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Chapter 2

Pattern Recognition in

High-Content Cytomics Screens

for Target Discovery: Case

Studies in Endocytosis

Based on:

L. Cao, K. Yan, L. Winkel, M. de Graauw, F.J. Verbeek. Pattern Recognition

in High-Content Cytomics Screens for Target Discovery: Case Studies in

Endocytosis. Pattern Recognition in Bioinformatics 2011, Delft, LNCS

Springer, pages 330-342, 2011
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2. PATTERN RECOGNITION IN HIGH-CONTENT SCREENS

Abstract:Finding patterns in time series of images requires dedicated ap-

proaches for the analysis, in the setup of the experiment, the image analysis as

well as in the pattern recognition. The large volume of images that are used

in the analysis necessitates an automated setup. In this paper, we illustrate

the design and implementation of such a system for automated analysis from

which phenotype measurements can be extracted for each object in the analy-

sis. Using these measurements, objects are characterized into phenotypic groups

through classification while each phenotypic group is analyzed individually. The

strategy that is developed for the analysis of time series is illustrated by a case

study on EGFR endocytosis. Endocytosis is regarded as a mechanism of at-

tenuating epidermal growth factor receptor (EGFR) signaling and of receptor

degradation. Increasingly, evidence becomes available showing that cancer pro-

gression is associated with a defect in EGFR endocytosis. Functional genomics

technologies combine high-throughput RNA interference with automated fluores-

cence microscopy imaging and multi-parametric image analysis, thereby enabling

detailed insight into complex biological processes, like EGFR endocytosis. The

experiments produce over half a million images and analysis is performed by au-

tomated procedures. The experimental results show that our analysis setup for

high-throughput screening provides scalability and robustness in the temporal

analysis of an EGFR endocytosis model.
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2. PATTERN RECOGNITION IN HIGH-CONTENT SCREENS

2.1 Introduction

In this paper we address the problem of deriving a phenotype of a cell in the

context of time-lapse cytomics data; in particular we investigate the process of

endocytosis and epidermal growth factor receptor (EGFR) signaling.

Enhanced epidermal growth factor receptor (EGFR) signaling triggers breast can-

cer cells to escape from the primary tumor and spread to the lung, resulting in

poor disease prognosis. Moreover, it may result in resistance to anti-cancer ther-

apy. In normal epithelial cells, EGFR signaling is regulated via endocytosis, a

process that results in receptor degradation and thereby attenuation of EGFR

signaling. However, in cancer cells the endocytosis pathway is often defective,

resulting in uncontrolled EGFR signaling. Over the past years, RNA interference

combined with fluorescence microscopy-based imaging has become a powerful

tool to the better understanding of complex biological processes [Pelkmans et al.,

2005]. Such combined experiment often produces over half a million multi-channel

images; manual processing of such data volume is impractical and jeopardizes ob-

jective conclusions. Therefore, an automated image and data analysis solution is

indispensable. To date, analysis was done with simple extraction of basic pheno-

types from EGFR images using tools such as BioApplication [Ghosh et al., 2005],

ImageXpress [Galvez et al., 2007] and QMPIA [Collinet et al., 2010]. However,

these tools are not suitable for a profound study of the dynamics behind EGFR

endocytosis which requires more attention. From the existing literature [Collinet

et al., 2010; Galvez et al., 2007; Ghosh et al., 2005; Li et al., 2009; Roepstorff

et al., 2008; Tarcic et al., 2009; Ung et al., 2011] a generic model, defining four

major episodes of EGF-induced EGFR endocytosis, can be distilled. (1) Under

control conditions, EGFR localizes at the plasma-membrane site for internal-

ization, which is in our study defined as the ”plasma-membrane” episode. (2)

Upon binding of EGF to the receptor, EGFR is taken up into small vesicular

structures and starts sorting in early endosomes, which is defined here as the

”vesicle” episode. (3) Over time EGFR containing vesicles are transported to

late endosomes localizing near the nuclear region and form into a larger complex

multi-vesicular body, defined here as the ”cluster” episode. (4) In final episode,

EGFR is degraded in the lysosomes. In addition to this route, EGFR can also
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2. PATTERN RECOGNITION IN HIGH-CONTENT SCREENS

partly be transported back to the plasma-membrane sites. Using this dynamic

model as the major guideline, the analysis of EGFR-regulation-related gene path-

way could be linked to each stage of EGFR endocytosis. Instead of looking at

one fixed time point, our current experimental design includes a series of time

points at which images are captured. An image potentially contains a ratio in

the first three characteristic episodes in the EGFR endocytosis process. The im-

age analysis solution should be able to extract basic phenotype measurements as

well as to identify the stage of EGFR. In this paper, we illustrate the design and

implementation of an automated setup for high-content image and data analysis

which can properly capture EGFR dynamics and classify different EGFR pheno-

types.

