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Chapter 7

Modal Analysis

7.1 Background

In the Structural Health Monitoring field, damage detection methods are based on
the premise that global modal parameters (natural frequencies, mode shapes and
damping ratios) are functions of physical properties (mass, damping distribution,
and stiffness) [45, 49, 112]. Changes in physical properties will cause changes in
the modal parameters [40, 43, 49].

Modal analysis is a procedure that extracts modal parameters of a structure
from its measured response data. Modal analysis was originally used for Exper-
imental Modal Analysis (EMA), primarily applied to aerospace and mechanical
structures, where the structures are excited by controlled dynamic forces. The
responses to these forces are then recorded, and the modal parameters are ob-
tained based on both input and output measurements [8]. Due to improvements
in computing capacity, technological advances and developments in sensors and
data acquisition systems, these analysis techniques can also be applied in SHM
systems for civil infrastructures. In SHM, modal analysis is often applied as a
form of Operational Modal Analysis (OMA) [14]. The major difference between
OMA and EMA is that the input forces of OMA are unknown, and only the
output measurements are available. Considering a highway bridge under normal
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7. MODAL ANALYSIS

in-service conditions, the input forces may include various vehicles and envi-

ronmental effects, such as wind and temperature changes, influences which are

difficult to measure or quantify. Unfortunately, various techniques upon which

EMA relies are invalid for OMA.

Driven by the demand for assessing the health of civil structures, a number of

powerful techniques for OMA have been developed. Some common techniques are

the Peak-Picking (PP) method [113, 114], the Auto Regressive-Moving Average

Vector model [115], the Natural Excitation Technique (Next) [5, 116], the Ran-

dom Decrement Technique [117], the Frequency Domain Decomposition [6] and

the Stochastic Subspace Identification (SSI) [11, 114, 118]. The SSI algorithm

is known as one of the most robust methods for OMA measurements, and has

already been successfully applied to infrastructures under operational conditions,

such as bridges [50, 119], towers [114, 120], and buildings [121, 122]. In this chap-

ter, we will employ both the PP and the SSI methods for modal analysis.

In reality, modal parameters are not only sensitive to structural damage and

degradation, but also to varying operational and environmental loadings, such as

traffic, humidity, wind and most importantly, temperature [43, 49]. The modal

changes caused by these factors can be much larger than those caused by real

structural damage or degradation [112]. For reliable modal analysis, we must

distinguish the abnormal changes caused by operational or environmental inputs

from normal changes due to damage and degradation [45, 50]. In this chapter,

we will take the influence of temperature and vehicle mass into account.

In this chapter, we begin with introducing the procedure of data selection in

Section 7.2, then apply two modal analysis methods: the PP method and the

SSI method, to extract modal parameters from the selected dataset in Section

7.3, and finally analyse the influence of temperature and vehicle mass on modal

parameters in Section 7.4.
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7.2 Data Selection

7.2 Data Selection

The accuracy of modal analysis relies on the quality of the utilised datasets.
To extract modal parameters correctly, we first need to select some datasets of
high-quality. In this section, we illustrate the data selection task with a three-
step procedure: sensor selection, traffic event detection and free vibration periods
extraction.

7.2.1 Sensor Selection

In the sensor network, both strain and vibration signals respond to traffic events.
The left two pictures in Fig. 7.1 illustrate one truck event in the time domain,
for either sensor type. From these pictures, it is easy to see that the truck event
in the strain signal is represented as a peak, which occurs when the vehicle is
actually on the measured span, and disappears rapidly when the vehicle passes.
The truck event in the vibration signal produces oscillations, which will last for
a long period after the truck has passed, if it is not disturbed by subsequent
vehicles. Based on this observation, it is reasonable to select the strain signal to
recognise traffic events [54, 55]. To monitor and evaluate the health of the bridge,
spectral analysis is one of the widely used methods [3]. The right two pictures
of Fig. 7.1 (right) illustrate the spectrum of both the strain and vibration signal,
which are produced by a Discrete Fourier Transform (DFT). It is clear that the
spectrum of the vibration signal is more informative than that of the strain signal.
So both the strain and vibration signals are employed in our experiments: first,
we use the strain signal to detect traffic events, then conduct spectral analysis on
the corresponding vibration signal.

