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Objective - While fenofi brate reduces triglycerides (TG) both in humans and mice, 
fenofi brate increases HDL-cholesterol only in humans. Since humans express the 
cholesteryl ester transfer protein (CETP), whereas mice do not, we investigated 
 whether the fenofi brate-induced increase in HDL-cholesterol depends on the expres-
sion of CETP.

Methods and Results - APOE*3-Leiden (E3L) mice, with a human-like lipoprotein 
profi le, and CETP.E3L littermates were fed a Western-type diet with or without 0.04% 
fenofi brate. In male mice, fenofi brate decreased plasma TG in E3L and CETP.E3L mice 
(-59% and -60%; P<0.001), caused by a strong reduction in VLDL. Whereas fenofi brate 
did not affect HDL-cholesterol in E3L mice, HDL-cholesterol was strongly increased 
(+91%) in CETP.E3L mice. Similar effects were observed in female mice. Fenofi brate 
did not affect the turnover of HDL-CE, indicating that fenofi brate causes a higher 
steady-state HDL-cholesterol level without altering the HDL-cholesterol fl ux through 
plasma. In CETP.E3L mice, fenofi brate reduced hepatic CETP mRNA (-72%; P<0.01) 
and tended to reduce plasma CETP mass (-8%) and activity (-9%), which reached sig-
nifi cance when adjusted for HDL-cholesterol (-42%; P<0.01 and -42%; P<0.01). In 
female mice, plasma CETP mass (-35%, P<0.05) and activity (-32%, P<0.01) were de-
creased even without adjusting for HDL-cholesterol. 

Conclusion - Fenofi brate increases HDL-cholesterol in CETP.E3L mice by reducing 
the CETP-dependent transfer of HDL-cholesterol to (V)LDL, as related to reduced he-
patic CETP expression and a reduced plasma (V)LDL pool.
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High plasma triglyceride (TG) levels are correlated with an increased risk for 
cardiovascular disease. Fibrates are widely used to reduce hypertriglyceri-
demia, thereby generating a less atherogenic lipid phenotype. Fibrates con-

stitute their actions through activation of peroxisome proliferator-activated receptor 
alpha (PPARα).1,2 Activated PPARα heterodimerizes with retinoid X receptor (RXR) 
and subsequently binds to specifi c peroxisome proliferator response elements (PPREs) 
in target genes to alter their transcription.1,3 Fibrates thus lower TG levels by inhibiting 
hepatic TG production through increased hepatic ß-oxidation and inhibition of de novo 
fatty acid synthesis, increasing LPL-mediated lipolysis, and providing a higher affi nity 
of remnants for the LDL receptor (LDLr).2

A meta-analysis of 53 clinical studies using fi brates enrolling 16,802 subjects indi-
cated that apart from a 36% reduction in plasma TG, fi brates increase HDL-cholesterol 
levels by about 10% in humans.4 Studies in vitro and in (transgenic) mice showed that 
fi brates increase the hepatic transcription of human APOA15 and APOA2,6 decrease 
hepatic SR-BI protein,7 increase the scavenger receptor B type I (SR-BI)-mediated8 and 
adenosine triphosphate-binding cassette transporter A1 (ABCA1)-mediated9 choles terol 
effl ux from human macrophages, and increase plasma phospholipid transfer protein 
(PLTP) activity.10,11 All of these effects may thus potentially contribute to the increase in 
HDL-cholesterol as observed in humans. 

In contrast to humans, fi brates do not affect or even decrease HDL-cholesterol le-
vels in mice.5,7,10,12 This effect may be attributed to the fact that, in contrast to the hu-
man APOA1 promoter, which contains a functional positive PPRE leading to increased 
APOA1 transcription, the murine apoa1 promoter contains a nonfunctional PPRE.5 
However, another major difference between both species is that, in contrast to hu-
mans,13 mice do not express the cholesteryl ester (CE) transfer protein (CETP).14 CETP 
is a hydrophobic plasma glycoprotein that is involved in the exchange of CE and TG 
between HDL and apoB-containing lipoproteins (e.g. VLDL and LDL), resulting in the 
net transfer of CE from HDL to apoB-containing lipoproteins.15 Accordingly, CETP de-
fi ciency in humans is associated with elevated HDL-cholesterol levels16 and inhibition 
of CETP activity by small-molecule inhibitors increased HDL-cholesterol levels.17-20 In 
addition, bezafi brate,21,22 fenofi brate,23 and ciprofi brate24 increased HDL-cholesterol in 
subjects with hyperlipidemia with a concomitant reduction in plasma CETP activity. 
In the latter study, plasma apoAI levels were not affected, which indicates that fi brates 
may increase HDL-cholesterol levels via apoAI-independent mechanisms, including a 
potential effect of fi brates on CETP expression. 