Our workflow for automated analysis solution is depicted in Figure 2.1. Each high

throughput screening (HTS) experiment starts with the design of the experimen-

tal scheme, followed by the wet-lab experiment and high throughput microscopy-

based imaging. Both experimental schemes and image data are organized and

stored in a database. Subsequently, image analysis is used to extract phenotype

measurements from these images and classifiers are introduced to recognize each

phenotypic stage of EGFR. Finally, comprehensive conclusions are drawn based

on comparisons of EGFR expression at each stage and time point.

In this paper, we limit the scope to image analysis and data analysis, some bi-

ology will be explained. Accordingly, the organization of this paper is divided

into three major sections. In section 2.2, we introduce the methodology including

image acquisition and image analysis; several innovative algorithms will be briefly

introduced. After segmentation of the images, EGFR phenotype measurements

are obtained. We will illustrate the categorization of phenotypic stages using fea-

ture selection and classification. The best combination pair is applied on image

data to classify three phenotypic stages and construct a phenotype model. The

experimental results are presented in section 2.3 with two case studies. The first

case study tests our solution in identifying dynamic phenotype stages. The sec-

ond study case examines robustness and scalability of our solution in analyzing

a large number of phenotypes.
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2. PATTERN RECOGNITION IN HIGH-CONTENT SCREENS

2.2 Methodology

Modern techniques in fluorescence microscopy allow visualizing various cell struc-

tures so that these can be specifically subject to analysis. Together with a

computer-controlled microscope, a high-throughput image acquisition scheme,

known as high-throughput screening (HTS), has become feasible. Depending on

the biological question at hand, a HTS experiment may produce up to half million

images. Such a volume of images is beyond the capacity of manual processing

and therefore, image processing and machine learning are required to provide an

automated analysis solution for HTS experiments. In this section, we will intro-

duce the image acquisition protocol followed by approaches for image analysis

and data analysis.

Figure 2.1. Workflow of our HTS Analysis System. The basic entity for

processing cells is the 96 well culture plate. A virtual plate (layout) is designed

before the experiment and the data are often kept together per ”plate”.

2.2.1 Image acquisition

The workflow for data preparation for the experiment discussed in this chapter

here includes three essential steps: (1) cell culturing, siRNA transfection and EGF

exposure, (2) fluorescent staining of proteins of interest and (3) image acquisition.
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Here we use a design of an EGFR-regulation related siRNA screening to illustrate

this workflow. In this design, cells are cultured in 96 well culture plate and trans-

fected using Dharmafect smartpool siRNAs. Subsequently, the transfected cell

population is exposed to epidermal growth factor (EGF) for a different duration

of time. Cells are fixed at different time points and visualized with a confocal

laser microscope (Nikon TE2000). Image acquisition automation is realized with

an automated stage and an auto-refocusing lens controller. For each well, images

are captured from ten randomly selected locations. For each image three chan-

nels are captured: (1) a red channel containing P-ERK expression staining (Cy3),

(2) a green channel containing EGFR expression staining (Alexa-488) and (3) a

blue channel containing a nuclear staining (Hoechst #33258). Upon completion

of the acquisition process all images are uploaded to a database server for image

analysis.

2.2.2 Image analysis

2.2.2.1 High-content analysis

Basically, the image analysis procedure converts raw microscope images into

quantifications representing characteristic biological phenomena. A number of

steps are elaborated to achieve this purpose; starting from image acquisition,

three steps are distinguished: (1) noise suppression, (2) image segmentation and

(3) phenotype measurement. Image segmentation refers to the process of parti-

tioning an image into multiple regions with the goal to simplify and/or change the

representation of an image into something that is easier to analyze. For fluores-

cence microscopy cell imaging we specifically designed a segmentation algorithm:

i.e. watershed masked clustering (WMC). The WMC algorithm (cf. Figure 2.2d)

