besides being 
crucial for cholesterol delivery to peripheral tissues, LDL also has adverse atherogenic 
properties. LDL can infi ltrate the vascular wall, where subsequent modifi cation of LDL 
in the vascular wall via e.g. oxidation causes activation of the endothelium and an in-
fl ammatory response. This process leads to recruitment of monocytes from the circu-
lation, which enter the vascular wall, and can differentiate into macrophages. These 
macrophages scavenge modifi ed LDL via scavenger receptors that include scavenger 
receptor A (SRA) and CD36, thereby accumulating lipids, mainly cholesterol, and be-
come foam cells.14 Foam cell formation is considered to be the initial stage in athero-
sclerosis development.15 
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1.1.3. HDL Metabolism - Reverse Cholesterol Transport
Steroidogenic tissues (i.e. adrenal cortex and gonads) and skin cells are able to degrade 
low levels of cholesterol, however other non-hepatic peripheral tissues do not have this 
ability.16 To maintain cholesterol homeostasis, excess cholesterol from extrahepatic tis-
sues (e.g. lipid-laden macrophages within the arterial wall) can be transported back 
to the liver to be secreted into the bile as neutral sterols and bile acids. This process is 
termed reverse cholesterol transport (RCT) and crucially involves apoAI and HDL.17 

Free cholesterol and phospholipids from the macrophage are transported to  lipid-
poor apoAI via the ATP-binding cassette (ABC) A1 transporter, thereby forming nascent 
discoidal HDL (nHDL).18,19 Subsequently, the enzyme lecithin:cholesterol acyl trans-
ferase (LCAT) esterifi es the free cholesterol, to generate cholesteryl esters and trans-
form nascent HDL into larger, mature HDL particles (mHDL).20 ABCG1,21,22 ABCG422 
and SR-BI23,24 then further facilitate the effl ux of cholesterol from cells to the mature 
HDL. 

HDL-CE may then be transported to the liver via two pathways. First, cholesteryl 
ester transfer protein (CETP), which is expressed in species such as humans, rabbits, 
and hamsters, but not in mice and rats, transfers CE from HDL towards apoB-con-
taining lipoproteins (e.g. VLDL, LDL and IDL) that are subsequently cleared from the 
circulation to the liver. Second, HDL-CE can be selectively taken up via ABC trans-
porters25 or via SR-BI.26,27 CETP may also be involved in the direct uptake of HDL-CE 
into the liver, since administration of the CETP-inhibitor torcetrapib to mice that were 
treated with an adenovirus expressing CETP did not completely normalize HDL-CE 
levels. Therefore, cell-associated CETP might be directly involved in the hepatic uptake 
of HDL-CE.28 

Cholesterol that has returned to the liver can be re-used for lipoprotein assembly 
or can be excreted. The major pathway for elimination of cholesterol, either as neutral 
sterol or as bile acid, is mediated by the ABC transporters G4, G5 and G8 and results in 
secretion into the bile.29 

HDL particles are anti-atherogenic, partly because of their role in RCT but also due 
to antioxidative, anti-infl ammatory, antithrombotic, and antiapoptotic properties.30-32 

1.2. Lipoprotein Remodelling Proteins 
The proteins involved in the remodelling of lipoproteins during their residence in the 
circulation, can be categorized in lipolytic enzymes (e.g. endothelial lipase [EL],  hepatic 
lipase [HL] and LPL) and neutral lipid transfer proteins (e.g. phospholipid transfer 
protein [PLTP] and CETP). Two of these proteins, LPL and CETP, will be described in 
more detail. While LPL is crucially involved in triglyceride metabolism and appears to 
be a causal factor in obesity, CETP represents a main link between (V)LDL and HDL 
metabolism by facilitating neutral lipid exchange between these lipoproteins. 

