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Chapter 1

Introduction

Microscopes have enabled mankind to increase the resolution of their vision in the

micro and nano-scales. Fabulous visualizations can be achieved in this manner,

but there are still patterns in these visualizations that need to be addressed. The

technical developments in microscope instrumentation are incredible and have

made it possible to observe biological structures at near molecular scale up to

the tissue and organismal level (cf. Figure 1). The developments of digital in-

struments and computers have further boosted the area of microscope analysis.

Microscopes are equipped with digital cameras and researchers can produce large

amounts of high quality digital images. In these images there are patterns to

be analyzed and thus we need to look for efficient and correct ways to extract

information from these images and find patterns in this information. This partic-

ularly holds for the description of biological specimens that are observed in one

way or the other by microscopy. The research of this thesis contributes to the

efforts to find solutions in working with large amounts of images and extracting

information in a correct and comprehensive way.

In this thesis, we discuss solutions of phenotype description based on the mi-

croscopy image analysis to deal with biological problems both in 2D and 3D

space. Our description of patterns goes beyond conventional features and helps

to visualize the unseen in feature dataset. These solutions share several common

processes which are based on similar principles. Furthermore, we notice that ad-

vanced features and classifier strategies can help us improve the performance of

the solutions. The biological problems that we have studied include the endocy-
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1. INTRODUCTION

tosis routing using high-throughput screening in 2D and time and 3D geometrical

representation from biological structures.

In order to have a general view of the solutions, we would first introduce the

generic workflow as shown in Figure 1.2 which is applicable for both 2D and 3D

objects. For 3D images additional techniques are required.

Figure 1.1. Resolution required for several objects (middle line) and the

imaging equipment with which this resolution can be achieved (upper half) and

the typical resolution of objects (lower half).

Figure 1.2. Image processing and image analysis pipeline. Image processing

includes image preprocessing and image segmentation. Image analysis includes

image annotation, modelling, measurement and machine leaning. The pipeline

influences the decision making for a new experiment.

1.1 2D and 3D microscopy images acquisition

In the imaging pipeline, the first step is the image acquisition from microscopes.

In this thesis our inputs come from different microscopes. We utilize the bright-

field microscope for invasive sectioning of large structures in X,Y,Z space. For
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1. INTRODUCTION

non-invasive observation on cell level, we use confocal microscopy both for single

slide screening in X,Y,T space and multiple slides sectioning in X, Y, Z space.

Bright-field microscope is suitable for the imaging of stained tissue sections of

specimens because the easiest way to deal with thicker specimens (3D images) is

to slice the specimen into many consecutive thin sections. Given the resolution of

the imaging system, they provide clear information in x and y axis (2D images),

but limited information in z axis. This invasive sectioning enables the application

of staining techniques so that molecular phenotype of the specimen under study

can be revealed [Verbeek, 1999b]. This approach is useful for larger sections of

tissue whose z-resolution is of the order of millimeters, but it will not work in the

micro-nano range.

Confocal microscopy can be used in cellular high-throughput screening. It also

enables observation of thick specimens by optical sectioning which eliminate the

artifacts existed in specimen preparation by physical sectioning. However, optical

penetration into the specimen has its limitations. The scope of confocal micro-

scope is very good on the cellular level but less effective on the level of an organ

or a tissue; concluded from Figure 1.1. Consequently, for 3D reconstruction of

a larger embryo or a substantial part of it, confocal microscope is usually not

always the most appropriate technique [Verbeek, 1999b].

Optical projection tomography (OPT) is another non-invasive sectioning tech-

nique for 3D biological specimens. It aims at producing high-resolution 3D im-

ages of both fluorescent and nonfluorescent biological material with a thickness

of up to 15 millimeters. OPT microscopy allows the rapid mapping of the tissue

distribution of RNA and protein expression in intact embryos or organ systems

and can therefore be instrumental developmental biology studies for objective

phenotype description. [Sharpe et al., 2002]

Subsequent to image acquisition, the process of image and data analysis starts.

