
A Versatile Tuple-Based Optimization Framework
Rietveld, K.F.D.

Citation
Rietveld, K. F. D. (2014, April 10). A Versatile Tuple-Based Optimization Framework. ASCI
dissertation series. Retrieved from https://hdl.handle.net/1887/25180

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/25180

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/25180

Cover Page

The handle http://hdl.handle.net/1887/25180 holds various files of this Leiden University
dissertation

Author: Rietveld, K.F.D.
Title: A versatile tuple-based optimization framework
Issue Date: 2014-04-10

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/25180

CHAPTER 5

Forelem Extensions for Aggregate
Queries

This chapter proposes a method to express aggregation queries as forelem loop
nests. An aggregation query is characterized by function calls into different stages
of the aggregate function. These stages are defined, such that they can be used
from an forelem loop nest to implement an aggregation query. Subsequently, be-
fore we can discuss group-by queries which depend heavily on aggregation, we
introduce a syntax for working with the distinct keyword found in SQL. Typically,
duplicate elimination is performed as the last operation during query evaluation.
We propose that under several conditions, the distinct operation might be moved
into the index sets eliminating the separate loop for duplicate elimination. Finally,
we introduce a strategy for expressing group-by queries. We show that there are
many opportunities to apply the transformations proposed in Chapters 3 and 4.
In some cases it is possible to reduce the group-by query to a single forelem loop
nest.

5.1 Expressing Aggregate Functions

An aggregate function typically has three stages: initialization, update and final-
ization. The stages serve to initialize any variables, update the variables for each
tuple that is processed and to come to a final result. Not all aggregate functions
have to implement all three stages. For example, to implement the COUNT aggre-
gate, it is sufficient to implement initialization (to set the accumulator variable to
zero) and update. To implement AVG it is also necessary to implement the finaliza-
tion stage to perform the division of the sum.

For use within forelem loop nests we supply the following functions which
represent the stages of an aggregate function:

• agg_init (handle, agg_func) initializes the given handle with the given
aggregation function.

80 Forelem Extensions for Aggregate Queries

• agg_step (handle, agg_func, value) performs the step stage on the given
handle, with the provided aggregate function and value derived from the
current tuple.

• agg_finish (handle, agg_func) finishes the aggregate computation.

• agg_result (handle) returns the computed aggregate value for the handle.

At a later stage in optimization, these functions are replaced with inline variants of
the called aggregate function. For the COUNT aggregate this means that agg_init
is replaced with an assignment of the value zero to a variable to initialize the
computation, agg_step is replaced with a simple value increment and agg_finish
is replaced with a no-op. By inlining the actual operations, the forelem loop nests
can be further optimized.

Let us consider the query

SELECT AVG (S.age)
FROM Sailors S

which performs the average aggregate function. We write this query as a forelem
loop nest as follows using the 4 functions representing the aggregate stages:

agg_init(agg1, avg);

forelem (i; i ∈ pS)
agg_step(agg1, avg, S[i].age);

agg_finish(agg1, avg);

R = R ∪ (agg_result(agg1))

When we append a WHERE clause to this query, for example WHERE S.rating = 10,
it is sufficient to replace the use of the index set pS in the forelem loop with
pS.rating[10]. Inlining the code performing the different stages of the aggre-
gate function, we obtain:

agg1.sum = 0;

agg1.count = 0;

forelem (i; i ∈ pS)
{
agg1.sum += S[i].age;

agg1.count++;

}
agg1.result = agg1.sum / agg1.count;

R = R ∪ (agg1.result)

From this code sample it is clear that the loop body computes the sum of the vec-
tor consisting out of all age fields in S (the entire table S is iterated by index set
pS). Similarly, the length of this vector is determined by incrementing the count
variable in the loop body. We described in Section 1.1 that vectorizing compilers
will recognize this pattern as reduction operator. The loop thus presents a vec-
torization opportunity for the optimizing compiler after the forelem code has been
translated to C code. Without inlining, this opportunity would not have appeared.

5.2. Specification of distinct 81

5.2 Specification of distinct

Before we can describe how group-by queries are expressed as a forelem loop nest,
we have to introduce syntax for handling DISTINCT. When the DISTINCT keyword,
referred to as a set quantifier, is specified, redundant duplicate rows will be elim-
inated from the result table [45]. The keyword always operates on full tuples and
it is not possible to perform distinct on a single specified column.