[Yan and Verbeek, 2012b] is an innovative and customized segmentation algo-

rithm that serves different types of cytomics studies like dynamic cell migration

analysis [Bera and Jarque, 1981; Roepstorff et al., 2008; Yan et al., 2009a] and

protein signaling modeling [Qin et al., 2012b]. Due to the absence of an indicator

for the cell border (cf. 2.1), a border reconstruction and interpolation algorithm is

designed to provide artificial representations of the cell borders; i.e. the weighted

Voronoi diagram based reconstruction (W-V) algorithm [Qin et al., 2012b]. The
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W-V algorithm (cf. Figure 2.2c) offers the possibility to measure both border-

related signal localization [Qin et al., 2012b] and protein expression in terms of

continuity and integrity [Qin et al., 2012b]; it does not require a complete cell

border or cytoplasmic staining. Both binary mask and artificial cell border are

used to derive a number of phenotype measurements for further data analysis.

2.2.2.2 Phenotype measurement

In the current experiment and imaging protocol, the phenotype measurements

can be categorized into two subgroups: (1) basic measurements of the pheno-

types covering shape descriptors and (2) the localization phenotype describing

the assessment of the correlation between two information channels. The ba-

sic phenotype measurement [Damiano et al., 2011; Le Dévédec et al., 2010; Yan

et al., 2009a] includes a series of shape parameters listed in Table 2.2. In ad-

dition to the basic phenotype measurement [Damiano et al., 2011; Le Dévédec

et al., 2010; Qin et al., 2012b; Yan et al., 2009a], localization measurements can

be derived for a specific experimental hypothesis; e.g. the expression ratio be-

tween protein channels or shape correlation between objects. The localization

phenotypes are quantifications of comparative measurement between information

channels such as relative structure-to-nucleus distance or structure-to-border dis-

tance [Qin et al., 2012b]. In this paper, we will limit the scope of phenotype

measurements to the set employed by the study on EGFR endocytosis. In Table

2.3 a list of EGFR screening based localization phenotypes is shown. On the basis

of the phenotype measurements, objects are classified into phenotypic stages. For

the assessment of significance statistical analysis is performed.

2.2.3 Data analysis

The aim of the endocytosis study is to quantify the process of EGF-induced EGFR

endocytosis in human breast cells and to identify proteins that may regulate

this process. The EGFR endocytosis process can roughly be divided into three

characteristic episodes:plasma-membrane, vesicle and cluster. The characteristic

episodes are the read-out for HTS. Based on this model it is believed that EGFR

endocytosis regulators may be potential drug targets for EGFR-induced breast
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cancer. Studying each of the stages (cf. Figure 2.3), i.e. plasma-membrane,

vesicle and cluster, may provide a deeper understanding of the EGFR endocytosis

process.

Table 2.2. Basic measurements for a phenotype (after segmentation to binary

mask)

Feature Name Description

Size The size of object, aka as the surface area.

Perimeter The perimeter of the object.

Extension
Derived from 2nd-order invariants of the object [Hu, 1962;

Yan et al., 2009a].

Dispersion
Derived from 2nd-order invariants of the object [Hu, 1962;

Yan et al., 2009a].

Elongation
Derived from 2nd-order invariants of the object [Hu, 1962;

Yan et al., 2009a].

Orientation
Derived from 2nd-order moments of the object [Hu, 1962;

Yan et al., 2009a].

Intensity Average intensity of all pixels belong to an object.

Circularity
Area-to-perimeter ratio; higher compactness suggests a

more smooth and less protrusive shape.

Semi-major axis

length

Derived from 2nd-order moments of the object [Hu, 1962;

Yan et al., 2009a].

Semi-minor axis

length

Derived from 2nd-order moments of the object [Hu, 1962;

Yan et al., 2009a].

Closest object

distance

The distance to nearest neighbor of the object, the

distance is measured similar to the border distance in

Table 2.3.

In nucleus
Boolean describing if the object is included in nucleus

mask.

2.2.3.1 Phenotypic sub categorization

Here we introduce a profound explanation of the whole procedure employed in

the phenotypic sub-categorization including the production of a training set and
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the procedure for the training of the classifier. The training set is derived from

manually delineated outlines of each phenotypic group and is subsequently used

to train a classifier distinguishing three different phenotypes. From two case

studies the capability of our solution with respect to identifying characteristic

episodes in the process under study stages as well as the scalability in describing

different phenotypic groups, is assessed.

