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Chapter 5

Baseline Correction

5.1 Introduction

With recent advances in monitoring capabilities and hardware solutions, more
and more civil structures are being fitted with a sensor network. Based on the
collected data, a number of Structural Health Monitoring (SHM) methods have
been developed to assess the condition of structures. Most of these methods
assume that damage and degradation will affect the physical properties of the
structure, such as their mass and stiffness [43]. These fundamental changes in
the structure will manifest themselves in important parameters of the structure,
notably resonance frequencies, mode shapes, and damping ratios [44, 45]. How-
ever, in practical applications, modal parameters are also subject to varying oper-
ational and environmental conditions such as traffic, humidity, wind [7, 46], solar
radiation and, most importantly, temperature [7, 47, 48, 49].

Considerable research effort has been devoted to distinguishing changes caused by
the environmental variability from those due to structural damage or degradation
[3, 43, 45, 50, 51, 52], but unfortunately, investigations studying the operational
variability (the effect of varying traffic load on key parameters) have been mostly
lacking. Even for environmental influences, for example the temperature-effect
on strain measurements, one can model in detail the response to temperature
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Figure 5.1: The influence of temperature on the strain signal - A linear
model between the strain and temperature signals with a length of one day.

changes, but not to a sufficient degree for some applications. For reliable perfor-
mance of SHM systems, it is of vital importance to filter out the effects of both
environmental and operational influences.

The approach we take in this chapter, is to identify two components of the signal:
a slowly fluctuating baseline due to gradual environmental effects, and a rapidly
changing signal superimposed on the baseline that is due to short-term, transient
effects, such as traffic. As was demonstrated before, the baseline in the strain
signal is strongly dependent on the daily temperature effects, as well as some
medium-term events such as traffic jams (recognisable as temporary jumps in
strain). Superimposed on this gradual effect are the peaks that represent indi-
vidual vehicles. For various SHM applications, identifying the baseline, or simply
removing it, is a crucial step. For the basic operation of traffic event identifica-
tion, for example to compile daily traffic load statistics, recognising peaks over a
baseline is an essential step. But also for more sophisticated applications, such
as extracting modal parameters from free-vibration periods (the several seconds
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5.1 Introduction

of unloaded shaking after heavy traffic has passed), require exact identification
of the baseline [53]. Note that especially modern SHM systems need to deal with
the long-term baseline drift, as they tend to monitor structures around the clock,
if not around the calendar, such that baseline correction will require considerable
attention.

Baseline correction A baseline is not a fixed physical phenomenon, but rather
something that depends on the application, and therefore subject to definition.
The most common way to define what constitutes the baseline, and what the
signal, is in terms of time scale. Essentially, any long-term effect belongs to the
baseline, and any short-term effect to the signal.

In the example data of Fig. 5.1, most of the undesirable drift in the signal is
caused by changes in outside temperature, as indicated by the black line (scaled
in this picture to match the strain signal). Clearly, the strain gauge has captured
the response of the bridge to this temperature change, but the effect of outside
temperature (and in fact all other weather parameters) is non-trivial, such that
we cannot simply remove this effect from the strain signal. Another source of
disturbance in the bridge case is the occasional traffic jam (for example around
4 and 8 PM), which temporarily shifts the signal upwards, in response to the
increased weight on the bridge. Note that traffic jams are often only on one side
of the bridge, so that traffic in the opposite direction still is showing up as peaks
in the signal.

For a range of SHM applications, including traffic identification and modal anal-
ysis, strain gauge measurements are a vital resource [53, 54, 55]. However, as
Fig. 5.1 demonstrates, strain signals are subject to large baseline fluctuations not
directly relevant to such applications. In fact, in most cases the range of fluctua-
tions that can be considered part of the baseline is often substantially larger than
the actual short-term dynamic behaviour that the strain gauges are designed to
capture. For that reason, any non-trivial application will first need to deal with
identification of the baseline, and correction thereof.
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Figure 5.2: Comparison of several piece-wise baseline correction methods
- The length of each window is 1000 data points (10 seconds). The baseline of each
window is assumed to be a constant value, which is either obtained by calculating
the mean value (the dashed line), the minimum (the dash-dotted line), the median
value (the dotted line), or the most-crossing value (the solid black line). Baselines
of two adjacent windows are connected using linear interpolation.