Given a temporary table T , pT .distinct specifies the index set on T that
contains unique rows. Duplicates are not present in this index set. Corresponding
to the SQL standard [45], the duplicate elimination is performed on the result
table. Let us consider the query:

SELECT DISTINCT S.sname, S.age
FROM Sailors S

This results in:

forelem (i; i ∈ pS)
T = T ∪ (S[i].sname, S[i].age)

forelem (i; i ∈ pT .distinct)
R = R ∪ T [i]

In certain cases, it is possible to eliminate the loop iterating over the unique rows
of the result set. For this particular example, the loop over S does not have any
conditions on pS. This makes it possible to perform the distinct operation when
iterating over pS. Important is that this operation is applied on just the sname and
age fields which are subsequently projected into the result table, instead of on the
full tuples. If the operation is performed on the full tuples, tuples with equal sname
and age but different values for the other fields of the table will still be duplicated
in the result table.

The distinct syntax assumes by default that the distinct operation should be
applied to all fields of the table. To limit the operation of the distinct keyword to
specific fields, one can suffix a tuple of field names to the specification of distinct
in the index set.

For our example this means that we suffix the distinct keyword with the fields
sname and age. This results in the following condensed representation of the same
query:

forelem (i; i ∈ pS.distinct(sname,age))
R = R ∪ (S[i].sname, S[i].age)

We observe that by applying this transformation, the second loop has been elim-
inated. Naturally, the reverse transformation is also possible. By moving dis-
tinct back into a separate loop, application of other transformations is enabled
that would otherwise be prevented due to the presence of distinct in the index set.

Note that elimination of the second loop for performing duplicate elimination
is not always advantageous. Duplicate elimination is an expensive operation that
is preferably applied on a table which is as small as possible. In certain cases, mov-
ing distinct into an index set is beneficial, specially when the operation is moved

82 Forelem Extensions for Aggregate Queries

to be applied on a smaller table, or when distinct is contained in a pre-computed
index set.

The correctness of this transformation can be verified using relational algebra1.
The original loop nest, with an additional loop for eliminating the duplicates, is
expressed as:

δ(πsname,age(S))

In terms of relational algebra, we will express the distinct keyword suffixed with
specific fields as a projection operation on these specific fields followed by dupli-
cate elimination. The transformed loop nest is then expressed as:

δ(πsname,age(S))

which equals the expression for the original loop nest.
If in a single-level forelem loop all conditions are contained in the index set, it

is possible to move the distinct operation to the index set. The distinct operation
must then be limited to fields that will be added, or projected, to the result table.
It is clear that this is an extension of the transformation on a loop nest without
conditions.

As an example, consider:

forelem (i; i ∈ pS.age[18])
T = T ∪ (S[i].sname)

forelem (i; i ∈ pT .distinct)
R = R ∪ (T [i].sname)

with the following corresponding relational algebra expression:

πsname(δ(πsname(σage=18(S))))

which can be simplified to:

δ(πsname(σage=18(S)))

The loop nest can be transformed into the following loop nest:

forelem (i; i ∈ pS.distinct(sname).age[18])
T = T ∪ (S[i].sname)

Note that in this syntax the distinct operation is performed after the selection, so
the loop performs the following expression:

πsname(δ(πsname(σage=18(S))))

where we can eliminate the outer projection again:

δ(πsname(σage=18(S)))

As a result, this loop is equal to the initial loop nest consisting of two loops.

1We use the extended relational algebra proposed by Dayal et. al. [29] which defines relations and
operations on these relations in terms of multisets instead of sets. Furthermore, an explicit operator is
introduced for elimination duplicates: δ.

5.2. Specification of distinct 83

If the loop body to which the distinct operation is moved contains an if -statement,
the conditions under which this transformation can be carried out are limited.
This makes sense, because the if -statement is now performed after the duplicate
elimination has been done, contrary to the above example. The if statement must
resemble a selection operation and when the fields used in the selection do not
end up in the result table, the selection test must use the equality operator. The
distinct operation must be applied to the fields that are added to the result tuple
and the fields used in the comparison.