1.2.1. Lipoprotein Lipase
LPL is a glycoprotein belonging to the gene family of lipases, which includes HL, EL 
and pancreatic lipase.33 It is mainly synthesized in parenchymal cells of tissues that 
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utilize FFA for energy or storage purposes (e.g. cardiac and skeletal muscles, and white 
adipose tissue). The VLDLr functions as an intracellular chaperone protein that allows 
LPL to be secreted from the cells to the capillary endothelial surface,34,35 where it is an-
chored by interactions with HSPG.36 Dimeric LPL is activated by its co-factor apoCII, 
that is present on its substrates (e.g. VLDL, chylomicrons), to facilitate lipolysis (i.e. 
hydrolysis of TG within the lipoprotein core to generate glycerol and FFA). The FFA 
that are generated are subsequently taken up by underlying tissues either via passive 
diffusional uptake or via a protein-facilitated component (e.g. VLDLr, CD36 or FA 
translocase, FA transport protein).37 

The LPL-mediated lipolysis is a prerequisite for the chylomicron and VLDL particles 
to be removed from the circulation. The LPL-mediated hydrolysis of TG is infl uenced 
by several apolipoproteins. Both apoCIII38 and high amounts of apoE39-41 inhibit the 
lipolysis, whereas recent data indicate that apoAV increases LPL activity either directly 
or indirectly via still unresolved mechanisms.42,43 Lipolytically active dimeric LPL can 

Figure 2. Schematic, sim-

plifi ed representation 

of human lipoprotein 

metabolism. See text for 

explanation. ABC, ATP-bind-

ing cassette transporter; AI, 

AIV, AV, B-48, B-100, CI, E: 

apolipoproteins AI, AIV, AV, 

B-48, B-100, CI, E; CETP, 

cholesteryl ester transfer 

protein; CM, chylomicron; 

CMR, chylomicron rem-

nant; FFA, free fatty acids; 

HSPG, heparan sulphate 

proteoglycans; IDL, inter-

mediate-density lipoprotein; 

LCAT, lecithin:cholesterol 

acyl transferase; LDLr, low-

density lipoprotein receptor; 

LPL, lipoprotein lipase; LRP, 

LDLr-related protein; mHDL, 

mature HDL; nHDL, nascent 

HDL; SR-BI, scavenger re-

ceptor class B type I; VLDLr, 

very low-density lipoprotein 

receptor. 
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dissociate into monomeric LPL, which  results in reduced affi nity for HSPG and allows 
LPL to dissociate from the vascular wall and to travel through the circulation bound to 
lipoproteins. It is proposed that, in addition to apoE, LPL can mediate the lipoprotein 
binding to HSPG, after which the complex is transferred to lipoprotein receptors. As 
such, LPL is involved in remnant clearance via both its lipolytic function in the hydroly-
sis of triglycerides and its non-enzymatic bridging function.44-46 

Heterozygous LPL mutations that are associated with a reduction or loss of LPL ac-
tivity (i.e. Asp9Asn, Gly188Glu) are associated with an increased risk for development 
of combined hyperlipidemia and atherosclerosis.47 Also patients with defects in the 
structure or production of apoCII display hypertriglyceridemia and are indistinguish-
able from patients with LPL defi ciency.48 Mice that are defi cient for LPL have extremely 
elevated triglyceride levels and die within the fi rst day after birth, although the exact 
cause of death is still to be elucidated.49 Defi ciency for FFA uptake by CD3650,51 and 
overexpression of LPL-inhibitor apoCIII52 also lead to hypertriglyceridemia in mice. 
Interestingly, human APOC1 transgenic mice also develop hypertriglyceridemia,53 but 
the effect of apoCI on LPL activity is unresolved as yet.

LPL activity appears a crucial determinant for the development of obesity.  Mice 
in which LPL activity is reduced by defi ciency for LPL, CD36, or the LPL-chaperone 
VLDLr, are protected against diet-induced obesity.49,51,54 Similarly, APOC1 transgenic 
mice are resistant to the development of diet-induced obesity.55 On the other hand, 
mice with increased LPL activity as caused by apoCIII-defi ciency are more prone to 
develop diet-induced obesity.56 

1.2.2. Cholesteryl Ester Transfer Protein
CETP is a glycoprotein that is mainly expressed by liver, spleen, and adipose tissue.57 