Therefore, our aim was to investigate whether the fi brate-induced increase in HDL-
cholesterol depends on CETP expression. Hereto, APOE*3-Leiden (E3L) mice, with a 
human-like lipoprotein profi le,25,26 were crossbred with mice expressing human CETP 
under control of its natural fl anking regions.27 CETP.E3L and E3L littermates were fed 
a cholesterol-rich (0.25%, w/w) diet with or without 0.04% fenofi brate. Fenofi brate 
did not affect HDL levels in E3L mice after two weeks of drug administration, but in-
creased HDL-cholesterol in CETP.E3L mice. In addition, fenofi brate reduced hepatic 
CETP mRNA expression, and plasma CETP mass and activity. From these studies we 
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conclude that fenofi brate increases HDL-cholesterol by reducing CETP-dependent 
transfer of CE from HDL to apoB-containing lipoproteins. 

Materials and Methods

Animals
Hemizygous human CETP transgenic (CETP) mice, expressing a human CETP mini-
gene under the control of its natural fl anking sequences27 were purchased from the 
Jackson Laboratory (Bar Harbor, ME, USA) and crossbred with hemizygous E3L mice28 
at our Institutional Animal Facility to obtain E3L and CETP.E3L littermates. Mice were 
housed under standard conditions in conventional cages and had free access to food 
and water. At the age of 8 weeks, mice were fed a semi-synthetic cholesterol-rich diet, 
containing 0.25% (w/w) cholesterol and 15% (w/w) fat (Western-type diet) (Hope 
Farms, Woerden, The Netherlands) for three weeks. Upon randomization according to 
total plasma cholesterol (TC) levels, mice received Western-type diet with or without 
0.04% (w/w) fenofi brate (Sigma, St. Louis, MO, USA). Experiments were performed 
after 4 h of fasting at 12:00 pm with food withdrawn at 8:00 am, unless indicated oth-
erwise. The institutional Ethical Committee on Animal Care and Experimentation has 
approved all experiments. 

Plasma lipid and lipoprotein analysis
Plasma was obtained via tail vein bleeding as described29 and assayed for TC and TG, 
using the commercially available enzymatic kits 236691 and 11488872 (Roche Mo-
lecular Biochemicals, Indianapolis, IN, USA), respectively. The distribution of lipids 
over plasma lipoproteins was determined by fast-performance liquid chromatography 
(FPLC) using a Superose 6 column as described previously.29

CETP activity and mass determination
CETP activity in plasma was measured as the transfer of [3H]cholesteryl oleate ([3H]CO) 
from exogenous LDL to HDL as described elsewhere.30 CETP activity was calculated as 
µmol CE transfer per ml plasma per h. Plasma CETP mass was analyzed by a two-
 antibody sandwich immunoassay as described previously.31  

Plasma apoAI concentration
Plasma apoAI concentrations were determined using a sandwich ELISA. Hereto, rabbit 
anti-mouse apoAI polyclonal antibody (ab20453; Abcam plc, Cambridge, UK) was coat-
ed overnight onto Costar strips (Costar, Inc., New York, NY, USA) (3 µg/ml) at 4°C and 
incubated with diluted mouse plasma (dilution 1:400,000) for 90 min at 37°C. Subse-
quently, goat anti-mouse apoAI antibody (600-101-196; Rockland Immunochemicals, 
Inc., Gilbertsville, PA, USA; dilution 1:3000) was added and incubated for 90 min at 
37°C. Finally, horse radish peroxidase (HRP)-conjugated rabbit anti-goat IgG antibody 
(605-4313; Rockland; dilution 1:15000) was added and incubated for 90 min at 37°C. 
HRP was detected by incubation with tetramethylbenzidine (Organon Teknika, Boxtel, 
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The Netherlands) for 15 min at room temperature. Purifi ed mouse apoAI (A23100m; 
Biodesign International, Saco, Maine, USA) was used as a standard.