Since there are 91 strain sensors and 34 vibration sensors in our sensor network,
which sensors are suitable? One simple standard of choosing strain sensors is that
they can clearly represent traffic events. That is to say, the peak of the selected
strain signal should have a strong amplitude. We choose one truck event on each
side of the bridge as excitation, look into the response of all of the strain sensors,
and finally choose one sensor on each side of the bridge as target. The selection
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Figure 7.1: The strain and vibration signal in the time and frequency
domain - The top left picture is a vibration signal; the top right picture is the
spectrum of the vibration signal; the bottom left picture is a strain signal; the
bottom right picture is the spectrum of the strain signal.

of the vibration sensors is based on the strain and vibration correlation matrix
as mentioned in Chapter 4. We choose the vibration sensors that have strong
correlations with the selected strain sensors as the target vibration sensors.

7.2.2 Traffic Event Detection

Following the procedure mentioned above, we obtain a pair of strain and vibration
sensors installed on each side of the bridge, reducing the sensor candidates from
125 (91 + 34) to 4 (2 + 2). However, extracting traffic events from the reduced
sensor signals is still a challenging task, because the bridge is a complex system,
which responds to various inputs. As mentioned in previous chapters, some inputs
play disturbing roles. What’s more, even a useful input, such as a car or a truck,
on one side of the bridge could not be detected or mis-detected in the signal
collected with sensors on another side of the bridge. To prepare some high-quality
datasets for modal analysis, we propose a procedure to extract traffic events. We
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7.2 Data Selection

prefer that each target dataset just contains a single truck event. The procedure
is listed as follows:

• Step 1: Find baseline. The baseline of the strain signal is influenced a
lot by temperature and traffic jams. To measure the amplitudes of peaks
correctly, we must find the baseline first.

• Step 2: Remove baseline. Baseline removal is quite straightforward. It is
obtained by subtracting the baseline from the original strain signal.

• Step 3: Find peaks. Using the zero-crossing and the local maximum meth-
ods, we detect a number of peaks, with amplitude, duration and area under
the peak as peak descriptive features.

• Step 4: Label peaks. Based on the video stream, we hand-label each peak
as either of noise, car on lane 1, truck on lane 1, car on lane 4 or truck on
lane 4. This will be our supervised training data (lane 1 and lane 4 stand
for two different traffic directions).

• Step 5: Classify peaks. Based on the obtained peak features and labels,
we try to find the boundaries between each class, by means of classification
techniques from the Data Mining field [123].

• Step 6: Extract truck events. One whole traffic event is composed of the
traffic-free period before the traffic peak, the actual peak and the traffic-free
period after the traffic peak. We should look into the traffic events on both
lanes to catch all traffic.

We choose a dataset of one hour at 3:00 AM (100 Hz) as the training dataset.
The traffic during this time is not too heavy, and most of time there is just a
single lane on either side in use. The baseline correction method mentioned in
Step 1 and Step 2 is the most-crossing method, which was proposed in Chapter 5.
After removing baselines from the selected strain signals, we continue to process
the obtained signals with zero-crossing and local maximum methods in Step 3,
achieving a number of peaks, with amplitude, duration and area under the peak
as peak features. In Step 4, we hand-label these detected peaks according to the
video taken during this period on the bridge. All the peaks are given one of five
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Figure 7.2: Peak classification - All peak labels within one hour (left), based
on two peak features: area and amplitude; the right picture shows the details in
the bottom left corner of the left picture, shown as the rectangular box in the left
picture.

categories: noise, car on lane 1, truck on lane 1, car on lane 4 and truck on lane
4. The scatter plot based on area and amplitude of the strain peaks on lane 4 is
illustrated as Fig. 7.2.

From the labels in Fig. 7.2, we can see that truck events on either lane are easy
to distinguish, but the boundaries between car events on opposite lanes and the
boundaries between the noise and car events on opposite lanes are blurry. When
cars on an opposite lane are not heavy enough, they are easily mistaken as noise
in the strain signal of the current lane. But the vibration sensor is much more
sensitive to traffic events than the strain sensor, which can catch a small car event
on another lane. To detect the complete free vibration period according to the
strain signal, we must make the boundaries as clear as possible.

