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Chapter 4

Evaluation of Algorithms for

Point Cloud Surface

Reconstruction through the

Analysis of Shape Parameters

Based on:

L. Cao, F.J. Verbeek. Evaluation of algorithms for point cloud surface

reconstruction through the analysis of shape parameters. 3D Image Processing

(3DIP) and Applications 2012, Proceedings SPIE Vol. 8290,Bellingham,

82900G, 2012

L. Cao, F.J. Verbeek. Analytical evaluation of algorithms for point cloud

surface reconstruction using shape features. Journal of Electronic Imaging, 22

(4), 043008, October 2013
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4. EVALUATION OF SURFACE RECONSTRUCTION ALGORITHMS

Abstract:In computer vision and graphics, reconstruction of a 3D surface

from a point cloud is a well-studied research area. As the surface contains in-

formation that can be measured, the application of surface reconstruction may

be potentially important for applications in bio-imaging. In the past decade, a

number of algorithms for surface reconstruction have been developed. Generally

speaking, these algorithms can be separated into two categories: explicit repre-

sentation and implicit approximation. Most of these algorithms have a sound

basis in mathematical theory. However, so far, no analytical evaluation between

these algorithms has been presented. The straightforward method of evaluation

has been by convincing through visual inspection. Therefore, we designed an

analytical approach by selecting surface distance, surface area and surface cur-

vature as three major surface descriptors. We evaluate these features in varied

conditions. Our ground truth values are obtained from analytical shapes: the

sphere, the ellipsoid and the oval. Through evaluation we search for a method

that can preserve the surface characteristics best and which is robust in the pres-

ence of noise. The results obtained from our experiments indicate that Poisson

reconstruction method performs best. This outcome can now be used to produce

reliable surface reconstruction of biological models.
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4. EVALUATION OF SURFACE RECONSTRUCTION ALGORITHMS

4.1 Introduction

The problem of 3D surface reconstruction from a point cloud is widely studied

and we consider it as important in the field of geometric modeling and analysis

of biological objects (models) that have been acquired by an imaging device; for

that matter we are specifically interested in objects at the microscopic scale.

At present, a number of approaches have been introduced to represent a 3D sur-

face. The approaches are generally classified into two categories: explicit repre-

sentation and implicit approximation. The major explicit representations include

parametric surfaces and triangulated surfaces. Parametric surfaces, such as B-

splines [He and Qin, 2004; Pfeifle and Seidel, 1996; Pottmann and Leopoldseder,

2003; Sun et al., 2006] and Bezier patches, attempt to represent all shapes with a

set of elementary shapes, i.e. super-quadratics, generalized cylinders, parametric

patches, etc. These parametric surfaces can be described by only a few parame-

ters. The reconstructed surface is smooth whilst the data set can be non-uniform.

There is, however, one major drawback of parametric surfaces, which is that sev-

eral parametric patches need to be combined to form a closed surface, resulting

in seams between the patches.

Another explicit representation is denoted as triangulated surfaces. In this rep-

resentation, all or most of the points are directly interpolated based on struc-

tures from computational geometry, such as Delaunay triangulations [Boisson-

nat, 1984], alpha shapes [Amenta et al., 2000], or Voronoi diagrams [Amenta

et al., 1998]. The CRUST method [Amenta et al., 1998] is the first one with a

provable reconstruction. The CRUST algorithm exploits the Voronoi diagram of

the input-point set to reconstruct the surface. Subsequently, POWER CRUST

[Amenta et al., 2001] uses a weighted Voronoi diagram to produce a water-tight

surface. This algorithm, however, introduces many extra points in the output and

also does not produce a triangulated surface. As an improvement to CRUST, the-

oretical as well as practical, the COCONE algorithm [Amenta et al., 2000] was

introduced. In time this was followed by SUPER COCONE [Dey et al., 2001],

TIGHT COCONE [Dey and Goswami, 2003] and ROBUST COCONE [Dey and

Goswami, 2004]. Triangulated methods have a profound basis in theory and

thereby a guaranteed solution, nevertheless, the implicit interpolations have a
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4. EVALUATION OF SURFACE RECONSTRUCTION ALGORITHMS

negative effect on the sensitivity to noise. Consequently, in order to produce

smooth surfaces from noisy data [Kolluri et al., 2004; Mederos et al., 2005], ex-

tensive pre- and/or post-processing is required.

The implicit approximation is based on a scheme which integrates characteristic

of each point on the surface into a feature function, a.k.a. the implicit function.