For both 2D and 3D microscopy images, the solutions for analysis are quite

similar. In this thesis, the major focus is on the description of the phenotype

measurement and data analysis. Therefore, we introduce a generalized solution

for 2D and 3D images in the following sections.
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1. INTRODUCTION

1.2 Image processing and analysis

The aim of image processing and analysis is to accomplish image understand-

ing and data reduction. The pipeline includes image enhancement or restoration

and image segmentation. The first step of image processing and analysis for

microscopy is to improve the quality of images by enhancing the foreground as

well as suppressing the background. Image enhancement aims for improving the

interpretability or perception of information in images for human viewers [Maini

and Aggarwal, 2010]. We see it separated into two main categories: spatial do-

main filters and frequency domain filters. Spatial domain filters directly deal with

the image pixels such as histogram enhancement. Frequency domain filters are

performed using the Fourier transform of the image and include low-pass filters,

bandpass filters and high-pass filters. Noise suppression algorithms often make a

tradeoff between actual noise removal and preservation of real low-contrast detail.

Most commonly used methods are linear filters such as Gaussian filter, Wiener

filer [Wiener, 1964] and non-linear filters such as median filter and the filters

based on the paradigm of its mathematical morphology [Serra, 1983].

Image segmentation is the technique dividing the image constituent parts most

notably in foreground and background. So it results in a separation of foreground

and background. In microscopy it is specifically used to detect objects, object re-

gions or edges in an image. Basically the image segmentation is divided into two

approaches: region-based segmentation and edge-based segmentation [Tripathi

et al., 2012]. Region-based segmentation partitions an image into regions that

are similar according to a set of predefined criteria [Gonzalez and Woods, 2001].

Some representative methods include thresholding, clustering and region growing.

The thresholding operation converts a gray-scale image into a binary image by a

set of thresholds. Popular methods include the maximum entropy method [Leung

and Lam, 1994], Bernsen’s method [Bernsen, 1986], Niblack’s method [Niblack,

1985], Isodata method [Manakos et al., 2000], Otsu’s method [Otsu, 1979]. Clus-

tering partition the image into the sets or clusters of pixels which have similar

feature space. Clustering methods can be further divided into k-means clustering

[Kanungo et al., 2002] and fuzzy clustering [Naz et al., 2010]. Region growing ex-

tracts a region of the image that is connected based on predefined criteria [Chen
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1. INTRODUCTION

and Shen, 2010]. Region growing techniques are often used in noisy images where

edges are extremely difficult to detect. Some well-known region based segmenta-

tion methods include the level set method [Qu et al., 2007], watershed transfor-

mation [Vincent and Soille, 1991] and texture segmentation [Ray et al., 2008]. In

Edge-based segmentation, an image is partitioned based on abrupt changes in the

intensity values [Gonzalez and Woods, 2001]. In Edge-based segmentation first

the edges are identified. These are linked together to form consistent boundaries.

Many edge operators are applied to locate edges in images such as the Sobel oper-

ator, the Prewitt operator and the Canny operator [Gonzalez and Woods, 2001].

The canny operator is used to find the edge pixels while eliminating the influence

of noise. Other well-known edge-based segmentation method is active contours

[Kass et al., 1988].

If the aim is to measure information on objects in the image then subsequent to

segmentation a labeling operation is required. Each object from the segmenta-

tion process is attributed a label which can, if necessary, be given an annotation

[Verbeek, 1999a] to provide biological context. An automatic annotation method

can be regarded as a multi-class object classification which is based on image

analysis to extract features and data analysis to train a proper classifier. In the

next section, we introduce the necessary concepts and context for this thesis.

1.3 Phenotype measurement

In order to correctly annotate each object separated from the segmentation

method, we need to quantify the object into all kinds of features describing the

unique pattern of the object for further multi-class classification. This quantifi-

cation step is, de facto, the measurement of the phenotype. Here we introduce

two basic definition on phenotype measurement.

Definition 1.3.1. ”Phenotype is the set of observable characteristics of an indi-

vidual resulting from the interaction of its genotype with the environment.”

Definition 1.3.2. ”Phenotype measurements imply the measurement of observ-
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1. INTRODUCTION

able attributes, reflecting the biological function of gene variants as affected by

the environment.” [Paulus et al., 2013]

For biological specimens, phenotype measurement is the next important step

in image analysis. The phenotype measurements will be used to classify objects

obtained from the segmentation into different categories that are meaningful with

respect to the biology. Thus, it is crucial to measure representative features for

each object in the image. These features, often, represent the characteristics of

shape, intensity and texture of the objects.