We processed our labeled peaks with Weka [123], a powerful Data Mining tool.
A decision tree (C4.5) was applied to the labeled dataset (peak features), which
takes area and amplitude on lane 4 as attributes.

The labeled dataset (derived from the training dataset) is composed of 7,169 in-
stances, of which 7,137 (99.55%) instances are correctly classified. The confusion
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Table 7.1: The confusion matrix.

truck 4 truck 1 car 4 car 1 noise
7 0 1 0 0 truck 4
1 10 0 0 0 truck 1
0 2 97 4 0 car 4
0 0 3 98 4 car 1
0 0 2 15 6,925 noise

matrix is shown as Table 7.1.

The result, with a few minor mistakes, is already quite good, but can be further
improved by combining the traffic events on the lane of opposite traffic direction
(lane 1). We applied this model to a bigger dataset (the test dataset), which was
obtained by selecting one hour per day at 3:00 AM for 45 days. We succeeded to
catch 17,220 traffic events (of which 852 are trucks) on lane 1 and 13,064 traffic
events on lane 4 (of which 768 are trucks). Truck events are usually featured with
high amplitudes and peak areas, which indicate that the bridge is well excited,
so we prefer to utilise the datasets caused by them for modal analysis. However,
not every truck event is interesting to us. We expect that the vibrations caused
by one truck should be long enough for modal analysis, without being disturbed
by other traffic events. To meet this expectation, we explore truck events with
long free vibration periods.

7.2.3 Free Vibration Periods Extraction

In this section, we focus on extracting the free vibration periods of traffic events
from our structural health monitoring system, which is a critical step to analyse
the modal parameters of the bridge. The free vibration period means the period
after a vehicle has passed, and before a next vehicle appears on the bridge. The
reason for choosing this period is that the bridge is put in motion by the vehicle,
but the actual weight does not actually influence the frequency of vibration after
the vehicle has disappeared, nor do any other vehicles.
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Figure 7.3: Free vibration period - The period between two vertical lines is
referred to as the free vibration period, which starts after one truck just passes the
bridge and ends before another vehicle appears on the bridge.

Shown as Fig. 7.3, free vibration fragments are extracted from the vibration

signal, which corresponds to the traffic-free period directly after a truck-related

peak in the strain signal. Details of how such periods can be identified in the

data can be found in [53]. Following this procedure, we obtain a number of free

vibration periods, which will be used for modal analysis in the next section.

7.3 Modal Parameter Extraction

In this section, we employ two methods to extract modal parameters: the PP

method and the SSI method. The dataset employed for modal analysis is obtained

by extracting truck events, with at least 20 seconds of free vibration period, from

the testing dataset in the previous section, which is composed of 72 truck events

on lane 1 and 77 truck events on lane 4.
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7.3 Modal Parameter Extraction

7.3.1 The Peak-Picking Method

The PP method is a widely-used method to estimate modal parameters from
output-only measurements [124, 125], in which the natural frequencies are simply
obtained by choosing the peaks on the graphs of the power spectral densities
(PSDs) [126, 127, 128]. The PSDs are basically obtained by converting the mea-
surements to the frequency domain with the DFT [114, 127].

To obtain all the possible modes of the bridge, we apply the PP method to the free
vibration periods of the selected dataset. After normalising the 149 spectra, we
obtain a graph, shown as Fig. 7.4. From this figure, we can easily detect several
interesting modes. Table 7.2 provides statistics of these modes. The approximate
location of each mode is defined according to Fig. 7.4, and the occurrence of a
mode is counted if there is at least one peak, whose amplitude is bigger than the
average amplitude. The third column in Table 7.2 is calculated by counting what
fraction of the 149 spectra actually show a peak at the specified location in the
spectrum.

Table 7.2: Statistics of modes.