The implicit function can be constructed in different ways, such as local fitting,

global fitting and combined fitting.

In terms of the local fitting method, Hoppe et. al.[Hoppe et al., 1992] recon-

structed the surface by locally estimating the implicit function as the signed

distance to the tangent plane of the closest point. In a volumetric approach Cur-

less and Levoy [Curless and Levoy, 1996] extended the distance function approach

for laser range data, in which they also derive error and tangent plane informa-

tion. Another approach is to capture the local shape of the surface by adaptively

subdividing the space [Ohtake et al., 2003]. Global fitting methods normally use

globally supported radial basis functions as the implicit function to reconstruct

smooth surfaces [Carr et al., 2003]. Radial basis functions based methods are

especially useful for repairing large and irregular holes in an incomplete surface.

In these methods serious difficulties are encountered in capturing sharp surface

features. In combined fitting methods the advantages from both global and local

fitting schemes are integrated. In a Fourier-based reconstruction scheme [Kazh-

dan, 2005] the Fast Fourier Transform (FFT) is used to derive a characteristic

function of the solid model. The Poisson reconstruction [Kazhdan et al., 2006a] is

associated with the so called ambient space rather than the data points and has

a simple hierarchical structure that results in a sparse, well-conditioned system.

The implicit function is derived from a Poisson equation , computing a scalar

function whose Laplacian equals the divergence of the oriented point samples .

All the implicit approaches are particularly convenient since they all guarantee a,

so called, watertight 2-manifold surface approximation [Dey and Goswami, 2003].

A large volume of research papers is available on methods for surface reconstruc-

tion from a point cloud. A great deal of effort has been put into method design.

The existence of such large number of methods makes a systematic evaluation

necessary. Although error estimation is available for several methods, the evalua-

tions are still rather inefficiently described. In most cases a rather straightforward
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4. EVALUATION OF SURFACE RECONSTRUCTION ALGORITHMS

way of evaluation is based on visual inspection. One of the apparent reasons for

the lack of more comprehensive evaluation is probably related to the amount of

parameters that have to be analyzed when comparing reconstruction methods.

As indicated, we are particularly interested in applying surface reconstruction

methods in the field of biology. In molecular genetics and developmental biology,

the analysis of gene expression is important and requires the development of new

elaborate tools for shape analysis. We are modeling the genetic markup through

gene expression in relation to development and shape for the Zebrafish (Danio

rerio) and the Frog (Xenopus laevis) [Verbeek et al., 1999b]; to this end, we study

the development of the embryo. A surface is used as a shape descriptor and as a

means to project gene expression. As for the features it holds that subtle changes

in shape need to be noticed so that phenotypical changes can be understood.

Therefore, the surface representation needs to be precise and robust. The source

datasets that we use for the reconstruction are derived from microscopy [Ver-

beek, 1999a]; these are stacks of plan parallel images that are aligned as precise

as possible. Surfaces are derived from specific labeled volumes in the 3D image

and given the context of the application; we need to preserve these surfaces as

precise as possible. Numerous contour-based surface reconstruction algorithms

exist [Barequet et al., 2003; Braude et al.; Ekoule et al., 1991; Ganapathy and

Dennehy, 1982; Jones and Chen, 1994; Klein et al., 2000], however, the more

advanced point-based reconstruction technique will support shape analysis in a

better manner and parameterization of the surface provides a good starting point.

In the contour-based surface reconstruction these algorithms are increasingly used

[Barequet et al., 2003]. In order to assess the surface reconstruction we need de-

velop profound insight in the point-based reconstruction technique; i.e. we need

to know which algorithm would preserve the shape characteristics best and with

the highest accuracy.

In order to complete an analysis of the point bases surface reconstruction algo-

rithms, we have selected four representative algorithms from two major classes.

The quality of the surface created by the different algorithms is assessed under

noise conditions and compared to known analytical values. In this paper, the

point cloud models that we utilized are the sphere, the ellipsoid and the oval;

these shapes resemble the early embryo and therefore are realistic as a model.
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4. EVALUATION OF SURFACE RECONSTRUCTION ALGORITHMS

The evaluation is performed with four methods and for our experiment some re-

lated parameters will be selected in the methods evaluation. Given the number

of parameters that will be assessed in the evaluation, it should be clear that this

evaluation approach requires large memory resources and considerable computa-

tion time.

The remainder of this paper is organized follows. In section 4.2, we introduce

and propose our evaluation methods. In section 4.3, the experimental results are

presented. Finally, in section 4.4, we present our conclusions and indicate direc-

tions for our future research.