Radiolabeling of autologous HDL
One mouse from each experimental group was killed by cervical dislocation and blood 
was drawn from the retro-orbital vein. Sera were collected and HDL was isolated af-
ter density ultracentrifugation in a SW 40 Ti rotor (Beckman Instruments, Geneva, 
Switzerland) (4°C; 40,000 rpm; overnight).32 HDL (0.4 µmol HDL-cholesterol) was 
radiolabeled by incubation (37°C; 24 h) with [3H]cholesteryl oleyl ether ([3H]COEth)-
labeled egg yolk phosphatidylcholine vesicles (40 µCi; 0.5 mg phosphatidylcholine) in 
the presence of  lipoprotein defi cient serum (1 ml) from CETP.E3L mice. Subsequently, 
HDL was re-isolated after density ultracentrifugation (12°C; 40,000 rpm; 24 h). 

In vivo clearance of autologous HDL
After 6 weeks of diet, mice were injected via the tail vein with a trace of autologous 
[3H]COEth-labeled HDL (0.2x106 cpm in PBS) at 8:00 am. At the indicated time points 
after injection, blood was collected to determine the serum decay of [3H]COEth by scin-
tillation counting (Packard Instruments, Dowers Grove, IL, USA). The total plasma 
volumes of the mice were calculated from the equation V (ml) = 0.04706 x body weight 
(g), as determined from previous 125I-BSA clearance studies.33 The fractional catabolic 
rate (FCR) was calculated from the serum decay curves as described previously.34 Brief-
ly, curves were fi tted using GraphPad Prism software, giving the best fi t for one-phase 
exponential decay curves, described by the formula Y=span*exp(-k*x)+plateau. Subse-
quently the FCR was calculated as span/(Area Under the Curve).  

Hepatic mRNA expression, SR-BI protein, and lipid analysis
Livers were isolated after cervical dislocation. Total RNA was isolated using the Nu-
cleoSpin® RNA II kit (Macherey-Nagel, Düren, Germany) as recommended by the 
manufacturer. RNA expression was determined in duplicate by real-time PCR on a 
MyiQ Single-Color real-time PCR detection system (Bio-Rad Laboratories, Hercules, 
CA, U.S.A.). Primers for CETP35 and Sr-b136 have been described previously.  Primers 
for Abca1, Apoa1, Cyp7A1, and Pltp are listed in  table 1. Expression levels were
normalized using HPRT and cyclophilin as housekeeping genes.36,37 Hepatic SR-BI 
protein was determined by immunoblot analysis as described previously.38 Liver lipids 
were determined by homogenizing liver samples in water (ca. 10% wet w/v) using a 
mini-beadbeater (Biospec Products, Inc., Bartlesville, OK, U.S.A.; 20 sec; 5000 rpm), 
followed by lipid-extraction as described by Bligh and Dyer.39 Extracts were assayed 
for TC as described above. Protein was determined according to the method of Lowry 
et al.40

Statistical analysis
All data are presented as means ± SD unless indicated otherwise. Data were analyzed 
using the unpaired Student’s t test. P-values less than 0.05 were considered statistically 
signifi cant.
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 Results

Fenofi brate increases HDL-cholesterol in CETP.E3L mice
To study the effect of fenofi brate on plasma lipid levels in hyperlipidemic mice, E3L 
and CETP.E3L mice were fed a cholesterol-rich diet with or without 0.04% fenofi brate 
for two weeks. On such a cholesterol-rich diet, female mice have higher plasma TG 
and cholesterol levels (Fig. 1) than male mice, as refl ected by increased VLDL levels 
(Fig. 2). This difference is caused by a higher VLDL-production.41 In E3L mice, fenofi -
brate decreased plasma TG levels both in females (-68%; P<0.001) (Fig. 1A) and in 
males (-59%; P<0.001) (Fig. 1B). Concomitantly, plasma cholesterol levels were de-
creased in females (-70%; P<0.001) (Fig. 1C), whereas only a trend towards reduction 
was observed in males (Fig. 1D). These changes in plasma lipid levels were refl ected by 
a strong reduction in VLDL-TG (not shown). Upon fenofi brate administration to E3L 
mice, cholesterol was strongly decreased in VLDL, intermediate-density lipoprotein 
(IDL) and LDL in females (-85%; Fig. 2A) and males (-91%; Fig. 2B), whereas HDL-
cholesterol was not affected. Apart from typical IDL/LDL (fractions 9-13) and HDL 
(fractions 17-22), an additional particle was observed at fractions 14-16. This particle 
has previously been characterized as large apoE-rich HDL