Significant work has been done with nuclear magnetic resonance (NMR) signals
as well as for standardising electrocardiogram (ECG) signals, but to the best of
our knowledge, it has received little attention in the civil engineering domain.
In this chapter, we present a novel baseline correction method, the most-crossing

method, for processing strain signals in civil SHM applications. The most-crossing
method has only a few manual parameters, and can be used automatically for
real-time baseline correction. This method is designed to extract useful peaks
from signals under conditions of high frequency noise and baseline drift. It can
deal with peaks of irregular shapes and random distributions.

In the coming sections, we will first present the procedure of the most-crossing
method, and then apply this method to practical signals and compare its perfor-
mance with some other popular methods.
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5.2 The Most-Crossing Method

5.2 The Most-Crossing Method

The proposed most-crossing method is a piece-wise method, which employs a slid-
ing window, like all piece-wise baseline correction methods. The sliding window
is an interval in time of size L that is slid over the time series. The size L is de-
termined by the actual application. Within a sliding window, we can assume the
baseline to be a constant value. What defines a specific piece-wise method is how
this constant value is determined from the data within the window. There are
several common choices for this value, such as using the mean, the median or the
minimum value. These solutions may work well with simple signals, but cannot
process complex signals, like the strain signal shown in Fig. 5.2. The mean and
median value method weigh each measurement equally, whether part of a peak
or not, so the detected baseline is unstable in heavy traffic. The minimum value
method is useful when all the peaks are upward, but it will cause distortion if the
direction of peaks is mixed. Motivated by the disadvantages of these choices, we
introduce the most-crossing method to extract the baseline.

The most-crossing method is based on the probability density function (PDF).
The method is a four-step procedure: baseline recognition, baseline modelling,
traffic jam detection and baseline removal.

5.2.1 Baseline Recognition

We assume that the data points within a sliding window are composed of two
kinds of data points: ‘noise points’ and ‘peak points’. A peak point is defined
as a data point that corresponds to dynamic excitation of the structure, in our
case traffic events. The remaining data points are noise points, which contribute
to the baseline of the sliding window. Normally, the probability distribution of
these two kinds of data points are different, so we can use the PDF for baseline
recognition.

The PDF of a continuous random variable is a function that describes the relative
likelihood for this random variable to take on a given value. The PDF is non-
negative everywhere, and its integral over the entire space is equal to one [56].
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Figure 5.3: The kernel smoothed probability density function - The PDF
is derived from the same dataset as Fig. 5.2; the most-crossing point is the first
peak of the kernel smoothed PDF.

For discrete variables, such as sensor readings, the PDF is often estimated by a
histogram. To construct a histogram, we first compute the range for the data set,
and then divide it into a number of equal intervals, also known as ‘bins’. The
PDF is estimated by counting the number of points that fall within each interval.
Although a histogram is a simple way to estimate the density, it is known to
depend a lot on exact parameter choices and is sensitive to artefacts. To alle-
viate these problems, we adopt the more sophisticated kernel density estimation
(KDE).

The KDE ( ˆfh(x)) is a non-parametric way to estimate the PDF (f(x)), which
can be represented as Eq. 5.1.

ˆfh(x) =
1

nh

nX

i=1

K

✓
xi � x

h

◆
(5.1)

where K(·) is a kernel function that integrates to 1; h is a smoothing parameter
called the bandwidth; xi is the ith point in the equally spaced amplitude interval;
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5.2 The Most-Crossing Method

n is the number of portions used to divide the amplitude interval.