4.2 Evaluation design

In this paper, we aim at obtaining a higher level of understanding of the major

reconstruction approaches currently available. To that end we have selected four

representative surface reconstruction methods. Two methods are typical to the

group of explicit representation, i.e. Power Crust and Robust Cocone. Two other

methods are typical to the group of implicit representation and derive a surface

from an implicit approximation, i.e. Fourier-based reconstruction and Poisson re-

construction. According a visual evaluation presented by Kazhdan et al.[Verbeek

et al., 1999b] the latter two implicit methods perform best.

In order to make an objective assessment of the quality we will use an error esti-

mation of surface distance, surface area and surface curvature in a comparison of

the surface that results from the reconstruction to analytical descriptions of the

shape. These three major characteristics of the surface are chosen because: (1)

surface distance provides volumetric information of the model which is known as

an important global Riemannian invariant, (2) surface area represents the shape

of the surface which is a notable integral property, and (3) surface curvature is one

of the critical intrinsic properties for providing information on the local shape of

a surface. These three features are the paramount ones providing the geometric

information of the surface model. A sound error estimation based on these three

features would present us a good and objective impression of the performance of

each of the surface reconstruction methods.
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4. EVALUATION OF SURFACE RECONSTRUCTION ALGORITHMS

The point cloud models used in the evaluation are three synthetic objects i.e.

the sphere, the ellipsoid and the oval. The reason for employing synthetically

generated objects is that we can compute the surface area and surface curvature

from the parametrical mathematical representation of these synthetic surfaces.

Furthermore, it is also convenient for the calculation of surface distance between

synthetic objects and reconstructed objects. Moreover, the biological models that

we intend to reconstruct also portray these spherical or elliptical surface charac-

teristics. Thus, this analytical approach supports a more thorough understanding

the behavior of different reconstruction methods in the context of the intended

application.

Figure 4.1. Evaluation Design Workflow.

4.2.1 Generation of points and noise

According to our observations, surface curvature differs with point location of

the point on the surface, e.g. the surface curvature on the sphere is always equal

while the curvature on the ellipsoid changes with spatial location. Therefore, we

generate point samples for the synthetic objects in accordance with the surface

curvature, so as to properly preserve the surface characteristics. For the sphere,

the best way to represent its curvature is generating the surface sample points

with a uniform distribution. For the ellipsoid, we generate the points sample

according to the equation:
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4. EVALUATION OF SURFACE RECONSTRUCTION ALGORITHMS

(x− xc)2

xr2
+

(y − yc)2

yr2
+

(z − zc)2

zr2
= 1, (4.1)

Where [xc,yc,zc] represents the center of ellipsoid and xr, yr and zr denotes the

equatorial radii (along the x y and z axes). In the case of the oval shape, we

use the equation provided by Yamamoto [Solvenus and Yamamoto, 2011]. They

treat an oval shape by rotating the oval curve around x axis. The equation of a

3D oval surface is given by the following equations:

x = a cos θ

y = b cos(
θ

4
) sin θ cosφ

z = b cos(
θ

4
) sin θ sinφ

0 ≤ θ ≤ π

(4.2)

where a = 0.5, b = 0.37, 0 < φ < 2. With the coordinates data calculated from

Equation 2, we can obtain a nicely distributed point cloud without holes existing

on both poles that properly represent the surface curvature characteristic.

For the Fourier-based reconstruction and the Poisson reconstruction methods,

the generation of point position as an input is not sufficient. These two methods

require an oriented point-set as an input. We, therefore, apply point normal cal-

culation as described by Hoppe et al.[Hoppe et al., 1992].

Uniformly distributed noise is added randomly on the point cloud so as to esti-

mate the robustness of each of the methods in the presence of noise. Most of the

methods are robust to the Gaussian noise, e.g. the Fourier-based reconstruction

algorithm; we therefore have chosen to observe the performance of these methods

using uniformly distributed noise. For this type of evaluation we consider uni-

formly distributed noise to be valid and meaningful.
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4.2.2 Surface area calculation

Unlike the surface area of a sphere, the surface area of a general ellipsoid cannot

be expressed exactly by an analytical function. The equation to approximate the

surface area of an ellipse is given as:

A ≈ 4π(
apbp + apcp + bpcp

3
)1/p (4.3)

where a and b denote the equatorial radii (along the x and y axes), c denotes

the polar radius (along the z-axis) and, according to Knud Thomsen’s formula

p ≈ 1.6075.

