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Chapter 6

Predefined Pattern Detection

6.1 Introduction

This chapter focuses on the problem of detecting instances of predefined patterns
in large time series data [28, 68]. While most pattern detection algorithms in time
series deal with discovering previously unknown, frequently recurring regularities
in the streaming data, here we assume that one or more example sequences (the
templates) are provided by a domain expert, and instances of these need to be
identified in the actual data. During this detection, one needs to allow for a
certain degree of difference between the template and the instances, for example
because the instance is somewhat longer or shorter in duration, the magnitude of
the signal is different, or parts of the signal are either stretched or compressed in
time (so-called warps).

Li Wei et al. [68] mention a number of use-cases that motivate the predefined
pattern detection problem. For example, in ECG monitoring, a cardiologist may
observe some interesting pattern that he or she wants to annotate, and flag any
future occurrences, to be investigated by the cardiologist or fellow experts. Alter-
natively, in insect pest control, one would like to observe specific cases of harmful
insects, as identified by specific patterns of audio signal (wing beats). In our ap-
plication to infrastructure monitoring, the predefined pattern detection problem
is relevant for specifying and detecting known disturbances in the data, that can
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6. PREDEFINED PATTERN DETECTION

then be removed from the signal, or accounted for in subsequent modelling steps.
For example, when monitoring the structural health of a bridge, the measured
signal is dominated by recurring and understandable peaks due to vehicles cross-
ing the bridge and traffic jams. One can imagine an expert providing a template
for each of theses phenomena, after which all instances should be identified, re-
gardless of the speed and weight of the vehicles (influencing the width and height
of the hump in the signal), or the duration of the traffic jam.

When matching a predefined phenomenon (a template [31, 33, 69]) with the time
series under investigation, it is not always required to involve every individual
measurement in the selected interval and in the template. In fact, when a certain
level of fuzzy matching is required, it makes sense to somehow simplify the signal,
or extract some key features that are characteristic for the sequence in question.
This condensed representation can then be used to compare the time series with
the template, both effectively (the matching is only based on the characteris-
tic aspects) and efficiently (no computation is wasted on insignificant details).
Specifically when large time series with high sampling rates are concerned, and
the matching is nontrivial due to warps, efficient representation methods can be
helpful. A considerable number of such methods have been proposed in the past,
including Symbolic Aggregate approXimation (SAX) [70], bit-level approxima-
tion [71], and Piecewise Aggregate Approximation (PAA) [72]1. In this chapter
specifically, we focus on the representation of time series by means of landmarks
[73] (also referred to as key-points [74], break-points [75] and change-points [76]),
which can be thought of as those points in the time series that are obviously
remarkable (peaks, valleys, inflection points, . . . ). Rather than matching every
detail of the data and the template, only the landmarks will be matched, and
subsequent landmarks will be checked for their relationship to one another.

We match the given template to the actual data in three steps. The first step
involves transforming the time series into a landmark sequence, which preserves
all the prominent features. The second step is landmark subsequence selection,
which is based on the constraints over the landmarks occurring in the template.
The third step is landmark model construction, which introduces trust feature

1A comprehensive list of representation methods for time series is given in Section 6.7.
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6.1 Introduction

and trust region to model the time series segments corresponding to the selected
landmark subsequence. Unlike most of the representation and similarity methods,
which are designed mainly for full sequence matching [28], our proposed approach
is capable of processing both full sequence and subsequence matching of various
length, while being less sensitive to noise, and being able to handle deformations
in both magnitude and temporal dimensions.

One of the challenges when extracting landmarks from actual data is the noise
and high-frequency vibrations that are included. An obvious step to get rid of
such distractions and to produce a set of meaningful landmarks is to convolve
the signal with a smoothing kernel. The question now becomes what level of
smoothing is appropriate for the template in question. Too much smoothing may
cause one to miss characteristic landmarks in the data, and too little smoothing
will cause an abundance of landmarks at every little disturbance in the data. We
propose an MDL-based solution to this challenge, that picks the correct smoothing
level. Minimum Description Length (MDL) [77, 78, 79] is an information-theoretic
model selection framework that selects the best model according to its ability to
compress the given data.

The contributions of this chapter are summarised as follows:

• It provides a general definition of a template for time series, which can be
represented by a landmark vector.

• It proposes the use of landmarks: a triple involving temporal, magnitude
and type information.

• It takes the relationship between landmarks within a landmark sequence as
constraints for landmark subset selection.

• It introduces the concept of a trust region from the image processing domain
[80] to time series to build a reliable template model, which could help to
detect the precise location of landmarks.

• It employs MDL [77, 78, 79] for selection of the right smoothing level for
landmark extraction.
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Figure 6.1: The continuous template and the discrete template - The sig-
nal in the top left picture is the time series. The curve in the top right picture is
a continuous template (more specifically a Gaussian), which is marked with land-
marks A, B, and C. The bottom left picture represent bird songs. The curve in the
bottom right picture is a discrete template, corresponding to one of the selected
subsequences, marked with landmarks A, B, . . . , M.

