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CHAPTER 1

Introduction

In imperative programming, the computation to be carried out is specified step
by step. Declarative programming languages, on the other hand, allow the speci-
fication of what data must be retrieved, but not how. Naturally, these two different
programming paradigms give rise to different manners by which codes expressed
in these paradigms are translated to code that can be executed on a Central Pro-
cessing Unit (CPU) and different manners by which these codes are optimized.
Whereas code optimization for imperative programming languages focuses on
reordering the steps by which the computations are carried out without affecting
the final results of these computations and selecting efficient instructions to en-
code these computations for a particular CPU code, optimization for declarative
programming languages focuses on determining an efficient execution plan for
retrieving the specified data.

Application programs are in general written in an imperative programming
language. Declarative programming languages are used to write codes, or que-
ries, that specify data to be retrieved from a Database Management System (DBMS).
Such queries can be performed by application programs and the retrieved data
can be further processed by these application programs. Applications that per-
form such requests are referred to as database applications. In database applications,
the data processing code is written in an imperative programming language and
the data retrieval request is written in a declarative programming language. As
a consequence, data processing code and data retrieval code undergo different
and independent optimization procedures. For example, queries are optimized
and executed in a DBMS, independent from the application code that further pro-
cesses the result data.

In this thesis, a novel approach is presented for the optimization of data-inten-
sive applications. This approach is implemented by the forelem framework and
solves three important problems of existing approaches. Firstly, this framework
unifies the programming of transactional (database) applications and the pro-
gramming of other kinds of applications, such as high-performance parallel com-
putational codes. An important difference between these two forms of program-
ming is the kind of optimization that is performed in a DBMS and that is per-
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formed on application codes by traditional optimizing compilers. The DBMS
(query) optimizations are necessary to efficiently retrieve the desired data from
a database, especially when the data set does not fit in main memory, while the
traditional optimizations performed on application codes are vital for the gener-
ation of efficient machine code. The forelem framework unifies these seemingly
distinct fields of programming by expressing queries as a series of array accesses
governed by simple loop control, which are subsequently optimized by traditional
optimizing compiler techniques accomplishing results similar to query optimiza-
tion.

Secondly, the forelem framework provides a solution for the (semi-)automatic
problem-specific optimization process for applications, which runtime is very much
dependent on the underlying characteristics of the problem to be solved. Problem-
specific optimizations often consist of the selection of a good data layout or data
storage method. In general, compilers do not have the capability to optimize
data layout or storage. Although techniques to extend compilers with the abil-
ity to optimize data structures have been researched, they have not yet found a
widespread use. With the forelem framework, a universal approach is introduced
for the optimization of an application’s data layout and storage. By incorporating
details about the data access performed by the application into the optimization
process, the application and its data access method can be synchronized. This syn-
chronization leads to a better alignment of the application’s computational loops
with the order in which data is accessed.

Thirdly, the unification of transactional programming and other kinds of pro-
gramming enables the vertical integration of application code and data access
frameworks. Applications typically access data through a framework that ab-
stracts away peculiarities of accessing a particular file format, database system
or distributed file system. Such frameworks inhibit optimizing compilers from
potentially optimizing data access as performed by an application. The forelem
intermediate representation provides a generic way for expressing data access,
based on series of array accesses and simple loop control. In vertical integration,
the data access operations that are performed through a data access framework,
are expressed in this generic intermediate representation. As a result, the data ac-
cess code is combined with the surrounding application code in the optimization
process. Traditional analysis methods, such as Def-Use analysis, will detect and
eliminate data access of which the results are unused, or will detect related data
accesses that can be combined. For database applications, methods that optimize
both the application and data access codes (in the form of queries) have been pro-
posed [66, 37, 21]. However, because both codes are kept separate, these methods
often rely on pattern recognition to detect possible code segments where a specific
optimization can be applied. In the forelem framework generic optimizations can
be applied, which unlock many more potential optimization opportunities.

Since the forelem framework was initially envisioned for database applications,
it considers data to be stored as (multi)sets of tuples. So, the forelem framework
operates on a tuple space. Due to the generic nature of the forelem intermediate
representation, the framework is applicable to many different application areas.
Examples of these application areas are: (1) vertical integration of database appli-
cations: queries in a database application are replaced with code segments that



evaluate these queries and directly access a data store, subsequently, the applica-
tion and data access codes are optimized together (Chapter 7); (2) reduction of en-
ergy consumption: a reduction in energy consumption up to 90% can be obtained
by the application of vertical integration coupled with aggressive optimization
(Chapter 2); (3) exploration of the optimization search space: the forelem interme-
diate representation expresses data access using simple loop control, which en-
ables re-use of traditional compiler loop transformations and in conjunction with
this new transformations and heuristics are to be developed, as well as method-
ologies to effectively explore the optimization search space (Chapter 10); (4) data
reformatting: an optimization process incorporating details about the application
code and associated data access is able to optimize storage layout and format for
this particular application (Chapter 9); (5) Big Data: new optimization techniques
for Big Data applications can be devised using distributed forelem loops combined
with automatic optimization of the data distribution and layout (Chapter 12); (6)
universality: data access expressed in many different methods, such as SQL or
MapReduce, can be translated to the forelern intermediate representation and vice
versa.

This thesis describes a versatile tuple-based optimization framework. A ver-
satile framework, because it is capable of optimizing traditional imperative codes
(such as sparse matrix computations) as well as declarative codes (such as data-
base queries). Although the framework is tuple-based due to initially being de-
signed for the optimization of database applications, tuples are especially suited
as an elementary data representation because they are the most fundamental ob-
jects that allow multiple values that are related with each other to be coupled. All
data structures can be represented as tuples, in fact, computer memory can be ex-
pressed as tuples by creating pairs of address and an associated value. From a
representation of the data in the form of tuples, many different data layouts can
be automatically generated.

The first part of this thesis discusses the application of the forelem framework to
database applications. The unification of transactional and imperative program-
ming that is achieved by this framework enables the vertical integration of appli-
cation code and data access frameworks. In past research also methods have been
described that tried to overcome the division between DBMS (declarative) and
application (imperative) codes. Such methods included object-oriented data sys-
tems integrated with object-oriented programming languages and specific data-
base programming languages. The importance of this unification has been raised
in the literature. For example it has been asserted that compilers for database pro-
gramming languages must be extended to include database-style optimization in
order to produce high performance codes [62] and a call has been made for a
single expressive intermediate language instead of the use of specific represen-
tations for database queries and generic program codes [38]. Unfortunately, such
approaches failed to get traction in the database community and it is still common
practice to specifically program the database access code, that places requests for
data retrieval, while keeping the division in place [37]. A major advantage of
the approach described in this thesis is that it is not necessary to rewrite existing
database application code in order to benefit from vertical integration.
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As an initial target of our vertical integration efforts, we selected an important
class of database applications: web applications. Web applications are these days
ubiquitous and empower the modern, interactive World Wide Web. The increase
of such web applications led vendors to significantly scale up their banks of web
and database servers in order to handle all incoming requests. This has resulted
in ever increasing complexity of distributed server architectures. Optimization of
such systems not only leads to faster response times, but also to the ability to han-
dle similar loads with a smaller amount of servers. For the implementation of this
vertical integration, the forelem framework is introduced. The forelem framework
is ideally suited to support an integrated, holistic optimization process as will be
discussed in the first part of this thesis.

As will be described in Chapter 2 of this thesis, this global integrated optimiza-
tion process is capable of aggressively optimizing web applications, eliminating
up to 90% of the instructions that need to be executed without affecting the final
result, resulting in a tremendous increase in performance. The further chapters in
Part I of this thesis describe a framework within which this optimization process
can be carried out. The main constituent of this framework is the forelem loop,
which specifies iteration of a subset of a multiset of tuples, and transformations
that can be carried out on these loops, as described in Chapters 3, 4 and 5.

The generic nature of the forelem framework also allow the developed tech-
niques to be applied in other application domains. This is the focus of Part II of
this thesis. In this part, the use of the forelem loop is explored for the optimization
of irregular applications. To accomplish this, the computation to be optimized is
expressed in terms of tuples: the data that is operated on is translated to tuples,
computations are translated to forelem loops processing these tuples. Chapter 10
focuses on sparse matrix computations. By expressing these in terms of tuples,
the computation is reordered as well as the way in which tuples are stored is reor-
ganized. As will be described in the chapter, this results in a large search space of
different variants of the same computation. In Chapters 11 and 12, the techniques
are further generalized to irregular applications and extended to be capable of
expressing distributed computations.

In this chapter, the necessary background knowledge for this thesis is intro-
duced, as well as work that is related to this thesis. This background knowledge
has been divided into three fields, Optimizing Compilers, Database Systems and
Sparse Computations, that will be discussed in turn.

1.1 Optimizing Compilers

Code written in traditional compiled languages such as C and Fortran, is directly
translated to machine code for a particular target architecture. The performance
of this resulting machine code can be optimized by making use of optimizing
compilers, that perform code transformations that are expected to improve the
performance. In general, two levels can be distinguished at which optimization
may take place. The optimizations can be performed on the structure of the orig-
inal code, in which loops are still explicitly exposed. Examples of such transfor-
mations are constant propagation, common subexpression elimination and loop



1.1. Optimizing Compilers 5

transformations such as loop blocking and loop interchange. The other level at
which optimization can be performed is the code generation level, where exe-
cutable code for a particular target is generated from an internal representation of
the program code. At this level, optimizations are performed such as instruction
selection and scheduling. These optimizations are generally very specific to the
instruction set architecture (ISA) of the target architecture.

Within the forelem framework, optimizations are defined that operate on the
loop structure. These optimizations are based on traditional optimizing compiler
transformations that are described in the literature. These transformations need
slight adaptation to account for the semantics of the forelem loop. In this section,
common optimizations that are carried out by optimizing compilers are intro-
duced that will be referred to throughout this thesis. Optimizations that occur
at the code generation level are not discussed in this thesis. These optimizations
can be conducted on top of forelem transformations. Therefore, we will rely on
common compiler tools, like for instance LLVM [63], to implement these backend
transformations.

An important class of transformations are loop transformations, a number of
which are now discussed. Loop blocking is often used to improve cache re-use
of a loop nest by processing data in blocks. In [60] the influence of the stride
of data access and the size of the blocks on cache efficiency is discussed. When
Loop Blocking is used in conjunction with Loop Interchange, the data locality of
a program can be further improved [35].

Using the Loop Interchange transformation it is possible to enable vectoriza-
tion and/or parallelization by moving dependence cycles, and to increase cache
re-use by improving the locality of the code. Loop Interchange can only be per-
formed under certain conditions. Because the order in which statements inside
loops are executed is changed by an interchange, the interchange of loops is valid
only if the new order of statement execution preserves all dependencies of the old
order. We will illustrate this using two examples from [104].

for (i = 1; i <= 100; i++) for (i = 1; i <= 100; i++)
for (j = 1; j <= 100; j++) for (j = 1; j <= 100; j++)
A[i][j+1] = A[i1[j] * B[il[jl A[i+11[31 = A[i1[j+11 * B[il[j]

The loop on the left can be interchanged. This Loop Interchange will eliminate
the dependency in level 2 (iterated by j) which makes it possible to vectorize the
inner loop.

Contrary, the loop on the right cannot be interchanged. For example for i =
3,7 = 3 the value A[3][4] is read and the value A[4][3] is written. The value
A[3][4] is generated by the iteration i = 2, j = 4. In fact this statement at iteration
i = 3,7 = 3 has a dependency on the statement at iteration i = 2, j = 4. With the
current nesting assuming standard execution order, the iteration i = 2, j = 4 will
be executed before i = 3,j = 3. However, when the two loops are interchanged,
or swapped, this will no longer be the case. The dependency has then been broken
which makes this instance of Loop Interchange invalid.

To formally verify whether transformations are valid for a loop nest, a tech-
nique known as data-dependence analysis [58, 3, 5] is employed. The analysis re-



6 Introduction

sults in data-dependence relations which reflect the constraints on the statement
execution order.

Three classes of dependencies are usually distinguished: (i) a true dependency,
where a value is first defined and then used (Read-After-Write), (ii) an anti de-
pendency, when a value is read and then written (Write-After-Read), and (iii) an
output dependency when a value is written and written again (Write-After-Write).
A dependency between loop statements is either loop independent, indicating that
the dependency holds for equal iteration vectors, or loop carried, meaning that the
dependency holds for different iteration vectors of the loop.

When there exists a data dependency in the original loop that no longer exists
in the loop-interchanged loop, this is said to be a loop-interchange preventing de-
pendency. Observe that this was indeed the case in the second loop we discussed
above.

A related analysis is def-use analysis [2, 50]. In this analysis statements are
analyzed to see whether they are a definition (an assignment) or a use of a value.
From this information definition-use and use-definitions chains can be set up for a
variable in a basic block. This can be used to reason whether a variable is assigned
a constant or whether an assigned (defined) variable is used at all, etc. Optimiza-
tions such as constant propagation and variable substitution use this analysis.

For a more thorough and formal treatment of these analysis techniques, we
refer the reader to the cited literature as well as to [104] for a concise overview.

Two loops (at the same level if contained in a larger loop nest) can be merged
into a single loop under certain conditions using the Loop Fusion transforma-
tion [52]. For now, we only consider serial loops. Consider the separated loops
and the fused loop:

for (i = 0; i < 100; i++) for (1 = 0; i < 100; i++)
A[i] = B[i] + C[i]; {
A[i] = B[i] + C[i];
for (j = 0; j < 100; j++) D[i] = A[i] + X[i];
D[j1 = A[j]1 + X[]1; }

Loop Fusion is defined if the loops to be fused iterate the same iteration space
and valid if there does not exist a dependency which prevents fusion of serial
loops. Fusion is prevented if there is a dependency from a use in the second loop
to a definition in the first loop for which ¢ > j holds true. When the loops would
be fused, the value would be read before it is written. This can be verified by
replacing the read of A[j] in the second loop with A[j + 1] and similarly in the
fused loop.

Another transformation on loops is Loop Collapse. The Loop Collapse trans-
formation is used to rewrite two levels of loops as one level of loop by using a
one-dimensional representation of a two-dimensional array [100]. Loop Collapse
is mostly used to enable vectorization and can only be applied on serial loops,
that is, no loop-carried dependencies are present. Because two loop levels are col-
lapsed into a single loop level, the vector length that can be used is increased [104]:
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int A[100][100], B[100][160], int A[100][100], B[100][160],
C[100][100]; C[100][100];
for (i = 0; i < 100; i++) for (i = 0; i < 10000; i++)
for (j = 0; j < 100; j++) A[0][i] = B[OI[i] * C[O][il;

A[i][3] = BLiI[j] * C[i][j]

Note that in languages that support vector statements, such as Fortran, the result-
ing single-level loop can be written as a single statement.

Other examples of loop optimizations are loop unrolling, loop rerolling, loop
fission and iteration space morphing. Zima [104] provides a comprehensive treat-
ment of this kind of compiler optimizations. Finally, [95] discusses how loops that
traverse a data structure using a pointer can be turned into counted loops oper-
ating on arrays that indirectly access the original data structure. This technique
enables the application of existing loop optimization methods which are often not
successful when applied on the original pointer-traversing loop.

Loop Invariant Code Motion is a kind of common subexpression elimination
where statements which are invariant under the inner loop iteration variable can
be moved to an outer loop or completely out of the loop nest. If the statement
is, for example, a memory load, then the pressure on the memory bus can be
significantly reduced. A simple example of the application of this optimization is:

for (i = 0; i < 100; i++) Y = 154;

{ for (i = 0; i < 100; i++)
Y = 154; {
A[i] = B[i] + Y; A[i] = B[i] + Y;

} }

Vectorizing compilers have the capability to recognize reduction operations.
Reduction operations are operations such as computing the sum or product of all
elements of a vector, or determining the minimum or maximum element of a vec-
tor [77]. The compiler will replace a loop performing such an operation with a
vector statement performing the same operation. The vector statement is imple-
mented using specific vector instructions. Consider the following example, taken
from [77], which computes the sum of a vector A:

DOI =1, N A(C1:N) = B(1:N) + C(1:N)
A(I) = B(I) + C(D) ASUM = ASUM + SUM(CA(1:N))
ASUM = ASUM + A(D)

END DO

The loop, written in Fortran, can be replaced with two vector statements. The SUM
function used in the example returns the sum of the vector provided as argument.

Scalar Expansion is a transformation that is typically used to enable paral-
lelization of loop nests. Consider the following loop:

for (k = 1; k <= N; k++)

{
tmp = A[k] + B[k];
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C[k] = tmp / 2;
}

Due to the loop-carried anti-dependency of tmp, subsequent iterations cannot
write to tmp before tmp has been used in the assignment to C[k]. This is solved by
the Scalar Expansion transformation which expands the scalar tmp to a vector:

for (k = 1; k <= N; k++)
{
tmp[k] = A[k] + B[k];
Clk] = tmp[k] / 2;

}

Now that the loop-carried dependency has been broken, the loop can be paral-
lelized.

In Global Forward Substitution, the right-hand side of an assignment state-
ment is substituted into the right-hand side of other assignment statements [58].
This potentially eliminates flow dependencies, but also eliminates temporary vari-
ables in a subsequent dead code elimination phase. The well-known Constant
Propagation optimization is considered a special case of Forward Substitution [77].
An example of Forward Substitution, adapted from [77], is:

NP =N+ 1
for (i =1; i <N - 1; i++) for (i =1; i <N - 1; i++)
{ {
B[i] = A[NP] + B[il; B[i] = A[N + 1] + B[i]l;
Ali] = A[i] - 1 Ali] = A[i] - 1

} }

In the code on the left side, there is a dependency between the two statements
within the loop body. The compiler can typically not reason about the address
of A[NP], thus it is possible that A[i] overwrites the value used by A[NP]. The
code on the right side is the result after Forward Substitution. Now, NP has been
substituted with N + 1. From the expression the compiler can determine that the
assignment to A[i] will never reach A[N + 1], because the inclusive upper bound
of the loop is N - 2. So, after Forward Substitution, the dependency no longer
holds.