Since the equation of oval surface can be treated as parametric surface −→r =
−→r (u, v), we thereafter make use of the definition for surface area of parametric

surface to calculate the oval area. The surface area can be calculated by integrat-

ing the length of the normal vector −→ru × −→rv to the surface over the appropriate

region D in the parametric uv plane:

A(D) =

∫∫
D

|−→ru ×−→rv | dudv (4.4)

We use the surface area equation expressed in terms of the first fundamental form

as follows:

A(D) =

∫∫
D

√
EG− F 2dudv (4.5)

where E = −→ru .−→ru , F = −→ru .−→rv , G = −→rv .−→rv . The expression under the square root

is precisely |−→ru ×−→rv |, and so it is strictly positive at the regular points.

In order to estimate the error between the ideal value derived from formulas above

and the real value calculated from the output model, we also need to calculate

the area of the reconstructed surface. Since the output of the surface is a trian-

gulation, we can derive the overall area by summation of all areas of the triangle

patches on the surface.
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4.2.3 Point distance calculation

With respect to the point distance error evaluation, we compute the distance from

the points on the output triangulated surface to the synthetic surface model. It is

easy to find the shortest distance from a point in 3D surface to the sphere surface

centered at the origin of the coordinate system.

D = Rp −Rs (4.6)

where Rp denotes the distance from point to the origin, and Rs denotes the radius

of the sphere. For the ellipsoid the distance calculation is less straightforward.

In the literature [Eberly, 2011] algorithms are described to compute the distance

from an arbitrary point to an ellipsoid; we have adhered to this approach.

Since oval is a parametric surface, we can treat this specific problem of finding

the shortest distance from a point to oval surface as a general one of projecting

a point onto a parametric surface. Therefore, we apply the method provided by

Shi-min [Hu and Wallner, 2005] to project a point orthogonally onto a surface.

This method consists of a geometric second order iteration which converges faster

than first order methods and whose sensitivity to the choice of initial values is

small.

4.2.4 Surface curvature calculation

With respect to curvature, we estimate the error between ideal and real curvature

value:

Errorc =

∑n
i=1 ||idealc| − |realc||

n
(4.7)

where idealc represents the analytically obtained value and realc represents the

measured value from the point cloud reconstruction. From its remarkable sym-

metry [Conway and Sloane, 1999], we know that the ideal Gaussian and mean

curvatures of sphere model are constant. Therefore, for each point on the sphere,

the Gaussian curvature is K = 1/R2 and the mean curvature is H = 1/R where

R is the radius of the sphere. As for the point on the ellipsoid surface, the
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4. EVALUATION OF SURFACE RECONSTRUCTION ALGORITHMS

Gaussian and mean curvature are derived from equation introduced by Jacobs et

al.[Jacobsen et al., 2009]. As we have learned, the oval surface is a parametric

type surface. For the parametric surface, the first and second fundamental forms

of a surface determine its important differential-geometric invariants: the Gaus-

sian curvature, the mean curvature, and the principal curvatures. So we derive

the surface curvature of oval by the equation:

K =
LN −M2

EG− F 2
, H =

EN − 2FM +GL

2(EG− F 2)
(4.8)

where E = −→ru .−→ru , F = −→ru .−→rv , G = −→rv .−→rv , L = −→ruu.−→n , M = −→ruv.−→n , N = −→rvv.−→n ,
−→n is a unit normal vector to the parameterized surface at a regular point:

−→n =
−→ru ×−→rv
|−→ru ×−→rv |

(4.9)

Up to a sign, these quantities are independent of the parameterization used. How-

ever we only use the absolute value of Gaussian curvature and mean curvature

to estimate the curvature error, as a result, these quantities are thoroughly inde-

pendent during our curvature error estimation.

However, because of the addition of noise, points on the output surface are not

necessary still on the original ellipsoid surface. To that end, we first find the near-

est point on ellipsoid surface for each point on output surface and then calculate

the ideal Gaussian/mean curvature of each point on output surface as that of its

nearest point on ellipsoid surface.