Upon secretion into plasma, CETP becomes associated with all lipoprotein classes, but 
predominantly with HDL.58 CETP mediates the transfer of neutral lipids (i.e. TG and 
CE) between lipoproteins. This results in the net fl ux of CE from HDL towards apoB-
containing lipoproteins (e.g. VLDL and LDL) in exchange for TG.59-61 In mice, which 
naturally lack CETP, the clearance of HDL-CE occurs almost exclusively via selective 
delivery to the liver via SR-BI.62,63 In rabbits, however, the clearance of HDL-CE from 
plasma is only partially mediated by the direct uptake of HDL-CE, as 25-70% is cleared 
after CETP-dependent transfer to apoB-containing lipoproteins.64,65  In humans, it has 
recently been shown that the CE output from plasma is even almost solely facilitated 
via apoB-containing lipoproteins, whereas selective and holo-particle uptake of HDL-
CE by the liver could not be detected.66 This suggests that CETP-mediated CE transfer 
might constitute a major pathway in humans, with only a small contribution of selec-
tive HDL-CE uptake,66 which is in sheer contrast with the predominant involvement of 
SR-BI in selective uptake of HDL-CE in mice. 

As a consequence of its role in the transfer of lipids, CETP is involved in the 
 remodelling of lipoproteins just like lipases (e.g. LPL, HL, EL) and PLTP. The con-
certed actions of CETP, PLTP, and lipases facilitate the formation of small HDL par-
ticles67-69 that are involved in the cholesterol effl ux from extrahepatic tissues, thereby 
increasing the RCT pathway. Subjects defi cient for CETP have an increased proportion 
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of large HDL-particles that are enriched in CE and apoE.70-73 Thus, CETP may have 
anti- atherogenic properties by contributing to the remodelling of HDL, thereby facili-
tating the delivery of HDL-CE to the liver via apoB-containing lipoproteins. 

However, by reducing anti-atherogenic HDL-cholesterol levels and increasing the 
cholesterol content in pro-atherogenic apoB-containing lipoproteins, CETP  activity 
might be considered atherogenic. Indeed, genetic association studies in humans 
showed an association of the C629A promoter variant of CETP with higher CETP 
 levels, lower HDL-cholesterol levels, and an increased progression of CVD.74 Like-
wise, increased CETP activity was associated with increased risk for CVD in subjects 
with  elevated  triglycerides.75 However, despite the fact that CETP defi ciency is associ-
ated with increased levels of HDL cholesterol,71-73,76,77 increased CVD risk was found in 
 studies of subjects with partial78 or complete79,80 loss of CETP. Since mice naturally lack 
the expression of CETP, transgenic mouse models that express human CETP have been 
used to gain more insight into the atherogenicity of CETP. Although studies in apoCIII-
 transgenic mice81 and LCAT-transgenic mice82 showed that human CETP expression 
reduced atherosclerosis, expression of CETP in mice that are hyperlipidemic because of 
attenuated hepatic uptake of apoE-containing lipoprotein remnants (i.e. apoE- defi cient 
and LDLr-defi cient mice) increased atherosclerosis.83

Due to the pro- and anti-atherogenic properties of CETP and confl icting results 
from human and animal studies, the net effect of CETP on atherosclerosis develop-
ment has been a subject of debate which has been extensively reviewed,61,84,85 but is still 
not clear. 

1.3. Apolipoproteins
Apolipoproteins are generally composed of a series of class II amphipathic α-helices 
and play an important role in lipid metabolism by exerting various functions. They 
stabilize the lipoprotein particles (e.g. apoA, apoB, apoC), they serve as co-factors and 
modulators of enzymatic reactions (e.g. apoCs, apoAV), and they direct lipids to target 
organs by specifi c receptor interaction (e.g. apoA, apoB, apoE). The most abundant 
apolipoproteins, apoB-10086-89 and apoAI,88,90,91 have been extensively studied. The role 
of these apolipoproteins in lipoprotein metabolism are quite well-defi ned: apoB-100 
regulates LDL metabolism by mediating the endocytosis of LDL by the LDL receptor, 
and apoAI is involved in HDL metabolism by mediating both the infl ux of cholesterol 
from peripheral cells into HDL and the effl ux of cholesterol from HDL to the liver. How-
ever, the less abundant apolipoproteins apoCI, apoCIII, apoE, and apoAV seem to have 
overlapping functions in (V)LDL and HDL metabolism, as will be outlined below. 