Generally in 2D space, we can categorize the phenotype measurements into two

groups: basic measurements and localized measurements. Basic measurements of

the phenotype cover shape descriptors, texture patterns and invariant features.

Localized measurements of phenotype describe the assessment of the correlation

between multiple information channels. The information channels in the context

of the research presented in this thesis are the imaging channels. The reason for

splitting the channels in different parts of the color spectrum is that each chan-

nel contains individual characteristics of the object under investigation due to a

specific staining method resulting in biological meaning.

For 3D images and 3D geometrical models, we need to look at different features.

One group concerns the feature-based measurements including both global shape,

such as volume and surface area, and local features such as surface curvature. An-

other part of phenotype measurements is graph based indicating the use of the

geometrical and topological shape properties such as skeleton and centerline; in

such a way that faithful and intuitive features can be derived.

For each study that we will introduce in this thesis, we intend to find the advanced

and representative phenotype measurements from the biological image dataset so

as to facilitate the solution of a specific biological question. There is no general

standard for the selection of phenotype measurements and it is unrealistic to use

all the extracted features for pattern classification. Normally, related phenotype

measurements are based on the biological descriptions and further use feature

selection methods to distill the feature dimensions for classification training. In

order to extract related features, the knowledge combined from biologists and

computer scientists is required. The image features as described by the biol-

ogists, are based on biological principles. These features are observable. The
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computer scientists need to translate the feature description into features that

can be derived through computation. We call it hidden features. Hidden features

are those that can not be derived other than through computation from the dig-

itized image. These features intend to use some advanced and invariant features

to represent the biologists’ description. In addition, the computer scientists can

detect the variance of some other advanced measurements which can be further

introduced in the phenotype measurements process.

1.4 Data analysis

Figure 1.3. The model of phenotype data analysis.

Data analysis pipeline includes ground truth data preparation, feature reduction

and classification as shown in Figure 1.3. For a description of phenotype we need

ground truth data. For data analysis a good idea of ground truth is important; so

for phenotype analysis we need good ground truth examples. But what is ground

truth? Therefore we first give a definition.

Definition 1.4.1. In machine learning, the term ”ground truth” refers to the ac-

curacy of the classification of the training for supervised learning techniques. This

accuracy is used in statistical models to prove or disprove research hypotheses.

In image processing, ground truth data could be derived from manual delin-

eation by experts, synthetic images or analytical models based on mathematical

expressions. These ground truth data set is used in both phenotype classification
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1. INTRODUCTION

and performance evaluation. Phenotype classification is discussed in 1.4.3.

In our workflow, after having ground truth data for reference, the next step is

feature reduction including feature selection and feature extraction in the feature

space. This step intends to find prominent features from the feature pool. Fea-

ture selection reduces the dimensionality of the feature set by selecting the subset

of features from the original set. Feature extraction maps the original feature set

into a new set with a reduced dimensionality. Next, classifier training tries dif-

ferent kinds of classifiers and uses an error estimation step to select the classifier

with the lowest error.

We strive at using the best performing combination of feature reduction and

classifier method for phenotype classification. For the process of performance

evaluation, we start with preparing the ground truth data. Then, we measure

the ideal features from the ground truth data and real features from the output

of the methods. Next, we calculate the difference between ideal and real features

by an error estimation.

1.4.1 Ground truth data

The verb ”ground truthing” refers to the process of gathering the proper objective

data for the test. Based on this ground truth, researchers train a suitable classifi-

cation method to deliver probabilistic predictions for new observations [Kirchner

et al., 2010]. For example, in next generation sequencing technology (NGS),

ground truth data is used to train a standard supervised machine learning al-

gorithm for the purpose of identifying somatic mutations from NGS data [Ding

et al., 2011]. In classification of plant organs from laser scanned point clouds, the

commercial software Geomagic Studio 12 is used to manually assign the ground

truth data [Paulus et al., 2013].