1
25 and was also not affected 

by fenofi brate feeding.
Administration of fenofi brate to CETP.E3L mice had similar effects on total plas-

ma lipid levels as compared to E3L mice. Plasma TG levels were decreased in females 
(-71%; P<0.01) (Fig. 1A) and males (-60%; P<0.01) (Fig. 1B), and plasma TC levels 
were reduced in females (-86%; P<0.01), while a trend towards reduction was observed 
in males (Fig. 1D). Similarly as in E3L mice, fenofi brate caused a strong reduction in 
VLDL-TG (not shown) as well as in VLDL/IDL/LDL-cholesterol in females (-88%; Fig. 
2C) and males (-93%; Fig. 2D). However, whereas HDL-cholesterol levels were not 
increased in E3L mice, fenofi brate treatment of CETP.E3L mice resulted in strongly 
elevated HDL-cholesterol levels both in females (+54%; Fig. 2C) and in males (+91%; 
Fig. 2D).  

Table 1. Primers for quantitative real-time PCR analysis

Gene Forward primer (5’-3’) Reverse primer (5’-3’)

Abca1 CCCAGAGCAAAAAGCGACTC GGTCATCATCACTTTGGTCCTTG

Apoa1 GGAGCTGCAAGGGAGACTGT TGCGCAGAGAGTCTACGTGTGT

Cyp7a1 CAGGGAGATGCTCTGTGTTCA AGGCATACATCCCTTCCGTGA

Pltp TCAGTCTGCGCTGGAGTCTCT AAGGCATCACTCCGATTTGC

Abca1, ATP-binding cassette transporter a1; Apoa1, apolipoprotein a1; Pltp, phospholipid transfer 

protein
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Figure 1. Effect of fenofi brate on plasma triglycerides and cholesterol. E3L and CETP.E3L female (A,C) and male (B,D) 

mice received a Western-type diet with (closed bars) or without (open bars) fenofi brate for two weeks. Plasma triglycerides (A,B) 

and cholesterol (C,D) were determined. Values are means ± SD (n=6 per group). ***P<0.001 compared to control.

Fenofi brate increases the steady-state plasma HDL level without affecting HDL 
turnover in CETP.E3L mice
To examine the mechanism underlying the fenofi brate-induced increased HDL-
 cholesterol in CETP.E3L mice, male E3L and CETP.E3L mice were injected with au-
tologous [3H]COEth-labeled HDL and the serum decay was determined (Fig. 3). The 
expression of CETP per se appeared to accelerate the serum decay, as refl ected by an in-
creased fractional catabolic rate (FCR) as calculated pools of HDL-CE cleared per hour 
(+65%; P<0.01; Table 2). In E3L mice, fenofi brate administration did not affect the 
clearance of HDL-CE (Fig. 3A; Table 2). In contrast, fenofi brate decreased the FCR of 
HDL in CETP.E3L mice (-27%; P<0.01). However, the FCR as calculated as mM HDL-
CE cleared per hour, was not affected by the expression of CETP in E3L mice, nor by 
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Figure 2. Effect of fenofi brate on the distribution of cholesterol over lipoproteins. Female (A,C) and male (B,D) 

E3L (A,B) and CETP.E3L (C,D) mice received a Western-type diet with (closed circles) or without (open circles) fenofi brate for 

2 weeks. Plasmas of the various mouse groups were pooled (n=6 per group). Lipoproteins were separated by FPLC and fractions 

were analyzed for cholesterol.

fenofi brate feeding of either E3L or CETP.E3L mice (Table 2). This indicates that CETP 
expression and fenofi brate feeding alter the steady-state plasma HDL-cholesterol level 
without affecting the net HDL-cholesterol fl ux through plasma.  

Fenofi brate decreases hepatic CETP mRNA expression and plasma CETP mass 
and activity
Since differences in genes encoding proteins that are crucially involved in HDL me-
tabolism may account for the increase in HDL-cholesterol in CETP.E3L mice upon 
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Figure 3. Effect of fenofi brate 

on the plasma clearance of 

HDL. E3L (A) and CETP.E3L (B) 

male mice received a Western-type 

diet with (closed circles) or with-

out (open circles) fenofi brate for 6 

weeks. Mice were injected with au-

tologous [3H]COEth-labeled HDL 

and serum 3H-activity was deter-

mined at the indicated time points. 