1.2 Database Systems

Part I of this thesis describes a global integrated optimization process for the op-
timization of web applications. The web applications that are used as a starting
point, make use of a Database Management System (DBMS) for accessing persis-
tent data. Within this optimization process, the application and data management
codes are integrated with each other. This section briefly discusses work that is
related to this integration process.
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The purpose of a DBMS is to store data at a central location, concurrently ac-
cessible by multiple clients. It is the responsibility of the DBMS to safeguard the
data, such that it does not become corrupted or inconsistent. To this extent, data-
base systems implement the ACID properties: atomicity, consistency, isolation and
durability. This ensures, respectively, that database transactions are always atomic;
the database is always left in a consistent state; transactions that are running con-
currently are fully isolated; and that committed data is guaranteed to be stored
in a way such that it cannot be lost due to system crashes or power loss in the
future. Clients can access this data by submitting queries, written in a declarative
programming language such as SQL. A DBMS needs to translate these queries to
a query plan, or execution plan, that specifies which actions need to be carried out
and in which order, to process the query. During this translation stage transforma-
tions can be applied to the query plan to optimize the query execution, a process
known as query optimization.

Work that is related to the global integrated optimization process as described
in this thesis roughly touches two areas in the field of databases. The first area
concerns the integration of the usage of database systems into imperative pro-
gramming languages. The second area concerns applying optimizing compiler
technology to query planning and optimization. In this section, both areas are
explored in turn.

1.2.1 Integration of Database Systems Query Processing Into
Imperative Programming Languages

Integration of query processing of database servers into programming languages
is an area that has been under research for a long time. In this area, this often
is referred to as the “impedance mismatch” [25, 65]. The impedance mismatch
refers to the mismatch of elements of procedural programming languages and
declarative database languages, such as procedural types versus database types,
optimizations in procedural programming languages versus database query opti-
mizations, concurrency versus transactions, etc. It is this mismatch that highlights
the key problem in integrating usage of a DBMS in a programming language.
Cook et al. [25] give a thorough review of the definition of this problem and ap-
proaches to solve it.

There are many examples of techniques that try to overcome this impedance
mismatch. Most of these solutions focus on the integration of the database appli-
cation programming interface (API) into programming languages and setting up
a mapping between application code value types and database value types. Note
that most of these techniques are tools that aid programmers to more effectively
create database applications, and do not have as goal to support a integrated op-
timization process as is proposed in this thesis.

LINQ, for example described in [31], extends the programming language such
that declarative queries can be naturally expressed. Programmers can express
queries in LINQ without having to know how the query will be executed. Que-
ries can be executed on a variety of data sets, for example on collections in main
memory internal to the program and also on a DBMS. When a query expressed
in LINQ is compiled, no code is generated to actually execute the query. This
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is handled at run-time, when a query parse tree is built for the query. In case
LINQ is used with a DBMS, LINQ will generate a set of SQL queries that are sent
to the DBMS for execution. Given that the query parse tree is built at run-time,
opportunities to extensively merge the query code with the application code at
compile-time are not fully exploited.

Systems similar to LINQ also exist for example for the C++ language [39]. The
focus is on solving the impedance mismatch and checking for correctness and se-
curity concerns (SQL injection attacks) at run-time. This is much like the static
analysis of the correctness of SQL statements proposed by [20, 27]. In these pa-
pers, analyses are described to find security problems in the application code’s
usage of database APIs and to incorporate the time spent in the DBMS in the
application profiling respectively. The latter also supports the rewriting of SQL
queries, which is for example possible when it is detected that three columns are
projected in the query but only two of those are used in the code. In such cases,
the programmer can be alerted by the development environment. Also, an ap-
proach to static analysis of strings containing SQL fragments has been described,
which results in compile-time warnings of problems in these fragments [96]. This
analysis is based on the SQL grammar specification and the schemas of the target
database.

Note that these systems solely concentrate on the facilitation of integration of
the database API into the programming language realm. They do not concern
the impedance mismatch in optimization as described in [25] and do not propose
techniques for the explicit break down of layers between the application and da-
tabase codes.

A different way to integrate database and application codes is to express da-
tabase queries in the same imperative language as the application code. This was
the approach taken by a specific class of programming languages known as Data-
base Programming Languages (DBPLs). These languages are characterized by the
fact that they include the ability to iterate through sets. In order to obtain good
performance it is critical that DBPL compilers are extended to include database-
style optimizations, such as join reordering. Initial work into such compile-time
optimizations is described in [62]. The described transformations make standard
transformation-based compilers capable of optimizing iterations over sets that
correspond to joins. This work was later extended to include transformations that
enable the parallelization of loops in DBPLs [61].

The Tycoon project aimed to replace special-purpose representations for que-
ries, programs and scripts with a single expressive intermediate language [38].
This intermediate language, the Tycoon Machine Language, was based on con-
tinuation passing style. Continuation passing style is a functional programming
construct wherein a function call has as last argument another function to call
(named the continuation) once the called function has finished execution [89].
The language was used to move towards an integrated database language where
user-defined code and query expressions are fully integrated. No final results or
benchmark figures were published [25].

Contrary to expressing application and database codes in a common represen-
tation to perform integrated optimizations, it is also possible to devise transfor-
mations that operate on both the original application and database codes simulta-
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neously. Such transformations have been researched by several groups. Holistic
transformations for web applications are proposed in [66, 37]. The papers argue
that tracking the relationship between application data and database data might
yield advancements. It is exactly this relationship that we aim to exploit with the
global integrated optimization methodology that is described in this thesis, how-
ever, we do not track the relationship, we rather eliminate this relationship by
integrating the application and DBMS codes.

A similar holistic approach for Java code bases is described in [21], which mo-
tivates the approach by stating that rewrites of queries and programs are done
independently by the database query optimizer and the programming language
compiler. This independence leaves out many optimization opportunities. Their
approach centers around a tool which aims to bridge this gap by performing holis-
tic transformations on the program code and queries.

Cheung et al. describe a system, StatusQuo, to optimize the performance of
database applications written in Java accessing a database through JDBC or Hi-
bernate by considering both the application code as well as the queries [22]. Simi-
lar to us they state that the hard separation between the application and database
code often results in applications with suboptimal performance. The system is ca-
pable of automatically partitioning the database application into a Java and SQL
code, for optimal performance. To accomplish this, it may rewrite SQL into Java
code, or vice versa. Whereas StatusQuo translates imperative code into a declar-
ative form, our system translates declarative code into an imperative form and
generates executable code from this imperative form.

The UltraLite system, described in [102], combines application and database
logic together in one program. Given a program using embedded SQL for the Ul-
traLite system, the query is compiled to C code which executes this query. This is
done by sending the query to the host database server for parsing and optimiza-
tion. The returned plan is used to generate the C code. The C code makes use
of UltraLite run-time functions which implement SQL functionality. Concurrent
execution of queries is supported by the run-time library. UltraLite is meant for
usage on mobile devices with no hard disk and very little memory.

While the integration of the application and database logic may seem similar
to what we are proposing, the integration limits itself to simply placing the ap-
plication and database logic in a single executable. The generated C code does
call functions in the run-time library, which diminishes the possibility to fully in-
tegrate the application and database codes at a code level. We propose a much
finer grained integration of application and database codes, by intertwining these
codes, which is not described in the cited patent.

A different way to perform optimizations that affect both the application code
as well as the database queries consists of migrating this integration to the start
of the application’s design. GignoMDA is a framework to generate applications
and database schemas for different programming platforms based on the Model
Driven Architecture (MDA) approach [41]. The novelty of GignoMDA is that it
promises to exploit cross-layer optimizations between the different layers of a da-
tabase application in this framework. Typically, there is a presentation layer (e.g.
a Web interface), a business logic layer and a persistence layer (e.g. the DBMS).
By giving hints during the UML design process, for example hinting that a table
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will mostly be used for read-only access, optimizations based on this hint can be
carried out across all layers. The approach taken by GignoMDA only works on
newly written applications using the MDA approach. This is different from our
proposed code optimization backend, which works on existing codes and aims to
do the optimization automatically rather than relying on hints.

1.2.2 Query Planning and Optimization

In query planning and optimization an execution plan is devised for a given query.
Traditionally, the speed of disk I/O was the main bottleneck in query execution
and thus query plans were traditionally optimized to minimize disk I/O. How-
ever, with the emergence of main-memory DBMSs such as MonetDB [16, 18, 17],
the optimization objective has shifted from optimizing for minimal disk I/O to
making best use of the available main memory bandwidth and exploitation of the
CPU caches. Similar to optimizing compilers being equipped with techniques to
improve caching reuse and utilization of memory bandwidth, query optimizers
have to be equipped with such techniques as well.

The importance of optimizing for CPU cache re-use and vector processing was
also demonstrated by the X100 query engine for MonetDB [18]. By mapping que-
ries to primitives, simple C functions that apply a given operation on a given input
vector in a tight loop, a one to two orders of magnitude performance improve-
ment compared to existing DBMS technology was demonstrated. The sizes of the
vectors to be used during the query processing are selected in such a way that
they all fit in CPU cache. Optimizing compilers are responsible for compiling the
primitives, written in C, into highly efficient code by application of aggressive
loop pipelining and vectorization optimizations.

Another methodology is to architecture query optimization in such a way that
use can be made of the transformations implemented in optimizing compilers. Re-
cent research has explored the possibility of translating a query to an imperative
code that can be processed and optimized by an optimizing compiler. For exam-
ple, a strategy to transform entire queries to executable code is described in [57].
The technology, called “holistic query evaluation”, works by transforming a query
evaluation plan into source code, based on code templates, and compiling this into
a shared library using an aggressively optimizing compiler. The shared library is
then linked into the database server for processing. Although significant speed-
ups over traditional and currently-emerging database systems are achieved, this
approach does not include the integration of application and query evaluation
codes. Instead, these codes remain separated because the query code is isolated in
a shared library. Optimizing compiler technology is used to compile a translation
of the query plan into C/C++ code through the use of code templates into efficient
executable code.

In [73] a data-centric approach to query compilation is described. SQL queries
are translated to relational algebra, which is optimized and from which LLVM as-
sembly code is generated. The query in LLVM assembly code is then executed
using the optimizing JIT compiler included with LLVM. The approach is data-
centric in that the LLVM code is written such that data can be kept in CPU regis-
ters as long as possible for optimal performance. This is given more importance
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than clearly maintaining the boundaries of relational operators. In fact, the rela-
tional operators are “blurred” when generating the code and the operators can be
spread out over multiple code fragments. This technique results in very efficient
query codes. However, note that just the query is taken into account during query
compilation and the DBMS/application code split still exists.

DBToaster [1] is described as a novel query compilation framework for pro-
ducing high performance compiled query executors that incrementally and con-
tinuously answer standing aggregate queries using in-memory views. DBToaster
compiles queries into C++ code that incrementally maintain aggregate views at
high update rates. The focus of DBToaster is on compiling queries to view main-
tenance code, contrary to the translation of entire queries which return the result
of the query as you would normally receive it from a DBMS.

Compiler optimizations have also been used to take on the problem of multi-
query optimization. In [9] an approach is demonstrated where queries are written
as imperative loops, on which compiler optimization strategies are applied. The
use of loop fusion, common subexpression elimination and dead code elimination
is described. This work is tailored towards a certain class of analysis queries and
not to generic queries. Furthermore, the loop fusion transformation described in
the paper works by detecting multidimensional overlap. So, the strategy of loop
fusion is used, but not an exact mapping of the traditional loop fusion optimiza-
tion.

A different approach to multi-query optimization is described in [47], where
optimization techniques are applied to the “algorithm-level” of a database pro-
gram. In the algorithm-level, a query is represented as a sequence of algorithms,
e.g. selection, join, that should be performed to compute the query results. The
exact implementation of the algorithms is not made explicit at this level. As a
consequence, knowledge is required about the implementation of algorithms that
can appear in the representation by the optimizer in order to be able to carry out
optimizations.

In [11], a “For-Loop Approach” is described to better handle aggregated sub-
queries that contain where clauses that overlap with the main query’s where clause.
By introducing a “for-loop operator” and “for-loop program”, which are used to-
gether with relational algebra, the subqueries with overlapping where clauses can
be integrated into the main query, eliminating redundant iterations over tables.
The proposed “for-loop” operator and programs are meant to be an extension or
tool to standard relational algebra.

As can be seen from this summary, many different approaches have been pro-
posed to make DBMSs and especially query optimization more efficient. How-
ever, none of the approaches described above exploit (existing) compiler optimiza-
tions to their fullest extent.

1.3 Sparse Computations

In Part II of this thesis, the use of the forelem loop for the optimization of irregular
applications will be explored. In particular, the utilization of the forelem interme-
diate for code and data structure generation of sparse matrix computations will be
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discussed. Contrary to dense matrix computations, sparse matrix computations
are irregular applications because specific data structures are used to store the
matrix data instead of a regular two-dimensional array. From these specific data
structures matrix elements with a zero value are omitted. An example of such a
data structure is pointer-linked data structure in which elements that are located
in the same row or column are linked to each other. Because these elements may
not be placed in memory in consecutive order, the memory access may be very
irregular. Irregular memory access in sparse computations is also caused by the
selection of a data structure that does not store the matrix elements in the order in
which they are accessed by the computation, also yielding ineffective use of the
CPU cache next to irregular memory access.

There is a large body of literature on the optimization of sparse computations.
More recent work covers overcoming the memory wall in modern CPUs using
compression techniques [97, 56], the optimization of sparse matrix-vector multi-
plication on multicore platforms [98], the optimization for register reuse [44], and
the implementation of matrix-vector multiplication on GPUs [14].

Many of the solutions described in the literature, such as specific algorithms
and data structures are implemented in sparse algebra libraries. An extensive
amount of work has been invested in designing several sparse libraries for dif-
ferent storage formats and computer architectures [14, 87, 81, 10]. While these
libraries in general provide an adequate solution and are used frequently by code
developers to generate optimal codes, use of these libraries is relying on pre-
defined code. The libraries have fixed storage formats and especially when hy-
brid storage formats are needed, one cannot expect all different combinations to
be pre-defined in the library.

Bik and Wijshoff described compiler techniques to automatically generate an
implementation of a computation that operates on sparse matrix structures from
an implementation of that computation expressed in terms of dense matrices that
is supplied to the compiler [15]. User annotations about matrix statistics (e.g. its
sparsity) or interactive user input is used to aid the compiler in selecting an effi-
cient, pre-defined, sparse storage format for the matrices used in the computation.

Mateev et al. proposed a generic programming methodology to bridge the gap
between algorithm implementation API and storage format API [68]. Algorithms
are implemented as generic dense matrix programs, without considering a par-
ticular data storage format. The details of different, pre-defined, data structure
formats are exposed using a low-level APL Their framework views sparse ma-
trix formats are indexed-sequential access data structures and uses a restructur-
ing technology based on relational algebra to convert a high-level algorithm into
a data-centric implementation that exploits characteristics of the available sparse
formats whenever possible. Matrices are considered as collections of tuples for the
purpose of restructuring towards an existing sparse storage format. This restruc-
turing process is covered in more depth in [55], which expresses the iterations,
or tuples, that should executed as relational queries and finds a solution for these
relational queries through the application of join reordering and determining suit-
able join algorithms to compute the joins.

Marker et al. described a method for the automatic parallelization and opti-
mization of Dense Linear Algebra for distributed-memory computers called De-
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sign by Transformation (DxT) [67]. Their method works by modeling algorithms
in a data-flow graph. The graph contains nodes that represent redistribution oper-
ations or a LAPACK or BLAS function call. Optimization is carried out by apply-
ing graph transformations to find equivalent graphs that potentially exhibit better
performance.

1.4 Contributions of Part |

The contributions of the first part of this thesis are developments towards a ver-
satile intermediate representation for the optimization of codes and the develop-
ment of a global, integrated, optimization framework for database applications.
More specifically, the contributions of Part I of this thesis are:

1. An initial study of the cost of the overhead of the modular development
methodologies for web applications that are in use today. This study shows
that up to 90% of the instructions can be eliminated without affecting the
final result, leading to substantial savings in energy consumption of web
servers and a tremendous improvement of the performance of the web ap-
plication. This work has been published in [84].

2. A tuple-based intermediate representation, the forelem loop, in which SQL
queries can be naturally expressed in terms of loops governed by simple
control. Extensions are described that allow nested and aggregate SQL que-
ries to be represented.

3. There-targeting of established compiler optimizations onto the forelem loops.
The foundations of the intermediate representation and the re-targeted com-
piler optimizations have been published in [83].

4. Additional transformations for forelem loops and strategies for the optimiza-
tion of database queries expressed in terms of forelem loops solely by using
simple compiler optimizations. This optimization methodology results in
executables codes that evaluate queries with a performance comparable to
that of contemporary state-of-the-art database systems.

5. An automatic global integrated optimization process to reduce database ap-
plications to their essence. For two web applications it is shown that this au-
tomatic optimization process is very effective, on average eliminating 75%
of the instructions and in specific cases up to 95% without affecting the exe-
cution and output of the application.