The rest of this chapter is organised as follows. Section 6.2 gives the definitions
of template and landmark, and specifies the task of predefined pattern detection.
Section 6.3 introduces the concept of landmark constraints. Section 6.4 intro-
duces landmark model construction based on continuous and discrete templates.
Section 6.5 uses MDL to select the optimal smoothing scale. Section 6.6 evalu-
ates the proposed method by applying it to artificial and real datasets. Section
6.7 gives a literature review of related work, followed by a conclusion in Section
6.8.

6.2 Preliminaries

In order to specify the exact predefined temporal pattern one hopes to find in
the time series, we define a template in one of two ways. In the first, continuous,
way, we assume that a temporal pattern is defined by a function that specifies
the shape of the pattern with infinite precision. In the second way, the discrete
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6.2 Preliminaries

one, a temporal pattern is defined by a sequence of values, for example obtained
by averaging a number of selected subsequences of interest.

Definition 5 A continuous template Hc is a function that can serve as a model
for subsequences of a time series

Hc(x) = fA(x)

where x is an integer, and f is a given function with coefficients A (for example
{µ, �} in the case of a Gaussian curve).

We demonstrate this type of template using an artificial dataset, shown as the
curve in the top left picture of Fig. 6.1. The shape of the recurring subsequence
can be modeled faithfully with a Gaussian function, an instance of which is shown
as the curve in the top right picture of Fig. 6.1. The matching subsequences are
identified by the bars below the graph.

Definition 6 A discrete template Hd is a time series that can serve as a model

Hd = (h1, h2, . . . , hk), hi 2 R

where k specifies the size of the subsequence. The recurring subsequences in the
bottom left picture of Fig. 6.1 (depicting bird songs [81]) are more complicated
than the patterns in the top left picture of Fig. 6.1. We could choose one sub-
sequence from the smoothed time series as a template, such that the discrete
template becomes the one shown on the bottom right.

6.2.1 Landmark Extraction

Although we expect the user to specify the predefined pattern in terms of a tem-
plate (be it discrete or continuous), we will not be matching the template directly
to the given time series. Rather, we intend to extract important landmarks [73]
from both the template and the time series, and use these to match more effi-
ciently and effectively. A landmark is defined as follows:
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Figure 6.2: Landmark extraction - The dark curve is part of the smoothed time
series. The dotted line is the scaled first derivative of the smoothed time series. The
points marked with letters are landmarks.

Definition 7 Given a time series T = (t1, t2, . . . , tn), a landmark is a remark-
able point in T, specified by a triple l:

l = (id,m, type), id 2 N,m 2 R

where id is the index of the landmark in the time series T: the landmark is located
at tid. m is the magnitude of the landmark, type is the peak type indicator, which
can be local extreme, inflection point or some other notable characteristic of the
time series at this point.

In later sections, we will be introducing landmark extraction methods, which pro-
duce a sequence L of landmarks from a given time series. Such a method, gener-
ally identified as a function E, can be applied to obtain a sequence of remarkable
points from a given time series, but equally, it can be used to produce such points
from a (discrete) template, as that is essentially a time series also.

Landmark extraction methods are typically application dependent. In general,
local extrema of a smoothed time series are good landmark candidates. They
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6.2 Preliminaries

are found by considering the zero-crossings of the first derivative of the series.
These zero-crossings (roots) correspond to the extrema in the time series, which
we assume to be of interest. The inflection points derived from the extrema
in the first derivative time series can also be considered landmark candidates.
Such landmarks can be found by looking at the zero-crossings of the second
derivative. A landmark sequence preserves the main features of the time series,
but significantly reduces its representation size. As shown in Fig. 6.2, the time
series segment with a length of 250 can be compressed to a landmark sequence
of only 7 elements. Note the importance of convolution with a smoothing kernel
(e.g. a Gaussian) in order to get rid of the noise, which would produce an over-
abundance of landmarks.

For each sequence of landmarks, there is a time series segment corresponding to
it, which is defined as:

Definition 8 Given a landmark sequence L = (l1, l2, . . . , lk) of length k, a land-
mark segment S of L is defined as a subsequence of time series T:

S = (s1, s2, . . . , sm) = (tstart, . . . , tend),

where tstart and tend are the data points indicated by indexs (id) of l1 and 1k.

6.2.2 Predefined Pattern Detection

With the definitions of templates and landmarks now established, we can proceed
by formally specifying the main task that we are concerned within this chapter,
as follows:

Definition 9 The task of Predefined Pattern Detection takes as input a time
series T, a (discrete or continuous) template H and a landmark extraction method
E�, and produces a sequences of matches M = (m0, . . . ,mk), where each mi is
an index in T where a match is found between the template and the subsequence
starting at mi.

Note the role of E� in this definition. As mentioned, we are not matching the
template to the time series directly, but rather extracting landmarks from both
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6. PREDEFINED PATTERN DETECTION

first, using E�. An important parameter in E is �, which determines the level of
smoothing applied to both the template and the time series. By smoothing, we
prevent noise from playing a role in determining what constitutes a landmark.
Of course, the level of noise (as opposed to the actual signal) depends on the
application, so for the moment we assume this as simply a parameter of the task.
In Section 6.5.1, we will describe how the MDL principle can be employed to
decide on a proper choice of �.