Mode Frequency (Hz) Occurrence
1 0.73 – 0.93 71.8%
2 2.59 – 2.78 100%
3 2.79 – 2.98 100%
4 5.50 – 5.77 97.3%
5 11.00 – 11.50 98.7%
6 14.82 – 15.55 12.1%
7 16.30 – 16.90 10.7%
8 18.30 – 18.80 48.3%

As illustrated below, the amplitude indicates the strength of each mode. Mode 2
and mode 3 are the principal modes of the bridge, which occur in every event.
Mode 4 and mode 5 are also important modes, which have a strong amplitude
and happen in most events. Mode 1 and mode 8 have moderate occurrence, but
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Figure 7.4: The vibration modes of the bridge - The spectra are derived
from free vibration periods of 149 selected truck events.

their amplitudes are relatively weak. Mode 6 and mode 7 are so weak that they
can be ignored in most cases.

The PP method is simple, and needs no model to fit to the measurements [113], so
its identification is fast [128], and can be used on-site to verify the quality of the
measurements [8, 114]. However, the PP method relies heavily on the frequency
resolution [129]. When the assumptions of well separated modes and low damping
are violated, the PP method often results in inaccurate and erroneous modes
[8, 127]. To estimate modal parameters more accurately, we need employ more
advanced methods.

7.3.2 The SSI Method

Compared with the PP method, the SSI method is a more advanced method
for modal analysis. which is based on the stochastic state space model. To
improve the result of the SSI method, the stabilization diagram is introduced to
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7.3 Modal Parameter Extraction

distinguish physical modes from spurious modes. In this section, we will illustrate
this method with some selected datasets, and present modal parameters derived
from these datasets.

7.3.2.1 Stochastic State Space Model

The SSI method is especially suited for operational modal parameter identifica-
tion when only output measurements are available. In the text below, the core
steps of the SSI method are discussed. A detailed explanation is beyond the
scope of this chapter and can be found in the references [11, 118]. The dynamic
system of a vibration structure can be modelled by the following discrete-time
state space model:

xk+1 = Axk +Buk + wk

yk = Cxk +Duk + vk
(7.1)

where yk is the measurement at discrete time instance k, xk is the state vector, uk

is the input vector, A is the discrete state matrix, B is the discrete input (system
control influence coefficient) matrix, C is a real output influence coefficient matrix
and D is the out control influence coefficient matrix; wk is the process noise due
to disturbances and modelling inaccuracies, and vk is the measurement noise due
to sensor inaccuracy. Here, the process noise wk and measurement noise vk are
assumed to be white noise vectors, with the following covariance matrices:

E

✓
wp

vp

◆�
wT

q vTq
��

=


Q S
ST R

�
�pq (7.2)

where E[· · · ] is the mathematical expectation operator, �pq is the Kronecker delta,
and Q,R, S are process and measurement noise auto/cross-covariance matrices.
The sequences wk and vk are assumed statistically independent of each other. In
practice, the input vector uk is not measured, and only the response of a structure
is measured, so it is impossible to distinguish uk from the process noise wk and
the measurement noise vk. By implicitly modelling uk with the noise terms wk,
vk, the discrete-time stochastic state space model can be represented as:

xk+1 = Axk + wk

yk = Cxk + vk
(7.3)
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Here the noise terms wk, vk still follow the white noise assumption. One drawback
of the stochastic state space model is that if the input contains some dominant
frequency components except for the white noise, these frequency components
will appear as poles of the state matrix A.

Estimation of state matrices Based on Eq. 7.3, there are several techniques
that can be used for system identification through ambient measurements. The
technique employed in this chapter is called data-driven stochastic subspace iden-
tification. All the output measurements are organized in a block Hankel matrix
H 2 R2li⇥j with 2i block rows and j columns (each data point in the measurement
is viewed as one column). Every block consists of l rows. For statistical reasons, it
is assumed that j ! 1. The block Hankel matrix H can be represented as:

H =

1p
j

2

666666666664

y0 y1 . . . yj�1

y1 y2 . . . yj
...

...
...

...
yi�1 yi · · · yi+j�2

yi yi+1 . . . yi+j�1

yi+1 yi+2 . . . yi+j
...

...
...