6. A trade-off analysis to support a decision process to determine whether it
is beneficial to change the data access codes to be in-process (i.e. vertical
integration) for a given sequence of queries. This analysis can be used by
an automatic optimization process to determine for what parts of a web ap-
plication it is beneficial to perform integral optimization, implying the con-
struction of a local copy of the data. This work has been published in [85].
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1.5 Contributions of Part |l

The second part of this thesis contributes techniques to support automatic gen-
eration of code and data structures from a forelem representation of a problem in
terms of tuples. More specifically, the contributions of Part II are:

1. Extensions to the forelem framework for the automatic generation of data
storage formats from a representation of the code that operates on tuples.
These extensions consist out of a materialization and concretization phase.
In the case of sparse matrices, using these techniques established data stor-
age formats, such as Jagged Diagonal Storage, can be automatically derived,
that could up till now only be derived by hand. Part of this work has been
published in [83].

2. A characterization of the search space consisting of many different variants
of a sparse matrix computation represented in terms of tuples that can be
automatically generated using the forelem framework. This characterization
shows that by performing an exhaustive search through this search space,
variants of the computation can be found that are in most cases faster than
the implementations of these computations supplied by sparse algebra li-
braries, and at least on par in performance.

3. A further extension of the forelem framework, the ready clause, that allows
dependencies between tuples to be naturally expressed. As such, generic
irregular computations can be expressed in terms of tuples. By expressing
dependencies as dependencies between tuples, it is trivial to deduce which
operations on tuples can be executed at the same time. Preliminary experi-
ments show that from an ordinary triangular solver code expressed in terms
of a dense matrix, a highly parallel implementation is automatically derived
that operates on sparse storage. This automatically derived implementation
has a performance that is competitive to that of hand-optimized implemen-
tations. This work has been published in [86].

4. Initial work to support the expression of distributed forelem loops. By putting
the optimization process in control of how forelem loops are distributed, opti-
mal data decompositions and distributions can be determined. This extends
the capability of the forelem framework to also optimize data composition
and distribution in additional to the optimization data storage formats that
are used locally. Part of this work has been published in [83].

1.6 Outline

This thesis is organized as follows. In Part I a framework is described for global,
integrated, optimization of web applications. Chapter 2 presents an initial study
of the cost of the overhead of the modular development methodologies for web
applications that are in use today. It is shown that up to 90% of the instruction can
be eliminated without affecting the final resulting, leading to substantial savings
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in energy use of web servers and a tremendous improvement of the performance
of the web application. This chapter has been published in [84].

Chapter 3 introduces the forelem loop, which is the main constituent of the
forelem framework. A forelem loop specifies iteration of a subset of a multiset of
tuples. SQL queries can be naturally expressed in terms of forelem loops. Transfor-
mations can be carried out on these loops to optimize the performance.

Chapter 4 extends the basic forelem framework introduced in Chapter 3 with
syntax and transformations for handling nested SQL queries. In Chapter 5 further
extensions are proposed for handling aggregate functions and group-by queries.

Chapter 6 describes how queries that are expressed in terms of forelem loops
can be effectively optimized solely through the use of simple compiler optimiza-
tions.

Chapter 7 discusses how the global integration optimization process of data-
base applications can be performed automatically for reducing database applica-
tions to their essence.

Chapter 8 describes a trade-off analysis that can be used by an automatic opti-
mization process to determine for what parts of a web application it is beneficial
to perform integral optimization, implying the construction of a local copy of the
data, and for which parts this is not beneficial. This chapter has been published
in [85].

Part II of this thesis explores the use of the techniques developed for the in-
tegral optimization of database applications in other application domains. Chap-
ter 9 describes extensions to the forelem framework to support the automatic gen-
eration of data structures from a representation of a problem in terms of tuples.
Parts of this chapter have been published in [83].

Chapter 10 characterizes the search space that consists of many different vari-
ants generated from an initial representation of a sparse matrix computation in
forelem through the application of transformation. It is shown that by performing
an exhaustive search through this search space, variants of the computation can
be found that are in most cases faster than the implementations of these computa-
tions supplied by sparse algebra libraries.

Chapter 11 further extends the forelem framework with a ready clause. Using
this clause, dependencies between tuples can be naturally expressed, resulting in
a method that is especially suited for the automatic parallelization of irregular
codes. This chapter has been published in [86].

Chapter 12 proposes a syntax for expressing and controlling distributed exe-
cution of forelem loops. It is described how this makes the forelem viable for the
optimization of Big Data applications.

Finally, Chapter 13 summarizes the thesis and discusses future perspectives of
the forelem framework.
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CHAPTER 2

Quantifying Instruction-Count
Overhead of Web applications

2.1 Introduction

Applications that have seen a steady rise in ubiquity in the last 10 years are web
applications. In many data centers web applications are hosted that provide much
of the World-Wide Web’s content. Web applications are often built from several
readily available components to speed up development, such as web development
frameworks and database management systems (DBMSs). This modularity allows
for rapid prototyping, development and deployment. The World-Wide Web has
heavily benefited from this modular approach.

However, it is well known that modularity does not come for free. In the last
decade, the increasing energy consumption of data centers has already drawn the
attention of governments. The US Environment Protection Agency (EPA) reported
on the energy efficiency of data centers in a 2007 report [93]. Their study says
energy consumption of US data centers had doubled in the period from late 2000
to 2006. Based on this trend, they projected another doubling in electricity use for
the period from 2006 to 2011. This would mean a quadrupling in electricity use
by data centers in about 10 years time.

Contrary to the EPA prediction, a 2011 report by [46] claims electricity by US
data centers increased by 36% instead of doubling from 2005 to 2010. This is sig-
nificantly lower than predicted by the EPA report. Koomey attributes this to a
lower server installed base than predicted earlier, caused by the 2008 financial
crises and further improvements in server virtualization. Nevertheless, the en-
ergy consumption is still increasing and while the increase was only 36% in the
US, according to the Koomey report the increase amounted to 56% worldwide.

The server installed base is an important metric, because each installed server
adds up to the amount of electricity used, not only due to the energy used by
the server itself but also because cooling capacity has to be increased. The EPA
report makes many recommendations to reduce electricity use in data centers.
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Many of these recommendations seek for solutions in hardware. Better power
management can make servers more energy efficient. The server installed base
can be reduced by making better use of virtualization to consolidate servers. Rec-
ommendations are also made to develop tools and techniques to make software
more efficient by making better use of parallelization and to avoid excess code.
However, these recommendations are not as concrete as those for hardware im-
provements.

An interesting observation in the EPA report is that those responsible for se-
lecting and purchasing computer equipment are not the same as those responsible
for power and cooling infrastructure. The latter typically pay the electricity bills.
This leads to a split incentive, because those who could buy more energy efficient
hardware have little incentive to do so. We believe a similar split incentive ex-
ists with software developers. Software developers are not in charge of obtaining
the necessary computing equipment in data centers and also are not aware of the
electricity bills. Therefore, software developers have very little incentive to fur-
ther optimize the software to reduce energy consumption. The fact that software
optimization is a very diligent and costly task does not help.

Many statistics have been collected on data center cost and performance. For
example [24] describes several metrics that are used in data center management to
optimize performance and drive costs down. Many of these metrics concentrate
around MIPS or the number of servers and processors. Mainframe size is ex-
pressed in MIPS, and cost can be expressed in spending (on hardware, software,
personnel, etc.) per MIPS. Statistics on Intel-based UNIX and Windows operating
environments are expressed in number of servers and processors. In such statis-
tics a distinction is made between installed MIPS versus used MIPS. These numbers
should not be too far apart, because server capacity staying idle is neither cost nor
energy efficient. However, as soon as a server is no longer idle, the work per-
formed is counted as used MIPS. Of such used MIPS it is not investigated whether
these MIPS did useful work or were mainly overhead. In other words, no distinc-
tion is made between essential MIPS and non-essential MIPS, with non-essential
MIPS being accrued from the cost of the usage of rapid development frameworks
and software modularity.

In this chapter, we address the quantification of energy usage through non-
essential instruction (MIPS) count overhead. To be able to effectively target efforts
to reduce energy consumption of web applications, the sources of overhead must
be quantified. An instruction-level quantification of overhead in web applications
does not exist to our knowledge. We investigate three existing and representative
web applications and show that in this manner accurate measurements on spilled
energy usage can be obtained. In our opinion, this will result in an incentive for
data centers to prioritize the need for software overhead reduction instead of only
improving hardware energy efficiency.

In Section 2.2 we give an overview of how non-essential MIPS are determined
in web applications. Section 2.3 describes the experimental setup and the web ap-
plications used. The sources of overhead are quantified in Section 2.4. Section 2.5
links the results of the experiments to the expected reduction in energy consump-
tion. Section 2.6 discusses work related to this chapter. Finally, Section 2.7 lists
our conclusions.
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2.2 Determination of non-essential MIPS

A number of categories of overhead, or non-essential MIPS, in web applications
that make use of the PHP language and a MySQL DBMS can be identified. The
instruction count of non-essential MIPS for each category is obtained by count-
ing instructions in the original program code and in the program code with the
overhead source removed. The difference in instruction count is the number of
instructions for the corresponding overhead source.

The first category of overhead we will consider is overhead caused by devel-
opment frameworks for web applications. Many applications are written with the
use of a framework which dramatically shortens development time and increases
code re-use. One of the applications we survey in this chapter has been developed
using the CakePHP framework. The CakePHP simplifies development of web ap-
plications by performing most of the work serving web requests and abstracting
away the low-level data access through a DBMS. Frameworks like this affect per-
formance by, for example, performing unnecessary iterations and copies of results
sets, or even by executing queries of which the results are not used at all.

The second category of overhead is the PHP language itself. Due to PHP’s
nature as a script language, there is a start-up overhead due to parsing and inter-
pretation of the source files and the potential to thoroughly optimize the code in a
similar way to compiled languages is removed.

As a third category, we consider the current modular design of DBMSs, which
has as result that a single DBMS instance can be easily used for a variety of appli-
cations. A downside of this modularity is that when an application has a request
to retrieve data, this request has to go out of process. Depending on the architec-
ture of the website, the request is either served by a DBMS running on the same
server as the web server executing the PHP code or the request is sent to a remote
DBMS host. Overhead that is incurred can include: context switching overhead,
network and protocol overhead and data copying overhead.

The fourth category of overhead is caused by DBMS APIs implemented in
shared libraries. The library sends PHP queries to the DBMS and retrieves the
results. As a result of this architecture details on the data accesses are shielded off
and also overhead is introduced by iterating result sets at least twice: once when
the DBMS builds up the result set and sends this to the application program and
once in the application program itself when the results are iterated.

2.3 Experimental Setup

In this chapter we quantify three web applications: Discus, RUBBoS [74] and RU-
BiS [75]. Although it can be questioned whether these three applications are rep-
resentative of typical web applications running in data centers, we are convinced
that at least these benchmarks can be used to create an initial quantification of the
overhead. In our experiments, we have focused on read-only workloads.
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Discus

Discus is an in-house developed student administration system. The system is
based on CakePHP development framework, version 1.2.0. To quantify the over-
head for full page generations, all forms of caching (e.g. query or page caching)
in CakePHP have been disabled. We focus on two particular page loads: the stu-
dents index and the individual student view. All experiments have been carried
out with three different data sets: small (25.000 tuples), medium (0.5 million tu-
ples) and large (10 million tuples).

RUBBoS

The RUBBoS benchmark was developed by a collaboration between RICE Univer-
sity and INRIA and models a typical bulletin board system or news website with
possibility to post comments [74]. We have used the PHP-version of RUBBoS. To
quantify the overhead in different typical pages served by RUBBoS, we looked at
the page generation times of the following pages: StoriesOfTheDay, BrowseStories-
ByCategory, ViewStory, ViewComment. We believe these pages are typical for the
workload that characterizes a news story website. As data set we have used the
data set that is made available at the RUBBoS website.

RUBIS

The RUBIS benchmark [75] models a simple auction website and is similar to the
RUBBoS benchmark as it has been developed by the same collaboration. For our
tests with RUBiS we have used the same methodology as with RUBBoS. The PHP-
version of RUBIS was used and the following pages were picked: ViewBidHistory,
Viewltem, ViewUserInfo and SearchltemsByCategory. The data set that is available
from the RUBiS website has been used as data set in our experiments.

The experiments have been carried out on an Intel Core 2 Quad CPU (Q9450)
clocked at 2.66 GHz with 4 GB of RAM. The software installation consists out
of Ubuntu 10.04.3 LTS (64-bit), which comes with Apache 2.2.14, PHP 5.3.2 and
MySQL 5.1.41. No extraordinary changes were made to the configuration files for
Apache and MySQL, except that in MySQL we have disabled query caching to be
able to consistently quantify the cost for executing the necessary queries. In the
experiments we obtained two metrics. First, we obtained the page generation time
which we define as the difference between the time the first useful line of the PHP
code started execution until the time the last line of code is executed. Secondly, we
acquire the number of instructions executed by the processor to generate the page
by reading out the INST_RETIRED hardware performance counter of the CPU.

2.4 Quantification

In this section, we will quantify the overhead for each of the categories described
in Section 2.2. To quantify the overhead induced by the PHP programming lan-
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guage we have compared the performance of the three code bases to the code
bases compiled to native executables using the HipHop for PHP project [42]. This
project is developed by Facebook and is a compiler that translates PHP source
code to C++ source code, which is linked against a HipHop runtime that contains
implementations of PHP built-in functions and data types. Both the Apache HTTP
server and the PHP module are replaced by the HipHop-generated executable.

In Figures 2.1, 2.2 and 2.3 the difference in page generation time between
Apache and the HipHop-compiled executables is shown as “PHP overhead”. Fig-
ures 2.4, 2.5 and 2.6 depict the number of instructions executed to generate the
page. For the Discus code base we observe that roughly 1/3 to 2/3 of the page
generation time can be attributed to PHP overhead. A similar overhead is found
in the figures depicting the number of instructions

The RUBBoS and RUBIS benchmarks do not show an improvement in page
generation time when the HipHop-version is tested. However, the instruction
count does noticeably decrease. Compared to Discus, the RUBBoS and RUBIS
source code is quite straightforward and it is possible that aggressive compiler
optimizations do not have much effect. Although less instructions are retired, it is
plausible that instead more time is spent waiting for (network) I/0.

To quantify the overhead of development frameworks, we have focused on
one of the main sources of overhead in the CakePHP framework, which is the
data access interface or in particular the automatic generation of SQL queries. The
difference between the code bases with and without automatic query generation
is displayed in Figures 2.1 and 2.4 as “CakePHP gen. overhead”. For most cases,
the overhead of automatic query generation ranges from 1/12 to 1/5 of the total
page generation time. This is significant if one considers the total page genera-
tion time in the order of seconds and the fact that there is no technical obstacle to
make the queries static after the development of the application. CakePHP em-
ploys caching to get around this overhead (which was disabled to uncover this
overhead). However, caching does not help if similar queries are often executed
with different parameters. We have not done similar experiments for RUBBoS and
RUBIS, because these code bases use static queries instead of a rapid development
framework.

We made the application code compute the results of the SQL queries instead
of sending these queries to a different DBMS process, to quantify the overhead
of using common DBMS architecture. This was done by modifying the HipHop-
compiled Discus, RUBBoS and RUBIS code bases by replacing calls to MySQL API
with code that performs the requested query. For example, calls to the function
mysql_query were replaced with a complete code that performs the requested
query and fills an array with the result tuples. Algorithmically seen, the query
is performed in exactly the same manner as it would have been performed by
MySQL. Using the Embedded MySQL Server Library [70], it is also possible to
perform SQL queries within the client process without contacting a remote DBMS.
This approach does not address the DBMS API overhead as described in Sec-
tion 2.2, because the generic MySQL API function calls remain in use, shielding off
the data access from the application code. Furthermore, our objective is to obtain
a minimum amount of instructions required for processing queries, to emphasize
the cost of using a generic, modular DBMS.
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The time results are displayed in Figures 2.1, 2.2 and 2.3. Compared to the
original execution time of the Apache-version of the Discus application, the MySQL
overhead accounts for roughly 8% to 40% of the execution time. If we compare the
MySQL overhead to the execution time of the original HipHop-compiled version
however, the MySQL overhead accounts for roughly 20% to 60% of the execution
time. These larger numbers are also reflected in the RUBBoS and RUBIS results,
where the MySQL overhead is estimated to be around 72% to 90% of the page
generation time. Put differently, elimination of the MySQL server improved the
page generation times for the RUBBoS and RUBIS applications by about a factor
10. We again see similarly sized reductions in instruction count in Figures 2.4, 2.5
and 2.6.

Once the SQL queries have been expanded to code inside the application code,
several sources of overhead of DBMS APIs become apparent. It is now possible to
integrate the application code with the query computation code in a much more
optimal fashion. In the majority of the cases the loops that iterate over the result
set can be merged into the loops that perform the actual queries and thus build
the result sets, saving an iteration of the result set.

In Figure 2.1 we observe that it is possible to achieve at least a factor 2 speedup
in most cases compared to the HipHop-version of Discus. For the Index 100/ page
with the large data set case, a factor 10 speedup is obtained. Although the over-
head of the DBMS API does not appear that significant compared to the total
execution time, it does prove to be of significance when put in the perspective
of the execution time of the application when the usage of MySQL has been re-
moved. The same reasoning holds true when the results of the RUBBoS and RU-
BiS applications are analyzed, displayed in Figures 2.2 and 2.3 respectively. When
compared to the total execution time of the derivative of the application with the
MySQL overhead removed, removing the SQL API overhead results in speedups
close to a factor of 2 in half of the cases.