Preparation of the Training Set. Ground truth data were obtained by the outlines

of the three characteristic episode groups, i.e. cell border/plasma-membrane,

vesicle and cluster. These were separately delineated by biologists using our

dedicated annotation software (TDR) with a digitizer tablet (WACOM, Cintiq

LCD-tablet). From each outline a binary mask is created for each phenotypic

stage. In Figure 2.4(b) the vesicle mask derived from a manually selected vesicle

outline is shown. This mask is overlaid with the mask obtained from the WMC

algorithm so as to extract the intersection set of two masks as shown in Figure

2.4(d). Finally, the phenotype measurements are computed with this mask. In

similar fashion the ground truth datasets for the plasma-membrane and cluster

groups are prepared.

Table 2.3. Localization measurement
Feature Name Description

Nucleus distance

Distance between structure and nucleus, measured as the

average distance between each pixel in an object and the

center of mass of the corresponding nucleus.

Border distance

Distance between structure and cell membrane, measured

as the average distance between each object-pixel and the

center of mass of the cell border (membrane).

Intactness
Overlap between structure expression and cell membrane

divided by the total length of cell membrane.

The training dataset includes three characteristic episode groups with 2254

objects and 14 features. Given the huge differences in the feature ranges, it is

necessary to normalize the dataset. Normalization is accomplished by shifting

the mean of the dataset to the origin and scaling the total of variances of all

features to 1. In this way the magnitude effect is successfully removed and the
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recognition accuracy can be significantly improved [Okun, 2004]. The normalized

dataset is used for training of the EGFR classifier.

(a) (b) (c) (d)

Figure 2.2. (a) Original image: PERK(red), EGFR (green) and nucleus

(blue), (b) Component definition: artificial cell border (red) and binary mask of

protein expression (green), (c) cell border reconstruction : artificial cell border

(W-V), (d) image segmentation: binary mask of EGFR channel by WMC.

(a) (b) (c)

Figure 2.3. Sample images of the 3 phenotypic groups with (a)

Plasma-membrane, (b) Vesicle, (c) Cluster.

(a) (b) (c) (d)

Figure 2.4. Ground truth data production. (a) Original image, (b) manual

mask, (c) WMC mask, (d) overlay of the mask.
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Feature Selection. First, it is crucial to make a selection of the probabilistic

distance criterion for the discriminability estimation. For this we choose the Ma-

halanobis distance [Mahalanobis, 1936a] since it takes the correlations among the

variables into consideration and, in addition, it is scale-invariant. Other distance

criteria, such as the Euclidean or Manhattan distance, are, more or less, related

to the assumption that all features are independent and have an equal variance.

We cannot be certain that all features in our dataset are independent and there-

fore the Mahalanobis distance is preferred.

Second, we have selected three representative search algorithms including para-

metric and non-parametric search algorithms; i.e. the branch and bound proce-

dure [Land and Doig, 1960a], best individual N features and sequential backward

selection [Jain et al., 2000]. Branch and bound is a top-down procedure, begin-

ning with the set of variables and constructing a tree by deleting variables succes-

sively; i.e. an optimum searching procedure requiring the evaluation of partially

constructed or approximate solutions without involving exhaustive search. Best

individual N features procedure is the simplest suboptimal method for choosing

the best N features by individually assigning a discrimination power estimate to

each of the features in the original set. In some cases, especially if the features

from original set are uncorrelated, this method results in a well-defined feature

sets. Sequential backward selection is another suboptimal search algorithm. Vari-

ables are deleted one at a time until the required number of measurements remains

[Fukunaga, 1990]. The advantage of backward selection is its capability for global

control during the feature selection.

Third, we choose three classifiers covering both linear and non-linear categories;

i.e. the linear classifier (LDC), the quadratic classifier (QDC) and k-nearest neigh-

bor classifier (KNNC). A linear classifier makes a classification decision based on

the value of a linear combination of the characteristics [Mitchell, 2005]. If the

data are strongly non-Gaussian, they can perform quite poorly relative to nonlin-

ear classifiers [Devroye et al., 1996]. A quadratic classifier, which is generalization

of the linear classifier; it separates measurements of classes by a quadric surface.

Finally, the k-nearest neighbor classifier classifies an object by a majority vote of

its neighbors, with the object being assigned to the class most common amongst

its k nearest neighbors. The k-nearest neighbor rule achieves a consistent high
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performance, without a priori assumptions about the distributions from which

the training examples are drawn. Moreover, it is robust with respect to noisy

training data and still effective if the training dataset is large. By permutation

we obtained 9 pairs of combinations. The result of the error estimation is shown

in Figure 2.5. An interesting characteristic can be observed in these plots. The

weighted error of the quadratic classifier jumps abruptly when the number of

features exceeds a certain threshold (10 for individual feature selection, 12 for

branch & bound, and 5 for backward feature selection). This is caused (1) by

including a feature with which it is hard to distinguish three phenotypic groups

and (2) by the fact that the distribution of the three classes might be more prop-

erly classified by the linear and k-nearest neighbor classifier rather than quadratic

classifier.