In the KDE, there are two important parameters: the kernel function and the
bandwidth. There is a range of kernel functions, including Gaussian, uniform,
biweight, etc. Due to the convenient mathematical properties, Gaussian kernels
are the most often adopted. The bandwidth of the kernel exhibits a strong in-
fluence on the KDE. The optimal bandwidth is the one that minimises the mean
integrated squared error (MISE). Under the asymptotic conditions, the MISE can
be approximated as follows [57, 58]:

MISE (h) ⇡ 1

nh

Z
K(x)2dx+

h4

4

✓Z
x2K(x)dx

◆2 Z
f

00
(x)2dx (5.2)

By replacing MISE (h) with zero, we can obtain a solution to the equation of
(5.2), which is the optimal bandwidth. To obtain a concrete value for the opti-
mal bandwidth, we must replace the unknown density f with an estimate. The
data points contributing to the baseline are dominated by random noise and free
vibration waves, so we empirically estimate the PDF f with the normal distribu-
tion N(µ, �2

). The optimal bandwidth ˆhopt can be represented as Eq. 5.3, which
is known as Silverman’s rule of thumb [58]:

ˆhopt =

✓
4�̂5

3n

◆ 1
5

⇡ 1.06�̂n�1/5 (5.3)

where �̂ is the standard deviation of the samples.

Based on the optimal bandwidth and the assumed normal distribution, we can
obtain a kernel-smoothed PDF, shown as the picture in Fig. 5.3. There are
several peaks in the PDF of the selected signal, and each peak stands for the
density distribution of one kind of signal component. The first peak in the PDF
corresponds to values of the baseline (in this case around 31 micro-strain). We
take the most-crossing point, the maximum value of the first peak, as the value
of the baseline.
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Figure 5.4: The reason for traffic jam detection - The baseline without traffic
jam detection (left) and the baseline with traffic jam detection (right).

5.2.2 Baseline Modeling

By moving the sliding window point by point, we can obtain the baseline for the
whole signal immediately. But this method is too time consuming and unnec-
essary in most situations. To detect the baseline more efficiently, we move the
sliding window with a user-defined overlap. The downside of this process is that
it may cause discontinuities. To solve this problem, we employ linear interpola-
tion to modify the last part of one sliding window baseline and the first part of
the next sliding window baseline. This modelling method makes no assumption
about the shape or functional form of the baseline, but works well even when the
SNR is high. The baseline obtained by such a procedure is called a raw baseline,
because traffic jams have not been considered in this step.

5.2.3 Traffic Jam Detection

When a traffic jam occurs, we expect a baseline that looks as Fig. 5.4 (right),
which catches the boundaries of traffic jam well. In practice however, the baseline
obtained with the procedure mentioned above often looks like the left figure in
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Figure 5.5: The traffic jam detection - The threshold for triggering the traffic
jam detection procedure, which is set as the sum of the mean value (MEAN ) and
standard deviation (STDEV ) of sliding window slopes.

Fig. 5.4, which has the problem of representing boundaries well. We solve this
boundary problem with the aid of slopes of two successive windows.

When the traffic on the bridge is normal, the baseline of the strain signal varies
only slightly, and the absolute slope values of sliding windows are also relatively
small. However, when a traffic jam occurs, the baseline of the strain signal will
jump to a higher value within a short time period, shown as the right part of the
top picture of Fig. 5.5. If we plot slope values against time (shown as the bottom
picture of Fig. 5.5), the traffic jam will cause a slope peak between two sliding
windows. If the absolute value of a peak is above a certain threshold, a traffic jam
detection procedure will be triggered (see Fig. 5.6). The threshold is dependent
on the target data set. Here, for one day’s dataset collected at 100 Hz, we set the
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Figure 5.6: The traffic jam boundary detection - A and D are middle points of
two successive sliding windows. The bottom-crossing line is a horizontal line across
the middle point A. The top-crossing line is a horizontal line across the middle
point D. The turning point B is the last intersection between the bottom-crossing
line and the strain signal. The turning point C is the first intersection between the
top-crossing line and the strain signal.

threshold as the mean plus one standard deviation of all slope values.