2.5 Energy Consumption

From the results collected we can deduce that in general the time spent per instruc-
tion stays in the same order of magnitude both when non-essential (overhead)
instructions are removed as well as when the problem size is increased. Overall,
there is an approximately linear relation between the page generation time and
the amount of instructions executed to generate a page. For the applications that
have been surveyed, removal of non-essential instructions has an immediate ap-
proximately linear impact on performance.

Tables 2.1 and 2.2 show the number of non-essential instructions that are ex-
ecuted for each essential instruction for the Discus and RUBBoS/RUBIS experi-
ments respectively. The overhead varies greatly from page to page. In the ma-
jority of cases however, the overhead is significant: more than 20 non-essential
instructions are executed for each essential instruction. An overhead of a factor
20.

In the Discus experiments we observe a trend that as the data set size increases,
the overhead increases as well. Put differently, the overhead expands when the
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Ratio

Small 14.92
20/page Medium 23.26
Large 41.67

Small 22.72

40/page Medium 30.30
Large 45.45

Small 43.48

100/page Medium 38.46
Large 47.62

Small 4.69

Indiv. View| Medium 6.17
Large 18.52

Table 2.1: Displayed is the ratio of non-essential instructions executed for each
essential instruction.

Ratio

RUBBoS, BrowseStByCat. 1.56
RUBBoS, ViewComments. 14.29
RUBBoS, ViewStory. 21.28
RUBBoS, StoriesOfTheDay. 25.64

RUBIS, SearchltByCat. 4.4
RUBIS, ViewBidHistory 11.83
RUBIS, Viewltem-qty-0 17.54
RUBIiS, Viewltem-qty-5 80.64
RUBIS, ViewUserInfo 32.26

Table 2.2: Displayed is the ratio of non-essential instructions executed for each
essential instruction.

same code is ran on a larger data set. It is very well possible that this increase
in overhead is caused by the data reformatting done in the CakePHP framework.
This happens when the result set received from the DBMS is formatted into an
array that can be used for further processing by CakePHP framework objects. The
fact that the overhead of the MySQL and SQL API categories increases linearly
with the data size and thus stays constant per row also indicates that the cause of
this increase in overhead should be sought in the CakePHP framework. From this
result it can be expected that in this case the reduction in non-essential instructions
will be larger as the data set size increases.

We showed a significant reduction in MIPS to be executed by a factor of 10.
However, if we look at the ratio of time per essential instruction versus the average
time per non-essential instruction (instruction time delay) for the web applications
we have surveyed (Table 2.3), we observe that for most cases the average time per
essential instruction is larger than the average time per non-essential instruction.
A possible explanation for this is that the majority of essential instructions are ex-
pected to be carrying out memory access or disk I/O. As a result, when estimating
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ITD
RUBBoS, BrowseStByCat. | 0.42
RUBBoS, ViewComments. | 0.84
RUBBoS, ViewStory. | 0.90
RUBBoS, StoriesOfTheDay. | 1.55
RUBIS, SearchltByCat. | 0.91
RUBIS, ViewBidHistory | 0.91
RUBIS, Viewltem-qty-0 | 1.16
RUBIS, Viewltem-qty-5 | 3.63
RUBIS, ViewUserInfo | 1.43
Discus 20/page, Medium | 1.42
Discus 40/page, Medium | 1.30
Discus 100/page, Medium | 1.15
Discus Indiv. View, Medium | 1.03

Table 2.3: The Instruction Time Delay (ITD) is shown, which is the ratio of the
average time per essential instruction against the average time per non-essential
instruction. The latter is the weighted average of the time per instruction of the
different overhead categories.

energy reduction this has to be taken into account, see below. In case of RUBBoS
and RUBIS, this trend is not always visible. Possibly, this is because the time spent
by the essential instructions is quite small, due to small transfers of data, so that
these do not weigh up to the time spent by the non-essential instructions.

Table 2.4 displays the instruction time delay for Discus experiments with vary-
ing data set sizes. For all cases, the time delay increases as the data set size in-
creases. Or, as non-essential instructions are eliminated the essential instructions
responsible for fetching the data from memory will take more time to execute.
The memory wall becomes more exposed as overhead is removed. Recall from
Table 2.1 that the number of overhead instructions increases with the data set size,
however, the instruction time delay increases as well and this will counteract the
increase in overhead.

When we consider the majority of the essential instructions to be carrying out
memory access or disk I/O, we have to consider the cost of such data accesses
in our conservative estimates of impact on energy usage. We use the component
peak powers and actual peak power, which is 60% of the advertised peak power,
of a typical server described by [33]. In the very worst case, essential instructions
are the most expensive in energy usage and non-essential the cheapest, the re-
moval of overhead would then only remove the cheap instructions. If we take the
typical machine’s actual peak power usage of just the CPU and memory for the
essential instructions and the idle power usage (estimated at 45% of actual peak
power) for the CPU and memory for the non-essential instructions, we obtain a
ratio of approximately 69.6W : 31.3W or a factor 2.22. Let dP be this factor 2.22,
dT be the average time per essential instruction versus the average time per non-
essential instruction (or time delay), reported in Table 2.4, and R be the ratio of
non-essential versus essential instructions, reported in Table 2.1. Then, we can
use the formula
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ITD

Small | 1.24

20/page Medium | 1.42
Large | 1.50

Small | 1.18

40/page Medium | 1.30
Large | 1.45

Small | 0.55

100/page Medium | 1.15
Large | 1.46

Small | 0.91

Indiv. View| Medium | 1.03
Large | 1.25

Table 2.4: The Instruction Time Delay (ITD) is shown, similar to Table 2.3, but for
Discus experiments with varying data set sizes.

(1_dT><dP
R+1

to get a worst-case estimate of the energy saving. Completing this formula for
dP = 2.22,dT = 1.45,R = 45.45 gives an estimated energy saving of 93.1%.
A little more realistic, we can estimate the energy saving considering the entire
machine by taking the idle power usage of the entire machine for non-essential
instructions and a peak energy usage of 90% of actual peak power usage of the
entire machine for the essential instructions. This results in a dP of 2.0. When we
complete the formula with this d P, we get a slightly higher energy saving estimate
of 93.8%.

Our expected energy saving is based on the observation that essential instruc-
tions are more expensive than non-essential instructions, because essential in-
structions are more frequently instructions that access data in memory and disk
I/0. Benchmarks with typical servers show that power usage of such servers is
between 60% and 80% of actual peak power [33]. If we consider essential instruc-
tions to use 80% of actual peak power and non-essential instructions to use 60%,
we obtain a dP of 1.33. With the same parameters for dI' and R, we estimate an
energy saving of 95.8%.

If we do not make a distinction in energy used per instruction for essential
and non-essential instructions, we can compare the obtained numbers with the
estimated energy saving This is reflected in the following formula:

) x 100%

(1 _ %) % 100%

Completing for dT" = 1.45, R = 45.45 results in an estimated energy reduction
of 96.9%. This is higher than the expected saving, because we do not consider
essential instructions to be more expensive.

Table 2.5 lists the estimated energy savings for the various Discus experiments.
We note that the energy savings increase corresponds to an increase in data set
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Estimated
Energy Saving
Small 89.6%
20/page Medium 92.2%
Large 95.3%
Small 93.4%
40/page Medium 94.5%
Large 95.8%
Small 98.4%
100/page Medium 96.1%
Large 96.0%
Small 78.7%
Indiv. View| Medium 80.9%
Large 91.5%

Table 2.5: Estimated Energy Saving using the expected dP = 1.33, dT" obtained
from Table 2.4 and R from Table 2.1

Estimated

Energy Saving
RUBBoS, BrowseStByCat. 78.2%
RUBBOoS, ViewComments. 95.0%
RUBBoS, ViewStory. 94.6%
RUBBoS, StoriesOfTheDay. 92.3%
RUB;S, SearchltByCat. 77.6%
RUBIS, ViewBidHistory 90.6%
RUBIS, Viewltem-qty-0 91.7%
RUBIS, ViewlItem-qty-5 94.1%
RUBIS, ViewUserInfo 94.3%

Table 2.6: Estimated Energy Saving using the expected dP = 1.33, dI" obtained
from Table 2.3. Values for R not shown due to space constraints.

size. Even though the instruction time delay is increasing with the size of the data
sets, we still observe an increase in energy saving. We conclude that the increase in
overhead instructions superfluously counteracts the instruction time delay. This
is due to the significant size of the overhead ratios. Consider for example Discus
Index 20/page; where the number of overhead instructions doubles for each ex-
pansion in data set size (Table 2.1), the instruction time delay only increases with
a factor 1.05 to 1.15 (Table 2.4). Results obtained using the same formulas for the
RUBBoS and RUBIS experiments are shown in Table 2.6.

In conclusion, the estimated lower bound on energy saving we have found in
the experiments performed with Discus amounts to 71% for the Individual View
experiment with the small data set. This result correlates well with the page gen-
eration times displayed in Figure 2.1, where approximately 3/4 of the page gener-
ation time is eliminated when the overhead is removed. Similar results are found
in the results of the RUBBoS and RUBIS benchmarks, with a lower bound of 77.6%.
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We believe this is significant, especially when considering that the CPU and mem-
ory consume almost half of the energy used by the entire server.

2.6 Related Work

Research has been done into the performance characteristics of collaborative Web
and Web 2.0 applications that emerged in the last decade. [90] examined a col-
laborative Web application, where most content is generated by the application’s
users, and show that there is a fundamental difference between collaborative ap-
plications and real-world benchmarks. [71] compare Web 2.0 workloads to tra-
ditional workloads. Due to the use of JavaScript and AJAX at the receiving end,
many more small requests for data are made. The research shows that Web 2.0 ap-
plications have more “data-centric behavior” that results in higher HTTP request
rates and more data cache misses. The quantification as presented in this chapter
does not attempt to characterize workloads, instead it presents a low-level quan-
tification of where time is spent in program codes executing web applications.

In [6] a tool, WAIT, is introduced to look for bottlenecks in enterprise-class,
multi-tier deployments of Web applications. Their tool does not look for hot spots
in an application’s profile, but rather analyzes the causes of idle time. It is ar-
gued that idle time in multi-tier systems indicates program code blocking on an
operation to be completed.

For our quantification we have used the HipHop for PHP project [42] to trans-
late PHP source code to native executables. Similarly, Phalanger compiles PHP
source code to the Microsoft Intermediate Language (MSIL), which is the bytecode
used by the .NET platform. The effect of PHP performance on web applications
has thus been noted in the past and we believe the existence of these projects is an
indication that PHP overhead is a valid concern for large PHP code bases.

We have argued that development frameworks for web applications bring
about overhead by, for example, the generality of such frameworks and the ab-
stract data access interface. In [101] the authors argue that large-scale Java appli-
cations using layers of third-party frameworks suffer from excessive inefficiencies
that can no longer be optimized by (JIT) compilers. The main cause of such inef-
ficiencies is the creation of and copying of data between many temporary objects
necessary to perform simple method calls. One reason why this problem is not
easily targeted is the absence of clear hotspots. In [101] a technique is introduced
called “copy profiling” that can generate copy graphs during program execution
to expose areas of common causes of what the authors refer to as “bloat”.

One of the goals of the DBMS overhead elimination is to move both the query
loop as well as the result set processing code into the same address space, so that
they can be optimized together as we have done to estimate the DBMS API over-
head. Some approaches to optimize both the database codes and the applications
codes do already exist, for example, the work on holistic transformations for web
applications proposed by [66] and [37]. These papers argue that tracking the re-
lationship between application data and database data is a tool that might yield
advancements. Note that by eliminated the DBMS overhead we do exploit this
relationship, but rather by eliminating the relationship by integrating application
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and DBMS codes than by tracking this relationship. A similar approach for holis-
tic transformations for database applications written in Java is described by [21].

2.7 Conclusions

In this chapter we described and quantified several sources of overhead in three
web applications. This quantification indicates that there is a tremendous poten-
tial for optimization of web applications. Of the total number of instructions exe-
cuted to generate the web pages in the investigated applications, close to 90% of
the instructions can be eliminated. Removal of these non-essential instructions has
an approximately linear relationship with the decrease in page generation time.
This results in faster response times as well as significantly reduced energy us-
age. We have seen a lower bound on energy savings of approximately 70% for all
experiments performed in this study.

Considering the simplicity of the RUBBoS and RUBIS code bases, we believe
that the estimates shown for these applications are a lower bound on the per-
formance that can be gained. Still, the results are impressive. The more complex
Discus application shows that performance increases between one and two orders
of magnitude are a possibility, solely by reducing the number of non-essential in-
structions that are executed.



CHAPTER 3

Specification of the Forelem
Intermediate Representation

The previous chapter described an initial study on overhead in web applications
showing that 90% of the instructions executed to generate web pages are non-
essential; in other words, these can be eliminated without affecting the final re-
sult. This could result in a saving of energy consumption by computer hardware
in data centers between 70% and 95%. A large part of the 90% reduction of the
amount of executed instructions is due to integration of the code to evaluate data-
base queries into the application code. By the combined integration of application
codes and the database requests, it becomes possible to optimize applications by
optimizing compiler technology after the division between application and DBMS
codes has been eliminated.

To help this integration, we propose a methodology to efficiently express data-
base queries in terms of an imperative language and thus allowing for integration
of the application code with the code performing the evaluation of the database
query. Within this methodology, queries are expressed in such a way that full inte-
gration in the work flow of common optimizing compilers is achieved. This makes
it possible to unleash the full power of optimizing compilers on the combination
of application and database codes.

Current development environments and frameworks to develop, for example,
Java-based database applications or PHP-based web applications, have been serv-
ing programmers very well. They enabled programmers to rapidly develop and
deploy complex web applications. Without these technologies, the World-Wide
Web would not have made such a large advancement as it did in the last decade.
So, whatever change we are proposing to improve DBMS performance, this de-
velopment methodology should be kept in place.

To eliminate the observed overhead, our aim is to develop a code optimization
backend, or global integrated optimization process, that is able to take an exist-
ing database or web application and automatically breaks down the layers that
incur overhead. This code optimization backend will co-exist with contemporary
development methods and frameworks for web applications. An application is
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developed and tested as usual, but before extensive deployment in a data center,
the code is passed through the code optimization backend to eliminate as much
overhead as possible. This way, we continue to take advantage of the available
software development tools which enhance programmer productivity and com-
bine this with a code optimization backend that significantly improves the per-
formance of the application and reduces the energy consumed by the hardware
which runs the application.

In order to realize the code optimization backend, a methodology is needed to
efficiently express database queries in terms of an imperative language and that
allows for integration of application code with the code performing the evalua-
tion of the database query. Within this methodology, the database queries must
be expressed in such a way which allows for full integration in the work flow
of common optimizing compilers. In this chapter, we introduce such a method:
forelem loop nests. forelem loop nests are designed to integrate DBMS queries in
a normal optimizing compiler work flow, and also support many database-style
optimizations such as the use of various kinds of join algorithms. It is important
to note that forelem loop nests will only be used by the code optimization back-
end and it is explicitly not our intention to present forelem as a new programming
methodology to write database applications.

This chapter demonstrates that simple SQL queries can be expressed in terms
of forelem loops. In Chapters 4 and 5 extensions are proposed so that nested que-
ries, aggregate functions and group-by queries can be expressed. When a query
is expressed in the forelem framework, the complexities of query evaluation are
encapsulated and what remains is a collection of simple loops. As will be de-
scribed in this chapter, such loop nests are very well suited for optimization by
optimizing compilers and a number of transformations will be described that can
be applied on forelem loops nests, such as loop merge, loop interchange and loop
collapse. After describing the new notation and transformations, the use of these
transformations will be demonstrated by their application on a real-world code
example. This example will show the power of the usage of forelem loop nests and
the described transformations.

We believe that this methodology might be a solution to the “impedance mis-
match” in optimization as described in the first chapter [25]. The mismatch il-
luminates the fact that there is a mismatch in how application codes are opti-
mized compared to how database statements are optimized. We are convinced
that forelem loop nests eliminate this mismatch, even though it is claimed that
explicit looping structures give a particular implementation of the query that lim-
its the range of transformations and evaluation choices [65]. Maier says that in
databases, iteration is encapsulated so that the system can pick the iteration form.
Despite that forelem loop nests appear to be explicit looping structures, the power
is in the usage of “index sets”. Because of the use of “index sets”, iteration is still
encapsulated and the iteration form is picked during optimization. Which itera-
tions and which index sets are needed will emerge from the optimization phase
performed by the code optimization backend. Based on this information, the most
efficient way to compute and use the index set is determined, which is equivalent
to picking the iteration form.
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3.1 The forelem Loop Nest

In this section the basics of forelem loop nests are introduced. Each forelem loop
iterates a (multi)set of tuples. Tuples in these multisets are accessible with sub-
scripts, like ordinary arrays. The subscripts that are accessed through an “index
set” that is associated with the multiset.

The forelem loop will be described through the use of simple SQL queries.
Throughout the discussion, we will use queries inspired by the “Sailors” database
described in [82]. This database consists out of the following table schemas:

Sailors : sid, sname, rating, age
Boats : bid, bname, color
Reserves : sid, bid, day

Let us consider a first query:

SELECT S.sname
FROM Sailors S
WHERE S.rating = 7

The query is expressed in relational algebra as Tname(Trating=7(5)) and is exe-
cuted by performing the selection rating = 7 on table S (Sailors) and storing
sname from matching tuples into the result set. A C code to evaluate this query
could look as follows:

for (i = 0; 1 < len(Sailors); i++)
{
if (Sailors[i].rating == 7)
add_to_result(Sailors[i].sname)
}

In this code fragment, the for loop iterates the full S table, the if-statement selects
matching tuples, corresponding to the ¢ operator, and the add_to_result func-
tion performs the task of the 7 operator.