A large number of approaches have been proposed for triangulated surface cur-

vature calculation [Magid et al., 2007], some of which give very unpredictable

results. In order to estimate the real curvature value of points on the output sur-

face, we choose the paraboloid fitting approach [Sander and Zucker, 1990] which is

by far one of the most stable methods in the field of surface curvature calculation.
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4.3 Experimental results

We evaluate the four representative algorithms on our synthetic models i.e. a

sphere with the radius 0.8004, an ellipsoid (a=0.5, b=0.8547, c=1.2) and an oval

(a=1, b=0.78). In this case, these three synthetic models can be more compa-

rable since they are evaluated with the same volume. First of all we need to

establish if the number of points generated for the point cloud provides sufficient

information for the reconstruction process. In other words, we need to check if

the points sample set results in a situation of oversampling or under-sampling.

Subsequently, we take a local observation of each algorithm to check the perfor-

mance at different noise level. Finally, we have an overall view of all the methods

to see which one has the best stability and resilience.

4.3.1 Under/oversampling estimation

For the estimation of the under/oversampling, a number of factors need to be

taken into consideration. Scale is one of the important parameters included in

both the Fourier-based algorithm and Poisson reconstruction method, though

slightly different definitions for scale are used by these methods. Generally speak-

ing, the scale factor is defined as a floating point value that specifies the ratio

of diameters between the cube used for reconstruction and the bounding cube

of the samples. In this estimation we select two factors i.e. input point number

and scale. We applied Fourier-based algorithm on the point cloud representing a

sphere model without noise and evaluate the surface distance error.

In Figure 4.3 the result of under/oversampling estimation is depicted. As can

be seen, the distance error decreases when the number of input points increases.

Moreover, the decay of the distance error is relatively sharp at the beginning

while in the end it diminishes, especially in the range of 30000 to 50000 input

points the error is almost stable. From these results we conclude that if the input

point number is over 30000, then, for the reconstruction methods, the model can

be considered oversampled.
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(a) (c) (e)

(b) (d) (f)

Figure 4.2. Models with and without noise (snapshots from Meshlab [Cignoni,

2010]). (a) Sphere model without noise, (b) Sphere model with noise, (c)

Ellipsoid model without noise, (d) Ellipsoid model with noise, (e) Oval model

without noise, (f) Oval model with noise.

(a) (b)

Figure 4.3. Under/oversampling estimation. (a) front view, (b) top view. We

apply point distance calculation to estimate the range of the input point

number when the model is oversampled. The change of the stripe color from

dark blue to red shows the increase of distance error. Therefore, red indicates

undersampling.
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4.3.2 Local observation

4.3.2.1 Sphere model distance/area error estimation

For convenience of the evaluation procedure, the algorithms are divided into two

groups. The first group consists of Power Crust (PC) and Robust Cocone (RCC).

By changing the number of input points we observe the performance of two meth-

ods under different noise levels. In the reconstruction process we use the default

settings of each algorithm. In table 4.1 the changes in the number of output points

with respect to the number of input points without the addition noise. Power

Crust adds a large number of additional points on the output surface while, for

Robust Cocone, the number of output points remains the same. Figure 4.4 (a)

and (b) demonstrate that the distance error estimations of these two methods are

almost the same. However, in Figure 4.4 (c) and (d) the area error estimation

shows clear differences. The area error of Robust Cocone is lower and more sta-

ble. Nevertheless, both methods demonstrate the same trend that at increasing

levels of noise, the distance error and the area error escalate accordingly.

The second group includes Fourier-based reconstruction (FOU) and Poisson re-

construction (POI) as they have a similar structure of processing and parameters

(i.e. resolution, scale). We compare these methods with an oversampling and

input of 50000 points; using the same resolution. Their performance is tested

within a range of the scale factor and under different levels of noise. In the

Fourier-based reconstruction method, as shown in Figure 4.5(a) and 4.5(c), the

output number increases together with scale factor. At smaller scales, the error

in both parameters is large. This is due to the inadequacy of characteristics in-

tegrated in the implicit function since the model only has less than 30 points on

the surface, as shown in Figure 4.6(a). When the scale is increasing, the error

reduces drastically. An example is shown in Figure 4.6(b). However, at a scale

> 0.95, the error in the area increases again. This is due to the fact that the

diameter of the cube used for reconstruction is too small to have any points in the

cube. As a result, the output surface model is no longer watertight (i.e. closed)

and consequently the area error increases. This is shown in Figure 4.6(c).

In contrast, in the Poisson reconstruction method, the scale setting is the inverse

of the scale in Fourier-based reconstruction. As can be seen in Figure 4.5(b) and
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4.5(d); i.e. when the scale increases, the error increases. Although the Poisson

error estimation curves are not smooth, the error ranges for both measurements

remain relatively small compared to Fourier-based reconstruction method.