Values are means ± SD (n=5 per 

group). **P<0.01 compared to con-

trol.

Table 2. Effect of fenofi brate on the FCR of HDL-CE in CETP.E3L 
and E3L mice 

Control Fenofi brate

FCR (pools HDL-CE per h)

E3L 0.067±0.003 0.057±0.004

CETP.E3L 0.111±0.006 0.081±0.003*

FCR (mM HDL-CE per h)

E3L 0.166±0.008 0.162±0.011

CETP.E3L 0.142±0.008 0.162±0.007

E3L and CETP.E3L male mice were fed a Western-type diet with or without fenofi brate. After 

6 weeks, mice were injected with autologous [3H]COEth-labeled HDL. The data from fi gure 3 

were used to calculate the fractional catabolic rate (FCR) as pools of HDL-CE or mM HDL-CE 

cleared per hour. Values are expressed as means ± S.E.M. relative to control mice (n=5 mice 

per group). *P<0.01 compared to control.
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fenofi brate treatment, we examined the effect of fenofi brate on their hepatic expression 
(Table 3). Pltp was increased in E3L (3.5-fold; P<0.01) and CETP.E3L mice (4.6-fold; 
P<0.05), consistent with previously reported effects of fenofi brate.10,11 The ex pression 
of the Abca1, involved in HDL formation, was also decreased in E3L (-50%; P<0.05) 
and CETP.E3L (-33%; P<0.05) mice. Likewise, Sr-b1 was decreased in E3L (-48%; 
P<0.05) and CETP.E3L (-42%; P<0.05) mice to a similar extent, as refl ected by simi-
lar reductions in hepatic SR-BI protein levels (approximately -25%) for E3L (P=0.06) 
and C ETP. E3L mice (P<0.05) (Fig. 4). Apoa1 expression was decreased in E3L (-49%; 
P<0.05) and CETP.E3L (-41%; P<0.05) mice without affecting the plasma apoAI level 
(approximately 80 mg/dl in all groups).

The expression of Pltp, Abca1, Sr-b1, and Apoa1 are thus similarly affected by feno-
fi brate in E3L and CETP.E3L mice, and can thus not explain the differentially raised 
HDL in CETP.E3L mice as compared to E3L mice. Therefore, the HDL-raising effect 
of fenofi brate in CETP.E3L mice is likely to be a direct consequence of CETP modula-
tion. Indeed, fenofi brate strongly decreased CETP expression in CETP.E3L mice (-72%; 
P<0.01). Since the liver X receptor (LXR) strongly regulates the expression of CETP,42 
we determined whether fenofi brate feeding would decrease the cholesterol content in 
the liver. Indeed, fenofi brate reduced the hepatic cholesterol content in E3L (4.9±2.6 

Table 3. Effect of fenofi brate on hepatic mRNA expression in CETP.E3L 
and E3L mice

E3L mice CETP.E3L mice

Control Fenofi brate Control Fenofi brate

Cyp7a1 1.00±0.18 0.50±0.07* 1.00±0.20 0.43±0.08*

Pltp 1.00±0.18 3.25±0.36** 1.00±0.22 2.65±0.45*

Abca1 1.00±0.15 0.50±0.08* 1.00±0.06 0.77±0.04*

Sr-b1 1.00±0.14 0.52±0.04* 1.00±0.12 0.58±0.10*

Apoa1 1.00±0.20 0.51±0.02* 1.00±0.21 0.59±0.04*

CETP n.d. n.d. 1.00±0.12 0.28±0.05**

E3L and CETP.E3L mice were fed a Western-type diet with or without fenofi brate. After 6 weeks, liv-

ers were collected to determine mRNA expression. Values are expressed as means ± S.E.M. relative to 

control mice (n=4 per group). n.d., not detectable. *P<0.05; **P<0.01 compared to controls.
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vs. 9.6±3.7 µg TC/mg protein) and CETP.E3L mice (3.6±1.0 vs. 13.0±3.7 µg TC/mg 
protein; P<0.05).