6.3 Landmark Constraints

In theory, for a given template landmark sequence of length n and a time series
landmark sequence of length m, there are m � n + 1 candidate landmark sub-
sequences. Compared with the subsequence candidates from the original time
series, the number has already been reduced a lot. However, there are still many
ways in which landmarks in the template can be matched with those in the time
series. In this section, we introduce landmark constraints to break the landmark
sequence into a number of meaningful landmark subsequences.

For a given template, the landmarks in its landmark sequence signify more than
just several data points obtained with landmark extraction methods. There are
two levels of constraint existing in the landmark sequence of the template:

1. The first level is local constraints. As defined in Section 6.2, each landmark
has three properties: index, magnitude and type indicator. We can set
constraints based on each landmark property.

2. The second level is global constraints. The number of landmarks within the
template landmark sequence determines the length of interesting landmark
subsequences: the relationship between properties of different landmarks
could form an even richer constraint-set.

For example, based on the template landmark sequence LH = {A, B, C} in the
top right picture of Fig. 6.1, the constraint-set can be set as follows:

• The length of landmark subsequences should be 3.
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6.4 Fitting Templates to the Data

• The first landmark A and the third landmark C should be valley points.

• The second landmark B should be a peak point.

• The magnitude of landmark B should be higher than the magnitude of A
and C.

• The relative magnitude Bm � Am should be higher than 0.8.

• The peak duration Cid � Aid should be longer than 50.

The thresholds of the above constraints should be general enough to include all
the potentially interesting patterns, and at the same time, they should be strict
enough to filter out false patterns.

6.4 Fitting Templates to the Data

In Section 6.2, a template is defined as either a continuous or discrete template.
According to the type of the template, we build two types of landmark models:
the continuous landmark model and the discrete landmark model.

6.4.1 Continuous Landmark Model

For a given continuous template Hc, and a landmark segment S, the continuous
landmark model LMc of the landmark segment S is an instance of the continuous
template Hc. The coefficient set A of the continuous template Hc can be obtained
by extracting features from the landmark subsequence of S.

For example, a Gaussian function is chosen as the continuous template Hc =

ae�(x�µ)2/(2�2) to model the bell-like landmark segments in the middle and right
pictures of Fig. 6.3. An instance of the template is shown as the curve in the left
picture of Fig. 6.3, which is marked with landmarks A, B and C. The template
is characterized with three features: �, the peak location µ and the magnitude
a. The peak location is derived from landmark B. � can be derived from the
temporal difference between any pair of landmarks, so there are 3 combinations
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Figure 6.3: The continuous landmark model - The curve in the left picture
an instance of the given continuous template, whose landmarks are A, B and C; the
dotted curves in the middle and right pictures are false continuous landmark models;
the dashed curves in the middle and right pictures are the improved continuous
landmark models based on trust features.

for the template landmark sequence. The magnitude a can be obtained from the
magnitude difference between the landmarks B and A, or that between B and
C.

Incorrect feature choices may lead to false landmark models: the dotted curve
LMc in the middle picture of Fig. 6.3 is a false landmark model caused by incorrect
choice of � (the temporal difference between landmarks C1 and A1 divided by 2);
the dotted curves in the right picture of Fig. 6.3 are false landmark models caused
by incorrect choice of magnitudes (the magnitude difference between landmarks
B1 and C1 for LM1c, and that between landmarks B2 and A2 for LM2c).

Trust feature To overcome the limitations existing in the continuous landmark
models mentioned above, we introduce the notion of trust feature. A feature is
considered to be a trust feature if it reflects the true characteristics of a given
landmark segment. Shown as the dashed curve in the middle picture of Fig. 6.3,
the improved landmark model LMimp is obtained by computing � from the tem-
poral difference between landmarks C1 and B1, which can be further improved by
selecting more reliable landmarks, such as inflection points. Similarly, we improve
the landmark models in the right picture of Fig. 6.3 by employing the magnitude
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Figure 6.4: The discrete landmark model - The curve in the left picture is the
given discrete template, which is marked with landmarks A, B and C; the segment
between the landmark B1 and C1 in the top middle picture is chosen as the trust
region; in the top right picture, the segment between the landmark A1 and B1 is
the trust region of the first landmark segment, and that between the landmark B2
and C2 is the trust region of the second landmark segment; the dotted curves in
the bottom left and right pictures are discrete landmark models simply obtained
with transformations of the given template; the dashed curves in the bottom left
and right pictures are improved landmark models based on the trust regions in the
top middle and right pictures.

difference between landmarks B1 and A1 for LM1imp, and that between landmarks
B2 and C2 for LM2imp, shown as the dashed curves.

6.4.2 Discrete Landmark Model

For a given discrete template Hd of length n and a landmark segment S of length
m, we model S through scaling Hd in both temporal and magnitude dimensions.
The temporal scale operation X-scale results in a new sequence LMX , whose
length is the same as that of the landmark segment.