Table 4.1. Output points comparison

IP 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

PC 2146 4272 6797 8548 11261 13588 15266 18049 20184 22209 25483

RCC 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

IP=input points, PC= Power Crust output points,

RCC=Robust Cocone output points

(a) (b)

(c) (d)

Figure 4.4. Sphere PC/RCC distance and area error estimation. (a) PC

Distance error, (b) RCC Distance error, (c) PC Area error, (d) RCC Area error.

* the ranges of the noise and the glyphs used in the graphs in (a-d).
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(a) (b)

(c) (d)

Figure 4.5. Sphere FOU/POI distance and area error estimation. (a) FOU

Distance error, (b) POI Distance error, (c) FOU Area error (d) POI Area error.

* the ranges of the noise and the glyphs used in the graphs in (a-d).

(a) (b) (c)
Figure 4.6. Sphere output samples of Fourier-based reconstruction method

(snapshot in Meshlab [Cignoni, 2010]).(a) sphere output model with scale 0.04,

(b) sphere output model with scale 0.2, (c) sphere output model with scale 0.98.
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4.3.2.2 Ellipsoid model distance/area error estimation

(a) (b)

Figure 4.7. Ellipsoid RCC distance and area error estimation (a)RCC

Distance error, (b)RCC Area error. * the ranges of the noise and the glyphs

used in the graphs in (a-b).

From this part of the evaluation we exclude Power Crust reconstruction methods

since the output model is easily broken and obviously not resilient to noise. The

remaining three methods are used for further evaluation. Figure 4.7 and Figure

4.8 provide the distance and area evaluations for these three methods. It is clear

that the error in distance and area demonstrate the same trend. For example,

when the scale factor in Poisson reconstruction increases, both the distance and

area error increase as shown in Figure 4.8(c) and 4.8(d). Interestingly, for the

results of both Fourier-based and Poisson reconstruction there usually exists an

optimum for the minimal distance and area error.

4.3.2.3 Oval model distance/area error estimation

For the oval model, most of the graphs show the same trend as the sphere model

and the ellipsoid model. However, in Figure 4.10(d), the area error for Poisson

reconstruction method demonstrates some difference. When the noise increases,

the area error shows high up at a low scale level. That is because, for a more com-

plicated model, the Poisson reconstruction method integrates more noise points

as a feature factor into the characteristic function. As a result the output surface
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(a) (b)

(c) (d)

Figure 4.8. Ellipsoid FOU and POI distance and area error estimation. (a)

FOU Distance error, (b) FOU Area error, (c) POI Distance error, (d) POI Area

error. * the ranges of the noise and the glyphs used in the graphs in (a-d).

(a) (b)

Figure 4.9. Oval RCC distance and area error estimation (a)RCC Distance

error, (b)RCC Area error. * the ranges of the noise and the glyphs used in the

graphs in (a-b).
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(a) (b)

(c) (d)

Figure 4.10. Oval FOU and POI distance and area error estimation. (a) FOU

Distance error, (b) FOU Area error, (c) POI Distance error, (d) POI Area error.

* the ranges of the noise and the glyphs used in the graphs in (a-d).

Figure 4.11. Output surface of Poisson reconstruction method with the noise

level 0.1 and the scale 1.1 (snapshot in Meshlab [Cignoni, 2010]).

would be rougher and the area error is increasing. In Figure 4.11, we compare

the output surface of the sphere, the ellipsoid and the oval from Poisson recon-
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struction method with the same noise level and a same low scale setting.

4.3.2.4 Sphere model curvature error estimation

The discussion of curvature error estimation is continued in following three sec-

tions. So as to find the reconstruction method that best preserves the curvature

characteristic, three methods would be further evaluated. Moreover, in order to

obtain a better observation of the results, we use the standard deviation of mean

as our error bar for the curvature error estimation sessions.

When we take into a close look at the output surface model from Robust Cocone,

we find the orientation of each triangulated surface is not coherent. Moreover,

some of the output surface model has non manifold faces. However, for the

paraboloid fitting scheme, all the faces on the output surface should be coher-

ently oriented. As a result, we use the script of Meshlab [Lindblad, 2005] software

to remove non manifold faces and re-orient all the faces before we estimate the

mean/Gaussian curvature. The curvature estimation results from Robust Cocone,

as shown in Figure 4.8(a) and 4.8(b), seem irrational. Apart from noise level 0, at

increasing noise, the mean/Gaussian curvature error is decreasing. This is caused

by the fact that in the reconstruction process of Robust Cocone, at higher levels

of noise in the input point cloud, the output number of triangulated points is

reduced so as to preserve the smoothness of the output surface. Thus, producing

the same number of input points, lower levels of noise generate a surface model

with higher resolution resulting in a rougher output surface and a higher local

curvature error.

