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Chapter 2

Preliminaries

2.1 Background

In this chapter, we will review and explain a number of concepts to help better
understand subsequent chapters. We begin by giving definitions related to the
sensors involved in the sensor network, and then introduce concepts related to
datasets collected with sensors.

In the InfraWatch project, a sensor network consisting of 145 sensors is employed.
These sensors are placed along three cross-sections of a single span of the bridge1.
Each of the sensors is either embedded in the concrete, or attached to the outside
of the deck and girders. To measure the forces in different directions on the bridge,
we utilize sensors of different types: vibration sensors measure vertical motion of
the bridge, and strain gauges measure horizontal strain caused by deflection of
the bridge. To measure the temperature of different parts of the bridge, we also
employ multiple temperature sensors. To formalise this placement, we define each
sensor as follows:

Definition 1 (Sensor) A sensor is a tuple (type, x, y, e, o), where type 2 {St ,Vi ,
Te} indicates the sensor type (strain, vibration, and temperature, respectively),

1The bridge has multiple spans, but they are identical in design, and independently con-
structed.
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x and y are its coordinates on the bridge, e 2 {embed, attach} indicates whether
the sensor is embedded or attached to the concrete, and o 2 {X-axis, Y -axis}
indicates the orientation of the sensor.

The sensor network is collecting data at 100 Hz, and each sensor in the network
produces a sequence of data-points, which forms a time series of measurements.
We define a time series as:

Definition 2 (Time Series) A time series T is an ordered sequence of n real
values

T = (t1, t2, . . . , tn), ti 2 R

in which ti 2 R stands for the ith item in the sequence collected by a sensor. In
this thesis, we will often also refer to data produced by a single sensor over time as
a signal. When we speak of a signal, we are typically interested in general aspects
of the data (such as the main frequency), whereas when we speak of a time series,
it typically refers to a specific sequence of data measured over a specific interval
of time.

Instead of the whole time series, in some cases, we are more interested in part
of a time series. For example, given a time series recording traffic events of one
whole day, we may just want to know the traffic situation during rush hour. Here
we define a piece of a given time series as a subsequence, and define it formally
as:

Definition 3 (Subsequence) Given a time series T = (t1, . . . , tn) of length n,
a subsequence S of T is a series of length m  n consisting of contiguous data
points from T

S = (tk, tk+1, . . . , tk+m�1), 1  k  n�m+ 1

In the following sections, we will introduce some operations related to the concepts
mentioned above.
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Figure 2.1: A signal in the time domain - The pictures illustrate a simulated
signal (A) and its components (B, C, D) in the time domain.

2.2 Fourier Transform

The top picture (A) in Fig. 2.1 shows a signal in the time domain, which is
sampled at 100 Hz (100 data points each second). As mentioned in the previous
chapter, the signal can be generally decomposed into three components: a low
frequency component (B), a high frequency component (C) and random noise
(D). One method that is used to convert a signal from the time domain to the
frequency domain, essentially extracting spectral information from the signal, is
the Discrete Fourier Transform (DFT) [19]. The transform is defined as:

Definition 4 (Discrete Fourier Transform (DFT)) Given a sequence of N
samples {x0, x1, . . . , xN�1}, the Discrete Fourier Transform is defined as:

Xk =

N�1X

n=0

xn · e�i2⇡kn/N k 2 Z

in which Z are integers [20].
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Figure 2.2: A signal in the frequency domain - The pictures illustrate a
simulated signal (A) and its components (B, C, D) in the frequency domain.

An efficient way to implement DFT is the Fast Fourier Transform (FFT) [21].
With the FFT, the signals in Fig. 2.1 can be transformed into four spectra, as
shown in Fig. 2.2. Spectrum A corresponds to signal A, which consists of two
dominant peaks, corresponding to the two components present. The components
B and C are noise-free signals, so the corresponding spectra consist of single
peaks. Component D is a non-periodic signal, so there are no clear peaks in its
spectrum D.

2.3 Convolution

Apart from the subtle degradation of the structure which we ignore for the mo-
ment, a bridge can be viewed as a Linear Time-Invariant (LTI) system [22]. Here,
time-invariant indicates that the nature of the response of the system does not
change over time. LTI systems are linear because their ‘output’ is a linear com-
bination of the ‘inputs’. The behaviour of an LTI system with single input signal
x(n) and single output signal y(n) can be represented as a discrete convolution
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Figure 2.3: Graphical illustration of convolution - The top picture is the
impulse response signal. The middle picture illustrates the flip operation. The
bottom picture demonstrates the shift operation, which is obtained by shifting the
flipped impulse response signal by 2 to the right.

integral [23], which is defined as:

y(n) = (x ⇤ h)(n) =
1X

k=�1

x(k)h(n� k) (2.1)

in which h(n� k) is impulse response signal. The convolution summation can be
graphically interpreted as a combination of two operations: a flip and shift. For a
given impulse response signal h(k), shown as the top picture in Fig. 2.3, we first
flip the impulse response signal (the middle picture in Fig. 2.3), then shift the
flipped impulse response signal with n data points (the bottom picture in Fig. 2.3
is obtained by shifting the flipped h(k) by 2 to the right).
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Figure 2.4: Convolution for low-pass filtering - The top picture is the input
signal. The middle left curve is a small Gaussian kernel with � = 2. The middle
right curve is a big Gaussian kernel with � = 8. The bottom graphs show the
corresponding resulting signals using the small and big kernel. Note how the big
kernel has a larger influence on the resulting signal, and most of the high-frequency
component has been removed from the signal.