LMX = X-scale(Hd,m, n), m, n 2 N
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6. PREDEFINED PATTERN DETECTION

X-ratio = m/n

If X-ratio > 1, the X-scale is an up-sampling operation, and if X-ratio < 1, the
X-scale is a down-sampling operation, otherwise, the LMX is the same as the
template H.

We continue to process the obtained model LMX with the magnitude scale op-
eration Y-scale, and obtain a landmark model LMY , which can be taken as a
primary approximation of the landmark segment S.

LMY = Y-scale(Hd,LMX)

Y-ratio = (max(S)�min(S))/(max(Hd)�min(Hd))

where LMY is obtained by first scaling LMX with a ratio Y-ratio, resulting in a
temporary model LMXY , then shifting along magnitude dimension by min(S)�
min(LMXY ).

Based on the transformations mentioned above, we can define the discrete land-
mark model as:

Definition 10 Given a landmark segment S = (s1, s2, . . . , sk) of length k, and
a discrete template Hd, the discrete landmark model LMd of S is a sequence
derived from transformations of the discrete template Hd:

LMd = Transf (S,Hd)

where Transf are the transformations defined above (X-scale and Y-scale).

The dotted curve LMd in the bottom left picture of Fig. 6.4 is a discrete landmark
model obtained by simply transforming the given template shown as the curve
in the top left picture of Fig. 6.4. The obtained landmark model indicates that
the left boundary of the landmark segment is incorrect, which is caused by the
false landmark A1. The gray curves in the bottom right picture of Fig. 6.4 are
two overlapping landmark segments, whose boundaries are correctly caught, but
their landmark models, shown as the dotted curves LM1d and LM2d, are still
incorrect. This is caused by the complex structure of the time series, which has
not been covered by the given template. To overcome all these limitations, we
introduce the notion of trust region.
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6.4 Fitting Templates to the Data

6.4.2.1 Trust Region

By assuming part of the landmarks within a landmark subsequence are reliable,
we can define the corresponding segment between these landmarks as the trust
region. Trust region is a concept borrowed from the field of image processing.
We introduce the concept into time series (or to be more precise, into the discrete
landmark model), and define it as:

Definition 11 Given a landmark segment S = (s1, s2, . . . , sn) of length n, and
its landmark sequence L = (l1, l2, . . . , lk) of length k, and assuming the segments
between landmarks li and lj (1  i < j  k) are influenced less by noise, then the
trust region of S is defined as:

Strust = (sa, . . . , sb), 1  a < b  n

where a is the index of landmark li in the landmark segment S, and b corresponds
to the index of landmark lj. The dashed curves in the bottom left and right pic-
tures of Fig. 6.4 are discrete landmark models obtained with the trust regions
given in the top middle and right pictures, which indicate that the trust regions
help to achieve improved discrete landmark models and updated landmark seg-
ments. The detailed procedure is illustrated in Algorithm 1.

The inputs of the algorithm are: a template H = (h1, . . . , hn) of length n, a
landmark segment S = (s1, . . . , sm) of length m, and their landmark sequences
(LH = (lh1, . . . , lhk) and LS = (ls1, . . . , lsk), respectively, both of length k).
The outputs of the algorithm are an improved landmark model and an updated
landmark segment.

A candidate trust region Hcand (identified by index and len) of the template and
the landmark segment Scand can be obtained with the Region(S,H, index, len)

operation, in which index is the index of the first landmark in LH and LS, and
len is the length of the subsequence. Based on these two parameters, we need
to obtain the indexes of the first and last data points of the candidate trust
regions in S and H. Assuming the corresponding indexes of H are a and b, and
that of S are c and d, the trust region of the template can be represented as
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6. PREDEFINED PATTERN DETECTION

Algorithm 1 The landmark model.
Require: a template H, and its landmark sequence LH of length k, a landmark

segment S, and its landmark sequence LS of length k.
Ensure: an improved landmark model LMimp and an updated landmark seg-

ment Sup

Scand = S, Hcand = H
[LMimp,Sup] = Model(S,Scand,H,Hcand)

simmax = Similarity(LMimp,Sup)

for len = 2 to k do
for index = 1 to k � len+ 1 do
[Hcand,Scand] = Region(S,H, index, len)

[LMtemp,Stemp] = Model(S,Scand,H,Hcand)

sim = Similarity(LMtemp,Stemp)

if sim > simmax then
simmax = sim

LMimp = LMtemp

Sup = Stemp

end if
end for

end for

Hcand = (ha, . . . , hb), and that of the landmark segment can be represented as
Scand = (sc, . . . , sd), respectively.