The boundary problem happens between the points A and D (in Fig. 5.6), which
are middle points of two successive windows. We draw a bottom-crossing line
across the middle point A = (xa, ya), and a top-crossing line across the middle
point D = (xd, yd). The traffic jam turning point B is now defined as (xb, ya),
where xb is the last time between A and D that the signal crosses the horizontal
line defined by y = ya. The baseline between the turning points B and C is
now simply made to follow the actual signal. The baseline between A and B
is obtained with the normal most-crossing method. Point C and the associated
baseline between C and D are produced in analogous fashion.
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5.3 Experimental Evaluation

5.2.4 Baseline Removal

This step is quite straightforward. We just need to subtract the obtained baseline

from the original signal.

5.3 Experimental Evaluation

We apply our most-crossing method to the InfraWatch strain signal to remove

the baseline, and compare its performance to the first derivative method and the

iterative polynomial fitting method. As discussed, strain gauges are not only

sensitive to vehicles, but also to temperature and traffic jams. We employ a

dataset with a length of 24 hours (8.64 million measurements), which is infor-

mative enough to include all important events. The dataset is the same as the

one used in the top picture of Fig. 5.5, in which the baseline wander is caused by

temperature changes, the small spikes stand for vehicles and the big jumps are

caused by traffic jams.

In Fig. 5.7, we first present an overview of three different baseline correction

methods on the selected dataset: the black solid line in the left picture shows the

baseline obtained with our most-crossing method, which fits the baseline drift

quite well. The black solid line in the middle picture stands for the baseline

derived from the first derivative method (Dietrich’s method [59]), in which out-

liers are detected through checking their adjacent points. This is insufficient for

detecting outliers in our strain signal. The last picture illustrates the baseline

obtained with a 20-order polynomial fitting, which moderately fits the baseline

drift caused by temperature changes, but fails to catch the drift induced by traffic

jams. In the coming sections, we will look into some detailed performances of

these methods.
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Figure 5.7: The comparison between three different baseline removal
methods - The most-crossing baseline (left) is derived from a sliding window with
length of 1 minute (6,000 data points). The first derivative baseline is obtained
with a classification threshold of MEAN +3 ·STDEV , and a false baseline segments
threshold of 150 data points. The polynomial baseline is obtained by a 20-order
polynomial fitting.

5.3.1 Baseline Removal over a Short Period Signal

For a detailed analysis, we select a dataset of 1 minute (6,000 data points) around
midnight, when the traffic is not too heavy. The selected interval includes one
truck and several cars.

The most-crossing method Within such a small dataset, we can simply
choose the window size the same as the length of the dataset. The minimum
strain is 10.84 micro-strain, the maximum strain is 19.04. The strain interval
[10.84, 19.04] is divided equally into 100 bins, for estimating the density of strains.
The optimal bandwidth ˆhopt is 0.153. Based on Eq. 5.1, we obtain an estimator
of the signal PDF. The most-crossing value 12.35 is then taken as the baseline
(Fig. 5.8 (left)). After subtracting the baseline from the signal, we obtained a
signal that preserves all the useful peaks but has a more meaningful centering on
the Y-axis (Fig. 5.8 (right)).

The first derivative method We carry out a similar analysis with the first
derivative method introduced by Dietrich et al. [59]. We first apply a Gaussian
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Figure 5.8: The most-crossing baseline over a short period signal - The
baseline derived from the most-crossing method (left) and the baseline removed
signal (right).
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Figure 5.9: The first derivative baseline over a short period signal - The
baseline obtained by just checking adjacent points (left) and the baseline obtained
by correcting noise segments whose lengths are less than 150 data points.
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Figure 5.10: The polynomial baseline over a short period signal - The
baseline derived from a 3-order polynomial fitting (left) and the baseline derived
from a 20-order polynomial fitting (right).

filter to smooth the original signal, and then calculate the derivative by replacing
every point in the signal with the difference between this point and the next point.
The automatic threshold used to classify data points is set as MEAN+3·STDEV .
For the outlier detection step, by just checking two neighbours of a data point,
we obtain the baseline shown in the left picture of Fig. 5.9, from which we can see
that most of useful peaks are assigned to the baseline. We improve this result by
correcting short noise segments into peak segments. By changing noise segments
of less than 150 data points into peak segments, we obtain an improved baseline,
shown as the solid black line in the right picture of Fig. 5.9. The improved baseline
is good for processing signals with sharp peaks, but still performs moderately with
broad and overlapping peaks.