Apart from classification training, ground truth is also used for performance eval-

uation of algorithms and methods. It checks whether the algorithm produces the

right output or not. It is frequently used in the evaluation of image segmenta-

tion algorithms. The ground truth could be artificial or synthetic images which

provide an unbiased ground-truth. Regarding a performance test with the mi-

croscopy images, the ground truth images are obtained by manual segmentation
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performed by biologists through tracing on a digitizer surface. In order to reduce

the observation bias during the manual segmentation, the experts need to repeat

several times to obtain an idea of inter user variance [Yan and Verbeek, 2012b].

Similar ground truth production construction is used for algorithm evaluation

including retinal vessel segmentation methods [Kaba et al., 2014], simultaneous

recognition and segmentation (SRS) of cells [Qu et al., 2011] and microarray

segmentation algorithms [Lehmussola et al., 2006]. The ground truth is also

used in other methods evaluation discussed as follows: the study in [Lee et al.,

2012] computes the distance between the reconstruction and the ground truth to

analyze the accuracy of the 3D Neuronal Structure Reconstruction method; in

next-generation sequencing, read mapping and genome-wide domain annotations

are combined as the ground truth for evaluating the read classification sensitivity

and specificity [Zhang et al., 2013]. For a better use of ground truth data, there

are even further discussions on introducing a way to design ground-truthed data

to compare and evaluate the performance of the real-world detectors [Vedaldi

et al., 2010] and creating a ground truth database to evaluate algorithms in the

field of mobile robots [Takeuchi et al., 2003].

1.4.2 Feature selection/extraction

In the pool of quantified features, some redundant or irrelevant features can occur

within the feature set. Therefore, feature selection process is applied to select a

subset of relevant features for further classification. Some popular feature selec-

tion methods include the branch and bound procedure, sequential backward and

forward selections, best individual feature selection.

The branch and bound procedure is a top-down procedure without exhaustive

search. It constructs a tree by deleting features successively based on the mono-

tonicity property [Webb and Copsey, 2011].

Sequential forward selection is a bottom-up search procedure that starts with a

null set and adds new features to the feature set one at a time until the final

feature set is reached. An important disadvantage of the method is the lack of a

mechanism of deleting features from the feature set once they have been added.
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Sequential backward selection is the other way around. It is a top-down procedure

starting with a complete feature set and deleting features one at a time until a

predefined dimensionality of the set is reached. The disadvantage of the back-

ward selection method is that it is computationally more demanding compared

to forward selection during the criterion function evaluation.

The best individual feature selection [Webb and Copsey, 2011] is the simplest se-

lection method, it might also be the one giving poorest performance; such occurs

especially when the features are highly correlated [Webb and Copsey, 2011].

In addition, feature extraction is used to reduce the dimension of the feature set

by combining the original features into reduced new features with functions.

Feature extraction is divided into supervised and unsupervised methods. Prin-

cipal component analysis (PCA) is a typical unsupervised feature extraction

method. This method aims at deriving new variables (in decreasing order of

importance) that are linear combinations of the original variables and that are

uncorrelated. Principal component analysis is a variable-directed technique and

therefore is described as an unsupervised feature extraction technique [Webb and

Copsey, 2011]. Linear discriminant analysis (LDA) is a supervised feature ex-

traction method. It searches the directions for the maximum discrimination of

classes in addition to the dimensional reduction. The criterion proposed by LDA

is the ratio of between-class to within-class variances. It is generally believed

that when it comes to solving pattern classification problems, LDA algorithms

outperform PCA-based ones, since the former optimizes the low dimensional rep-

resentation of the objects and focus on the most discriminant features, while the

latter achieves simply object reconstruction [Youness and Hamid, 2013].

From analysis the microscopy images we can derive large amount of features.