The fenofi brate-induced reduction in hepatic CETP expression was accompanied 
by a trend towards reduction in plasma CETP mass (23±5 vs. 25±8 µg/ml; -8%) and 
acti vity (0.57±0.13 vs. 0.63±0.18 µmol CE/ml/h; -9%). Apart from hepatic mRNA 
expression, plasma CETP levels are also determined by the plasma HDL-cholesterol 
level.43 Indeed, CETP activity was predominantly found on HDL, since similar CETP 
activities were measured in plasma with and without prior precipitation of the apoB-
containing lipoproteins (0.52±0.08 vs. 0.56±0.19 µmol CE/ml/h). Adjustment for 
HDL- cholesterol resulted in a signifi cant reduction in the CETP mass (11±2 vs. 20±6 

Figure 4. Effect of fenofi brate on hepatic SR-BI protein levels. E3L (A) and CETP.E3L (B) male mice received a Western-

type diet with (closed bars) or without (open bars) fenofi brate for 6 weeks. Livers were isolated after cervical dislocation. SR-BI 

protein was determined by immunoblot analysis. Intensity of bands were determined by pixel counting and calculated relative to 

the control mice (C). Values are means ± S.E.M. (n=4 per group). *P<0.05 compared to controls.
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µg CETP/µmol HDL-C); -42%; P<0.01) and CETP activity (0.29±0.06 vs. 0.50±0.14 
µmol CE/h/µmol HDL-C); -42%, P<0.01). In female mice, plasma CETP mass (84±31 
vs. 130±30 µg/ml; -35%, P<0.05) and activity (1.07±0.27 vs. 1.58±0.01 µmol CE/ml/h; 
-32%, P<0.01) were decreased even without adjusting for HDL-cholesterol.

Discussion

In addition to reducing plasma TG levels in humans and mice, fenofi brate increas-
es HDL-cholesterol levels in humans,4 but not in mice.5,7,10,12 Since humans express 
CETP,13 whereas mice do not,14 we investigated whether CETP might play a role in 
the fenofi brate-induced increase in HDL-cholesterol. Here we show that fenofi brate 
increases HDL-cholesterol in CETP.E3L mice, as paralleled by a reduction in hepatic 
CETP mRNA and plasma CETP activity, whereas such an effect was not observed in 
E3L mice.  

We have previously shown that E3L mice are highly susceptible to dietary interven-
tions with respect to modulating plasma lipid levels, and that these mice show a  human-
like response to drug interventions aimed at reducing plasma levels of apoB-containing 
lipoproteins, including statins (atorvastatin44 and rosuvastatin45) and fi brates (gemfi -
brozil46). This is in sheer contrast with wild-type mice5,12 and more conventional hyper-
lipidemic mice such as apoE-defi cient12,47 or LDL receptor-defi cient48 mice, which show 
either an adverse or no response to such interventions. In particular, administration of 
fenofi brate to wild-type12 and apoE-defi cient12,47 mice showed an unexpected increase 
in plasma TG and TC levels caused by elevated levels of lipoprotein remnants, with a 
concomitant reduction in HDL-cholesterol. In the present paper, we demonstrate that 
E3L mice also show a human-like response to fenofi brate with respect to decreasing 
TG and cholesterol in apoB-containing particles, albeit that HDL-cholesterol was not 
increased. We reasoned that introduction of human CETP in these E3L mice, which 
permits cholesteryl ester exchange between HDL and apoB-containing lipoproteins, 
would thus result in an excellent mouse model to study the effects of fenofi brate on 
HDL metabolism.

Indeed, we demonstrate that while CETP.E3L mice retain their ability to respond 
to fenofi brate with respect to a similar reduction of VLDL-TG and VLDL-cholesterol 
as compared with E3L mice, they now also respond by an increase in HDL-cholesterol 
level. Apparently, the fact that mice normally do not express CETP prevents a human-
like response to HDL-modulating drug interventions, like fi brate treatment. In agree-
ment with this hypothesis, we have previously observed that treatment of E3L mice 
with statins also did not increase HDL-cholesterol albeit that VLDL reductions of as 
much as 60% were achieved.44,46,49 HDL-cholesterol levels can theoretically be modu-
lated by several key proteins involved in HDL metabolism, including ABCA1,9 SR-BI,8 
PLTP,10,22 apoAI,2,5,50-52 and CETP.21,23,24 Therefore, we examined the potential contribu-
tion of each of these factors in the fenofi brate-induced increase of HDL-cholesterol in 
CETP.E3L mice.