The main problem with this code fragment is that the looping structure is ex-
plicit, which already gives a particular implementation of the query and this limits
the range of transformations and evaluation choices [65]. It is apparent that a full
iteration over the Sailors table is to be done, to check the rating of each Sailor.
This explicit looping structure excludes the possibility to, for example, exploit an
index on the rating values. Additionally, more complex query constructs, such
as distinct and group by, require more complicated code to represent using only
standard C language constructs such as for and if. The downside of this is that
more complicated code is harder to apply transformations to and hides the actual
problem at hand.

Ideally, only those rows are iterated for which the condition rating = 7 holds
true. This is similar to what an index on the column rating would accomplish.
One way to accomplish this is to move the definition of these conditions into the
loop control structure, in our case the for statement. As a result, the explicit if
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statements are eliminated, which paves the way for the application of a larger
range of optimizations. The above query loop written using forelem looks like the
following:

forelem (i; i € pS.rating[7])
X = X% U (S[i].sname)

This code fragment is read as follows: with i, iterate over each index into table
S for which rating == 7 holds true. For these i, we append a tuple containing
the value of sname for index i into table S to the result set Z%.

Even though the forelem loop appears to be very similar to a foreach loop that
exists in many common programming languages, there is one distinguishing fea-
ture. This concerns the notation pS.rating[7]. This denotes that a set of indices
into table S will be returned for which the rating field equals 7. This is similar to
an index set as is commonly used in DBMSs, and we will also use this term to refer
to the sets of indices we define here. The fact that an index set contains indices is
indicated by the prefix p, from pointer. Note that the order in which the indices
appear in the index set is not defined. From this follows that the exact semantics
of how the table S will be iterated are not set in stone at this point. Contrary to
the original for loop, the forelem loop does not have an explicit looping structure
and does not impose a particular implementation of the query. Because of this,
we are not limited in the range of transformations and iteration schemes we can
apply. Index sets are the essence of forelem loop nests as they encapsulate iteration
and simplify the query loop code so that aggressive compiler optimizations can
be successfully applied.

Before proceeding, some further notation and terminology is introduced first.
In this chapter, the focus is on expression SQL queries as forelem loops. As a result,
the forelem loops will iterate database tables. A database table contains tuples,
that contain data for one or more columns. In a database table a tuple is not
necessarily unique, therefore a database table is a multiset. A multiset is a set in
which elements may occur more than once, furthermore, the order of items in the
multiset is irrelevant. So, in general, forelem loops specify iteration of (a subset of)
a multiset of tuples.

Let D be a multiset representing a database table. D can be indexed with a
subscript i to get access to a tuple, or row, in D: D[1]. A specific field of a row can
be accessed with D[i].field where fieldis a valid field of D. Without subscript,
an entire column is selected resulting in a multiset containing all values of that
column: D. field.

In forelem codes that have been generated from SQL statements, the loop body
often outputs tuples to a temporary or result set. Temporary sets are generally
named %, %, ..., 7, and result sets (or output relations) %y, %z, ..., %n. These
temporary tables and result sets are both multisets. The semantics that apply to
multisets representing database tables apply to temporary tables as well.

An index set is a set containing subscripts i € N into an array. Since each array
subscript is typically processed once per iteration of the array, these subscripts are
stored in a regular set. Index sets are named after the array they refer to, prefixed
with “p”.
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pD represents the index set of all subscripts into a database table D: Vt € D :
J!i € pD : D[i] = t. D can also be a temporary table .7,. All rows of D are visited if
all members of pD have been used to subscript D. Random access by subscript into
pD is not possible, instead all accesses are done using the € operator. i € pD stores
the current index into i and advances pD to the next entry in the index set.

The part of the table that is selected using an index set can be narrowed down
by specifying conditions. For example, the index set denoted by pD.field[k]
returns only those subscripts into D for which field has value k. This can also be
expressed as follows:

pD.field[k] = {i | i € pD AD[i].field ==k}
Similarly, the index set from the example query can be expressed as follows:
pS.rating[7] = {i | i € pS A S[i].rating == 7}

When a match on multiple fields is required, the single column name is replaced
with a tuple of column names:

pD.(field1,field2)[(ks,ky)] =
{i|i € pDAD[i].fieldl == k; AD[i].field2 == k,}

Instead of a constant value, the values k, can also be a reference to a value from
another table. To use such a reference, the table, subscript into the table and field
name must be specified, e.g.: D[i].field. This notation is especially suited for
expressing equi-joins.

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND R.bid = 103

This query finds the name of all sailors who have reserved the boat with id 103.
It contains an equi-join on the sid fields from the Sailors and Reserves tables.
Expressed in forelem, we obtain:

forelem (i; i € pR.bid[103])
forelem (j; j € pS.sid[R[i].sid])
X% = A U (S[]].sname)

If a value should not be tested for equality but rather for greater or less than, a
different notation is used. Instead of a single value an interval is written:

pD.field[(—o0,k)] = {i | i € pD AD[i].field < k}

Even though the notation implies a single index set, the interval is represented as
the union of the individual index sets:

pD.field[(—o0,k)] = U~ pD.field[i]

Note that when dealing with bounds of infinity, iterating over each possible index
set with field = i is not useful if there are no subscripts into the table for a
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specific i. However, forelem is only used as a representation during optimization
and in the resulting final code, the final set might have been created already.

Regular set operations on index sets are possible, but only on index sets that
relate to the same database table. Index sets contain subscripts into a specific
table and therefore it is not possible to, for example, union index sets relating to
different tables. Often, the union operation will be of use. For example, given two
index sets on a different value of a field, say “color”, the union of these index sets
yields all subscripts into the database table for which color is either value.

3.2 Relationship Between SQL and forelem

In this section, we briefly sketch how SQL statements are translated into forelem
loop nests. SQL statements with an arbitrary number of joins can be written as
a forelem loop nest while preserving correctness of the results. This is because
both the SQL statement and the corresponding forelem loop nest set up the same
Cartesian product. This fact will be used to reason about the correctness of the
translation and the conditions under which transformations can be applied on the
forelem loops.
Consider the following query performing a join:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND R.bid = 103

which is expressed in relational algebra as Tsname (05 sid=R.sidAR.bid=103(SXR)),
or more commonly using the join operator: Tsname(0R.bia=103(S XS sid=R.sid R)).
Theoretically, a join is performed by first setting up the Cartesian product over S
and R and secondly selecting tuples which match the given conditions. We can
write the first relational algebra expression as a forelem loop nest. The part SxR
can be written as follows:

forelem (i; i € pS)
forelem (j; j € pR)
S1 #Z = % U (S[il.*, R[j].%)

where S[i].* denotes all fields of table S at subscript i. In the result tuple all
fields of S are suffixed with . This loop nest sets up the Cartesian product Sx R
at statement S;, which stores the Cartesian product in #Z. After executing the
loop nest, % is equivalent to what would be produced by the relational algebra
expression SxR.

The selection operator ¢ is implemented by making a pass over the result table
and only storing matching tuples in a new result table. Of the matching tuples we
only store the requested fields to implement the 7 operator.

forelem (i; i € p%#)
if (#[i].sid® == 2[i].sid? && Z[i].bid" == 103)
S Ry = B> U (#[i].sname®)
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By application of the Temporary Table Reduction transformation that will be de-
scribed in Section 4.4.2, both loops can be merged into one:

forelem (i; i € pS)
forelem (j; j € pR)
S1 if (S[i].sid == R[j].sid && R[j].bid == 103)
Sy A = % U (S[i].sname)

In general, we say that a perfectly nested forelem loop nest of the following form:

forelem (i;; i, € pTy)
forelem (iy; iy € pTa)

forelem (i,; i, € pT,)
S X = A U (T{[i1].field, ..., T,[i,].field)

sets up a Cartesian product of the tables T;, Ty, ..., T,, at statement S;. The Carte-
sian product, or rather the part of the Cartesian product that is accessed, must be
preserved under any transformation for the query to yield correct results.

3.3 Transformations on forelem Loop Nests

forelem loop nests were devised such that common loop transformations could be
applied to the resulting code. A number of transformations that can be applied to
forelem loop nests are discussed in this section. These transformations are based
on existing optimizing compiler techniques, such as these discussed in Chapter 1
(Section 1.1), and have been tailored for usage with forelem loop nests.

Generally, compiler optimizations are governed by data dependence analy-
sis [58, 3, 5, 104]. The analysis results in data-dependence relations which reflect
the constraints on the statement execution order. These constraints determine
whether a given transformation can be applied without affecting the correctness
of a program.

A related analysis is def-use analysis [2, 50]. In this analysis statements are
analyzed to see whether they are a definition (an assignment) or a use of a value.
This analysis is used to find unused variables, or to infer the current value of a
variable by looking at preceding definitions of the variable in the def-use chain.

3.3.1 Loop Invariant Code Motion

Loop Invariant Code Motion is a kind of common subexpression elimination where
statements which are invariant under the loop’s iteration variable can be moved
to an outer loop or completely out of the loop nest. Within the forelem framework
this transformation is generally used to move condition testing of array fields to
outer loops to prune the iteration space, or to inner loops so that further loop
transformations will be enabled. For example:

forelem (i; i € pX)
forelem (j; j € pY)
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if (X[i].field2 == value && Y[j].field2 == X[i].fieldl)
Z = £ U (Y[j].fieldl)

compares the value X[i].field2 with a constant value. The reference
X[i].field2 is invariant under the inner loop, so can be moved to the outer loop.
Fully moving the condition test out of the loop nest is not possible, because the
array reference is variant under the outermost loop. The result is:

forelem (i; i € pX)
if (X[i].field2 == value)
forelem (j; j € pY)
if (Y[j].field2 == X[i].fieldl)
X = A U (Y[]].fieldl)

Similarly, statements can be moved to the innermost loop, to enable the applica-
tion of loop transformations, such as Loop Interchange.

3.3.2 Loop Interchange

The Loop Interchange transformation is derived from the common loop inter-
change transformation applied by optimizing compilers discussed in Chapter 1
and reorders the nesting of loops in a loop nest. To perform this transformation,
Loop Invariant Code Motion is used to move the conditions to the inner loop be-
fore the loop nest is reordered and back to the outermost loop after the reordering.

The standard Loop Interchange transformation changes the order in which the
statements in the loop are executed. This transformation is only valid if the new
execution order preserves all dependencies of the original execution order [104].
Commonly, data-dependence analysis [58, 3, 5] is employed to formally verify
whether the data-dependence relations are preserved across loop transformations.
In general, only certain loop-carried dependencies can prevent application of Loop
Interchange. A forelem loop does not specify a particular execution order and
therefore loop-carried dependencies cannot exist. As a consequence, interchanges
of loops in a perfect loop nest are always valid.

Loop-carried dependencies are only caused by dependencies of the loop
bounds of inner loops on outer loop iteration counters. In this case, Loop Invari-
ant Code Motion is first used to move the conditions to the inner loop before the
loop nest is reordered and back to the outermost loop after the reordering. This
way, Loop Interchange is applied to a perfectly nested loop nest.

Within the forelem framework the Loop Interchange transformation is used to
reorder loops such that as many conditions as possible are tested in the outermost
loop to prune the search space. As an example, consider the following loop nest
over tables X and Y with a result table #:

forelem (j; j € pY)
forelem (i; i € pX.(fieldl, field2)[(Y[j].field2, value)])
F = X U (Y[j].fieldl)

First, the conditions of all loops are written as if-statement and moved to the inner
loop nest using Loop Invariant Code Motion:
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forelem (j; j € pY)
forelem (i; i € pX)
if (X[i].fieldl == Y[j].field2 && X[i].fieldl == value)
Z% = Z U (Y[j].fieldl)

After the preparatory step, the forelem loop nest is in the perfectly nested form
and generates the cross product of tables X and Y at the if-statement. The only
dependency in this loop is the true dependency on & in consecutive iterations.
On Z the U operator is used to indicate that tuples are being added to a (result)
set. In this code fragment, no sort order is imposed on the result set, so the order
in which the tuples appear in % does not matter (as long as the tuples are correct).
This breaks the true dependency. Given that there are no other dependencies,
the loops can be interchanged freely which does not change the contents of the
generated cross product:

forelem (i; i € pX)
forelem (j; j € pY)
if (X[i].fieldl == Y[j].field2 && X[i].fieldl == value)
X% = Z U (Y[j].fieldl)

Next, Loop Invariant Code Motion is applied to move conditions to the outermost
loops:

forelem (i; i € pX)
if (X[i].field2 == value)
forelem (j; j € pY)
if (Y[j].field2 == X[i].fieldl)
Z = Z U (Y[j].fieldl)

As a final step, the conditions are moved from the if -statements into the index sets
in the forelem loop nest:

forelem (i; i € pX.field2[value])
forelem (j; j € pY.field2[X[i].field1])
X% = A U (Y[]].fieldl)

Note, that as a result of this transformation, the comparison with value is per-
formed in the outermost loop, which effectively prunes the iteration space.

3.3.3 Loop Fusion

Loop Fusion [52] is a traditional compiler optimization that can be readily ap-
plied to forelem loops. The transformation can, under certain conditions, merge
two loops (at the same level if contained in a larger loop nest) into a single loop.
Application of Loop Fusion is only prohibited by certain loop-carried dependen-
cies. Such loop-carried dependencies do not exist in forelem loops. Therefore, Loop
Fusion can be applied on two adjacent forelem loops if the iteration spaces of the
two loops are equal. This is the case if the index sets for both loops refer to the
same table and contain the same set of subscripts into these tables. After Loop
Fusion has been applied, the bodies of both loops are then executed for the same
set of subscripts into the same array. For example:
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forelem (i; i € pTablel)

% = % U (Tablel[i].fieldl)
forelem (i; i € pTablel)

Ky = Ko U (Tablel[i].field2)

can be rewritten into the following:

forelem (i; i € pTablel)

{
KX, = X U (Tablel[i].fieldl)
R %> U (Tablel[i].field2)

}

Note that forelem loops generally only access the array being iterated using the
subscript of the current iteration. E.g., an access into an array always has the form
7 and not ¢ + 2 or similar. As a consequence, a condition preventing Loop Fusion
from being applied will in general not occur.

3.3.4 Loop Merge

A typical query in a database application has the following structure when ex-
pressed using forelem loops:

forelem (i; i € pS.rating[7])
X = X% U (S[i].sname)
while (row € %)
print (row.sname) ;

The forelem loop is a loop producing result tuples, the while loop is a loop consum-
ing these result tuples. Both loops enumerate the same iteration space, namely the
set of all matching tuples. In this particular example, the temporary storage % is
not required and can be eliminated. To eliminate the usage of temporary storage,
the loops have to be merged, similar to how loops enumerating the same iteration
space can be fused using Loop Fusion under certain conditions:

forelem (i; i € pS.rating[7])
{

row = S[i].sname;

print (row.sname) ;

}

We will refer to this transformation as the Loop Merge transformation. Note that
as a further optimization, the references to the result row can be rewritten to be
references immediately into the database table.

Sometimes a preparatory transformation has to be done on the code before it is
possible to perform the Loop Merge transformation. Consider the following code
fragment:
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forelem (i; i € pS.rating[7])
H = A U (S[i].sname)
if (is_empty(#))
print("There are no matches.");
else
{
while (row € %)
print(row.sname) ;
}

To make it possible to apply the Loop Merge transformation, the else-clause has
to be eliminated. We can reason that when the if-condition is true, the body of
the while loop will never be executed. The is_empty function that is called in the
if-condition is under our control and we can ascertain that this will not introduce
side effects. This also holds true for the condition in the while statement. We can
now place the while loop before the if-statement and eliminate the else clause:

forelem (i; i € pS.rating[7])
X = A U (S[i].sname)
while (row € %)
print (row.sname) ;
if (is_empty(#))
print("There are no matches.");

As a result, it is possible to apply Loop Merge.

More preparatory transformations are required in order to cover a wide range
of database applications. Within the limitations of this thesis, they will not further
be discussed.

3.3.5 Loop Collapse

With the Loop Collapse transformation, two forelem loops are collapsed into a
single loop. In conjunction with this, the two tables iterated by these loops are
merged into a new table. This is inspired by the original Loop Collapse transfor-
mation used in optimizing compilers which rewrites two levels of loops as one
level of loop by using a one-dimensional representation of two-dimensional ar-
rays [100]. Loop Collapse is a vectorization transformation and can only be ap-
plied on serial loops, that is, no loop-carried dependencies are present.

An sample scenario where Loop Collapse might pay off is when a second
query is executed for each result tuple generated by the main query. In terms of
the forelem intermediate representation, this second query is executed from within
the loop body of the main query, as will be demonstrated in an example. After
the transformation both the main and second queries can be satisfied by an itera-
tion over a single table. Secondly, this transformation can be used to search for a
potentially more effective table layout to compute the given query.

Consider the following loop nest over tables X and Y with a result table %:
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forelem (i; i € pX)
forelem (j; j € pY.field2[X[i].field1])
F* = X U (Y[j].fieldl)

Similar to the Loop Interchange transformation, we first write the conditions of
all loops as if-statements and move these into the inner loop using Loop Invariant
Code Motion:

forelem (i; i € pX)
forelem (j; j € pY)
if (Y[j].field2 == X[i].fieldl)
X% = Z U (Y[]j].fieldl)

We note that the forelem loop nest is now in the perfectly nested form and
generates the cross product of tables X and Y at the if-statement. The loop is serial
in that there are no loop-carried dependencies and due to the use of the U operator
and the fact that no sort order is imposed no dependencies are enforced on Z.