However, these features are not all prominently describing the phenotypical dif-

ferences. Therefore we require a feature reduction method to control the redun-

dancy and consistency that exist in our original feature set. If these two feature

reduction process are carefully selected, the prominent information from original

feature set could be extracted to perform a more efficient classification using this

reduced feature set rather than using the complete original set of features.
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1.4.3 Classification

Classification is a procedure in pattern recognition to identify objects in specific

categories based on a training set of data containing labeled objects of known

category. As for a supervised learning, the training set, in our case also regarded

as ground truth data, is crucial for a correct classification. It needs to include a

sufficiently large dataset with a variety of situations. Algorithms that implement

classification schemes are called classifiers. Classifiers are divided into parametric

and non-parametric categories. The linear classifier and the quadratic classifier

belong to parametric category and the k-nearest neighbor classifier is in non-

parametric category. Linear and quadratic discriminant functions are based on

a normal distribution. The linear discriminant rule is quite robust and divides

dataset from the normal distributions under the assumption of an equal covari-

ance matrix. However, it is often better to use the quadratic rule if the sam-

ple distributions are not separated by the mean-difference but separated by the

covariance-difference [Fukunaga, 1990; Webb and Copsey, 2011]. The k-nearest

neighbor classifier assigns a point x to a particular class based on a majority

vote among the classes of the k nearest training points to x. It is a simple and

flexible classifier with a good classification performance. However, as the number

of objects in the training set increases, it may lead to an excessive computational

overhead [Fukunaga, 1990; Webb and Copsey, 2011].

After classification, the phenotypes in segmented objects from images are sorted

into different categories. Subsequently we can analyze the changes of a specific

category with different biological treatments or across a time line. These changes

or trends are meaningful to proof a hypothesis in bio-medical research.

1.4.4 3D model representation

3D models can be represented in three ways: voxel, contour and surface [Verbeek

et al., 1995]. voxel models use volume to represent the objects. These models

are more realistic but more difficult to construct. The surface models use a sur-

face element to represent the objects such as triangulated surface. These models

are easier to deal with since the scale of the computing dataset is much smaller
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than voxel models. Thus, surface models are often used to represent 3D models

nowadays. Surface representation can contribute to the phenotype measurement

considerably well. Many shape based features, such as surface area, volume, cur-

vature, can be calculated well from a surface description. This requires a good

surface description.

1.4.5 3D surface reconstruction

A large amount of research has been performed on surface reconstruction from

a stack of 2D slices i.e. plan parallel sampled data. One direction is called con-

tour based reconstruction methods. The existing approaches mostly fall into two

categories: contour stitching and volumetric methods. Contour stitching directly

connect the adjacent contours, while the volumetric methods need to interpolate

intermediate gray-values firstly and extract the isosurface from the volumetric

field.

The other, evenly popular direction is referred to as point cloud based reconstruc-

tion methods. In the literature, the proposed approaches are generally classified

into two categories: explicit representation and implicit approximation. The

major explicit representations include parametric surfaces and triangulated sur-

faces. Parametric surfaces attempt to represent all shapes with a set of elemen-

tary shapes such as super-quadratics, generalized cylinders, parametric patches,

etc. In the explicit representation, all or most of the points are directly in-

terpolated based on structures from computational geometry, such as Delaunay

triangulations [Boissonnat, 1984], alpha shapes [Amenta et al., 2000], or Voronoi

diagrams [Amenta et al., 1998]. The implicit approximation is based on a scheme

which integrates characteristic of each point on the surface into a feature func-

tion, a.k.a. the implicit function such as Fourier-based reconstruction scheme

[Kazhdan, 2005] and Poisson reconstruction method. The selection of a surface

reconstruction method is important to precisely preserve the surface characteris-

tics and show robustness in the presence of noise. This is addressed in this thesis

to be able to come to good features derived from 3D images.
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1.5 Structure of the thesis

The image data that are the basis of the phenotypical descriptions are the level of

2D dynamic images (x,y,t) and 3D images (x,y,z). Chapter 2 and Chapter 3 exem-

plify the image and data analysis of dynamic 2D image at cellular level as derived

from high-throughput screening experiment. Chapter 4, Chapter 5 and Chapter

6 describe the 3D image representation and analysis at tissue/organ/organismal

level.