Based on the candidate trust regions Hcand and Scand, the associated landmark
model LMtemp and the updated landmark segment Stemp can be obtained with the
Model(S,Scand,H,Hcand) operation. The procedure of this operation is illustrated
as follows:

• Step 1: based on the candidate trust regions Scand and Hcand, we can obtain
a new sequence LMX with the X-scale operation:

LMX = X-scale(H, d� c+ 1, b� a+ 1)

• Step 2: following the same Y-scale operation procedure as mentioned above,
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6.5 Determining the Smoothing Level

we obtain a landmark model LMY :

LMY = Y-scale(H,LMX)

• Step 3: pruning the obtained landmark model LMY or fixing the landmark
segment S, we finally achieve a landmark model LMtemp and landmark
segment Stemp.

This step takes the segment, derived from the region Scand, in the temporary
landmark model LMY as reference. If LMY is longer than the landmark
segment S, we need to prune the temporary model, otherwise, fix the land-
mark segment.

Finally, the fit of each candidate landmark model is evaluated with the Similarity()
operation, which can be any of the choices as outlined in Chapter 2, most typically
a similarity function based on the Euclidean Distance.

6.5 Determining the Smoothing Level

As noted, the Predefined Pattern Detection task requires the specification of a
smoothing level, in order for the landmark detection to work effectively. When
smoothing a time series for landmark extraction, there is clearly a trade-off at
play. Smoothing too little will produce a time series that shows too many land-
marks, and smoothing too much will remove too much of the interesting signal,
such that important landmarks may be overlooked (see Fig. 6.5). In this section,
we tackle the challenge of setting an appropriate value for the smoothing scale �

in E�.

Our solution to this challenge employs the Minimum Description Length principle
[77]. The MDL principle states that, when choosing between several different
candidate models of the data, the one that produces the cheapest encoding is the
most desirable. In this context, the different candidate models are produced by
the different choices of smoothing scale �. In a nutshell, we consider a range of
values for �, applying landmark extraction E� to the smoothed time series. The
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Figure 6.5: Various levels of smoothing - The first picture shows the original
time series without any convolution; the second picture shows the smoothed time
series with a scale of � = 20, which still contains considerable noise; the third
picture shows the smoothed time series with � = 22, which suppresses the noise
and preserves the interesting patterns; the fourth picture presents � = 26, which
suppresses both the noise and some of the interesting features.
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idea of using MDL as a guiding principle to model various aspects of time series
data has been introduced before in [79, 82], but not with the specific intent of
selecting an appropriate choice of �.

6.5.1 Minimum Description Length

We concentrate on the two-part version of the MDL principle, which states that
the best landmark model LM to describe the time series T is the one that min-
imises the sum L(LM) + L(T | LM), where

• L(LM) is the cost, in bits, of the landmark model derived from the given
template.

• L(T | LM) is the length, in bits, of the description of the time series when
encoded with the help of the landmark model LM , that is the residual
information not represented by LM .

A good, detailed model that catches most features of the target dataset leads to
a low cost of L(T | LM), but a good model also means a higher cost compared
with a simple model. Therefore, a trade-off between model fit and its complexity
is guaranteed by considering the size of the encoding. This property prevents the
MDL method from overfitting.

Before we calculate L(LM) and L(T | LM), we first need to discretise the land-
mark segment. We assume that the values ti of the input time series T have
been quantised to a finite number of symbols by employing the function defined
below:

Q(ti) =
j
(ti �min(T))/(max(T)�min(T)) ·N

k
�N/2

where N , assumed to be even, is the number of bins to use in the discretisation
while min(T) and max(T) are respectively the minimum and maximum value in
T. Throughout the rest of the chapter, we assume N = 256, in correspondence
with similar work on MDL in time series [79, 82]. One question that might arise
is if such a quantisation removes meaningful information from the time series. In
[82], the authors show that the effect of quantisation is rather modest on several
time series from various domains.
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6. PREDEFINED PATTERN DETECTION

6.5.1.1 Encoding of the Model

We will first discuss the encoding of the landmark model LM , which is derived
from a given template. In the time series, the cost for encoding the landmark
model is composed of two parts: the index and the model parameters. The loca-
tion of any landmark segment candidate is less than the total length of the time
series T, so it can be encoded with log2 n bits. Assuming there are m parameters
for each model (for a continuous landmark model, m stands for the number of
coefficients; for a discrete landmark model, m is the cost of transformations), and
each parameter can be modelled with b bits, the total cost can be obtained by
summing up these two parts:

L(LM) = k · (log2 n+mb)

where k is the number of landmark segments in the time series that meet the
landmark constraints.

6.5.1.2 Encoding the Data

The second part of MDL, L(T | LM), represents the residual information after
subtracting the landmark model LM from the time series T. To encode this part,
we first need to introduce the notion of entropy.

Definition 12 The entropy of a time series T, discretised according to a set of
values D, is defined as below

Entropy(T) = �
X

v2D

P (ti = v) log2 P (ti = v)

where ti stands for the ith element in the time series T, P log2 P = 0 in the case
of P = 0, and P (ti = v) indicates the fraction of points in the time series which
has value v.