The iterative polynomial method We also apply the improved iterative
polynomial fitting method [60] to the same dataset. We assume the initial fitting
result equals to the original signal, and employ a low order (3) polynomial (left
picture of Fig. 5.10) to fit the original signal with the least-squares criterion. If the
elements in the original signal are bigger than the elements in the obtained fitting
result, then we replace them with the latter. The original signal is truncated
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iteratively until the criterion of convergence, shown as Equation 5.4, is reached.
We repeat the same procedure with a 20-order polynomial. The fitting result is
shown in the right picture of Fig. 5.10.

kbk � bk�1k
bk�1

< 0.001 (5.4)

where bk and bk�1 are polynomial fitting results at the kth and (k�1)th iteration,
respectively. At iteration 0, b0 is the original signal y0.

For a given order, the iterative polynomial method aims to generate an optimal
fitting with the least-squares criterion, which considers all the data points in the
dataset equally. From the results in Fig. 5.10, we can clearly see that neither a
low nor a high-order polynomial can fit the baseline well.

5.3.2 Baseline Elimination for Traffic Jams

In this section, we will consider the baseline elimination during traffic jams. Traf-
fic jams, which may last from a few minutes to a couple of hours, typically happen
during rush hour. In most cases, traffic jams happen just on one side of the bridge,
while on the other side of the bridge, traffic flow is normal. So the sensors on the
bridge may collect information about traffic jams and traffic events at the same
time. The dataset for this section, which covers 1 hour (360,000 data points),
contains a traffic jam of about 10 minutes on one side of the bridge.

The most-crossing method We employ a sliding window to move along the
selected dataset. The window size is also set as 1 minute (6,000 data points),
with no overlap between successive windows. Without traffic jam detection, false
traffic peaks (boundary problems) will occur around the boundaries of the traffic
jam, shown as the left picture of Fig. 5.11. By empirically setting the traffic jam
threshold as MEAN +STDEV of all slope values within this period as described
in Section 5.2, we solved the boundary problem (shown as the right picture of
Fig. 5.11).
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Figure 5.11: The most-crossing baseline for traffic jam signal - The traffic
jam baseline before solving the boundary problem (left), and the baseline after
traffic jam detection (right).

The first derivative method We process the traffic jam signal with the same
first derivative method mentioned above. The automatic threshold used to clas-
sify data points is set as MEAN + 3 · STDEV . We first detect the baseline with
Dietrich’s method, which eliminates outliers through just checking two neigh-
bours of a data point. The obtained result, shown as the left picture of Fig. 5.12,
can catch the traffic jam moderately, but it still suffers from broad peak and
traffic jam boundary problems. We then improve the result by correcting the
false noise segments (the lengths of which are less than 150 data points). The
improved result, shown as the right picture of Fig. 5.12, can substantially reduce
the problems mentioned above, but cannot overcome them completely.

The iterative polynomial method For the iterative polynomial method, the
most critical parameter is the order of the polynomial. The higher order we use,
the more detail can be caught. To show two extremes, we employ a low order
(1 degree) polynomial and a high order (25 degree) polynomial to iteratively fit
the traffic jam signal. As shown in Fig. 5.13, the low order polynomial can catch
part of the baseline of the normal traffic periods, but fails to detect the traffic
jam, and the high order polynomial cannot deal with the traffic jam either.
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Figure 5.12: The first derivative baseline for a traffic jam signal - The
first derivative-based baseline obtained by just checking adjacent points (left) and
the baseline obtained by correcting noise segments whose lengths are less than 150
data points (right).
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Figure 5.13: The polynomial baseline for traffic jam signal - The baseline
derived from the 1 degree polynomial (left) and the 25 degree polynomial (right).
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Table 5.1: Vehicle information of 7 days.