To illustrate this, consider the following example corresponding to
δ(πsname(σage=18(S))):

forelem (i; i ∈ pS)
if (S[i].age == 18)

T = T ∪ (S[i].sname)
forelem (i; i ∈ pT .distinct)

R = R ∪ (T [i].sname)

Transformed into:

forelem (i; i ∈ pS.distinct(sname,age))
if (S[i].age == 18)

R = R ∪ (S[i].sname)

Consider as intermediate step a loop nest which has distinct as part of the index set
and a separate loop for performing duplicate elimination. The relational algebra
expression for such a loop nest is:

δ(πsname(σage=18(δ(πsname,age(S)))))

This equation can be obtained from the equation corresponding to the original
loop by applying the properties of the algebra described in [29]. δ moves past π
and δ commutes with σ. Secondly, we are free to remove columns that will not be
projected or selected on further on.

To delete the distinct operator at the end of the chain (so at the left of the ex-
pression), either the projection at the end of the chain does not eliminate any new
columns, which is essentially the case handled earlier in this section, or the pro-
jection does not introduce any new duplicates. The use of the equality operator
during the selection in this case is crucial. The only way two tuples consisting of
an sname and age field with the same values for sname can be distinct is to have
different values for age. Since all tuples will have the value 18 for age after selec-
tion, all values for sname are distinct and the age column can be dropped without
problems.

Clearly, this does not hold for other operators. Consider the use of the < op-
erator instead of equality. For a selection on age < 18 all tuples with age < 18
qualify, even if sname is equal. After this selection, tuples are present with equal
sname.

After dropping the age column, the result is the following expression, which is
indeed equal to the expression corresponding to the transformed loop nest:

πsname(σage=18(δ(πsname,age(S))))

84 Forelem Extensions for Aggregate Queries

To double-level loop nests similar transformations can be applied Let us consider
the following loop nest:

forelem (i; i ∈ pB.color["red"])
forelem (j; j ∈ pR.bid[B[i].bid])

T = T ∪ (R[j].bid)
forelem (j; j ∈ pT .distinct)

R = R ∪ (T [i].bid)

With the following corresponding relational algebra expression:

πR.bid(δ(πR.bid(R onB.bid=R.bid (σB.color=”red”(B)))))

We apply properties from [29] to move δ past π and to distribute δ over on:

δ(πR.bid(δ(R) onB.bid=R.bid δ(σB.color=”red”(B))))

To be able to remove the distinct elimination at the end of the chain, we must
ensure that the result of the join contains distinct values of bid because the final
projection is only on bid. This is possible when both R and σB.color(B) contain
distinct values of bid before the join. Because no other fields are needed for the
execution of this loop nest, we move the projection inside the distinct eliminations
that take place before the join:

πR.bid(δ(πR.bid(R)) onB.bid=R.bid δ(πB.bid(σB.color=”red”(B)))))

This corresponds with the following loop nest:

forelem (i; i ∈ pB.distinct(bid).color["red"])
forelem (j; j ∈ pR.distinct(bid).bid[B[i].bid])

R = R ∪ (R[j].bid)

To describe a case where distinct cannot be moved to the index set, we consider
the query:

SELECT DISTINCT R.date
FROM Reserves R
WHERE R.bid = B.bid AND B.color = "red"

written in forelem as:

forelem (i; i ∈ pB.color["red"]))
forelem (j; j ∈ pR.bid[B[i].bid])

T = T ∪ (R[j].date)
forelem (i; i ∈ pT .distinct)

R = R ∪ T [i]

Let us look at the corresponding relational algebra expression, where the δ opera-
tor has already been distributed over the join:

δ(πR.date(δ(R) onB.bid=R.bid δ(σB.color=”red”(B))))

5.3. Group-by queries 85

In order to eliminate δ at the end of the chain, we must project on B.bid and
R.bid,R.date before the join. Only the date is projected into the result relation. This
final operation will introduce duplicates: consider reservations for a different boat
(bid) at the same date. So, in this case, we cannot eliminate the second loop per-
forming duplicate elimination.

We can, however, eliminate the separate duplicate elimination loop after first
performing a different transformation. When the Loop Collapse transformation
described in Section 3.3.5 is performed, the result is:

forelem (i; i ∈ pB×R.(colorB,bidR).[("red", bidB)]))
T = T ∪ (B×R[i].dateR)

forelem (i; i ∈ pT .distinct)
R = R ∪ T [i]

Now the separate loop for distinct can be eliminated by moving the operation to
the index set, because we can apply all conditions prior to the duplicate elimina-
tion. This also works if the conditions are specified in an if -statement instead and
we apply distinct on all fields used.