1.3.1. Apolipoprotein CI
The gene encoding for the smallest of the known apolipoproteins, APOC1,  is part of the 
APOE/APOC1/APOC2/APOC4 gene-cluster,92 located on chromosome 19 in  humans.93-

95 The gene is 4.7 kb in size and consists of 4 exons. APOC1 is primarily expressed 
by the liver, but is also found at low levels in lung, skin, spleen, adipose tissue, and 
brain.96 ApoCI is synthesized with a 26-residue signal peptide, which is cleaved co-
 translationally in the rough endoplasmic reticulum, generating a mature protein of 57 
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amino acids.97 ApoCI consists of only two helices separated by a fl exible hinge. The pro-
tein is subsequently secreted into the circulation where it is present at a high concentra-
tion of approximately 10 mg/dl,98 associated with chylomicrons, VLDL and HDL.99

Up to now, no apoCI polymorphisms have been identifi ed in humans that result in 
functional apoCI variants. However, an HpaI polymorphism in the promoter region has 
been described, which results in the increased expression of the APOC1 gene (+57%),100 
and is associated with elevated TG.101 To study the function of apoCI in lipid metabo-
lism, mice were generated either lacking endogenous apoCI102,103 or overexpressing the 
human APOC1 gene.98,104 Whereas apoCI defi cient mice did not have an obvious plasma 
lipid phenotype,102 APOC1 overexpression markedly increased the levels of plasma TC 
and TG.104,105 The observation in humans that apoCI levels are positively associated with 
plasma TG levels may thus be explained by a causal effect of apoCI. The apoCI-induced 
hyperlipidemia in APOC1 mice has initially been explained by interference of apoCI 
with the apoE-dependent hepatic uptake of remnants by the LDLr106 and LRP,107 and by 
the inhibition of binding of apoE-containing lipoproteins to the VLDLr as present on 
peripheral cells,108 thereby impeding remnant clearance. However, APOC1 mice show 
predominantly hypertriglyceridemia rather than hypercholesterolemia, which is not 
consistent with either of these proposed effects of apoCI. In addition, in vitro studies 
showed that apoCI is involved in the partial activation of LCAT,109,110 the inhibition of 
LPL,111,112 and the inhibition of HL113. Most likely, apoCI interferes with the lipolytic 
function of LPL, thereby inducing hypertriglyceridemia and protecting against diet-
induced obesity, but such an effect has not been shown yet in vivo.

Furthermore, human apoCI114 and the N-terminal fragment of baboon apoCI115 have 
been reported to inhibit CETP in vitro. Indeed, defi ciency of apoCI in CETP  transgenic 
mice resulted in increased CETP activity as compared to control mice.116 Similarly, 
human APOA1 overexpression in CETP transgenic rats leads to an increase in CETP 
 activity possibly related to a reduction of the amount of apoCI associated with HDL.117

1.3.2. Apolipoprotein CIII 
The APOC3 gene is located in the APOA1/APOC3/APOA4/APOA5 gene-cluster118 
 located on chromosome 11 in humans and is primarily expressed in liver and intes-
tine.93,95 After removal of the 20-amino acid signal peptide, the mature apoCIII protein 
(79 amino acids; 8.8 kDa) is secreted into the circulation where it is associated with 
chylomicrons, VLDL and HDL, and has a concentration of approximately 12 mg/dl.119

ApoCIII plasma levels are positively correlated with plasma TG concentration.120-122 
Indeed, human APOC3 transgenic mice display severely increased TG levels, whereas 
a reduction was observed in apoc3 defi cient mice. Although a direct function on recep-
tors has been postulated,123 the hypertriglyceridemia is most likely explained by the 
strong LPL inhibitory action of apoCIII that was demonstrated both in vitro38,124,125 and 
in vivo.93,95,126-128 