The HDL-cholesterol level in mice is largely determined by the hepatic Abca1 ex-
pression, which results in the export of hepatic cholesterol towards nascent HDL in 
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plasma.53 In fact, it has been reported that treatment of chow-fed rats with ciprofi brate 
increased their hepatic Abca1 expression, concomitant with an increase in plasma HDL-
cholesterol levels.54 However, fenofi brate did not increase hepatic Abca1 expression in 
either E3L or CETP.E3L mice. On the contrary, a strong trend towards reduction of 
Abca1 mRNA was observed in both genotypes. Since a reduction of ABCA1 is linked 
with reduced HDL-cholesterol levels,53 this indicates that the effect of fenofi brate on 
HDL-cholesterol in CETP.E3L mice can thus not be explained by altered Abca1 expres-
sion.

Whereas bezafi brate did not increase the plasma PLTP mass and activity levels in 
humans,22 fenofi brate has been shown to increase the hepatic Pltp expression in mice, 
which was associated with increased plasma PLTP activity and HDL size, at least in 
human APOA1 transgenic mice.10 Accordingly, we found that fenofi brate induced the 
hepatic Pltp expression both in E3L and CETP.E3L mice. However, the relative in-
crease was even more pronounced in E3L mice as compared to CETP.E3L mice, while 
HDL-cholesterol was not affected in E3L mice. In this respect, it is also of note that 
 adenovirus-mediated hepatic expression of PLTP results in a dose-dependent reduc-
tion of HDL-cholesterol levels, instead of increasing HDL-cholesterol, in both wild-
type and human APOA1-transgenic mice.55 Therefore it is unlikely that the induction of 
PLTP is the cause for the increase in HDL-cholesterol as observed in CETP.E3L mice. 

In mice, hepatic SR-BI represents the most important pathway for the selective 
clearance of HDL-associated cholesteryl esters from plasma.56 It has been shown that 
fenofi brate can down-regulate hepatic SR-BI protein in wild-type mice, independent 
of Sr-b1 expression, via a post-transcriptional mechanism, which was correlated with 
an increased HDL size based on FPLC profi ling.7 We found that fenofi brate treatment 
did result in a similar reduction of Sr-b1 expression in E3L (-48%) and CETP.E3L 
mice (-42%), with a concomitant reduction in hepatic SR-BI protein levels (-20-30%). 
However, whereas we did observe an increase in HDL

1
 cholesterol levels (+69%) after 

prolonged administration of fenofi brate in E3L mice (i.e. six weeks), as has also been 
shown for wild-type mice by Mardones et al.,7 this was not observed in CETP.E3L mice. 
Instead, we found increased levels of cholesterol in regularly sized HDL in CETP.E3L 
mice. Since similar reductions in SR-BI were observed in E3L and CETP.E3L mice, 
whereas the increase in HDL-cholesterol was observed only in CETP.E3L mice, SR-BI 
reduction can be ruled out as a causal factor for HDL-cholesterol elevation in CETP.
E3L mice.

In human APOA1 transgenic mice, human APOA1 hepatic mRNA and plasma 
protein levels were increased after fenofi brate treatment,5 probably by the binding of 
PPARα to a positive PPRE in the human APOA1 gene promoter.52 Given the tight rela-
tion between HDL-cholesterol and apoAI levels in humans, it could thus be expected 
that upregulation of apoAI expression would be the main causal factor for increasing 
HDL- cholesterol levels in humans. Fenofi brate treatment has an opposite effect on 
murine apoAI (i.e. reduction of expression and plasma levels),5 which could theoreti-
cally thus easily explain why fenofi brate does not increase HDL-cholesterol in mice. 
However, although we do observe a reduction of hepatic Apoa1 expression upon fenofi -
brate treatment of E3L (-49%) and CETP.E3L mice (-41%). HDL-cholesterol is never-
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theless markedly increased in CETP.E3L mice. The fact that plasma apoAI was not 
affected may thus be explained by increased lipidation of apoAI, thereby preventing 
the clearance of apoAI.