Given the definition of entropy, we can define the description length of the second
part of MDL as follows:
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Definition 13 Given a time series T of length n, the description length of L(T |
LM) (in bits) is given by

L(T | LM) = n · Entropy(T | LM)

6.5.2 Smoothing Level Selection

For assessing a candidate smoothing level with parameter �, we can simply take
the corresponding smoothed landmark segments, which meet the landmark con-
straints, as landmark models, and obtain a residual by subtracting the obtained
models from the original time series. We need two parameters (the indexes of the
first and last data points of a landmark segment) to identify a landmark model.
Assuming there are r interesting landmark segments under a smoothing scale �,
the landmark model cost L(LM) becomes:

L(LM) = 2r · log2n

The second MDL part L(T | LM), according to Def. 13 is represented as:

L(T | LM) = n · Entropy(T �
i=rX

i=1

Tsi)

where Tsi is the ith smoothed landmark segment.

For a given template and time series, we assume that the optimal degree of
smoothing is the one that leads to the minimal total MDL cost.

6.6 Experiments

To show the effectiveness of the proposed method, we apply it to three different
datasets, which ranges from artificial dataset to real-life datasets (traffic and
ECG signals). We divide each dataset into two parts: training dataset and test
dataset. The training dataset is used to detect the right smoothing scale and
landmark constraints, then these obtained parameters will be applied on the test
dataset.
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Figure 6.6: Predefined pattern detection from an artificial dataset - The
grey curve in the top picture is an original artificial dataset composed of 100,000
data points; the black curve in the top picture is the time series smoothed with the
smoothing scale � = 23; the black curve in the bottom left picture is an instance
of the selected template, which is a Gaussian function, marked with landmarks A,
B, C; the black peaks in the bottom right picture are the detected patterns in a
fragment of the whole dataset.

6.6.1 Artificial Dataset

We begin with testing the method on an artificial dataset, which is obtained by
combining Gaussian peaks, random high-frequency noise and a slowly fluctuating
baseline. The Gaussian peaks are the interesting patterns we want to detect.
Shown as the grey curve in the bottom right picture of Fig. 6.6, the artificial
dataset is composed of 100,000 data points, including 481 useful Gaussian peaks.
We take the first 20,000 data points as the training dataset, which includes 104
interesting patterns, and take the remaining 80,000 data points as the testing
dataset, which includes 377 interesting patterns.

As we have a function to describe the pattern of interest, we use a continuous
template (Gaussian function) here, an instance of which is shown as the bottom
left picture of Fig. 6.6. The template can be marked with 5 landmarks, in which
A and C are the begin and end points; B is the data point that has the maximum
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Figure 6.7: The smoothing scale for an artificial dataset - This picture
shows a scatter plot between smoothing scale and MDL score, in which the fourth
smoothing scale corresponds to the minimal MDL score.

magnitude in the template. We utilise the first-derivative method to extract
landmarks from the artificial dataset. Because the first-derivative method is
sensitive to noise, we cannot apply it directly to the raw dataset. We first smooth
the raw dataset with the convolution method mentioned in Section 6.5.1, and then
transform the smoothed dataset to a landmark sequence.

We calculate MDL scores based on a smoothing scale candidate set {20, 21, 22,
. . . , 211}, and choose the scale with the minimal MDL score as the right smoothing
scale, which is 2

3 in this case, shown as Fig. 6.7. The landmark constraints that
succeed in identifying all the 104 interesting patterns in the training dataset are
chosen as the target landmark constraints, as follows:

• The length of landmark subsequences should be 3.

• The first and last landmarks should be valley points.

• The second landmark should be a peak point.

• The peak magnitude should be no less than 0.15.

Based on the obtained smoothing scale and landmark constraints, we detect 380
landmark segments, 377 of which are true peaks, and the remaining 3 landmark
segments are caused by noise. The precision of the continuous landmark model
is thus 99.2%, and the recall is 100%.
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Figure 6.8: Traffic event detection from a traffic dataset - The grey curve in
the top picture is the raw strain signal collected from one strain sensor installed on
a highway bridge; the black curve in the top picture is the strain signal smoothed
with the smoothing scale � = 24; the black curve in the bottom left picture is the
selected discrete template, marked with landmarks A, B, C, D and E; the black
peaks in the bottom right picture are landmark models.

6.6.2 Real-life Traffic Dataset

In this section, we apply a discrete template to a real-life traffic dataset collected
at the Hollandse Brug. We select a piece of strain signal at 100 Hz of 1 hour at
3:00 AM to detect traffic events, which is composed of 360,000 data points. Using
the video record of this period, we label the traffic events as cars or trucks. We
take the first 60,000 data points as the training dataset, including 23 cars and 6
trucks, and the remaining 300,000 data points as the test dataset, including 150
car events and 14 truck events.

Following a similar MDL-based procedure as in the previous experiment, the
smoothing scale is determined as 2

4
= 16, shown as Fig. 6.9. The black curve in
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Figure 6.9: The smoothing scale for a traffic dataset - This picture shows
a scatter plot of MDL score as a function of smoothing scale, in which the fifth
smoothing scale corresponds to the minimal MDL score.

the top picture of Fig. 6.8 is the smoothed curve under this optimal smoothing
scale. We select the 6 trucks in the smoothed training dataset for template
construction. In order to select the most representative sequence to act as the
template, we actually employ MDL as a model selection framework. The truck
data that leads to the minimal MDL score (on the training data) is chosen as the
discrete template, shown as the peak in the bottom left picture of Fig. 6.8.