1.3.3. Apolipoprotein AV
In 2001, a novel apolipoprotein has been discovered independently in two research 
groups.118,129 Comparative sequence analysis of the mammalian APOA1/APOC3/APOC4 
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gene cluster between humans and mice130 identifi ed a highly homologous sequence en-
coding an additional apolipoprotein, which was named apoAV.118 At the same time, 
apoAV was discovered as a protein that is highly upregulated in rats after a 70% hepa-
tectomy.129 ApoAV is synthesized exclusively in the liver. After cleavage of its signal 
peptide, the 39 kDa mature protein (343 amino acids) is secreted into the circulation 
where it is present at low concentrations (approx. 125-180 ng/ml),12,131 mainly bound to 
chylomicrons, VLDL and HDL.12,132,133 

Apoa5 defi cient mice displayed 4-fold increased plasma TG levels, whereas over-
expression of human APOA5 in mice reduced TG by 65%.132 In addition, adenoviral 
expression of murine apoa5 dose-dependently decreased plasma TG up to 70%.43,134 In 
vitro studies suggested that the hepatic VLDL production may be decreased,135 which 
was confi rmed in vivo.43 Strong evidence was found that apoAV facilitates the clearance 
of TG from the plasma42,43,136 by increasing the LPL-mediated TG hydrolysis,42,43,136,137 
although it is not sure whether apoAV acts via direct activation of LPL or via an indi-
rect pathway. Several mechanisms by which apoAV might enhance lipolysis have been 
postulated.43,136 1) Since apoAV was shown to increase the binding of lipoprotein par-
ticles to HSPG,136,138 apoAV may bring the particles in close proximity of LPL thereby 
enhancing lipolysis. 2) Since apoAV is very hydrophobic,139 it penetrates more deeply 
into the lipoprotein particle than other lipoproteins, thereby potentially facilitating the 
access of LPL to TG, which are present in the core of the lipoprotein. Indeed, apoAV 
was shown to increase the LPL-mediated lipolysis in the absence of HSPG in vitro,42,43 
although it should be noted that these effects were only obtained at high apoAV con-
centrations. 3) ApoAV might interact directly with LPL, thereby enhancing enzymatic 
activity, for example by stabilizing the LPL dimer. This is supported by the fi ndings 
that both apoa5 defi cient mice140 and humans that lack apoAV due to a mutation in 
apoAV that generates a truncated protein devoid of key functional domains141 have re-
duced levels of post-heparin LPL levels. So far, no experiments have been performed to 
 address this possibility.  

Apart from its role in TG metabolism, apoAV may also play a role in HDL metabo-
lism,142 because apoa5 defi cient mice displayed increased HDL-cholesterol,140 whereas 
adenoviral APOA5 overexpression in mice dose-dependently reduced HDL-cholesterol 
levels.43 Further studies will be needed to resolve the mechanism(s) underlying the ef-
fect on HDL.

1.3.4. Apolipoprotein E
Just like apoCI, human APOE is part of the APOE/APOC1/APOC2/APOC4 gene-
 cluster,92 located on chromosome 19,94 and is mainly expressed in liver, macrophages 
and brain.7 After co-translational cleavage of an 18-amino acid signal peptide, the 299-
amino acid mature protein circulates at plasma levels of approximately 2.5-5 mg/dl as 
a constituent of chylomicrons, VLDL, IDL and HDL.143 

High amounts of apoE have been shown to inhibit LPL-mediated lipolysis, thus 
resulting in increased plasma levels of triglycerides.39-41 However, physiological expres-
sion of apoE is crucial for mediating the binding and uptake of remnant particles via 
the LDLr, LRP and the VLDLr,7,144,145 thereby playing an important role in lipoprotein 



General Introduction

19

metabolism. In addition, apoE has been suggested to be involved in the secretion-
 recapture process as was discussed in 1.1.1. 

The human APOE gene is polymorphic, with three common alleles (E*2, E*3 and 
E*4) of which E*3 is the most frequent allele (70-85%).7,143,146 These isoforms differ 
with respect to the association with lipoproteins,147,148 binding affi nity for the LDLr7 and 
interaction with HSPG.149