...
y2i�1 y2i · · · y2i+j�2

3

777777777775

=


Y0|i�1

Yi|2i�1

�
=


Yp

Yf

�

(7.4)

where 1p
j

is the scaled factor, Yp stands for the past output matrix, Yf represents
the future output matrix. The key element of the data-driven SSI is the projection
of the row space of the future outputs into the row space of the past outputs.
This projection can be defined as:

Pi =
Yf

Yp

= YfY
T
p (YpY

T
p )

†Yp (7.5)

where (·)† represents the pseudo-inverse of a matrix.
The projection Pi can be factorised as:
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Pi = �iX0 =

2

66664

C
CA
CA2

. . .
CAi�1

3

77775

⇥
x0 x1 x2 . . . xi�1

⇤
(7.6)

where �i is the observability matrix, and X0 represents the Kalman filter state
sequence at time lag zero. With the help of the singular value decomposition
(SVD), the projection Pi can be further decomposed as:

Yi = USV T
=

⇥
U1 U2

⇤  S1 0

0 S2

� 
V T
1

V T
2

�
= U1S1V

T
1 (7.7)

The order n of the system can be determined by neglecting the smaller singular
values in S2, and the observability matrix �i and Kalman filter state sequence X0

can be estimated by:

ˆ

�i = U1S
1/2
1

ˆX0 = S1/2
1 V T

1

(7.8)

The system parameter matrices A and C can be obtained based on the estimated
observability matrix ˆ

�i:

A =

ˆ

�

†
i1
ˆ

�i2

C =

ˆ

�li

(7.9)

where ˆ

�i1 denotes ˆ

�i without the last l rows, ˆ�i2 represents ˆ

�i without the first l
rows, and ˆ

�li stands for the first l rows of ˆ�i.

Modal parameters The modal parameters are derived from the system pa-
rameter matrices A and C:

A =  [µi] 
�1

fi =
|�i|
2⇡

⇠i =
Re(�i)

|�i|
� = C 

(7.10)
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Figure 7.5: The stabilization diagram - The stabilization diagram is obtained
by setting the stable criteria as 5% for natural frequencies and MAC, in which the
stars represent stable physical poles, and the circles represent the spurious poles;
the background spectrum is derived from the PP method.

where  is the matrix of eigenvectors, µi are the discrete time poles, �i =
ln(µ

i

)
�T

are the continuous poles, fi are the natural frequencies, ⇠i are the damping ratios,
and � is the mode shape matrix.

7.3.2.2 The Stabilization Diagram

It is assumed that all the input forces of the SSI procedure are white noise and
the length of the recording is infinite. In practice, the measurements used for
SSI are limited, and usually contain some other dominant frequency components.
As shown in Eq. 7.5, the order of the system is obtained by ignoring the smaller
singular values, which is usually higher than the actual system order. All of
these factors may introduce spurious, numerical poles to the system. To address
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Figure 7.6: The stabilization diagram - The stabilization diagram is obtained
by setting the stable criteria as 5% for natural frequencies and MAC, and 50% for
damping ratios, in which the stars represent stable physical poles, and the circles
represent the spurious poles; the background spectrum is derived from the PP
method.

the physical and the spurious, numerical poles, the stability diagram [130] is
introduced. The basic idea of the stabilization diagram is to iterate the system
order n from a lower value to the maximum order. It is assumed that the lowest
order is unstable, so the modal parameters of the current order are compared with
those of one order lower. If the differences are under user-defined limits, then this
order is considered to be a stable order. The limits are defined as:

����
fk � fk�1

fk

���� < limf

����
⇠k � ⇠k�1

⇠k

���� < lim⇠

(1�MAC (k , k � 1 )) < limMAC

(7.11)
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where k > 1 denotes the modal order, f is the frequency, ⇠ is the damping ratio,
limf is the frequency limit, lim⇠ is the limit for the damping, limMAC is the limit
for the modal assurance criterion (MAC). The MAC value ranges from 0 to 1,
where 0 means that there is no similarity between the compared mode shapes,
and 1 means these two mode shapes are consistent. The MAC can be defined
as:

MAC (k, k � 1) =

|�H
k �k�1|2

(�

H
k �k)(�

H
k�1�k�1)

(7.12)

7.3.2.3 Experimental Settings on InfraWatch Dataset

To employ the SSI method for modal analysis, we select a dataset derived from 12
vibration sensors in the sensor network. The sensors are located at three cross-
section of four different girders, which are equally spaced in both longitudinal
and transversal directions.