5.3 Group-by queries

A group-by query groups tuples of a table by one or more fields, referred to as
grouping columns. The values of other columns in the tuples can be aggregated
using aggregate functions. Different methods for performing a group-by exist and
an appropriate one is usually selected by the query optimizer depending on how
table data is to be processed. These methods include performing the grouping
operation by hashing and sorting an intermediate table followed by discovering
and aggregating the groups.

We do not want to tie ourselves to a particular evaluation strategy for group-
by queries, so the exact iteration patterns remain encapsulated in the forelem loops.
Therefore our aim is to write a group-by query solely using forelem loops. In
essence, a group-by query iterates over all groups identified by the grouping
columns. Three stages are distinguished:

1. A temporary table T is created containing the selected columns of tuples
adhering to an optionally specified WHERE clause.

2. The groups are extracted from this temporary table based on the specified
grouping columns and stored in G .

3. For each group in turn, we iterate over the group’s members stored in T
and perform the requested aggregate functions.

The three stages are written as three forelem loop nests. Subsequently, transfor-
mations can be applied, such as those described in Chapters 3 and 4. A potential
result is that all three loops are merged into a single loop nest.

86 Forelem Extensions for Aggregate Queries

As an example, let us consider the query:

SELECT S.rating, MIN(S.age)
FROM Sailors S
GROUP BY S.rating

which we first express as three forelem loops:

forelem (i; i ∈ pS)
T = T ∪ (S[i].rating, S[i].age)

forelem (i; i ∈ pT)
T2 = T2 ∪ (T [i].rating)

forelem (i; i ∈ pT2.distinct)

G = G ∪ T2[i]

forelem (i; i ∈ pG)
{
agg_init(agg1, min)

forelem (j; j ∈ pT .rating[G [i].rating])
agg_step(agg1, min, T [j].age)

agg_finish(agg1, min)

R = R ∪ (G [i].rating, agg_result(agg1))
}

We then apply a number of transformations on these loops to attempt to merge
them into a single loop nest. In particular we will apply Temporary Table Reduc-
tion as described in Section 4.4.2. First, the first loop is duplicated such that the
second and third loop nests, each using the results generated by the first loop, get
a copy:

forelem (i; i ∈ pS)
T = T ∪ (S[i].rating, S[i].age)

forelem (i; i ∈ pT)
T2 = T2 ∪ (T [i].rating)

forelem (i; i ∈ pT2.distinct)

G = G ∪ T2[i]

forelem (i; i ∈ pG)
{
agg_init(agg1, min)

forelem (j; j ∈ pS)
T3 = T3 ∪ (S[j].rating, S[j].age)

forelem (j; j ∈ pT3.rating[G [i].rating])
agg_step(agg1, min, T3[j].age)

agg_finish(agg1, min)

R = R ∪ (G [i].rating, agg_result(agg1))
}

5.3. Group-by queries 87

Now, we can apply Temporary Table Reduction to eliminate the generation of T
and T3. For the third loop nest, this is accomplished by moving the index set con-
ditions to if -statements, performing the reduction and moving the if -statements
back to index set conditions.

forelem (i; i ∈ pS)
T2 = T2 ∪ (S[i].rating)

forelem (i; i ∈ pT2.distinct)

G = G ∪ T2[i]

forelem (i; i ∈ pG)
{
agg_init(agg1, min)

forelem (j; j ∈ pS.rating[G [i].rating])
agg_step(agg1, min, S[j].age)

agg_finish(agg1, min)

R = R ∪ (G [i].rating, agg_result(agg1))
}

On the first loop nest, it is now possible to eliminate the separate duplicate elimi-
nation loop using techniques described in Section 5.2.

forelem (i; i ∈ pS.distinct(rating))
G = G ∪ (S[i].rating)

forelem (i; i ∈ pG)
{
agg_init(agg1, min)

forelem (j; j ∈ pS.rating[G [i].rating])
agg_step(agg1, min, S[j].age)

agg_finish(agg1, min)

R = R ∪ (G [i].rating, agg_result(agg1))
}

Finally, another Temporary Table Reduction can be performed to merge both loop
nests into one, eliminating the generation of temporary table G .