 ApoE*2 displays only about 1% of the binding affi nity of apoE*3 to the LDLr.150 As 
a consequence, APOE*2 knockin mice display elevated levels of plasma TG and cho-
lesterol.151 Simultaneously, apoE*2 accumulates in plasma, resulting in an increase in 
the apoE-mediated inhibition of LPL-mediated lipolysis,152 via reducing the interaction 
of particles with HSPG-bound LPL.153 Whereas in humans most of the homozygous 
APOE*2 carriers are normolipidemic, only about 10% develops type III hyperlipidemia. 
On the other hand, most of the subjects with type III hyperlipidemia are APOE*2 ho-
mozygotes. This indicates that certain additional factors are needed to develop the 
hyperlipidemia. The apoAV S19W polymorphism may constitute one of these fac-
tors. In this polymorphism, apoAV has a substitution at residue 19 in its predicted 
signal sequence, which was by in vitro experiments suggested to be required for the 
 translocation across the endoplasmic reticulum membrane and the subsequent secre-
tion into the circulation.154 In initial studies, the S19W rare allele has been associated 
with higher plasma TG levels.155 Strikingly, in a pilot study 6 out of 7 hypertriglyceri-
demic APOE*2/E*2 carriers the S19W polymorphism was found,156 which was later 
confi rmed in a  larger population, albeit that the effects were less dramatic (i.e. 53% in 
the APOE*2/E*2 carriers vs. 20% in the controls).157 These fi ndings suggest that apoAV 
may be used to reverse type III hyperlipidemia in APOE*2/E*2 subjects, which will 
require further investigation. 

Apart from the three common isoforms of apoE, several other rare variants are 
known, which are often associated with lipid disorders. For example, the APOE*3-
Leiden mutation has a 7-amino acid tandem repeat outside the binding domain.158,159 
However, the conformation of the receptor-binding domain is dramatically changed by 
the large insertion, leading to a binding defect of the protein to the LDLr (20-40% of 
apoE*3)160 and HSPG.161,162 APOE*3-Leiden has been implicated in Familial Dysbetali-
poproteinemia (FD), which is characterized by accumulation of chylomicron and VLDL 
remnants.163

To study the direct effect of the APOE*3-Leiden mutation on lipoprotein metabo-
lism, mice have been generated that express the APOE*3-Leiden gene as well as the 
adjacent APOC1 gene.164 It appeared that the mice developed a moderate dyslipidemia, 
as explained by a reduced VLDL turnover. Because VLDL turnover was reduced, lead-
ing to the accumulation of apoB-containing lipoproteins, the lipoprotein profi le of 
APOE*3-Leiden mice appeared to resemble that of humans.164,165 In addition, plasma 
cholesterol in these mice can be titrated by adjustment of dietary cholesterol intake and 
there is a clear relationship between plasma cholesterol and atherosclerosis severity.166 
APOE*3-Leiden mice respond to lipid lowering therapies such as statins and fi brates.167 
Despite these properties, the major difference in lipoprotein metabolism between mice 
and humans is the absence of CETP in mice. Since CETP is important in the cross-talk 
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between HDL and (V)LDL metabolism, expression of CETP in APOE*3-Leiden mice 
might enable us to study HDL metabolism in a model that resembles the human situ-
ation even more.

2. Lipid Modulating Therapies 

To improve atherogenic lipoprotein profi les, thereby aiming to reduce cardiovascular 
risk, several classes of lipid-modifying drugs are available. These include bile acid-
binding resins (e.g. cholestyramine, colestipol, colesevalam), which bind bile acids in 
the gastrointestinal tract to prevent re-uptake, cholesterol-absorption inhibitors (e.g. 
ezetimibe), fi brates (e.g. fenofi brate, clofi brate, gemfi brozil, bezafi brate) and 3-hy-
droxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (e.g. atorvasta-
tin, rosuvastatin, simvastatin). The most widely prescribed drugs are the statins and 
fi brates, which will be discussed in more detail in the following paragraphs.