The first activity to extract modal parameters from measurements with the SSI
method, is creating a Hankel matrix with 24 block rows (30 rows per block), and
3,377 columns. One key parameter for SSI is the order of the system. Because of
operational noise, it is impossible to obtain the system order precisely from the
singular value of the Hankel matrix projection. If the system order is estimated
with a lower value, some physical poles will be missed. Otherwise, spurious
numerical poles may appear. The stabilization diagram is useful to separate
physical poles from spurious numerical poles. In the stabilization diagram, the
system order is tested from a minimal order 2 to a maximum order of 30. The
physical poles are represented as stars and spurious poles are represented as
circles. We assume the initial status of each pole is unstable, e.g, the two poles
of mode order 2 are represented as circles.

The stable criteria are set as 5% for natural frequencies, and 5% for MAC. In prac-
tice, the damping ratios are difficult to be estimated accurately [131]. Shown in
Fig. 7.5, the stabilization diagram is obtained by just employing natural frequen-
cies and MAC stable criteria. The stabilization diagram in Fig. 7.6 is obtained
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7.3 Modal Parameter Extraction

Table 7.3: Modal Parameters.

Mode Mode shape Frequency (SSI) Frequency (PP) Relative error
1 Bending 2.51 Hz 2.61 Hz 4.0%
2 Torsional 2.81 Hz 2.90 Hz 3.2%
3 Bending & Torsional 5.74 Hz 5.75 Hz 0.2%
4 Bending 10.09 Hz – –
5 Torsional 11.47 Hz 11.41 Hz �0.5%
6 Bending & Torsional 11.99 Hz – –

by setting damping ratio criterion to a higher value (50%). Even when the stable
criterion for damping ratios is much higher than that of natural frequencies and
MAC, there is still one mode (around 2.51 Hz), that can be clearly observed from
the background spectrum (derived from the PP method to one of the selected
12 vibration signals), is mistaken as a spurious mode. In this experiment, we
exclude the damping ratio criterion from the stable criteria.

7.3.2.4 The Results of the SSI Method

The results of SSI method includes: natural frequencies, mode shapes and damp-
ing shapes. As illustrated in the stabilization diagram Fig. 7.6, damping ratios
obtained with the SSI method are unreliable, so we won’t further discuss them in
this chapter. The results of the first two parameters are listed as follows:

Natural frequency We make a comparison between the modes obtained with
the SSI method and the PP method, shown as Table 7.3. From both the table and
the stabilization diagrams, we notice that there is a high coherence between the
peaks in the spectrum and physical poles obtained with the SSI method. However,
with the SSI method, we can obtain more poles, e.g, the modes around 10 Hz
and 12 Hz, which are absent in the PP method, and there are some small peaks
in the spectrum that are identified as spurious modes, e.g, the modes between
0.7 Hz and 1 Hz.
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Figure 7.7: The first and the second mode shapes - The left picture shows
the mode shape of the first mode, which is the first bending mode. The right picture
shows the mode shape of the second mode, which is the first torsional mode.

Compared with the modes in Table 7.2, Table 7.3 has fewer modes. This is
because not all the modes of a bridge can be excited by a single traffic event at
the same time. The modes in the former table are derived from 149 truck events,
and the results in the latter table are derived from a single truck event.

Mode Shapes Fig. 7.7 to Fig. 7.9 show the first six mode shapes derived from
the SSI method. Because the sensor network just covers half of the bridge span,
the mode shapes of the unmeasured half span are modelled using the existing
measurements and structural knowledge.

7.4 The Influence of Environmental Factors

As mentioned in Section 7.1, modal parameters are not only sensitive to struc-
tural damage and degradation, but also to varying operational and environmental
loadings, which include traffic, wind, humidity and temperature. In this section,
we will look into the influence of temperature and vehicle mass on one of the
most important modal parameters: natural frequencies.