Since with the same scale setting the point number of output surface remains

the same, the results of Fourier-based and Poisson reconstruction methods are

much more rational. At increasing output resolution, the curvature error de-

creases at very beginning and increases again at the end. The reason is that, take

Fourier-based reconstruction method as an example, when the scale is small the

resolution of output surface model is quite low, as shown in Figure 4.6(a). As

a result, the local curvature error is high. On the other hand, when the scale

is high, more noisy points are preserved. Therefore, the local curvature error is

still high. In Figure 4.12 it is illustrated that the Fourier-based and Poisson re-

construction methods have a smaller error in curvature compared to the Robust
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Cocone method.

(a) (b)

(c) (d)

(e) (f)

Figure 4.12. Sphere curvature error estimation. (a) RCC Mean curvature, (b)

FOU Mean curvature, (c) POI Mean curvature, (d) RCC Gaussian curvature,

(e) FOU Gaussian curvature, (f) POI Gaussian curvature. * the ranges of the

noise and the glyphs used in the graphs in (a-f).
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4.3.2.5 Ellipsoid & oval model curvature error estimation

(a) (b)

(c) (d)

(e) (f)

Figure 4.13. Ellipsoid curvature error estimation. (a) RCC Mean curvature,

(b) FOU Mean curvature, (c) POI Mean curvature, (d) RCC Gaussian

curvature, (e) FOU Gaussian curvature, (f) POI Gaussian curvature. * the

ranges of the noise and the glyphs used in the graphs in (a-f).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14. Oval curvature error estimation. (a) RCC Mean curvature, (b)

FOU Mean curvature, (c) POI Mean curvature, (d) RCC Gaussian curvature,

(e) FOU Gaussian curvature, (f) POI Gaussian curvature. * the ranges of the

noise and the glyphs used in the graphs in (a-f).
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For the ellipsoid and the oval, the curvature errors show the same trend. In Figure

4.13(a),(b) and Figure 4.14(a),(b), as noise increasing the mean/Gaussian cur-

vature error of Robust Cocone is decreasing. For the Fourier-based and Poisson

reconstruction methods the curvature error decreases at very beginning and in-

creases again at the end when the output resolution ascends. Overall the Fourier-

based and Poisson reconstruction methods have a smaller error in curvature com-

pared to the Robust Cocone method as shown in Figure 4.13 and Figure 4.14.

4.3.3 Global observation

Table 4.2. Sphere distance/area comparison.

Table 4.3. Sphere Gaussian/mean curvature comparison.

Table 4.4. Ellipsoid distance/area comparison.

Table 4.5. Ellipsoid Gaussian/mean curvature comparison.

Table 4.6. Oval distance/area comparison.
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Table 4.7. Oval Gaussian/mean curvature comparison.

After an evaluation based on observations in the local ranges, we still need to

compare the results as a whole so as to establish the method with the best per-

formance. To that end, we change the input point number from 1000 to 50000

at 1000 point intervals and at the same time change the scale factor in a range

of 50 different values. The uniformly distributed noise is added to each set in 4

different levels (cf. Figure 4.8). This procedure has been repeated 50 times for

each reconstruction setting. Finally, we calculated the minimum, average and

standard deviation for the distance error, the area error, the Gaussian and mean

curvature error as estimated from each data set.

Table 4.2 to Table 4.7 present the general evaluation for the combination of all the

noise levels. With respect to the sphere model evaluation (Table 4.2 and Table

4.3), Poisson reconstruction method performs more stable (cf. the column). The

mean values indicate that Poisson reconstruction still has the best performance

with respect to distance error, area error and surface curvature error estimation.