Day Car Van Truck Total
Monday 2,647 987 265 3,899
Tuesday 2,611 1,023 324 3,958
Wednesday 2,610 1,021 302 3,933
Thursday 2,725 1,073 292 4,090
Friday 2,742 1,088 290 4,120
Saturday 2,750 303 24 3,077
Sunday 2,389 124 12 2,525

5.4 Baseline Correction Applied to Traffic Count-
ing

Traffic event statistics on a bridge are of vital importance in assisting bridge
managers to evaluate the condition of the bridge and implement a maintenance
plan. The top picture of Fig. 5.14 shows the strain signal of 7 days, during
the period from Monday Dec 8, 2008 to Sunday Dec 14, 2008, based on which
we will estimate the traffic load for this period. A dataset of 7 days sampling
at 100 Hz means a huge computational burden. To make it work on our PC,
we down-sample the dataset to 1 Hz, which will not affect the statistical result,
because traffic events are low frequency components of the strain signal (below
1 Hz).

Traffic events appear as peaks in the strain signal, with varying amplitudes and
durations (depending on weight and speed of the vehicles). To extract these
features, we need to get rid of the moving baseline first. Since the signal is
sampled at 1 Hz, we employ a sliding window of length 60 data points (1 minute).
The traffic jam trigger threshold is set as the sum of the mean value and 3 times
the standard deviation of slope values, as shown in the middle picture of Fig. 5.14.
When the absolute slope value of two sliding windows is above the threshold, the
traffic jam detection procedure is fired, and the traffic jam is recognised as part of
the baseline. The baseline-free signal in the bottom picture of Fig. 5.14 is obtained

60



5.4 Baseline Correction Applied to Traffic Counting

0 1 2 3 4 5 6 7
0

20

40

60

0 1 2 3 4 5 6 7
0.1

0

0.1

0 1 2 3 4 5 6 7

0
5

10
15
20

Time (Days)

A
m

pl
itu

de

strain signal
the most crossing baseline

slopes of sliding window
±(MEAN+3*STDEV)

Figure 5.14: Traffic event statistics of 7 days (During the period between
Dec 8, 2008 and Dec 14, 2008) - Top picture: the strain signal of 7 days at 1 Hz
and its baseline obtained with the most crossing method. Middle picture: the slope
values of adjacent sliding windows (with length 60 data points) and the threshold
lines for triggering traffic jams, which are set as the mean plus 3 times standard
deviation. Bottom picture: the strain signal without baseline drift.
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Table 5.2: The traffic jam statistics of 7 days.

Traffic jam Start Duration Day
(Hour) (Minute)

1 10:12 7.4 Monday
2 9:32 1.2 Tuesday
3 10:19 19.9 Tuesday
4 9:31 2.2 Wednesday
5 9:55 1.4 Wednesday
6 10:07 1.8 Wednesday
7 10:27 1.9 Wednesday
8 10:48 72.1 Wednesday
9 22:16 113.2 Wednesday/Thursday
10 3:18 13.6 Thursday
11 8:31 4.8 Thursday
12 9:31 14.3 Thursday
13 21:56 22.4 Thursday
14 6:45 129.4 Friday
15 10:22 2.7 Friday

by subtracting the baseline in the top picture from the original strain signal.
With the traffic event identification method presented in our previous work [53],
we obtain 108,161 peaks from the baseline-free signal, with location, amplitude
and duration. We assume that, based on the peak amplitude, these peaks can be
divided into 4 categories: noise, car, van and truck, and the last three categories
are interesting for us, which are mentioned as useful peaks. The clustering method
employed in this work is the k-means method [61], which aims to divide all the
obtained peaks into k clusters. The k-means uses squared Euclidean distances,
and the distance between two objects within the same cluster is smaller than that
of two objects in different clusters. By setting k as 4, 25,602 peaks are classified as
useful peaks, and the remaining 82,559 peaks are classified as noise. The detailed
information of useful peaks is listed in Table 5.1.

Based on the vehicle statistics results, we learn that the number of vehicles on
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work days is considerably more than that of weekends; within one day, cars form
the majority of traffic events. During the weekends, the number of vans and
trucks is reduced sharply, while the number of cars is only slightly reduced.