If we simply take the bridge as a Euler-Bernoulli beam, the vehicle and bridge
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Figure 7.8: The third and the fourth mode shapes - The left picture shows
the mode shape of the third mode, which is the first mixed mode, derived from the
combination of bending and torsional behaviour. The right picture shows the mode
shape of the fourth mode, which is the second bending mode.

Figure 7.9: The fifth and the sixth mode shapes - The left picture shows
the mode shape of the fifth mode, which is the second torsional mode. The right
picture shows the mode shape of the sixth mode, which is the second mixed mode,
composed of bending and torsional behaviour.

115



7. MODAL ANALYSIS

−10 −5 0 5 10 15 20 25 30
0

5

10

15

20

Temperature (°C)

Fr
eq

ue
nc

y 
(H

z)

Figure 7.10: Natural frequencies and temperature - This picture illustrates
a scatter plot between natural frequencies and temperature, in which natural fre-
quencies derived from free vibration periods of 983 truck events; the data covers a
period of more than two years, with a temperature range of 40 �C.

interaction system [132] can be modelled as a damped parallel spring mass system,
and each natural frequency fn of the system can be represented as follows:

fn =

1

2⇡

r
k

m
(7.13)

where k represents for the stiffness of the bridge, m represents the total mass
on the bridge. According to Peeter et al. [50], the temperature may have an
impact on the boundary conditions and the Young’s modulus of the material of
which the structure consists. The variation of temperature will cause changes
in the stiffness k of the bridge, and vehicles on the bridge will add to the mass
m. All these changes can be detected from the measurements collected from the
bridge.
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The dataset employed in this section covers a big time scale, ranging from January,
2009 to September, 2011. We select 5 minutes (100 Hz) at 1:00 AM from each day,
and extract truck events with long free vibration periods. Following the procedure
mentioned in Section 7.2, we obtain 983 truck events with free vibration periods
longer than 1,024 data points (10.24 seconds). The method employed for modal
analysis is the PP method, because of its simplicity and high coherence with the
advanced SSI method.

7.4.1 The Influence of Temperature

To look into the influence of temperature on natural frequencies, we employ the
free vibration periods of the selected 983 truck events. During the free vibration
period, the bridge has already been excited by the vehicle, but the weight of
the truck no longer influences the total bridge mass, so it helps to separate the
influence of temperature from the influences of other factors.

We choose a free vibration period of 2,048 data points (slightly over 20 seconds
long) from each truck event collected with a vibration sensor, and apply the PP
method for modal analysis. The temperature of the bridge is estimated by the
average value of one of the temperature sensors during the free vibration period.
Shown as Fig. 7.10, the temperature of our selected truck events ranges from
�8

�C to 32 �C, and there are clearly several modes within the first 20 Hz. By
zooming in the scatter plot, we find out that the mode between 2 and 5 Hz is
actually composed of two modes, so there are 7 modes visible in the scatter plot.
Generally speaking, the natural frequencies decrease with increasing temperature,
but the influence of temperature on different modes is not equal. To look into
the influence of temperature in detail, we fit each mode separately with a linear
regression model, shown as Fig. 7.12 to Fig. 7.181. The linear model can be
represented as:

f = a · t+ b (7.14)
1Note that the detailed plots of the modes show a discrete behavior along the Y-axis. This

is caused by the resolution of the spectrum resulting from the FFT operation. With an input
consisting of 2,048 measurements, the distance between frequency bins is 0.0488 Hz.
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Table 7.4: The coefficients of linear regression models between temperature and
natural frequencies.