forelem (i; i ∈ pS.distinct(rating))
{
agg_init(agg1, min)

forelem (j; j ∈ pS.rating[S[i].rating])
agg_step(agg1, min, S[j].age)

agg_finish(agg1, min)

R = R ∪ (S[i].rating, agg_result(agg1))
}

Next, let us consider a more complicated example involving two tables and a
WHERE clause:

88 Forelem Extensions for Aggregate Queries

SELECT B.bid, COUNT(*) AS reservationcount
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = "red"
GROUP BY B.bid

As we have discussed, the WHERE clause will be performed by the first loop. We
express this query using three forelem loops for the three stages as follows:

forelem (i; i ∈ pB.color["red"])
forelem (j; j ∈ pR.bid[B[i].bid])

T = T ∪ (B[i].bid, R[j].*)

forelem (i; i ∈ pT)
T2 = T2 ∪ (T [i].B.bid)

forelem (i; i ∈ pT2.distinct)

G = G ∪ T2[i]

forelem (i; i ∈ pG)
{
agg_init(agg1, count)

forelem (j; j ∈ pT .B.bid[G [i].B.bid])
agg_step(agg1, count)

agg_finish(agg1, count)

R = R ∪ (G [i].B.bid, agg_result(agg1))
}

Note that two fields named bid are added to T , to avoid confusion the fields are
named B.bid and R.bid.

We use the same approach as used with the previous example: first duplicate
the loop nest generating T , and second use Temporary Table Reduction to merge
this in the two remaining loop nests.

forelem (i; i ∈ pB.color["red"])
forelem (j; j ∈ pR.bid[B[i].bid])

T2 = T2 ∪ (B[i].bid)
forelem (i; i ∈ pT2.distinct)

G = G ∪ T2[i]

forelem (i; i ∈ pG)
{
agg_init(agg1, count)

forelem (ii; ii ∈ pB.(bid,color)[(G [i].bid,"red")])
forelem (jj; jj ∈ pR.bid[B[ii].bid])
agg_step(agg1, count)

agg_finish(agg1, count)

R = R ∪ (G [i].bid, agg_result(agg1))
}

Using the technique discussed in Section 5.2 we can eliminate the separate loop
performing distinct elimination that follows the first loop nest:

5.4. Having keyword 89

forelem (i; i ∈ pB.distinct(bid).color["red"])
forelem (j; j ∈ pR.distinct(bid).bid[B[i].bid])

G = G ∪ (B[i].bid)

forelem (i; i ∈ pG)
{
agg_init(agg1, count)

forelem (ii; ii ∈ pB.(bid,color)[(G [i].bid,"red")])
forelem (jj; jj ∈ pR.bid[B[ii].bid])
agg_step(agg1, count)

agg_finish(agg1, count)

R = R ∪ (G [i].bid, agg_result(agg1))
}

Finally, we can eliminate the temporary table G :

forelem (i; i ∈ pB.distinct(bid).color["red"])
forelem (j; j ∈ pR.distinct(bid).bid[B[i].bid])
{
agg_init(agg1, count)

forelem (ii; ii ∈ pB.(bid,color)[(B[i].bid,"red")])
forelem (jj; jj ∈ pR.bid[B[ii].bid])
agg_step(agg1, count)

agg_finish(agg1, count)

R = R ∪ (B[i].bid, agg_result(agg1))
}

5.4 Having keyword

With the having keyword a condition can be specified that will be tested against
each group. The condition usually only references grouping columns. This con-
dition can only be tested after all members of a group have been processed. The
condition cannot be moved into the index set of the enclosing loop.

As an example, we can extend the query used in the previous section to include
a HAVING clause, specifying that only boats with more than 5 reservations should
appear in the result table:

SELECT B.bid, COUNT(*) AS reservationcount
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = "red"
GROUP BY B.bid
HAVING COUNT(*) > 5

Because a COUNT aggregate is already performed, we do not have to introduce an
additional aggregate computation. Before the tuple is added to the result set, we
add a test for the having condition:

90 Forelem Extensions for Aggregate Queries

forelem (i; i ∈ pB.distinct(bid).color["red"])
forelem (j; j ∈ pR.distinct(bid).bid[B[i].bid])
{
agg_init(agg1, count)

forelem (ii; ii ∈ pB.(bid,color)[(B[i].bid,"red")])
forelem (jj; jj ∈ pR.bid[B[ii].bid])
agg_step(agg1, count)

agg_finish(agg1, count)

if (agg_result(agg1) > 5)
R = R ∪ (B[i].bid, agg_result(agg1))

}

After this addition, the forelem loop nest now computes the desired result.