2.1. Statins
Statins are inhibitors of HMG-CoA reductase, the rate-determining enzyme in hepatic 
cholesterol biosynthesis, which converts HMG-CoA into the cholesterol-precursor me-
valonate.168 Initially, semisynthetic fungal derivatives were used as HMG-CoA reduct-
ase inhibitors (e.g. simvastatin, pravastatin). Later, synthetic statins were designed 
(e.g. rosuvastatin, atorvastatin).169 The members in this class of drugs share a similar 
structure resembling the HMG-moiety that plays an important role in the inhibition of 
the enzyme.170 In the liver, the lowering of cholesterol biosynthesis results in depletion 
of hepatic intracellular cholesterol. To compensate for the depletion in intracellular 
cholesterol, LDLr receptor expression levels are increased to facilitate the uptake of 
plasma LDL and its precursors VLDL and IDL.171 At the same time, hepatic apoB-100 
production is decreased, thereby reducing the synthesis and secretion of VLDL.172-175 
These statin-mediated actions result in a reduction in plasma LDL-cholesterol,176-178 
which in hypertriglyceridemic subjects often are accompanied with reductions in TG 
levels.175,179 

Indeed, a meta-analysis of 25 studies enrolling nearly 70,000 subjects with CVD 
indicated that statins reduce LDL-cholesterol levels up to 40%, which was associated 
with a reduction of CVD mortality by 23%.180 Apart from the effects on LDL-cholesterol, 
statins also decreased plasma TG and increased plasma HDL-cholesterol by about 5-
15%.181-183 Although clinical studies indicate that a reduction in CETP activity may be in-
volved in the statin-induced increase in HDL,184,185 this has not been fi rmly established 
as a causal factor yet. In addition, statins have been reported to exert a wide range of 
pleiotropic effects that may contribute to their benefi cial actions. These include va-
sodilation, plaque stabilization, and antithrombotic, antioxidant, anti-proliferative and 
anti-infl ammatory actions.169,186,187 

2.2. Fibrates
By mimicking the structure and function of FFA, fi brates are peroxisome prolifera-
tor-activated receptor α (PPARα) agonists.188-190 PPARα is mainly expressed in the 
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 liver,191 and upon activation it translocates from the cytoplasm to the nucleus, where it 
 heterodimerizes with retinoid X receptor (RXR). This complex subsequently binds to 
specifi c peroxisome proliferator response elements (PPREs) in a range of target genes, 
thereby either activating or repressing their transcription.190 

The hypotriglyceridemic effect of fi brates is based on increased lipolysis of TG-rich 
lipoproteins in plasma via a PPARα-mediated increase in hepatic LPL expression192 and 
decrease in hepatic apoCIII expression.193,194 Indeed, fi brate administration is associ-
ated with increased plasma LPL activity levels195 and a reduction in apoCIII synthesis193 
in humans. In addition, fi brates reduce VLDL-TG production through enhanced FFA 
catabolism (via an increase in genes of the ß-oxidation pathway) and reduced FFA pro-
duction (via downregulation of acetyl CoA carboxylase).196-198 

Although the role of plasma TG as CVD risk factor has long been controversial, 
strong evidence has been provided that elevated TG levels indeed are correlated with 
increased risk.199 This is illustrated by a meta-analysis of 17 population-based, prospec-
tive studies, enrolling 46,413 men and 10,864 women, where TG were found to be an 
independent risk factor for CVD.200 In subsequent years this has been confi rmed in the 
Prospective Cardiovascular Münster (PRO-CAM) study201 and the Copenhagen Male 
study,202 both prospective studies that only included men without evidence of myocar-
dial infarction at entry. 

Fibrates are widely used to reduce hypertriglyceridemia, thereby reaching TG re-
ductions, indicating lower levels of VLDL that exceed 50% in subjects with hypertri-
glyceridemia. In hypercholesterolemic patients TG reductions are generally less than 
30%.198 Although it appears that the extent of TG-lowering by fi brates is dependent 
on the lipid phenotype and the fi brate used, a meta-analysis with data from 53 tri-
als (16,802 subjects), including subjects with hypercholesterolemia, hypertriglyceri-
demia, type II diabetes mellitus and combined hyperlipidemia, clearly demonstrated 
a 36% reduction in TG.203 In addition to TG-reduction, fi brates exert a spectrum of 
lipid modulating actions, involving reduction of cholesterol in VLDL, VLDL remnants, 
IDL and LDL, and elevation of HDL-cholesterol by approximately 10%.198,203 Except for 
their lipid-modulating effects, fi brates also exert pleiotropic anti-infl ammatory effects 
by downregulating the expression of genes encoding infl ammatory cytokines and acute 
phase response proteins, as was recently reviewed.204 Altogether, the previously men-
tioned meta-analysis showed that fi brate administration is associated with a CVD risk 
reduction of 25%.203