The two loops are now collapsed as follows. First, a new table XxY is created
by taking the cross product of X and Y. Secondly, the two loops are replaced with a
single loop which iterates over the new table. The conditions and code to append
a result are rewritten to use the new table.

forelem (k; k € pXxY)
if (XxY[k].field2Y == XxY[k].field1¥)
R = B U (XxY[k].field1¥)

The cross product XxY that has been created in the course of the transformation
is equal to the cross product that is generated by the relational algebra expression
XxY. Hence the forelem loop iterates over the same relation as the selection oper-
ator. Exactly the same cross product is generated at the if-statement compared to
the non-collapse loops.

At last, conditions are moved into the forelem statement again:

forelem (k; k € pXxY.field2Y [XxY.field1X])
R = R U (XxY[k].field1Y)

In this step, new syntax is introduced. Note that the value to match for the
condition on field2" is field1*. When no table and no subscript specifying a row
in the table are explicitly given, then the same table and row are used from which
the field that is being compared to is obtained. In this case, we are comparing the
value to field field2' in table pXxY, so field1?* is taken from table pXxY as well.
Both of the fields are retrieved from the same row, in this case both from the row
at subscript k.

So far, we have considered a perfectly nested loop. With additional analysis
it is also possible to transform imperfect loop nests into a form such that Loop
Collapse can be applied. Let us consider the following loop nest, for which we in
light of this discussion assume that %, is never empty at statement .5:
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forelem (i; i € pItems)

{

S1 Ky = 0
forelem (j; j € pUsers.id[userId])
S3 Ky = Ao U (Users[j].name)
Sy X = Z U (ro € %)
}

This construction was inspired by a case from the RUBiS benchmark [75], which
is further discussed in Section 3.4. Note that statement .S, fetches a single tuple
from %, which is subsequently stored in result set Z.

The loop nest differs from the perfectly nested loop nest because the main re-
sult Z is assigned at S4, which is outside of the inner loop body and secondly
because a second result set %> is used. At S, the entire Cartesian product is gen-
erated by the loop nest, however, the full product is not stored in a result set. At
S3, only fields are stored from tuples where Users.id and Item.userId match.
Due to Sy, only the first of these matches makes its way into the result set Z%.

We can detect this more formally by applying def-use analysis on the loop nest.
We assume a modified form of def-use analysis, which can interpret forelem loops
and its index sets. Def-use analysis will indicate that after running the inner loop
2 will either contain () (which we will in light of this discussion ignore), or one or
more user names generated by S3. Additionally, we know from the analysis that
only the first item of %> is used (S4). For the inner loop this means it is sufficient
to only perform the first iteration and to eliminate the remainder of the loop:

Items[i].userId

forelem (i; i € pItems)
{
userId = Items[i].userId
j = j € pUsers.id[userId]
Sy X% = A% U (Users[j].name)

}

In this loop, the execution flow of the original loop becomes more obvious. For
each item, the username of the first user which matches the Item’s userID is
fetched.

With this knowledge, we will now transform the loop nest into a form such
that Loop Collapse can be applied. Given a table Users with fields id and name,
we add a column idMask such that idMask is set to 1 for each occurrence of a row
in Users that makes it into Z. In this case, idMask is 1 for each first occurrence of
a value in id and 0 for each following occurrence of that value.

Observe that when the column id solely contains unique values, or when it
has been marked as a key in the original table schema, all values in idMask are 1.
When we use the new column in the loop nest, we obtain:

forelem (i; i € pItems)

{
Sl %2

0
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forelem (j; j € pUsers.(id,idMask)[(userId,1)])
S3 Ry = R U (Users[j].name)
54 %:%U(r2€ﬁ2)
}

Due to the use of the mask, we are now assured that S5 will only generate a single
tuple for a matching user. We can merge statements S; and S; and eliminate the
usage of Zs:

forelem (i; i € pItems)
forelem (j; j € pUsers.(id,idMask)[(userId,1)])
Sy % = % U (Users[j].name)

The loop is now in perfectly nested form and suitable to be transformed using the
defined transformations.

3.3.6 Reverse Loop Collapse

Reverse Loop Collapse is exactly the reverse operation of the Loop Collapse trans-
formation. Of a specified forelem loop, the accessed table is split into two tables and
the loop is replaced with two loops, each iterating one of the two newly created
tables. How the fields of the large table will be divided over the two new tables,
or how the table will be split, has to be specified. This information will be giving
by the code optimization backend that is driving the application of the different
transformations.

The Reverse Loop Collapse transformation can be applied after application of
several Loop Collapse and Loop Interchange transformations. Due to reorderings
of the loops in the loop nest, it is likely that different tables will be chosen to be
split, compared to the tables which were combined (collapsed). This will poten-
tially lead to different schemas for the database tables which allow the query to
be computed more efficiently.

During optimization, the code optimization backend plays a central role in de-
termining how loop nests are reordered, split and combined. When guiding the
optimization, the backend will take into account all queries of a given application
code. The intention is to arrive at database table schemas which make the appli-
cation code as a whole run more efficiently and not to optimize for one specific
query of that application code.

3.3.7 Horizontal lteration Space Reduction

The aim of horizontal iteration space reduction is to remove unused fields from a
table’s schema. Let T be a table with fields fieldl, field2, field3 and field4, C
a list of condition fields C C (fieldl field2) and V a list of values. Consider the
loop nest:

forelem (k; k € pT.C[V])
H = A U T[k].fieldl + T[k].field2
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We define a new table T C T with fields fieldl, field2 and replace the use of T
with T’ in the loop:

forelem (k; k € pT’.C[V])
% = % U T’[k].fieldl + T’[k].field2

The loop now iterates the table T’ which does not contain the fields field3 and
field4.

3.3.8 \Vertical lteration Space Reduction

The Vertical Iteration Space Reduction transformation is primarily used after the
application of the Loop Collapse transformation. Recall that Loop Collapse may
introduce conditions that test whether two fields of the same row as equal. In Ver-
tical Iteration Space Reduction, rows for which such conditions do not hold are
eliminated from the table. This elimination is valid because these rows are never
visited in the inner loop. Two different cases are distinguished: T.field1[field2]
and T. field[k].

Case 1. T.fieldl[field2]

On a table T, let the condition be T.field1[field2]. This notation implies table
T contains both fields name fieldl and field2. All rows for which T.fieldl !=
T.field2 holds true are removed from the table. In the resulting table T’, Vt €
T' : t.fieldl = t.field2, so that either fieldl or field2 can be removed. Let T
be a table with fields fieldl ... fieldn and consider the loop nest:

forelem (k; k € pT.fieldl[field2])
X* = % U T[k].field3

A new table 7", with all fields of T" except field2, is defined as follows:
T = {t|teTAt.fieldl = t.field2}

and replaces T in the loop nest, additionally all uses of field2 are replaced with
fieldl:

forelem (k; k € pT’)
X = % U T’[k].field3

Note that in this specific case field1 is no longer used after the transformation
and can be removed by applying horizontal iteration space reduction.

Case 2. T.field[k]

Case 2 is similar to Case 1, however since we do not reduce an equality between
two fields in Case 2, no field is removed by the reduction operation.

On a table T, let the condition be T. field[k] All rows for which T.field != k
holds true are removed from the table. In the resulting table T’,Vt € T : t.field =
k.

Let T be a table with fields field1l ... fieldn and consider the loop nest:
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forelem (i; i € pT.field[k])
X = XA U T[i].field3

A new table T’ is defined with the same fields as T as follows:
T = {t|teTAtfield=k}

Note that in this specific case field is no longer used after the transformation and
can be removed by applying horizontal iteration space reduction.

This reduction can also be applied if instead of a constant k, an interval is
given. All rows for which the complement of the interval holds true are removed
from the table. For example, for an interval (—oo, 10) all rows for which the field
matches the complemented interval [10, co) are removed from the table. This re-
sults in the table T’ with Vt € T’ : t.field < 10.

3.3.9 Table Reduction Operators

In many database operations first an expanded result table is generated after
which it is reduced to using just a single subset of columns and/or rows. More
specifically, this happens when explicit Cartesian products are computed to per-
form table joins, for instance in the Loop Collapse transformation. Note that in
our transformation framework, we have implicit transformations which immedi-
ately reduce the generated Cartesian product to a set of reasonable size. These
reductions are defined as Horizontal and Vertical Iteration Space Reduction and
are driven by the conditions and selected columns of the query. In fact, because
the Cartesian product only is referred to in intermediate codes when transforma-
tions are taking place, the full product is usually never instantiated.

We also define explicit table reduction operators in our framework. Whereas
implicit table reduction operators do not affect the final result set of a query, ex-
plicit table reduction operators do. The expansion of queries in our framework
into loop-based programs potentially enables the use of def-use analysis to detect
explicit reductions of these expanded tables later on in the code. The following
program fragment demonstrates two examples of such explicit reductions, one
column based and one row based:

forelem (i; i € pS.rating[7])
X = % U (S[i].%)
while (row € %)
if (row.age > 18)
print (row.sname) ;

We consider the program fragment before applying Loop Merge, so that the indi-
vidual loops performing the query SELECT * FROM Sailors WHERE rating = 7
and the loops processing the result set are clearly visible. Firstly, we observe that
only rows with age > 18 are being further processed and other rows are dis-
carded. This allows us to apply row-based explicit table reduction to eliminate
all rows with age <= 18 from the result set Z. Secondly, we observe that the field
sid is not used in the program fragment, although it is fetched from the table due
to the * operator. Using column-based explicit table reduction, we further reduce
the size of the result set by no longer storing sid in result rows.
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3.3.10 Combined transformations

The real power of the transformations presented in this section is unleashed when
they are combined. Let us consider the following code fragment, which is gener-
ated from a simple database application code performing the query

SELECT *
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND R.bid = 103

and enumerating the result set to output the sname field for each row. This results
in the following intermediate code:

forelem (i; i € pR.bid[103])
forelem (j; j € pS.sid[R[i].sid])
% = A U (S[j].sid, S[j].sname, S[j].rating, S[j].age,
R[i].sid, R[i].bid, R[i].day)
while (row €¢ %)
print (row.sname) ;

As a first transformation, we apply Loop Collapse to the loop nest. This transfor-
mation will also rewrite all references to columns in the program:

forelem (i; i € pRxS.(bid?,sid®)[(103,sid®)1)
R = # U (RxS[i].sid®, RxS[i].sname®, RxS[i].rating®,
RxS[i].ageS, RxS[i].sid®, RxS[i].bid®, RxS[i].day™
while (row €¢ %)
print(row.sname®);

Secondly, we perform a Loop Merge transformation to merge the while loop con-
suming the tuples with the forelem loop which produces these.

forelem (i; i € pRxS.(bid?,sid”)[(103,sid®)1)

{
row = (RxS[i].sid®, RxS[i].sname®, RxS[i].rating®, RxS[i].age®,
RxS[i].sid®, RxS[i].bid®, RxS[i].day™)
print (row.sname®);
}

We observe that of all columns added to each result tuple, only the sname column
is used. Using the explicit table reduction operator, we reduce the size of the
generated result set.

forelem (i; i € pRxS.(bid?,sidS)[(103,sid®)1)

{

row = (RxS[i].sname®)
print (row.sname®);

}
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As a last step, the assignment to row could be eliminating by having the print
statement immediately access the database table.

These transformations drastically reduce the amount of overhead in the data-
base program, that is usually imposed by the API provided by DBMS interfacing
libraries. As has been shown in Chapter 2 this overhead can be considerable and
removal leads to a further reduction in non-essential instructions executed by a
database program. In some cases, this is another factor of 2 reduction on top of
the instruction reduction achieved by releasing the dependency on a stand-alone
DBMS.

3.4 Example Application of the Transformations

In this section we study an example application of the forelem loop and transforma-
tions described in this chapter to a code fragment from the RUBIS [75] benchmark.
We have performed many of these transformations on the RUBiS benchmark in
order to estimate the amount of non-essential instructions performed by web ap-
plications shown in Chapter 2. We found that approximately 90% of the executed
instructions were non-essential and could thus be eliminated. Elimination of these
non-essential instructions had an immediate impact on performance. We showed
that because of these reductions in instruction count and execution time, the elim-
ination of non-essential instructions is expected to significantly reduce energy use
of server systems running web applications by 70% to 90%.

The following code fragment, written in pseudocode similar to PHP and edited
for clarity, is based on the file ViewUserInfo.php from the RUBiS benchmark [75]:

$commentsResult =
mysqgl_query("SELECT * FROM comments WHERE "
"comments.to_user_id=$userId");
if (mysql_num_rows($commentsResult) == 0)
print("<h2>There is no comment for this user.</h3><br>\n");
else
{
print ("<DL>\n");
while ($commentsRow = mysql_fetch_array($commentsResult))
{
$authorId = $commentsRow["from_user_id"];
$authorResult =
mysqgl_query("SELECT nickname FROM users
"WHERE users.id=$authorId");

"

$authorRow = mysql_fetch_array($authorResult);
$authorName = $authorRow['nickname"];

$date = $commentsRow["date"];
$comment = $commentsRow["comment"];
print ("<DT><b><BIG>".
"<a href=\"/PHP/ViewUserInfo.php?userId=".$authorId.
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"\>"$authorName</a></BIG></b> wrote the ".$date.
"<DD><i>".$comment."</i><p>\n");

}

print("</DL>\n");

When the SQL queries that are performed by calling the DBMS API are replaced
with forelem loop nests which execute in this process, we obtain:

forelem (i; i € pComments.to_user_id[$userId])

H1 = % U (comments[i].id, comments[i].from_user_id,
comments[i].to_user_id, comments[i].item_id,
comments[i] .rating, comments[i].date,
comments[i].comment)

if (is_empty(#1))

print("<h2>There is no comment for this user.</h3><br>\n");

else

print ("<DL>\n");
while ($commentsRow € %;)

{

$authorId = $commentsRow["from_user_id"];

forelem (j; j € pUsers.id[$authorId])
Ry = U5 U (users[j].nickname)

$authorRow = 7, € %»;
$authorName = $authorRow[''nickname"];

$date = $commentsRow["date"];
$comment = $commentsRow["comment"];
print ("<DT><b><BIG>".
"<a href=\"/PHP/ViewUserInfo.php?userId=".$authorId.
"\>"$authorName</a></BIG></b> wrote the ".$date.
"<DD><i>".$comment."</i><p>\n");
}
print("</DL>\n");

}

As a first transformation, we will merge the forelem loop producing the tuples into
result set %, with the while loop consuming tuples from that result set. To do this,
we first have to perform a preparatory transformation, similar to the one outlined
in Section 3.3.4. We will move the if-statement checking is_empty to after the
merged loop and change it to check how many result tuples were processed. This
is safe, because the true clause of the if-statement will only be run if the query loop
did not produce (and in the merged case, process) any result tuple. Secondly, the
is_empty function in the if-statement is under our control and we can ascertain
that the function does not introduce any side effects.
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For the second forelem loop, producing into %#,, we observe that consistently
only the first result of the set is used. This will be caught by def-use analysis,
similar to the example described in Section 3.3.5. We will apply a similar trans-
formation here and use an additional mask column to ensure only one table row
is processed by the inner loop. Also in this case, we move the code consuming
the result tuples into the inner forelem loop body. Code accessing Comments[i] is
moved as well, which is valid considering i is invariant under the inner loop. The
increment of results can be moved because we know the inner loop will output
at least one and at most one tuple.

At the same time we perform a first explicit table reduction and replace the
references into result tuples with direct references into the database table, see Sec-
tion 3.3.10. Applying these transformations results in the following code:

$results = 0;
forelem (i; i € pComments.to_user_id[$userId])

{

forelem (j; j € pUsers.(id,idMask)[(Comments[i].from_user_id, 1)])
{
if ($results == 0)
print("<DL>\n");
$results++;

$authorName = Users[j]["nickname"];

$authorId = Comments[i]["from_user_id"];
$date = Comments[i]["date"];
$comment = Comments[i]["comment"];
print ("<DT><b><BIG>".
"<a href=\"/PHP/ViewUserInfo.php?userId=".$authorId.
"\>"$authorName</a></BIG></b> wrote the ".S$date.
"<DD><i>".$comment ."</i><p>\n");
}
}
if ($results == 0)
print("<h2>There is no comment for this user.</h3><br>\n");
else
print("</DL>\n");

For the remainder of the discussion, we will focus solely on the forelem loops with
the other code removed:

$results = 0;
forelem (i; i € pComments.to_user_id[$userId])

{

forelem (j; j € pUsers.(id,idMask[(Comments[i].from_user_id, 1)])

{

$results++;

}
}
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In this particular case, it is interesting to perform the Loop Collapse transfor-
mation to merge the Comments and Users tables. For the current discussion, we
are not concerned with the cost involved to generate this cross product. As indi-
cated in Section 3.3.9, it is likely that the full table will not be generated due to the
implicit table reduction operators that will be applied by the framework. After the
merge, we can eliminate the inner forelem loop over Users and satisfy the query
with a single pass over a single table.