5.5 Example

In this section we demonstrate how the techniques discussed in this chapter can
be applied to a real-world code example. The following code fragment is based
on the file AboutMe.php from the RUBiS [75] benchmark. The code fragment is
written in pseudocode similar to PHP and edited for clarity.

$bidsResult =

mysql_query("SELECT item_id, bids.max_bid FROM bids, items

WHERE bids.user_id=$userId AND bids.item_id=items.id

AND items.end_date > NOW()

GROUP BY item_id");

if (mysql_num_rows($bidsResult) == 0)
print("<h2>You did not bid on any item.</h2>\n");

else
{

print("<h3>Items you have bid on.</h3>\n");

while ($bidsRow = mysql_fetch_array($bidsResult))
{

$maxBid = $bidsRow["max_bid"];

$itemId = $bidsRow["item_id"];

$itemResult =

mysql_query("SELECT * FROM items WHERE id=$itemId");

$currentPriceResult =

mysql_query("SELECT MAX(bid) AS bid FROM bids ".

"WHERE item_id=$itemId");

$currentPriceRow = mysql_fetch_array($currentPriceResult);

$currentPrice = $currentPriceRow["bid"];

if ($currentPrice == null)
$currentPrice = "none";

5.5. Example 91

$itemRow = mysql_fetch_array($itemResult);

$itemName = $itemRow["name"];

$itemInitialPrice = $itemRow["initial_price"];

$quantity = $itemRow["quantity"];

$itemReservePrice = $itemRow["reserve_price"];

$startDate = $itemRow["start_date"];

$endDate = $itemRow["end_date"];

$sellerId = $itemRow["seller"];

$sellerResult =

mysql_query("SELECT nickname FROM users " .

"WHERE id=$sellerId")

$sellerRow = mysql_fetch_array($sellerResult);

$sellerNickname = $sellerRow["nickname"];

print("<TR><TD>" .

"<a href=\"/PHP/ViewItem.php?itemId="
.$itemId."\">".$itemName.
"<TD>".$itemInitialPrice."<TD>".$currentPrice."<TD>"

.$maxBid."<TD>".$quantity.

"<TD>".$startDate."<TD>".$endDate.

"<TD><a href=\"/PHP/ViewUserInfo.php?" .
"userId=".$sellerId."\">".$sellerNickname.
"\n");

mysql_free_result($sellerResult);

mysql_free_result($currentPriceResult);

mysql_free_result($itemResult);

}
mysql_free_result($bidsResult);

}

As a first step, all SQL queries that are performed by calling the DBMS API are
replaced with forelem loop nests which execute in process. The code fragment con-
tains four queries. We will rewrite these queries as forelem loop nests and perform
preliminary transformations on these queries in turn. After that, we place the loop
nests into the code fragment. The first query is:

SELECT item_id, bids.max_bid FROM bids, items
WHERE bids.user_id=$userId AND bids.item_id=items.id
AND items.end_date >= NOW()
GROUP BY item_id

This query is written as a forelem loop nest using the strategy discussed in Sec-
tion 5.3:

92 Forelem Extensions for Aggregate Queries

forelem (i; i ∈ pBids.user_id[$userId])
forelem (j; j ∈ pItems.(id,end_date)[(Bids[i].item_id,[NOW(),∞)])

T = T ∪ (Bids[i].item_id, Bids[i].max_bid)

forelem (i; i ∈ pT)
T2 = T2 ∪ (T [i].item_id)

forelem (i; i ∈ pT2.distinct)

G = G ∪ T2[i]

forelem (i; i ∈ pG)
{
forelem (j; j ∈ pT .item_id[G [i].item_id])
r = (T [j].item_id, T [j].max_bid)

R = R ∪ r
}

Note that [NOW (),∞) indicates the range in which the value of field end date
must lie. And with the described transformations, we can write the query as a
single loop nest:

forelem (i; i ∈ pBids.distinct(item_id).user_id[$userId])
forelem (j; j ∈ pItems.distinct(id).(id,end_date)