As shown in the Table 5.2, we recognised 15 traffic jams (there are also 15 traffic
jams existing in the video data of this period), the durations of which range
from 1.19 minutes to 129.40 minutes. All the traffic jams occur on weekdays,
and weekends are traffic jam free. Most traffic jams happen during rush hour of
the workday, but there are also exceptions, like the 9th traffic jam, which lasted
nearly two hours around midnight. Through checking the video record, we found
out that the bridge was under substantial maintenance during this period.

5.5 Related Work

Baseline correction techniques have been extensively discussed in the literature
since the 1970’s [62]. Schulze et al. [4] conducted an excellent literature review
and comparison of various baseline-removal methods. Most of the techniques
can be divided into two groups: time-domain methods and frequency-domain
methods. In the frequency domain, the baseline is assumed to be represented
by the low frequency components. The peaks of interest belong to the medium
frequency components, and the independent noise is usually distributed among
medium and high frequency components. The wavelet transform [63] and the
Fourier transform [64] are two common methods in this domain. When the
spectral components are complicated, it is difficult to differentiate the baseline
from others with a Fourier transform. Utilising the wavelet transform, we have to
make great efforts to choose a mother wavelet, decomposition level and coefficients
to remove. Improper selection may lead to baseline extraction failure.

There are more baseline correction methods developed in the time domain. The
median filter method was first introduced by Friedrichs [65] to deal with the
baseline drift in nuclear magnetic resonance (NMR) spectra. This method takes
the median value in a sliding window as the baseline. Through properly choosing
the window size, the median filter will ignore the peaks of interest, and just focus

63



5. BASELINE CORRECTION

on the points in the baseline. As shown in Fig. 5.2, this method works well with
low signal-to-noise ratio (SNR) spectra with narrow peaks, but cannot handle
broad peaks or high SNR spectra.

The iterative polynomial fitting method [60, 66] assumes that the baseline can
be estimated by a low order polynomial. Under a given polynomial order, a
suitable polynomial is obtained by fitting the original signal with the least squares
criterion. The fitted polynomial can be used as automatic threshold to truncate
the original signal. Iterative processes are implemented on the truncated signal
until the criterion of convergence is reached. One drawback of this method is that
the order of the fitted polynomial should be chosen appropriately. If the order is
too small, the baseline cannot be detected correctly. On the other hand, if the
order is too large, the peaks of interest may be fitted into the baseline, which can
also lead to distortions.

Since the slopes, the differences of successive points, of the baseline are generally
lower than those of useful peaks, we can employ the first derivative [59, 64] or
the second derivative method [67] to get rid of the baseline. The first derivative
method first uses a moving average filter to suppress the high-frequency noise in
the original signal, and then calculates the derivative by replacing every point in
the signal with the difference between this point and the next point. The sum of
the mean value plus three times the standard deviation is chosen as a threshold
to iteratively divide the data points in the signal into two groups: baseline and
peaks, until no data points change groups. According to this method, if one single
data point belongs to the baseline, and both of its neighbours do not, then this
point is put back to the baseline. The advantages of the derivative methods are
that they are fast and suitable for automation. But they can be unstable when
peaks are broad or overlap happens.

5.6 Conclusion

In this work, we proposed the most-crossing method as a method for detecting
the baseline in sensor data from civil engineering applications. The most-crossing
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method combines the notion of a sliding window with the probability density func-
tion. Within one window, the random noise and traffic events cannot be treated
equally, because just the former contributes to the baseline. Traditional base-
line correction methods (like the polynomial or first derivative method) consider
all the data points in the window equally, so they are unsuitable for baseline
correction in the civil engineering domain. The most-crossing method is also ca-
pable of processing traffic events of bigger scales, like traffic jams, which is of
vital importance for engineers or bridge owners to study the dynamic loads on
the bridge. We have evaluated the most-crossing method on datasets of multiple
scales, and compared its performance with existing popular baseline correction
methods. The results indicate that the most-crossing method is superior in deal-
ing with baselines of strain signals in the civil engineering domain. At the end of
the work, we apply the most-crossing method to a big data set of one week, and
succeed in obtaining the traffic events distribution during that period.
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