We observe the loop is perfectly nested and the Loop Collapse transformation
can be applied. The collapsed loop nest looks as follows:

$results = 0;

forelem (i; i € pCommentsxUsers.
(to_user_idComments , id(Use'r's , idMaskUseTS)
[(SuserId, from_user_idComments 1)7)

{

$results++;

}

During the Loop Collapse process, all references to fields of the two tables be-
ing merged are rewritten to be references to fields of the combined table. After
rewriting the references, the code becomes:

$results = 0;

forelem (i; i € pCommentsxUsers.
(to_user_idComments , id(Users , idMaskUseTS)
[($userId, from_user_idcomments 1)71)

if ($results == 0)
print("<DL>\n");
$results++;

$authorName = CommentsxUsers[i].["nicknameVs¢"s"];

$authorId = CommentsxUsers[i].["from_user_idCommentsny.
$date = CommentsxUsers[i].["dateComments ],
$comment = CommentsxUsers[i].["commentCommentsmy.
print ("<DT><b><BIG>".
"<a href=\"/PHP/ViewUserInfo.php?userId=".S$authorId.
"\>"$authorName</a></BIG></b> wrote the ".$date.
"<DD><i>".$comment . "</i><p>\n");
}
if ($results == 0)
print("<h2>There is no comment for this user.</h3><br>\n");
else
print("</DL>\n");

Through the course of this example, we first eliminated all calls to MySQL’s
interfacing API and replaced these with equivalents performing the requested op-
eration in place. The calls which request MySQL to evaluate a query, in particular
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mysql_query, have been replaced with a forelem loop nest computing the query.
Next, we applied Loop Merge, to merge the producer and consumer loops of the
executed queries. This typically saves a single full iteration of the result set. Ex-
plicit table reduction was applied to eliminate reads of columns from the tables
which were not used by the code consuming the retrieved data. Finally, a Loop
Collapse was performed, such that the requests for data are now served from a
single table instead of two separate tables.

The end result is translated to C code and compiled into a final executable
using a high-end optimizing compiler. By applying this methodology to the file
ViewUserInfo.php, we have been able to eliminate at least 95% of the instructions
executed by the PHP script to generate this web page.

3.5 Conclusions

In this chapter, we presented a methodology to remove the division of application
and DBMS codes, so that applications can be optimized to their fullest potential
using optimizing compiler technology. The methodology is centered around the
forelem loop nest, which uses index sets to encapsulate iteration and to simplify
the query loop nest so that aggressive compiler optimizations can be successfully
applied. Because database queries are expressed in terms of an iterative language
using forelem loop nests, it allows for the integration of the code performing evalu-
ation of the database query with the application code. The forelem constructs have
been designed to integrate in a normal optimizing compiler work flow, such that
the existing body of optimizations can be re-used.

Itis not our intention to move forelem forward as a new programming paradigm
for programming database applications. Rather, we want our methodology to co-
exist with existing development environments and frameworks for database ap-
plication programming. forelem is solely used as an intermediate representation
in a code optimization backend that is able to take an existing database or web
application and automatically breaks down the layers.

We are fully aware that the material presented in this chapter is just a starting
point and lots of future work remains. For a full implementation of the integra-
tion of DBMS and application codes using forelem, several implementation issues
need to be addressed. These include the storage layer, sorting, dynamic index set
generation, etc. We believe that with this methodology it will become possible to
eliminate the majority of the software overhead we described in Chapter 2. Given
the huge potential to reduce e.g. energy usage, we think it is definitely worth to
explore this area.



CHAPTER 4

Forelem Extensions for Nested
Queries

In this chapter we propose a way to express nested queries where subqueries are
written in separate functions as forelem loop nests. Subsequently, we discuss a
number of transformations which are especially suited for forelem loop nests rep-
resenting nested queries. The first of these transformations is to allow a nested
query to be rewritten into a single forelem loop nest. In other words, the separate
functions for subqueries are inlined whenever possible. Another transformation
allows for elimination of the use of temporary tables. This puts the loop nest into
a form which enables further optimization using transformations as listed above.
As a final transformation, we recognize canonical forms of loop nests evaluating
nested queries and transformations between these forms. A transition to another
canonical form has the potential to enable a whole new dimension of transforma-
tions on a loop nest.

4.1 Expressing Subqueries as Procedures

The simplest approach to express nested queries in forelem representation of the
query is to write these as functions. A query containing a doubly nested query will
be translated to forelem code which calls a function to perform the first subquery,
which subsequently calls another function to perform the second (doubly nested)
subquery.

We define a nested query to be a function containing a forelem loop nest which
will execute the query at the corresponding nesting level. Any references to data
or columns in the containing query must be passed as arguments to this function.
Functions take zero or more arguments, which are written as $0, $1, ..., $n in the
function. The result of evaluating the nested query is returned as a return value.
The SQL-92 standard [45] defines three flavors of nested queries: scalar subquery,
row subquery and table subquery. This gives rise to three possibilities for return
values of functions: a scalar value, a tuple or a multiset.
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For example, the query

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.bid = 103)

contains the nested query

SELECT R.sid FROM Reserves R WHERE R.bid = 103
which is written in forelem as:

function subquery()

T =0

forelem (i; i € pR.bid[103])
7 = Z U (R[i].sid)

return

}

where .7 is a temporary table. It is clear that this concerns a table subquery. For
scalar subqueries and row subqueries, the return value is simply replaced with a
scalar or a tuple respectively.

To see how functions with arguments are handled, let us consider the follow-

ing query:

SELECT R.date
FROM Reserves R
WHERE R.bid = 103 AND EXISTS (SELECT S.sname
FROM Sailors S
WHERE S.sid = R.sid
AND S.sname = "Horatio");

where the value R.sid is passed to the subquery. The procedure performing the
nested query is written as:

function subquery($0)

T =0

forelem (i; i € pS.(sid,sname)[($0,"Horatio")])
J = Z U (S[i].sname)

return J

}

The main query will iterate the Reserves table with an induction variable ¢ and
pass the value of R[i] .sid as the first argument to the procedure subquery.
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4.2 Expressing Nested Query Operators in forelem

At least as important is the problem of how to express the different operators that
can be used in conjunction with the results of nested queries expressed in forelem
loops. Such operators include IN, EXISTS, ANY, etc. Let us consider the IN operator
used in our example:

S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.bid = 103)

This predicate evaluates to true if S.sid is in the set resulting from the evaluation
of the nested query. Bearing in mind that we can generate an index set for each
table in a forelem loop nest, including temporary tables, we can write the entire
query using forelem constructs as follows:

function subquery()

T =10

forelem (i; i € pR.bid[103])
g = 7 U R[i].sid)

return .7

}

forelem (i; i € pS)
{
7 = subquery()
forelem (j; j € is_not_empty(p.7 .sid[S[i].sid]))
X = A U (S[i].sname)
}

In this code fragment, is_not_empty is an index set modifier. The purpose of an
index set modifier is to modify the index set without touching the original, so
that the iteration space of the forelem loop is changed. For example, the single
modifier modifies the iteration space such that only the first index from the index
set is returned. The main advantage of modifiers is that they can be embedded in
a forelem statement, such that the exact iteration sequence is still encapsulated and
forelem statements can participate in the various forelem loop nest transformations
which have been defined. Also, modifiers can be reduced by introducing a mask
column in the table. We have discussed mask columns earlier in Section 3.3.5.

The is_not_empty modifier will return the first index of the index set when the
index set is non-empty, otherwise nothing is returned which will refrain the forelem
loop from executing its loop body. In fact, the modifier is equal in operation to the
single modifier, which also returns the first index, but for clarity we maintain
both.

The is_empty modifier, with the inverse operation, also exists. In this case,
however, a dummy index is returned instead of the first index into the index set
(since the index set is empty). The dummy index cannot be used to access a table.
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For this particular code fragment, the is_not_empty modifier will cause the
loop body of the forelem statement to either be executed once or not be executed at
all. Only a single tuple is added to the result set or none.

NOT IN can be implemented by simply replacing the is_not_empty modifier
with is_empty. The keyword EXISTS tests whether a relation is not empty and
can be implemented similar to the example. In this case, the index set p.7 will not
have a condition attached.

Another class of nested query operators are the ANY and ALL operators. These
operators are combined with an inequality operator such as < or >. A construction
such as

S.rating > ALL (SELECT S2.sid
FROM Sailors S2
WHERE S2.sname = "Horatio")

evaluates to true if S.rating is larger than all ratings of sailors named “Horatio”.
Or, put differently, S.rating is larger than the largest rating of a sailor named
“Horatio”. From this follows that it is possible to express nested queries using
ANY and ALL as nested queries which compute a MAX or MIN aggregate and vice
versa, as is described in [36].

Let us consider the query using > ALL in full:

SELECT S.sid FROM Sailors S
WHERE S.rating > ALL (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname = "Horatio™)

The query is to return the sid of all sailors who have a rating larger than all sailors
named “Horatio”. We will employ the is_empty modifier again to express this
query using forelem loops:

function subquery()

T =10
forelem (i; i € pS.name["Horatio"])
7 = 7 U (S[i].rating)

return
}
forelem (i; i € pS)
{

Z = subquery()
forelem (j; j € is_empty(pZ .rating([S[i].rating, oc0))
A = X U (S[i].sid)
}

Please note that the notation is intermixed with [ , ) denoting closed/open inter-
vals. We have seen the notation rating[18] earlier, which denotes that the value
of the column rating must equal 18. The interval notation specifies that the value
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of rating must be in the specified interval. In this case, the interval [S[i].rating, co)
denotes that rating should be equal or larger than S[i].rating.

The condition in the query that S[i].rating must be greater than the ratings
of all sailors named “Horatio” (or rather greater than the highest rating of a sailor
named “Horatio”) is translated to: there exists no rating for a sailor named “Ho-
ratio” which is larger or equal to S[i].rating. We test whether the index set on
the temporary relation returned by the subquery is empty if we select on ratings
equal to or larger than S[i].rating. If this index set is empty, we will output a
single tuple by performing a single iteration of the inner loop body.

Similarly, < ALL translates to checking whether a value is smaller than all val-
ues returned by a nested query (or smaller than the minimum value, e.g. the use
of a MIN aggregate).

Where > ALL compares whether a given value is larger than all values (or the
maximum) of a given set, > ANY compares whether a given value is larger than
any value (or the minimum) of a given set. Essentially, maximum is swapped
for minimum. Therefore, it is possible to express ANY queries using forelem. Let’s
consider the following example:

SELECT S.sid FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname = "Horatio")

which can be written using forelem loops as follows:
function subquery()

T =10

forelem (i; i € pS.name["Horatio"])
J = Z U (S[i].rating)

return J

}

forelem (i; i € pS)
{
7 = subquery()
forelem (j; j € is_not_empty(p7 .rating((—oo, S[i].rating])))
X = £ U (S[i].sid)
}

The selection logic was transformed to say that there must be a rating in .7 which
is smaller than or equal to S[i].rating, otherwise S[i].rating can never be
larger than any rating in .7.

Although nested queries with ANY and ALL can be expressed as forelem loops
without problems, in the literature it is suggested to use a nested query using a
MIN or MAX aggregate function instead to avoid potential confusion [82]. For the
last query discussed, S[i].rating must be larger than the minimum rating found
for a sailor named “Horatio”. This can be written in SQL as follows:
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SELECT S.sid FROM Sailors S
WHERE S.rating > (SELECT MIN(S2.rating)
FROM Sailors S2
WHERE S2.sname = "Horatio')

Note that this subquery returns a scalar value and thus is a scalar subquery, con-
trary to the ANY and ALL queries which use table subqueries. This subquery is
similarly expressed as a function which returns a scalar value. For the implemen-
tation of aggregate functions using forelem we refer to Chapter 5.

4.3 Set Operators

The SQL standard [45] also describes set operators, such as UNION, INTERSECT and
EXCEPT. Queries using these set operators could be considered nested queries as
well, because the query actually consists out of more than one subquery. While
SQL queries retain duplicates by default (unless the DISTINCT keyword is used),
it is important to understand that the set operators do not retain duplicates by
default.

Let us consider two temporary tables .71 and %>. To implement the UNION set
operator, we merge the two temporary tables and make sure each tuple only ap-
pears once. The query can be expressed in forelem loops using the distinct syntax!,
that will be introduced in Section 5.2, and the is_empty modifier introduced in
this chapter:

T
T

subquery1()
subquery2()

forelem (i; i € p.Z;.distinct)
X = £ U (ZALD
forelem (i; i € pZ;.distinct)
forelem (j; j € is_empty(p71[%[i11)))
Xx = Z U (HBI[1])

We start by adding all distinct tuples from .7; to the result set. After that, we add
all distinct tuples from 73 which do not appear in ;. It is clear that a query in
a subquery can be inlined in this loop nest. The temporary tables can possibly be
eliminated using the transformation described in Section 4.4.2

The EXCEPT operator can be implemented using the same constructs. The goal
is to include all tuples in the result set which appear in .77 but not in .%. This
results in the following code:

Z1 = subqueryl()
T subquery2 ()

forelem (i; i € p.Z;.distinct)

1 An index set can be suffixed with the keyword .distinct. This has as result that the index set only
consists of unique tuples, any duplicate tuple is excluded from the iteration space.
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forelem (j; j € is_empty(p.Z2[Z1[i11))
X = Z U (ALLD

Note that this is similar to a query using NOT IN. The INTERSECT operator is the
opposite and can be compared to a query using the IN operator:

1 = subqueryl()
5 = subquery2()

forelem (i; i € p.9;.distinct)
forelem (j; j € is_not_empty(p%[Z1[111))
Z = Z U (AlLD

4.4 Transformations on Nested Queries

We described several transformations for forelem loop nests in Section 3.3. These
transformations include Loop Collapse, Loop Interchange and Table Reduction
Operators. Using these transformations, the loop nest can be transformed into a
more optimal code or a better table layout can be discovered by applying Loop
Collapse and Reverse Loop Collapse.

The more loops a forelem loop nest contains, the more effective these transfor-
mations are. Therefore, for the nested queries discussed in this chapter it is of
interest to inline the nested queries such that a single large loop nest exists. In this
section we will present transformations to accomplish this and transformations
to introduce and eliminate temporary storage. Whether or not temporary storage
should be used is a trade-off between memory usage, cache usage and the time
needed for calculating the contents of the temporary storage.

4.4.1 Transforming a Nested Query to a Single forelem Loop
Nest

Let us consider a singly-nested query, in which we can identify two subqueries S,
and S. This is done according to the form S; WHERE field IN (S3), but also works
for operators other than IN. As an example, we will re-use the query:

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.bid = 103)

which was introduced earlier in this chapter, where we also presented this query
expressed in forelem loops. When we inline the procedure performing the sub-
query in this code fragment, we obtain:

forelem (i; i € pS)

{
T =10
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forelem (k; k € pR.bid[103])
J = 7 U (R[k].sid)
forelem (j; j € is_not_empty(p.7 .sid[S[i].sid]))
A = A U (S[i].sname)
}

It is now clearly visible that the index set pR.bid[1083] is generated for each it-
eration in the inner loop. The SQL standard [45] mandates that the subquery is
effectively executed for each evaluation of the WHERE clause of the main query. In
this case it is obvious that this particular index set, and the resulting table .7 af-
ter iteration of this index set, will be the same in each iteration of the outer loop
(of course as long as the table Reserves is not modified). We therefore argue that
if the loop generating .7 is only performed once, outside of the outer loop, it is
still effectively executed for each evaluation of the WHERE clause because the in-
tended result, which is always the same for every loop iteration, is always used
for each clause evaluation. So, when an analysis can prove that index sets are loop
invariant (the subquery is not corresponding) and are free from side effects, more
aggressive optimization is possible by moving loop invariant code segments.

4.4.2 Temporary Table Reduction

It will often be the case that a forelem loop is producing tuples into a temporary
table, which is only read by a consecutive forelem loop. In such cases it might
be beneficial to eliminate the usage of the temporary table and to merge the two
forelem loops. This transformation is different from the Loop Merge transforma-
tion described in Section 3.3.4, as that particular transformation targets a forelem
loop and while loop. We distinguish two cases of Temporary Table Reduction.

Let us first consider the simple case, in which we have two forelem loops, one
producing tuples into a temporary table and the second loop fully iterating over
this temporary table:

T =10
forelem (k; k € pR.bid[103])
7 = Z U (R[k].sid)
forelem (j; j € p7)
forelem (i; i € pS.sid[.7[j].sid])
A = % U (S[i].sname)

In this case it is obvious that we can merge the forelem loop with iteration counter
j with the forelem loop with iteration counter k that produces the tuples that are
consumed. Note that the intention here is to merge two forelem loops, contrary to
the Loop Merge transformation for forelem loops described in Section 3.3, where
the loop body of a while loop iterating the results is merged into the body of the
inner loop of a forelem loop nest. The resulting code is:

forelem (k; k € pR.bid[103])
forelem (i; i € pS.sid[R[k].sid])
A = % U (S[i].sname)
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and the temporary table has been eliminated. The reverse operation, Temporary
Table Introduction follows from this by introducing a temporary table and having
a forelem loop add tuples to this table containing all fields which are used by the
forelem loops that will consume the tuples from this temporary table.

We now consider a different example where conditions are present on the in-
dex set on the temporary table:

T =1
forelem (k; k € pR)
g Z U (R[k].sid, R[k].bid)
forelem (j; j € pZ.bid[103])
forelem (i; i € pS.sid[.Z7[j].sid])
X = X% U (S[i].sname)

In this case, the merge is accomplished by first transforming the condition on the
temporary table index set to an if-statement:

T =1
forelem (k; k € pR)
7 = Z U R[k].sid)
forelem (j; j € p9)
if (7[j].bid == 103)
forelem (i; i € pS.sid[.7[j].sid])
A = A% U (S[i].sname)

Now the temporary table can be eliminated analogously to the first example. The
reference 7 [j].bid in the if-statement will be written as R[k] .bid. Finally, the if-
statement can simply be transformed into a condition on the index set on Reserves,
making the resulting code fragment equal to the result of the transformations on
the first example.

4.4.3 Modifier Manipulation

We cannot apply Temporary Table Reduction to the example we introduced in
Section 4.4.1, because the loop we would like to merge contains an is_not_empty
modifier. When an index set is wrapped in a modifier, it is not immediately pos-
sible to simply move the conditions to if-statements. To correctly evaluate a mod-
ifier such as is_not_empty, it is necessary to know the final size of the index set
after the conditions have been applied. In order to enable application of the Tem-
porary Table Reduction transformation in such cases, we introduce two transfor-
mations to manipulate index sets with conditions within a modifier.