[(Bids[i].item_id,[NOW(),∞))])
{
forelem (ii; ii ∈ pBids.(user_id,item_id)

[($userId,Bids[i].item_id)])

forelem (jj; jj ∈ pItems.(id,end_date)
[(Bids[ii].item_id,[NOW(),∞))])

r = (Bids[ii].item_id, Bids[ii].max_bid)

R = R ∪ r
}

The second query to be considered is:

SELECT * FROM items WHERE id=$itemId

which is written as:

forelem (i; i ∈ pItems.id[$itemId])
R = R ∪ Items[i]

The third query contains an aggregate function:

SELECT MAX(bid) AS bid FROM bids WHERE item_id=$itemId

Using the technique described in Section 5.1 we can express the query using forelem
loops as follows:

5.5. Example 93

agg_init(agg1, max);

forelem (i; i ∈ pBids.item_id[$item_id])
agg_step(agg1, max, Bids[i].bid);

agg_finish(agg1, max);

R = R ∪ (agg_result(agg1))

The aggregate operation can subsequently be inlined:

agg1.result = 0;

forelem (i; i ∈ pBids.item_id[$item_id])
if (agg1.result == 0 || agg1.result < Bids[i].bid)
agg1.result = Bids[i].bid;

R = R ∪ (agg1.result)

Finally, the fourth query:

SELECT nickname FROM users WHERE id=$sellerId

is easily converted to:

forelem (i; i ∈ pUsers.id[$sellerId])
R = R ∪ (Users[i].nickname)

We now rewrite the code fragment with the forelem loops for the four queries:

forelem (i; i ∈ pBids.distinct(item_id).user_id[$userId])
forelem (j; j ∈ pItems.distinct(id).(id,end_date)

[(Bids[i].item_id,[NOW(),∞))])
{
forelem (ii; ii ∈ pBids.(user_id,item_id)

[($userId,Bids[i].item_id)])

forelem (jj; jj ∈ pItems.(id,end_date)
[(Bids[ii].item_id,[NOW(),∞))])

r = (Bids[ii].item_id, Bids[ii].max_bid)

R1 = R1 ∪ r
}

if (is_empty (R1))

print("<h2>You did not bid on any item.</h2>\n");
else
{

print("<h3>Items you have bid on.</h3>\n");

while ($bidsRow ∈ R1)

{
$maxBid = $bidsRow["max_bid"];

$itemId = $bidsRow["item_id"];

forelem (i; i ∈ pItems.id[$itemId])
R2 = R2 ∪ Items[i];

94 Forelem Extensions for Aggregate Queries

agg1.result = 0;

forelem (i; i ∈ pBids.item_id[$item_id])
if (agg1.result == 0 || agg1.result < Bids[i].bid)
agg1.result = Bids[i].bid;

R3 = R3 ∪ (agg1.result);

$currentPriceRow = r ∈ R3;

$currentPrice = $currentPriceRow["bid"];

if ($currentPrice == null)
$currentPrice = "none";

$itemRow = r ∈ R2;

$itemName = $itemRow["name"];

$itemInitialPrice = $itemRow["initial_price"];

$quantity = $itemRow["quantity"];

$itemReservePrice = $itemRow["reserve_price"];

$startDate = $itemRow["start_date"];

$endDate = $itemRow["end_date"];

$sellerId = $itemRow["seller"];

forelem (i; i ∈ pUsers.id[$sellerId])
R4 = R4 ∪ (Users[i].nickname)

$sellerRow = r ∈ R4;

$sellerNickname = $sellerRow["nickname"];

print("<TR><TD>" .

"<a href=\"/PHP/ViewItem.php?itemId="
.$itemId."\">".$itemName.
"<TD>".$itemInitialPrice."<TD>".$currentPrice."<TD>"

.$maxBid."<TD>".$quantity.

"<TD>".$startDate."<TD>".$endDate.