Feature extraction. Feature extraction is another category to manage multi-

dimensional features by reducing dimensionality of features trough combining.

For the final result, we also test the performance of the feature extraction com-

bined with the three classifiers selected. As our starting point is a labeled train-

ing dataset, a supervised feature extraction method is most suitable. The Fisher

mapping [Fukunaga, 1990] is chosen as extraction method. Fisher mapping finds

a mapping of the labeled dataset onto an N-dimensional linear subspace such

that it maximizes the between-scatter over the within-scatter. It should be taken

into account that the number of dimensions to map is less than the number of

classes in the dataset. We have three phenotype classes and consequently the

labeled dataset can only be mapped onto a 1D or 2D linear subspace. The result

of the performance estimation is shown in Figure 2.6(a). In addition, in Figure

2.6(b,c,d), the scatter plots of mapped data with corresponding classifiers are

shown.

Comparison of the results. Each weighted classification error curve (cf. Fig. 2.5

and 2.6(a)) represents a combination of a feature selection/extraction method

and a classifier algorithm. For each combination, we select the lowest point value

representing the best feature selection/extraction performance of the combina-

tion and, subsequently, compare the weighted error and standard deviation of

each lowest point. The combination of branch and bound feature selection with

k-nearest neighbor classifier has the lowest minimal value and relatively small
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standard deviation, as can be concluded from Table 2.4.

Table 2.4. Minimal value of Mean Weighted Errors and its Standard Deviation

Individual B&B Backward Fisher

min σ min σ min σ min σ

LDC 0.0586 0.0093 0.0562 0.0098 0.0534 0.0109 0.0555 0.0105

QDC 0.0609 0.0119 0.0626 0.0117 0.0815 0.0113 0.0589 0.0125

KNNC 0.0502 0.0092 0.0450 0.0091 0.0535 0.009 0.0587 0.0124

The three selected features, derived from branch and bound feature selection

with the best performance, are closest object dist, object intensity and area. The

closest object dist is a distance measurement between an object and its nearest

neighbor. It defines the local numerical density of an object. The cluster and

vesicle categories usually have a much lower closest object dist since they tend

to appear in clusters. The amount of fluorescence therefore directly relates to

the amount of EGFR and can be measured as intensity at a certain spot. We

suppose that plasma-membrane, vesicle or cluster are all composed of EGFR and

the expression of EGFR is more evenly distributed in the plasma-membrane and

gradually increases concentration in vesicle and cluster. Intensity represents the

amount of EGFR and is significant. Size is undoubtedly the major feature for

describing three characteristic episode groups. The results confirm our expecta-

tions. We have chosen the combination of branch and bound feature selection

with k-nearest neighbor classifier as the best classifier for the case studies.

Statistical Analysis. We provide two case studies in order to sustain the perfor-

mance of our solution. The first case study is aimed at a better understanding

of EGFR endocytosis across time series. The EGFR endocytosis procedure is as

follows: in the absence of EGF, EGFR localizes at the cell membrane (e.g. cell

border localization). Upon EGF exposure, a portion of the plasma membrane

containing EGFR is invaginated and pinched off forming a membrane-bounded

vesicle. Some vesicles would be accumulated in clusters in the peri-nuclear region.

As for the experimental design, the cells in separate wells are treated with EGF

for a variable amount of time. In this way each well represents a fixed time point.

After fixation, cells are stained and visualized. The images that have a clear rep-

resentation of phenotype stage are carefully selected by a specialist. The result of
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image and data analysis based on selected images provides a notable capability

of our solution on identifying the dynamics in the characteristic episodes. The

source images include a total of 13 time points with 2 pairs of images each.

(a)

(b) (c)

Figure 2.5. Weighted classification error curves, with (a) Individual feature

selection, (b) Branch and bound feature selection and (c) Backward feature

selection.