The mechanism underlying the fi brate-induced increase in HDL-cholesterol has 
been intensively studied. In contrast to humans, fi brates do not affect or even decrease 
HDL-cholesterol levels in mice.205-208 This effect may be attributed to the fact that, in 
contrast to the human APOA1 promoter, which contains a functional positive PPRE 
leading to increase APOA1 transcription, the murine apoa1 promoter contains a non-
functional PPRE.205 However, since not all clinical studies show an increase in apoAI 
plasma levels,209 it is likely that fi brates may increase HDL-cholesterol via apoAI-
 independent mechanisms. As was mentioned previously, a major difference between 
humans and mice is that mice do not express CETP. Whether the fi brate-induced in-
crease in HDL-cholesterol depends on CETP expression has not yet been investigated. 
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3. Outline of this Thesis

Since lipid homeostasis presents an important factor in determining CVD risk, a thor-
ough understanding of lipid metabolism is required to optimize lipid-lowering thera-
pies. In the past decades this knowledge has increased tremendously, especially by the 
development of mice defi cient or transgenic with respect to proteins in plasma lipid 
metabolism. In this thesis we aimed to expand our knowledge of the roles of apoCI, LPL 
and CETP in lipid metabolism, by performing studies using a combination of geneti-
cally modifi ed (i.e. transgenic and knockout) mice, adenovirus-mediated gene expres-
sion, and in vitro studies.

Data obtained from studies in humans and mice have shown that plasma apoCI pro-
tein levels are positively correlated with combined hyperlipidemia, displaying the most 
pronounced effect on TG levels. Thus far, the apoCI-induced hyperlipidemia in APOC1 
mice has been explained by mainly inhibition of receptor-mediated remnant clear-
ance, but this does not satisfactorily explain the predominant hypertriglyceridemia. In 
chapter 2, human APOC1 expressing mice were used to elucidate the main underly-
ing cause. We showed that the hypertriglyceridemia was predominantly caused by im-
paired LPL-mediated lipolytic conversion of VLDL-TG. Therefore, we further studied 
whether apoCI inhibits the LPL-mediated lipolysis via interaction with the VLDLr or 
with apoCIII in chapter 3. Our results showed that apoCI is a powerful inhibitor of 
LPL activity in vivo, independent of the VLDLr and apoCIII. 

Chapter 4 focuses on the role of LPL in the apoE-receptor independent VLDL 
remnant clearance. This was studied by adenoviral-mediated gene transfer of hu-
man APOC1 and human LPL into mice that lack the three main apoE-recognizeng re-
ceptors, i.e. LDLr, the VLDLr and hepatic LRP. We found that also in the absence of 
these receptors the remnant clearance depends on LPL. In chapter 5, we addressed 
whether increasing LPL activity can lead to reduction of the combined hyperlipidemia 
in APOE*2-knockin mice. These studies revealed that the hyperlipidemia in these mice 
can be ameliorated by a direct increase in LPL activity and by overexpression of apoAV, 
but not by deletion of apoCIII. 

Since a major difference between mice and men regarding lipid metabolism is the 
expression of CETP and the atherogenicity of CETP is still under debate, we studied in 
chapter 6 the effect of human CETP expression in APOE*3-Leiden mice with a hu-
man-like distribution of cholesterol over lipoprotein particles. These results showed 
that CETP expression has a major impact on the cholesterol distribution between li-
poproteins and represents a clear pro-atherogenic factor in these mice. Since both 
statins and fenofi brate increase HDL-cholesterol levels in humans, whereas this is not 
observed in mice, we addressed the hypothesis that this increase in HDL-cholesterol 
could depend on CETP in chapter 7 and chapter 8. Therefore, mice on an APOE*3-
Leiden background with or without CETP expression received a cholesterol-rich diet 
with or without fenofi brate or atorvastatin. Indeed, the mice with CETP displayed an 
increase in HDL-cholesterol, that was absent in the control mice, and could not be ex-
plained by differences in other genes involved in HDL-metabolism. 
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Chapter 9 discusses the results of these studies, together with the future perspec-
tives. 
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