Collectively, these data thus suggest that down-regulation of CETP expression is the 
predominant cause of the fenofi brate-induced elevation of HDL-cholesterol. Expres-
sion of CETP in E3L mice decreased the HDL-cholesterol level (approximately -35%) 
and increased the FCR of HDL-CE as calculated as pools of HDL-CE cleared per hour 
(+65%; P<0.01), consistent with previous fi ndings on CETP expression in rats.57 How-
ever, the HDL-CE turnover as calculated as mM HDL-CE cleared per hour, was not 
affected by the expression of CETP in E3L mice. This indicates that CETP expression 
does not affect the net HDL-cholesterol fl ux through plasma, but nevertheless decreas-
es the steady-state plasma cholesterol level. Likewise, Kee et al.58 showed that CETP 
inhibition in rabbits does not compromise the HDL-CE clearance from plasma, while 
increasing HDL-cholesterol. Treatment of CETP.E3L mice with fenofi brate resulted in 
an increased HDL-cholesterol level, strongly decreased hepatic CETP expression levels, 
and reduced plasma CETP mass and activity levels. The increase in HDL-cholesterol 
may thus be caused by the combination of reduced hepatic CETP expression and re-
duced levels of apoB-containing lipoproteins as CE acceptors, thereby inhibiting the 
CETP-mediated transfer of CE from HDL to (V)LDL.

It is tempting to speculate about the mechanism(s) underlying the effect of fenofi -
brate on hepatic CETP expression. Dietary cholesterol has been shown to increase 
CETP mRNA expression in CETP transgenic mice,27 possibly via an LXR responsive 
element in the CETP promoter.42 Conversely, a decrease in hepatic CETP mRNA ex-
pression might thus be the consequence of a reduction in LXR signaling. Fenofi brate 
treatment indeed decreased both plasma and hepatic cholesterol, which is likely to re-
duce the level of oxysterols, the natural ligands of LXRα. In addition, PPARα-activation 
by fenofi brate might be directly responsible for the inhibition of LXRα by binding to a 
PPRE in its regulatory region. Downregulation of LXRα is supported by a concomitant 
decrease in the expression of Cyp7a1, another LXR-target gene.59 This is in accordance 
with previous data of Post et al.,60 who showed a 65% reduction in hepatic Cyp7a1 
mRNA upon ciprofi brate administration to wild-type mice. Nevertheless, it should be 
mentioned that Cyp7a1 is also regulated directly by fi brates via a negative PPRE in its 
promoter sequence.61 In line with the fi ndings of Repa et al.,62 a reduction in LXRα 
might also explain the reduction of Abca1 expression. Besides these mechanisms ex-
plaining reduced CETP expression by fenofi brate, Cheema et al.63 recently identifi ed 
a potential PPRE in the promoter region of CETP, which provides the possibility for 
direct regulation of CETP by PPARα agonists, albeit that it is unclear as yet whether this 
potential PPRE is functional.

Fibrate treatment has been associated with a reduction of cardiovascular disease.4 
The recent FIELD (Fenofi brate Intervention and Event Lowering in Diabetes) study, 
which assessed the effects of fenofi brate on cardiovascular risk in subjects with type 2 
diabetes mellitus in a long-term, controlled trial, showed a reduction in total cardio-
vascular events, but did not reveal a reduced risk of the primary outcome of coronary 
events.64 Nevertheless, the authors suggested that a more benefi cial outcome might 
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have been masked by a larger portion of statin treatment in the placebo group as com-
pared to the fenofi brate group. Even though the benefi t of an increase in HDL-choles-
terol by CETP-inhibition is still under debate,65-68  raising HDL-cholesterol levels is 
generally considered anti-atherogenic. Besides the ability of fi brates to potently reduce 
plasma TG, their concomitant effect on increasing HDL by reduction of CETP activity 
may thus be an additional advantageous anti-atherogenic property. It may be specu-
lated that combination therapies of fi brates (i.e. reducing CETP expression) with small 
molecule CETP inhibitors (i.e. reducing plasma CETP activity) may help to further re-
duce cardiovascular risk.

Taken together, our data show that fenofi brate increases HDL-cholesterol by reduc-
ing the CETP expression and activity in CETP.E3L mice. Therefore, we postulate that 
the increase in HDL that is found in subjects after fi brate administration is caused by 
reduced CETP activity, probably acting in concert with apoAI, ABCA1, PLTP, and pos-
sibly CD36- and LIMPII-analogous 1 (CLA1), the human homologue of SR-BI.  Studies 
using CETP.E3L mice can provide valuable information of the benefi t that may be ex-
pected from combination therapy involving administration of fi brates and CETP in-
hibitors. 
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