If the system is considered to be a filter, the impulse response signal is called
a filter kernel. One of the widely used kernels is the Gaussian kernel, which
resembles a “bell curve”. The normalised Gaussian kernel is defined as:

G(�, x) =
1p
2⇡�2

e�
x

2

2�2 (2.2)

where the parameter � controls the width of the “bell”.

The Gaussian kernel can be used for low-pass filtering. Shown as the pictures
in Fig. 2.4, the input signal X is the same signal as the top picture in Fig. 2.1.
When the input signal X is convolved with a small Gaussian kernel h1 (� = 2),
the output signal y1 preserves both the low and middle frequency components,
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while suppressing the influence of high frequency noise. When the input signal
X is convolved with a big Gaussian kernel h2 (� = 8), the output signal y2 only
preserves the low frequency component.

2.4 Similarity Measurement

Given two time series (or subsequences) of interest, we may want to know how
similar they are. A number of similarity measurements have been proposed [24], of
which the Euclidean Distance (ED) [25, 26] is the most common [27, 28]. Given
two time series P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn), their ED-based
similarity can be obtained by comparing local point values. The ED between P

and Q can be defined as:

D(P,Q) =

vuut
nX

i=1

(pi � qi)2

The advantage of the ED is that it is simple and efficient. When the given time
series are well aligned, like the left picture in Fig. 2.5, the ED works well. However,
the ED is sensitive to scaling, and when shifting and temporal distortions exist in
the given time series, like the right picture in Fig. 2.5, it is proven to be ineffective
[28] as a similarity measure.

Time series might still be intuitively similar even though each series might be
subject to a certain scaling. In this situation, the similarity can still be cap-
tured with the so-called correlation measures. The most well-known, Pearson’s
correlation coefficient [29] is defined as:

r =
n
P

piqi �
P

pi
P

qip
n
P

p2i � (

P
pi)2

p
n
P

q2i � (

P
qi)2

The correlation coefficient r is always between �1 and 1, where 1 means that
the two series are a strict linear function of one another, 0 means that they are
completely uncorrelated, and �1 means that they are perfect opposites. Although
this correlation also suffers from temporal shifting and distortions, it is invariant
to scaling and translation (in the domain of measurement).
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Figure 2.5: Euclidean Distance. - The left picture demonstrates the ED be-
tween two aligned time series T1 and T2; the right picture illustrates the ED be-
tween two shifted time series T3 and T4, where ED fails to capture the intuitive
similarity.
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Figure 2.6: Dynamic Time Warping. - The left picture shows the DTW
between two shifted time series T3 and T4; the right picture illustrates the ac-
cumulated distance matrix and the optimal matching path (a square-chain going
through light grey cells), between time series T3 and T4.
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To handle shifting, stretching and compression along the temporal dimension,
Dynamic Time Warping (DTW) [30] was proposed, which achieves an optimal
temporal alignment, shown as the left picture in Fig. 2.6, through detecting the
shortest warping path in an accumulated distance matrix [24, 31, 32, 33], shown
as the right picture in Fig. 2.6. Given two time series P = (p1, p2, . . . , pn) and
Q = (q1, q2, . . . , qm), the element r(i, j) in the accumulated distance matrix [34]
is defined as:

r(i, j) =

8
>>>><

>>>>:

d(p1, q1) i = 1, j = 1

d(pi, q1) + r(i� 1, 1) j = 1, 1 < i  n

d(p1, qj) + r(1, j � 1) i = 1, 1 < j  m

d(pi, qj) + min{r(i� 1, j � 1), r(i� 1, j), r(i, j � 1)} 1 < i  n, 1 < j  m

where d(i, j) is the distance found in the current cell, which can be chosen from
several metrics, such as p-norms [35] (when p is 2, the distance becomes the Eu-
clidean distance), and r(i, j) is the cumulative distance of d(i, j) and the minimum
cumulative distances from three adjacent cells.

Finding the shortest warping path is a non-trivial problem, whose computation
complexity is O(n2

). To speed up the computation of DTW, some lower bounding
constraints, such as LB_Keogh [32, 36] and the Ratanamahatana-Keogh Band
[37], have been introduced to prune expensive computations, which can reduce
the complexity to O(n).

In Chapter 6, we propose a novel pattern detection method, based on landmarks
and constraints. The method is capable of extracting predefined patterns effi-
ciently, and is robust to temporal and magnitude deformations.
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