For the minimum values, Robust Cocone reconstruction method shows the high-

est incidence to be in the top. Regarding the Ellipsoid model evaluation (cf. Table

4.4 and Table 4.5), Poisson has the best mean value with relatively high stability

in distance error and area error. While Fourier-based reconstruction method has

the best mean value in curvature error estimation. However, Poisson always has

the lowest standard deviation value. According to the lowest minimum value,

Robust Cocone is on top of distance error and mean curvature error evaluation,

while Poisson reconstruction method has the lowest minimum value in the area

error estimation and Fourier-based reconstruction method has the lowest mini-

mum value in the Gaussian curvature error estimation. As for the oval model

(Table 4.6 and Table 4.7), Poisson reconstruction method always has the lowest

mean value with the best stability. Robust Cocone has the lowest minimum value

of distance error and curvature error estimation, meanwhile, Poisson reconstruc-

tion method has the lowest minimum value of area error evaluation.
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4.4 Conclusion and future work

In this paper, we have presented an analytical approach to the evaluation of four

different methods for 3D surface reconstruction from a point cloud. We generate

the point cloud of synthetic geometrical objects i.e. sphere, ellipsoid and oval,

and perform error estimation by comparing surface area, distance and curvature

between output surface models and ideal synthetic models. By evaluating all

parameters of the algorithm and at different noise levels, the total size of the

experimental dataset exceeded 50000 files (ply format). From our experimen-

tal results we conclude that the Poisson reconstruction method [Kazhdan et al.,

2006a] has the most stable performance and is most resilient with increasing

amounts of noise in the data. The Fourier-based reconstruction method comes

second. Therefore, we can conclude that the class of implicit surface reconstruc-

tion methods clearly performs better than the interpolation based class for the

surface reconstruction. That is, as we evaluate it to analytical criteria.

The rationale of this work is to obtain a profound assessment of different 3D

surface reconstruction approaches, in particular, with respect to measurements

that can be derived from reconstructed surfaces. The evaluation will help us in

a motivated method selection of surface reconstruction for biological 3D models.

For the progress in the research area of bio-imaging and image modelling, such

analysis is crucial. With the results surface features for biological shapes can be

derived from the data that are obtained by some imaging device, i.e. a micro-

scope. Modern imaging techniques produce 3D images and with the methods

described in this paper we can derive surface estimations directly from the image

data. In general, these images are pre-processed and sublimated to 3D models. In

that case, the methodology will be applied in the same manner; that is, starting

from an annotated 3D model [Verbeek, 1999a].

Given a 3D representation, other approaches for surface area computation have

been described; early methods use the statistical approach from stereology [Bad-

deley et al., 1986] to come to an estimation of the surface area. These methods

can be very efficient if prior information on the shape can be used; and the stere-

ology approach is still successfully used [Ziegel and Kiderlen, 2010]. Taking a
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sampled volume as the starting point, estimators for digitized surfaces have been

developed [Lindblad, 2005; Mullikin and Verbeek, 1993]; these are based on the

probability that a certain voxel-position can contribute to the surface area and

weights are assigned to surface voxel configurations. Moreover, the estimators

on volume data require an isotropically sampled image; this is not in all cases

possible. Stereology is able to deal with the non-isotropically sampled data and

the undersampling in the z-direction is specifically addressed. The stereology

is therefore successfully used with images obtained from physical sections. The

method based on implicit surface reconstruction can very well deal with under-

sampling and therefore it is suitable for models derived from physical sections or

otherwise undersampled input.

The methods described in this paper first derive a surface which is subsequently

used in the measurements. In this manner the initial sampling is surpassed; the

surface description allows extracting a number of features from the surface, i.e.

surface area, curvature and others. The analytical shapes that we have used

for the assessment of the surface description provide useful information on the

surface representations. From tables 4.2-4.7 we learn that the more the shape

resembles a sphere, the more accurate the measurement will be. The ovaloid

shape is closer to the sphere than the ellipsoid shape and this is reflected in the

resulting error measurement. Including previous results [Cao and Verbeek, 2012]

we conclude that the error of the shape increases with size. Importantly, with

the given shapes the error and the coefficient of variation are below the range

that one expects as variation in a measurement of a population of individuals

as is common in biology. Therefore the measurements can be used to describe

differences between individuals of treated/untreated groups, although in all cases

reflection on the outcome remains important. Moreover, the analytical shapes

that we have exploited are also representing shapes, or at least partially, as we

encounter them in nature. The results can therefore be used to assess the range

of the error that can be expected with the reconstruction of a surface of a shape;

i.e. it resembles more of a sphere or an ellipsoid.

From the results presented in this paper, it is clear that we intend to further

exploit the Poisson reconstruction method. Next, we will specifically utilize the

results on biological 3D models so as to improve the quality of the surface rep-
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resentations as well as making the surface representations suitable for analytical

approaches. The imaging research supporting analytical description of 3D shapes,

i.e. embryos in molecular genetics and development, will greatly benefit from the

possibilities provided in this study.
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