"<TD><a href=\"/PHP/ViewUserInfo.php?" .
"userId=".$sellerId."\">".$sellerNickname.
"\n");

}
}

We now apply Loop Merge to merge the forelem loop producing the tuples into
result set R1 with the while loop consuming these tuples. Before this transforma-
tion can be applied, we must perform a preparatory transformation that moves
the if -statement checking is_empty after the merged loop. The statements in the
else clause before the while loop are moved into the loop body and made condi-
tional. At the same time we perform an explicit table reduction which replaces
references into the result set with direct references into the database table. Sub-
sequently, Global Forward Substitution can be performed. This reduction is also

5.5. Example 95

applied on the result set R3.

results = 0;

forelem (i; i ∈ pBids.distinct(item_id).user_id[$userId])
forelem (j; j ∈ pItems.distinct(id).(id,end_date)

[(Bids[i].item_id,[NOW(),∞))])
{
forelem (ii; ii ∈ pBids.(user_id,item_id)

[($userId,Bids[i].item_id)])

forelem (jj; jj ∈ pItems.(id,end_date)
[(Bids[ii].item_id,[NOW(),∞))])

r = (Bids[ii].item_id, Bids[ii].max_bid)

if (results == 0)
print("<h3>Items you have bid on.</h3>\n");

results++;

forelem (iii; iii ∈ pItems.id[Bids[ii]["item_id"]])
R2 = R2 ∪ Items[iii]

agg1.result = 0;

forelem (iii; iii ∈ pBids.item_id[Bids[ii]["item_id"]])
if (agg1.result == 0 || agg1.result < Bids[iii].bid)
agg1.result = Bids[iii].bid;

$currentPrice = agg1.result;

if ($currentPrice == null)
$currentPrice = "none";

$itemRow = r ∈ R2;

$itemName = $itemRow["name"];

$itemInitialPrice = $itemRow["initial_price"];

$quantity = $itemRow["quantity"];

$itemReservePrice = $itemRow["reserve_price"];

$startDate = $itemRow["start_date"];

$endDate = $itemRow["end_date"];

$sellerId = $itemRow["seller"];

forelem (iii; iii ∈ pUsers.id[$sellerId])
R4 = R4 ∪ (Users[iii].nickname)

$sellerRow = r ∈ R4;

$sellerNickname = $sellerRow["nickname"];

print("<TR><TD>" .

96 Forelem Extensions for Aggregate Queries

"<a href=\"/PHP/ViewItem.php?itemId="
.$itemId."\">".$itemName.
"<TD>".$itemInitialPrice."<TD>".$currentPrice."<TD>"

.$maxBid."<TD>".$quantity.

"<TD>".$startDate."<TD>".$endDate.

"<TD><a href=\"/PHP/ViewUserInfo.php?" .
"userId=".$sellerId."\">".$sellerNickname.
"\n");

}
}
if (results == 0)
print("<h2>You did not bid on any item.</h2>\n");

Further optimizations are possible. For example, def-use analysis will detect that
only a single row of R2 is used. The analysis will also detect that the condition
id == Bids[ii]["item_id"] holds for all tuples iterated by iteration counter jj.
Therefore, this forelem loop is unnecessary and the data can simply be obtained
from Items[jj] instead.

Also from result set R4 a single tuple is used. Therefore, the loop generating
this result set can be pruned to only iterate once. This can be accomplished either
by using the single modifier described in Section 4.2 or by using an additional
mask column as described in Section 3.3.5. After this transformation, explicit table
reduction can be applied on this loop.

Finally, the fact that the tables Bids and Items are closely used together might
indicate that the Loop Collapse transformation, described in Section 3.3.5 can be
of use here. This will eliminate the two joins currently present in the loop nest
and might open the road to further transformations. As an example, this has
the potential to make it possible to eliminate the query computing the MAX(bid)
aggregate.

5.6 Conclusions

In this chapter we demonstrated how aggregation queries can be written in terms
of a forelem loop and introduced a strategy for expressing group-by queries as
forelem loops. A syntax for duplicate elimination was introduced together with
conditions under which the duplicate elimination can be moved to the forelem
loops’ index sets. We have demonstrated that the transformations introduced in
the preceding chapters can be applied. Whereas a group-by query is first written
as three forelem loop nests, it is in certain cases possible to transform this to a single
forelem loop nest.

By means of an example, we have demonstrated that many potential optimiza-
tions exist that can take advantage of the described strategies and transformations.
In the example, we were able to merge a code fragment containing a group-by
query and three other queries into a single loop nest. Subsequently, the possibility
was shown how one of the queries can be fully eliminated. There are further pos-
sibilities to optimize this loop nest for example by restructuring the tables using
Loop Collapse.