Mode a b norm r
1 �5.551 · 10�4 2.678 9.188 · 10�4 0.188
2 �1.731 · 10�3 2.901 8.550 · 10�4 0.501
3 �2.852 · 10�3 5.651 8.069 · 10�4 0.736
4 �7.587 · 10�3 11.305 1.420 · 10�3 0.859
5 �1.741 · 10�2 15.387 3.692 · 10�3 0.868
6 �1.732 · 10�2 16.838 3.722 · 10�3 0.907
7 �9.277 · 10�3 18.676 2.201 · 10�3 0.868

in which a and b are coefficients, t stands for input (temperature), and f stands
for the predicted frequency. The goodness of fit is measured by the norm of
residuals as well as the correlation coefficient r. We give the definition of norm
of residuals, which is:

norm(d, 2) =

pPn
i=1 d

2
i

n
(7.15)

in which di stands for the difference between the ith predicted value and the ith ac-
tual value. The coefficients of each linear regression model are listed in Table 7.4,
and a scatter plot between coefficients a and b is illustrated in Fig. 7.11.

From these linear regression models, we can draw the following conclusions:

• All the natural frequencies decrease with increasing temperature.

• Different modes have different sensitivity to temperature.

• High-frequency modes are more sensitive to temperature than low-frequency
mode, except for the last two modes.

7.4.2 The Influence of Traffic Events

For short periods, the stiffness of the bridge can be assumed constant, and the
only factor influencing the natural frequencies is the mass of traffic. We assume
that when a truck is on the bridge, the mass of the bridge increases, and the
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Figure 7.11: Coefficients of linear models - The Y-axis stands for the first
coefficient (a) of the linear model; the X-axis stands for the second coefficient (b)
of the linear model
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Figure 7.12: The linear modal between the first mode and temperature -
The coefficients indicate that the first mode is practically insensitive to temperature.
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Figure 7.13: The linear modal between the second mode and temper-
ature - The coefficients indicate that the second mode is more sensitive to the
temperature than the first mode.
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Figure 7.14: The linear modal between the third mode and temperature
- The coefficients indicate that the third mode is more sensitive to the temperature
than the first two modes.
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Figure 7.15: The linear modal between the fourth mode and temperature
- The coefficients indicate that the fourth mode is more sensitive to the temperature
than the first three modes.
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Figure 7.16: The linear modal between the fifth mode and temperature
- The coefficients indicate that the fifth mode is more sensitive to the temperature
than the first four modes.
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Figure 7.17: The linear modal between the sixth mode and temperature
- The coefficients indicate that the sixth mode is less sensitive to the temperature
than the fifth mode, but more sensitive than the first four modes.
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Figure 7.18: The linear modal between the seventh mode and temper-
ature - The coefficients indicate that the seventh mode is more sensitive to the
temperature than the first four modes, but less sensitive to the fifth and sixth
modes.
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Figure 7.19: The influence of mass on all modes - This picture illustrates a
scatter plot of natural frequencies obtained with trucks on the bridge and during
free vibration periods.

natural frequencies should decrease. To verify the assumption, we apply DFT
to the periods when trucks are on the bridge and the periods of free vibration
respectively. As illustrated in Fig. 7.19, generally speaking, natural frequencies
obtained with vehicles on the bridge are less than those obtained from free vibra-
tion periods. To look into the influence of traffic mass on each mode, we make
a statistical analysis, shown as Table 7.5. In this table, ffree=mass indicates that
the frequency obtained during free vibration period is equal to the frequency ob-
tained with a vehicle on the bridge; ffree>mass indicates that the former frequency
is bigger than the latter frequency; ffree<mass indicates that the former frequency
is smaller than the latter frequency.

The statistical results in Table 7.5 meet well with the linear function illustrated
in Fig. 7.19, while the table reveals more details:

• In all the modes, most frequencies obtained with vehicles on the bridge are
equal to frequencies obtained with free vibration periods.

• The numbers in columns 3 and 4 indicate that the mass of vehicles influences
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Table 7.5: The statistical analysis of the influence of mass on each mode.

Modes ffree=mass ffree>mass ffree<mass

1 106 58 34
2 407 327 30
3 467 110 102
4 571 261 40
5 433 190 155
6 300 196 120
7 306 128 104

the frequencies of all the modes, some of which are positive (ffree>mass), and
some of which are negative (ffree<mass), and the positive numbers are bigger
than the negative numbers.

• The positive numbers in mode 2 and 4 are bigger than the negative numbers,
which indicates that these two modes are more sensitive to traffic mass.
Referring to Table 7.3, we further find that both of these two modes are
torsional modes.
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