The research in Chapter 2 illustrates the design and implementation of a sys-

tem for automated high-throughput image and data analysis. The phenotypes

are characterized according to a model that describes the process of endocytosis,

i.e. the ability of cells to absorb molecules, in three characteristic stages. These

stages are referred to as episodes and through image processing we try to establish

these episodes and the vesicles involved in the ensocytosis are different for each

episode. In the late process these vesicles are forming a cluster near the region of

the nucleus. According to the model and the observations that it was conceived

from, such cluster is larger, brighter and close to the nucleus. From the perspec-

tive of image processing, this requires to compuet the area, integrated intensisty

of the vesicle and many more possible features derived from objects, i.e. vesicles,

that are indentified in the image. From the computer scientists’ point of view, it

means to calculate the area, the intensity of the labeled object etc. Apart from

standard phenotype measurements, we make use of the localized feature of phe-

notype such as closest object distance which is the distance between the object

and the nuclei region so as to describe the correlation between two information

channels. We obtained the ground truth data for classifier training by having the

three characteristic episode groups manually delineated by biologists; this gives

as binary mask. We make use of these binary masks for further phenotype mea-

surements and derive the training set for the supervised classification procedure.

Next, we use the model of phenotype data analysis for the classification of the

three episodes (plasma-membrane, vesicle and cluster). We evaluate the perfor-

mance of the combination of different feature selection and classification methods

and select one with the lowest error estimation. The experimental results show

that our analysis setup for high-throughput screening provides scalability and
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robustness in the temporal analysis of an EGFR endocytosis model.

In Chapter 3, the results of Chapter 2 are further evaluated. Chapter 3 illus-

trates an integrated method employing a hierarchical classification strategy and

wavelet-based texture measurements to further improve the recognition of pheno-

typic episodes of EGFR during endocytosis. During the previous single classifier

training in Chapter 2, we find that the similarity between cluster and vesicle

is higher than with plasma-membrane. As a result, we construct an advanced

hierarchical classification strategy. This hierarchical classification strategy can

construct the classes in a tree structure and train the classifier for each parent

node to distinguish two child nodes that belong to the same parent node. We also

introduced wavelet texture features to distinguish endosomes phenotype variation

across timeline instead of the average intensity for each object, because a texture

feature in a local patch is more discriminative than pixel intensities for candidate

identification [Song et al., 2013]. The result of the hierarchical classifiers with

wavelet-based texture measurements shows a noticeable improvement compared

to the single classification strategy.

In Chapter 4, the work uses an analytical approach to evaluate four classical sur-

face reconstruction methods. We make use of the ground truth concept for the

evaluation of 3D surface reconstruction methods. In order to make an objective

assessment of the surface quality, we utilize three synthetic objects for the error

estimation. From mathematics, an analytical description of each synthetic ob-

jects is available. The three synthetic objects are the sphere, the ellipsoid and the

ovoid. The parametrical mathematical representation of these synthetic surfaces

helps us to compute the ideal surface features and provides a ground truth for

the error estimation of surface. For the real surface feature calculation, we firstly

deviate the ideal model by adding different levels of noise. Next, we use the noisy

point cloud as our input for the reconstruction algorithms. Finally, we calculate

the real surface feature from the reconstructed surface model. The aim of this

evaluation study is to select the outstanding reconstruction method to improve

reliability in surface reconstruction of biological models.

In order to apply the findings of Chapter 4, optimized 3D geometrical descrip-

tions are requried. In Chapter 5, we therefore provide a pipeline to optimize the

stack of biological images in 3D space and analyze the phenotypical difference by
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extracting related shape features from the 3D biological model.

In Chapter 6 we applied the results from Chapter 4 and Chapter 5 for phenotype

measurements; we extract centerline of the rodent newborn lactiferous duct to un-

fold the branch structure embedded in the duct rather than use standard surface

descriptions. Next, we use the quantified features from the centerline to detect

the morphological changes on the duct surface model. Furthermore, we extended

the usage of ground truth for the simulation of mammary gland in Chapter 6.

With the inspiration from the tree-like structure of mammary gland, we use a

mathematical model: Lindenmayer systems (L-systems) which is a mathematical

theory developed for the description of growth patterns in plants. We create a

specified model for lactiferous duct of the new-born mouse from the L-system as

our ground truth. With this mathematical model, we can simulate the phenotypi-

cal variation between various treatments by changing the parameters representing

prominent features derived from phenotype measurements.

We conclude the discussion of this thesis in Chapter 7 with the insights that are

obtained from the research describes in the Chapters 2-6.
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