The testing dataset is smoothed with a � = 16 Gaussian kernel and the landmark
constraints are set as:

• The length of landmark subsequences should be 5.

• The first and last landmarks should be valley points.

• The second and fourth landmarks should be inflection points.

• The third landmark should be a peak point.

• The peak magnitude should be no less than 0.44.

Based on the obtained smoothing scale and landmark constraints, we manage
to catch 170 landmark segments in the test data: 14 of which correspond to
truck events (as validated through the video of the bridge), 150 of which corre-
spond to car events, and the remaining 6 landmark segments are caused by noise.
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Figure 6.10: The QRS complex detection from an ECG dataset - The
grey curve in the top picture is an ECG dataset taken from a real patient, the black
curve is a smoothed time series; the curve in the bottom left picture is a discrete
template of the QRS complex, which is composed of a R wave and a S wave, and
can be marked with four landmarks A, B, C and D; the thick black segment between
landmarks B and D is chosen as the trust region; the black peaks in the bottom
right picture are landmark models, one of which is a false pattern.

The precision of the continuous landmark model is thus 96.5%, and the recall is
100%.

Our algorithm is quite fast. To give an indication of the efficiency on this rela-
tively large dataset, the total running time was 4.47 seconds on the test set (2.51
seconds for landmark subsequence selection and 1.96 seconds for the landmark
models).

6.6.3 ECG Signal

The electrocardiogram (ECG) signal is used to measure the electrical activity of
the (human) heart [83]. A single heart beat is typically composed of 5 deflections,
called the P, Q, R, S and T wave, in which the Q, R and S waves are often consid-
ered together as the QRS complex, because they are closely linked. Note that not
every QRS complex contains all the three wave elements, and any combination of
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these waves can also be referred to as a QRS complex [84]. Accurately recognising
the QRS complex and distinguishing them from the other noise sources such as
P and T waves is a critical technology for many clinical instruments [85].

In this section, we choose an ECG dataset of 20,000 data points from [86], which
is collected at a frequency of 250 Hz. We take 2,000 data points as the training
dataset, which consists of 13 QRS complexes, and the remaining 18,000 data
points as the test dataset, containing 106 QRS complexes. Since there is only
little noise in the original time series, the optimal smoothing scale comes out as
� = 2

0 (see also the top picture of Fig. 6.10).

We take the 13 QRS complexes in the training dataset for template construc-
tion. The curve in the bottom left picture of Fig. 6.10 is selected as the discrete
template. The template can be represented using four landmarks, which are ex-
tracted with the first-derivative method. The landmarks B and D are the least
sensitive to disturbances, so the landmark segment between these two landmarks
is selected as the trust region, shown as the bottom left picture in Fig. 6.10.
Based on the training dataset and smoothing scale, the landmark constraints are
set as:

• The length of each landmark subsequence should be 4.

• The first and third landmarks should be valley points.

• The second and the fourth landmarks should be peak points.

• The magnitude of the second landmark should be the highest one in the
landmark subsequence.

• The magnitude of the third landmark should be the lowest one in the land-
mark subsequence.

• The temporal difference between the last and the first landmark should be
less than 25.

• The magnitude difference between the second and the third landmark should
be less than 2.
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Based on the obtained smoothing scale and landmark constraints set above, we
manage to catch 107 landmark segments: 103 of which are true QRS complexes,
4 of which are false QRS complexes, and 3 true QRS complexes are missing. The
precision of the continuous landmark model is thus 96.3%, and the recall is 97.2%.
Fig. 6.10 shows one instance of such a false detection, between time points 7,200
and 7,300.

This figure also demonstrates the purpose of landmark models. Note that the
detection of predefined patterns (the core of our work) produces a list of consec-
utive landmarks for each instance of the template detected. When visualising an
instance in the actual data, pointing out the landmarks in question is of limited
interest. By means of the landmark models, the matching of the template to the
actual data can be determined (including unreliable segments of the data), such
that the transformed instance of the template can be overlain on the time series,
as is demonstrated in the figures in this section.

6.7 Related Work

In this chapter, we have presented three concepts that have been extensively used
in image matching fields: templates [87, 88], landmarks [88, 89] and trust regions
(or trust features) [80].

Template matching can be used for face detection [90], duplicate document de-
tection [91] and motion classification [92]. The concept of template has been
introduced to time series to detect specific patterns or shapes [31, 33, 69, 93, 94].
Frank et al. [94] propose Geometric Template Matching (GeTeM) which uses time-
delay embeddings for building models from segments of time series and compares
the reconstructed dynamical systems in terms of their state space as well as their
dynamics. In [93], a novel and flexible approach is proposed based on segmental
semi-Markov models. In [31, 33, 69], meaningful templates are constructed with
shape-based averaging algorithms, such as Prioritized Shape Averaging (PSA)
[69] and Accurate Shape Averaging (ASA) [31]. Wei et al. propose the Atomic
Wedgie method “that exploits the commonality among the predefined patterns
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to allow monitoring at higher bandwidths, while maintaining a guarantee of no
false dismissals” [68]. Most of the proposed methods are mainly designed for full
sequence matching, which are ineffective in detecting predefined patterns from
streaming time series.