The second case study is on identification of mediators of EGFR endocyto-

sis. The results demonstrate that our automated high-content analysis solution

can properly describe different phenotypic groups and is capable to manage large

quantities of phenotypes. For each culture plate ten images are acquired per well;

i.e. 9610 images are used in the image and data analysis. In order to evaluate the

phenotype difference between wells, we calculate the number of each phenotypic

group (vesicle, plasma-membrane, and cluster) per nucleus in each well. The

plasma-membrane, representing the composed EGFR evenly distributed on the
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cell membrane, is always continuously linked between cells. The quantification is

accomplished by calculating the pixels of plasma-membrane per nucleus.

An analysis with both the Jarque-Bera [Bera and Jarque, 1981] and Lillie test

[Lilliefors, 1969] established that over 80% of our measurement data of the compo-

sition vesicle/plasma-membrane/cluster is not normally distributed. We, there-

fore, use the Kolmogorov-Smrinov test [Massey, 1951a] with siCtrl#2 as control

sample to identify significant changes in EGFR endocytosis.

(a) (b)

(c) (d)

Figure 2.6. Results of feature extraction: (a) Weighted classification error

curve of Fisher feature extraction, (b) Fisher feature extraction with Linear

Discriminant Classifier,(c) Fisher feature extraction with Quadratic

Discriminant Classifier, (d) Fisher feature extraction with K-Nearest Neighbor

Classifier.
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(a)

(b)

Figure 2.7. Average number of plasma-membrane (a) and vesicle (b) per

nucleus.

(a)

(b) (c)

Figure 2.8. (a) Number of vesicles per nucleus, (b) Number of clusters per

nucleus (c) Plasma-membranes (pixel) per nucleus.
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2.3 Experimental results

2.3.1 Dynamic phenotype stage

The results shown in Figure 2.7a illustrate that the amount of EGFR local-

ized at the plasma-membrane (e.g. number of plasma-membranes, expressed as

pixel/nucleus) decreases over time. This fits with the EGFR endocytosis process

during which EGF exposure causes a gradual EGFR re-distribution from the

plasma-membrane into vesicles. Meanwhile, the number of vesicles per nucleus

increases caused by the formation vesicles as illustrated in Figure 2.7b. These

graphs indicate the trend of the endocytosis process and are representative to

illustrate phenotype stage dynamics.

2.3.2 Phenotype classification

We validate our automated high throughput image analysis using siRNA-mediated

knock-down of several known EGFR endocytosis regulators (e.g. siGrb2, siEEA1,

siCFL) To this end images are selected from WT cells (not treated with siRNA),

control siRNA treated cells (siCtrl#2 and siGFP), siEGFR treated cells and three

target siRNAs. In Figure 2.8a-c the comparison of selected results with three phe-

notypic groups is shown. In Figure 2.9 some sample images are depicted to check

the correctness of our solution for phenotype description. Our analysis shows that

cells treated with siCtrl#2 resemble non-treated WT cells, while siGFP differs

significantly; indicating that siCtrl#2 is the best control for further analysis. The

siEGFR shows decreased levels in vesicle and cluster classes since treatment of

cells with siEGFR results in > 90% knock-down of EGFR. In addition, siGrb2,

siEEA1 and siCFL behave as expected. These results demonstrate that the au-

tomated high throughput analysis could be used for large scale siRNA screening.

A comprehensive overview of the results of a complete experiment is shown in the

heatmaps depicted in Figure 2.10. The data are derived from a siRNA screening

of more than 200 potential regulators of EGFR endocytosis. The y-axis repre-

sents different siRNA targets (regulators) and the x-axis represents the features

plus the number of different phenotypic groups.
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(a) (b) (c) (d)
Figure 2.9. Characteristic images with anti-body staining applied in this

experiment: PERK(red), EGFR (green) and nucleus (blue). (a) no siRNA no

EGF, (b) EGFR, (c) GRB2, (d) BIN1 (> response).

(a) (b)

Figure 2.10. (a) Vesicle p-value heat map (b) Plasma-membrane p-value heat

map.

2.4 Conclusions

This paper provides an efficient solution to analyze the high-throughput image

data sets on the level of protein location. The experimental results of both case
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studies show that our automated analysis procedure can be involved in the iden-

tification of the characteristic episodes in the EGFR process and provides a set of

robust and precise phenotypic descriptions. From the case studies it is illustrated

that our solution is suitable for a robust analysis of different phenotypes in a

siRNA based HTS. Furthermore, the whole process, from image segmentation,

phenotypic quantification to classification, is part of a successfully automated

procedure. Our solution can be easily extended to cope with studies utilizing

fluorescence microscopy.
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