Landmarks can be used to break time series into meaningful segments, and a
template can be featured by a vector of landmarks. Landmarks are also referred
to as key-points [74], break-points [75] and change-points [76]. Perng et al. [73]
propose a feature-based technique called the landmark model, which uses land-
marks instead of the raw data for processing. A two-level representation [74] is
proposed to recognise gestures, using both local and global features. In prac-
tice, the reliability of each landmark varies with its location. To the best of our
knowledge, this hasn’t been mentioned in the literature.

It has been pointed out by researchers that some unspecified portions of streaming
time series should be ignored [81, 95] to achieve a better result, which means
some data points have nothing to do with predefined patterns, and should be
filtered out. Ye and Keogh [96] propose a new time series primitive, time series
shapelets, for time series classification. The shapelets are informally defined as
the subsequences that are in some sense maximally representative of a class.
This method is interpretable and accurate in classifying static time series [97],
but is ineffective in handling streaming time series. Inspired by these works, we
introduce trust region (trust feature) into streaming time series to obtain a more
reliable landmark model.

A number of representation methods have been developed in the literature to re-
duce the dimensionality of time series, such as Discrete Fourier Transform (DFT)
[25], Single Value Decomposition (SVD) [98], Discrete Wavelet Transform (DWT)
[99]. There are also some researchers who employ symbolic representations, such
as Symbolic Aggregate approximation (SAX) [70] and bit-level approximation
[71]. Features extracted from time series carry summarized information of the
time series [27, 100], which can represent the original time series concisely [101],
and are less sensitive to noise [102], so the feature extraction operation can also
be used to reduce dimensionality (reduce the size of the data), such as Amplitude-
Level Features (ALF) [103], characteristic-based clustering (CBC) [100]. Some
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representations are based on piecewise techniques, such as Piecewise Linear Ap-
proximation (PLA) [75], Piecewise Aggregate Approximation (PAA) [72], Adap-
tive Piecewise Constant Approximation (APCA), Derivative Time Series Segment
Approximation (DSA) [101, 104] and Piecewise Vector Quantized Approximation
(PVQA) [105, 106]. Some representations aim to keep both local and global infor-
mation about the original time series, such as Multi-resolution Vector Quantiza-
tion (MVQ) approximation [107] and multi-resolution PAA (MPAA) [108].

Next to the representation methods, a number of similarity measures have been
proposed [24], of which the Euclidean Distance (ED) [25, 26] is the most com-
mon [27, 28]. However, when shifting and temporal distortions exist in the given
subsequences, the ED is proven to be ineffective [28]. To handle stretching and
compression along the temporal dimension, Dynamic Time Warping (DTW) [30]
was proposed, which achieves an optimal temporal alignment through detecting
the shortest warping path in a distance matrix [24, 31, 32, 33]. Finding the
shortest warping path is a non-trivial problem, whose computation complexity
can reach O(n2

), where n is the number of data points. To speed up the com-
putation of DTW, some lower bounding constraints, like LB_Keogh [32, 36] and
the Ratanamahatana-Keogh Band [37], have been introduced to prune expen-
sive computations, which can reduce the complexity to O(n). There are also
some other edit-based methods proposed to handle outliers and noise [24], such
as Longest Common Subsequence (LCSS) [109], Edit Distance with Real Penalty
(ERP) [110] and Edit Distance on Real sequence (EDR) [111]. However, most
of the proposed methods focus mainly on temporal deformations [93], which are
inadequate in dealing with shifting and scaling in the amplitude dimension [28].
Consequently, Spatial Assembling Distance (SpADe) [28] is proposed to handle
shifting and scaling in both the temporal and amplitude dimensions.

6.8 Conclusion

Predefined pattern detection from streaming time series is a quite challenging
topic, because it is not only sensitive to noise, but also sensitive to temporal and
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magnitude deformations. A number of representation and similarity measure
methods have been proposed to approximate interesting subsequences, but most
of them are mainly designed for full sequence matching, and are ineffective when
the disturbances mentioned above exist. Based on MDL, we smooth the streaming
time series with a reasonable scale, and construct a template from the smoothed
training time series. The template stands for the pattern of interest that we want
to extract from the streaming time series. To carry out this task, we proposed
a three-stage representation method, which first transfers the time series into a
landmark sequence, and then utilizes the constraints within a template landmark
sequence to select promising landmark subsequences of interest patterns, finally
employing the trust region (or trust feature) to model candidate patterns. Most
of the existing feature-based methods just focus on the quality of models, and pay
little attention to the reliability of candidate patterns. Our landmark model over-
comes this problem by transferring the template in both temporal and magnitude
dimensions according to trust regions (or trust features).
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