In the example, we observe that the full iteration of index set pR.bid[103]
generates the table 7. This table is only used by the index set p.7.sid[S[i].sid].
In fact, the first index set is being further narrowed down by selecting a specific
sid. Instead of narrowing down on this specific sid within the modifier, we can
transfer this condition into a preceding forelem loop as follows:

forelem (i; i € pS)

{
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T =10

forelem (k; k € pR.bid[103])
7 = 7 U (R[k].sid)

T =0

forelem (q; q € pZ.sid[S[i].sid])
T = P U Tl

forelem (j; j € is_not_empty(p.73))
A = % U (S[i].sname)

}

The condition on the index set iterated by the variable g can now be moved to
an if-statement within the loop body. After that, the temporary table .7 can be
eliminated, resulting in:

forelem (i; i € pS)
{
T =0
forelem (k; k € pR.bid[103])
if (R[k].sid == S[i].sid)
Ty = F» U R[K]
forelem (j; j € is_not_empty(p.%3))
A = A U (S[i].sname)
}

and after moving the if condition into the index set:

forelem (i; i € pS)
{
T =0
forelem (k; k € pR.(bid,sid)[(103,S[i].sid)])
F5 = F5 U R[k]
forelem (j; j € is_not_empty(p.73))
A = % U (S[i].sname)
}

When we observe that the index set p.% is never iterated and only passed to the
is_not_empty modifier, we can merge the two remaining inner loops, resulting in
the compact form:

forelem (i; i € pS)
forelem (j; j € is_not_empty(pR. (bid,sid)[(103,S[i].sid)]))
X = % U (S[i].sname)

The code fragment will output a single tuple for each S[i].sid which has
reserved a boat with bid 103. This equals the original SQL expression. As a result,
we have successfully transformed the original nested query to a single perfectly
nested forelem loop nest. Note that this loop nest looks similar to how joins are
expressed in forelem, we will discuss this further in Section 4.4.5.
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4.4.4 Canonical Forms for Nested Queries

In the previous sections we discussed how a nested query, with its subqueries
expressed as functions, can be transformed to a single loop nest and how further
transformations are possible on a single loop nest. We highlighted in Section 4.4.1
that transformations that move the execution of the “subquery loop” are possible
when we can prove through dependency analysis that the moved code is invariant
to the enclosing loop.

When we consider singly-nested queries of which the subquery is loop invari-
ant such that it can be subjected to various transformations, we can define four
canonical forms for a singly-nested query with a main query S; and subquery S,.
These four forms are shown in Figure 4.1. The starting point, where the subquery
is inlined in the body of the loop of the main query, is form 1.

1) forelem S, 2) forelem S, 3) forelem S, 4) forelem S,
forelem S, | forelem S, |
forelem S, forelem S

Figure 4.1: Four canonical forms for nested queries expressed as forelem loop nest
expressed as forelem loop nests.

Loop nest forms 1) and 3) can be transformed into one another using the Loop
Interchange transformation for forelem loop nests defined Section 3.3.2. The forms
2) and 4) store the results of S; or S, respectively, in a temporary table. Form 1)
can simply be transformed into form 2) by first running the outer loop and storing
the results in a temporary table. After that, the inner loop is ran. Basically, this
is a transformation which introduces a temporary table in the computation. The
reverse, the elimination of a temporary table is also possible. We described this
transformation in Section 4.4.2.

By transforming between different canonical forms the search space for the
most efficient loop nest is increased. Different canonical forms enable a larger
number of possible transformations that can be applied. For example, by moving
the subquery loop out of the main loop, such as in form 4), the opportunity is
created to possibly merge the subquery loop with any loop preceding it. This can
only be done if they operate on the same table. For certain loop nests, however,
only moving the subquery loop out of the main loop and storing the results in
temporary storage might already be beneficial. Another advantage of the canoni-
cal forms is that they allow for loop interchanges; different iteration orders have a
different impact on cache utilization.

We have considered the canonical forms for a singly-nested subquery in this
section. Using these forms as base case, canonical forms for doubly-nested sub-
queries and further nesting levels can be considered. Also, forms can be consid-
ered for sequences of singly-nested subqueries or subqueries with mixed depth.
Naturally, this will result in a larger number of forms, which again implies a larger
search space for potentially more efficient loop nests.

Kim [53] identified five basic types of nested queries and described transfor-
mations to go from a nested query to a canonical form, which is a canonical n-
relation query. The described transformations allow nested queries of arbitrary
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depth to be transformed. Ganski et al. present solutions for bugs identified in
Kim’s transformations, as well as extend the transformations with the ability to
handle more nested query operators [36]. The canonical form used by Kim is dif-
ferent from the canonical forms we described in this section. Kim’s canonical form
is used as a target to transform to, because query processing systems (at that time)
can generally process single-level queries performing joins more efficiently than
nested queries. Our canonical forms for subqueries are used to extend the search
space for efficient loop nests. By transforming a loop nest into a different canoni-
cal form, another set of transformations can be applied eventually leading to more
efficient code.

4.4.5 Relationship Between IN Nested Query Operators and Joins

The possibility to express a nested query using the IN operator as a query using a
join is well known [53, 36]. However, the original approach described in [53] relies
on the assumption that duplicates are to be removed from the results of executing
the subquery, in order for the nested query and the query using a join to produce
the same final results.

With the queries expressed in forelem loop nests, this subtle difference becomes
very clear. Recall that at the end of Section 4.4.2 we observed that we transformed
a nested query using the IN operator into a perfectly nested forelem loop, similar
to how joins are expressed in forelem loop nests. A notable difference is the use of
is_not_empty in the inner loop. This difference is clearly visible when we com-
pare the loop of Section 4.4.2 with the perfectly nested loop nest representing a
join query:

1) forelem (i; i € pS)
forelem (j; j € is_not_empty(pR. (bid,sid)[(103,S[i].sid)]))
X = % U (S[i].sname)

2) forelem (i; i € pS)
forelem (j; j € pR.(bid,sid)[(103,S[i].sid)])
A = % U (S[i].sname)

These loops correspond to the following two queries:

1) SELECT S.sname 2) SELECT S.sname
FROM Sailors S FROM Sailors S, Reserves R
WHERE S.sid IN (SELECT R.sid WHERE S.sid = R.sid

FROM Reserves R AND R.bid = 103
WHERE R.bid = 103)

Although both queries answer the same “question”, listing all sailor names who
have reserved the boat with bid 103, the generated result tables are slightly dif-
ferent. Query 1) will output a sailor’s name once if its sid appears in the list of
sids which have reserved boat 103. Query 2) will output a sailor’s name for each
reservation of boat 103 by that sailor, a sailor’s name appears as many times as
the sailor reserved boat 103. In other words, in query 1) duplicate reservations
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are omitted; query 1) yields a subset of query 2). The duplicate reservations are
omitted due to the use of a nested query and the IN operator. Note that if two sids
exist with the same sailor name who both have reserved boat 103, then this sailor
name will still be duplicated!

This difference can be seen in loop nest 1) too. Due to the use of is_not_empty,
the inner loop is only ran once if a sailor has reserved boat 103; so the sailor name
is only output once regardless of the number of reservations. Loop nest 2) can
be modified to produce the same result as loop nest 1) easily. The generation of
duplicate sids has to be stopped. To constrain this loop to a single iteration, we use
the single or the equal is_not_empty modifier. When these modifiers are used,
the loop becomes equal to loop nest 1).

4.5 Example

The following code fragment is based on code taken from Discus. Discus is a
web application which has been developed in-house at LIACS and is a complete
solution for administration of students, courses, exams and programs. The code
fragment is written in pseudocode similar to PHP and edited for clarity. The code
is based on a function which generates a listing of courses for which a given stu-
dent (whose ID is specified through parameter $id) is registered. For each course,
the main teacher as well as any additional teachers are retrieved.

$coursesResult = mysql_query(’SELECT * FROM courses, teachers
"WHERE courses.id IN (select course_id FROM students_courses
"WHERE student_id = ’ . $id . ’) AND teacher_id = teachers.id’);
while ($row = mysql_fetch_row($coursesResult))
{
$out = array(Q);
for ($i = 0; $i < mysql_num_fields($coursesResult); $i++)

{

$column = mysql_fetch_field($coursesResult, $i);
$out[$column->table] [§column->name] = $row[$i];

}

$courses[] = $out;

}

$i = 0;
foreach ($courses as $course)
{
$teachersResult =
mysql_query(’ SELECT * FROM teachers, teachers_courses
"WHERE teachers.id = teachers_courses.teacher_id AND ’
’teachers_courses.course_id = ’
$courses[$i][’courses’][’id’]);
while ($row = mysql_fetch_row($teachersResult))

{

$out = array(Q;
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for ($i = 0; $i < mysql_num_fields($teachersResult); $i++)

{

$column = mysql_fetch_field($teachersResult, $i);
$out[$column->table] [$column->name] = $row[$i];

}

$teachers[] = $out;

}

$j = 0;
foreach ($teachers as $teacher)

{

$courses[$i][’teachers’][$j] = $teacher[’teachers’];
$j++;

}

$i++;
}

As a first step, we replace the usage of the DBMS API with forelem loop nests and
result sets. We obtain:

function subquery($0)

{
T =0
forelem (i; i € pStudents_courses.student_id[$0])
7 = Z U (students_courses[i].course_id)
return 7
}

forelem (i; i € pCourses)
forelem (j; j € pTeachers.id[courses[i].teacher_id])
{
7 = subquery($id)
forelem (k; k € is_not_empty(p.7 .course_id[courses[i].id]))
X = %1 U (courses[i].*, teachers[j].*)

while ($row € %)

{
$out = array(Q);
for (§i = 0; $i < len(Srow); $i++)
{
($table, $column) = get_field_info($row, $i)
$out[$table] [$column] = $row[$i];

}

$courses[] = $out;
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$i = 0;
foreach ($courses as $course)
{

$course_id = $courses[$i][’courses’][’id’];

forelem (i; i € pTeachers_courses.course_id[$course_id])
forelem (j; j € pTeachers.id[teachers_courses[i].teacher_id])

%y = Ao U (teachers_courses[i].*, teachers[j].*)

while ($row € %)

{
$out = array(Q;
for ($i = 0; $i < len($row); $i++)

($table, $column) = get_field_info($row, $i)
$out[$table] [$name] = $row[$i];
}

$teachers[] = $out;

}

$j = 0;

foreach ($teachers as $teacher)

{
$courses[$i][’teachers’][$j] = $teacher[’teachers’];
$j++;

}

$i++;

}

In the code fragment a function get_field_info is used to get field information.
The $row variable is a reference to a tuple generated by a forelem loop; this tuple
does contain information on the tables and columns from which the tuple mem-
bers originated.

Focusing on the first forelem loop nest, we note that the parameter passed to
the subquery does not depend on the state of the evaluation of the main query.
Due to the absence of such dependencies, the query is non-corresponding and
can be evaluated separately. See also the discussion in Section 4.4.1. Therefore, it
is possible to inline the function subquery into the main loop nest:

forelem (i; i € pCourses)
forelem (j; j € pTeachers.id[courses[i].teacher_id])

{
T =0
forelem (1; 1 € pStudents_courses.student_id[$id])
7 = Z U (students_courses[1l].course_id)

forelem (k; k € is_not_empty(p.7 .course_id[courses[i].id]))
%1 = %1 U (courses[i].*, teachers[j].*)



74 Forelem Extensions for Nested Queries

The forelem loop with iteration counter 1 generates a temporary table which is
immediately consumed by the forelem loop with iteration counter k. This forelem
loop uses the index set on the temporary table within a modifier. To be able to
apply Temporary Table Reduction as described in Section 4.4.2, we first move the
conditions on this index set out of the modifier using the transformation described
in Section 4.4.3. The first step is to push the condition in the forelem loop over p.7
to an if-statement:

forelem (i; i € pCourses)
forelem (j; j € pTeachers.id[courses[i].teacher_id])

{

T =0

forelem (1; 1 € pStudents_courses.student_id[$id])
7 = Z U (students_courses[l].course_id)

T =0

forelem (q; q € p7 .course_id[courses[i].id])
T = F U Tl

forelem (k; k € is_not_empty(p%5)
% = % U (courses[i].*, teachers[j].*)
t

Now that the inner loops are in the form discussed in Section 4.4.2, we apply
similar steps to eliminate usage of both .77 and %.

forelem (i; i € pCourses)
forelem (j; j € pTeachers.id[courses[i].teacher_id])
forelem (k; k € is_not_empty(pStudents_courses.
(student_id, course_id) [($id, courses[i].id)]1))
X% = % U (courses[i].*, teachers[j].*)

If we subsequently merge the while loop consuming tuples from %, with the ob-
tained forelem loop nest, the result is:

forelem (i; i € pCourses)
forelem (j; j € pTeachers.id[courses[i].teacher_id])
forelem (k; k € is_not_empty(pStudents_courses.
(student_id,course_id) [($id, courses[i].id)]1))
{

$row = (courses[i].*, teachers[j].*)

$out = array(Q;

for ($i = 0; $i < len($row); $i++)

{
($table, $column) = get_field_info($row, $i)
$out[$table] [$column] = $row[$i];

}

$courses[] = $out;



4.5. Example 75

We now turn our attention to the second query:

forelem (i; i € pTeachers_courses.course_id[$course_id])
forelem (j; j € pTeachers.id[teachers_courses[i].teacher_id])
Hr = X U (teachers_courses[i].*, teachers[j].*)

On this query we will apply the Loop Collapse transformation as described in
Section 3.3.5. Important is that the generated cross product is intermediate and
will not be generated in full during the code generation phase if it is determined
that generating the cross product will be more expensive than an evaluation of the
query using two separate tables. More transformations might be done, for exam-
ple to remove unused columns and rows from the cross product using the Hori-
zontal Iteration Space Reduction and Vertical Iteration Space Reduction transfor-
mations described in Sections 3.3.7 and 3.3.8 respectively. Furthermore, the use of
get_field_info on the collapsed table will continue to refer to the original tables,
not the collapsed table, for compatibility.

Next to the Loop Collapse transformation, we also merge the while loop con-
suming the results from %, into the loop body where these results are generated.

forelem (i; i €
pTeachers_coursesxTeachers. (course_idleachers-Courses jqTeachers)
[($course_id, teacher_idTeachers-Coursesy]y

$row = Teachers_coursesxTeachers[i];
$out = array(Q;
for ($i = 0; $i < len(Srow); $i++)

($table, $column) =
$out[$table] [$name]

}

$teachers[] = $out;

get_field_info($row, $i)
= $row[$i];

Finally, we will look at the example as a whole again. We will merge the two
loops following each forelem loop, that is one loop iterating over the $courses ar-
ray generated by the first forelem loop and another loop iterating over the $teachers
array generated by the second forelem. We obtain a single loop nest:

$i = 0;
forelem (i; i € pCourses)
forelem (j; j € pTeachers.id[courses[i].teacher_id])
forelem (k; k € is_not_empty(pStudents_courses.
(student_id, course_id) [($id, courses[i].id)]))
{

$row = (courses[i].*, teachers[j].*);
Sout = array();

for (31 = 0; $i < len($row); $i++)

{
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($table, $column) = get_field_info($row, $i)
$out[$table] [$column] = $row[$i];
}

$courses[] = $out;

$j = 0;

$course_id = $courses[$i][’courses’][’id’];

forelem (ii; ii € pTeachers_coursesxTeachers.
(Course_idTeachers,Courses , idTeaChe’l"S)

[($course_id, teacher_idTeachers-Coursesy]y

$row = Teachers_coursesxTeachers[ii];
$out = array(Q);
for ($ii = 0; $ii < len($row); $ii++)
{

($table, $column)

= get_field_info($row, $ii)
$out[$table] [$name] =

$row[$ii];

}

$teachers[] = $out;

$courses[$i][’teachers’][$j] = $teacher[’teachers’];
$i++;

}

$i++;
}

Further transformations are certainly possible on this loop nest. The calls to
get_field_info in the final code fragment are really the remains of the use of a
SQL API in the original code. Because we have knowledge about the table and
column names within the code, we can simply unroll the loops performing these
calls. This will result in direct assignments of table data to the output rows, for
example:

$out[’courses’][’id’] = $row[0];

After this loop unroll, it becomes easier to trace back the assignment statement
corresponding to uses of the $courses array using def-use analysis. Def-use anal-
ysis can also detect that the subscripts of the $courses array are appended by
adding $out variables. The use of the $out variable can be eliminated by immedi-
ately appending it to the $courses array, a transformation which further simpli-
fies the code.

This also paves the way for elimination of assignments from the table data to
the $courses array for array items, which are never accessed. For example, for
the inner forelem loops over Teachers and Teachers_Courses, we will be able to detect
that the Teachers_Courses fields are never accessed. This information can be used
to eliminate the unused Teachers_Courses fields from the cross product.

The simplified code after def-use analysis also has the potential to involve the
inner two forelem loops with the outer three forelem loops. Further application of
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the Loop Collapse or Loop Interchange transformations could be possible, even-
tually leading to further data reformatting.

4.6 Conclusions

We have expanded the syntax and set of transformations of forelem loops intro-
duced in the previous chapter, with syntax and transformations to handle nested
queries. These transformations simplify the analysis of nested queries. So estab-
lished techniques such as dependency analysis can be used to determine whether
or not a subquery has to be executed for every evaluation of the WHERE clause, or
whether a single execution of the subquery is sufficient to be able to comply with
the SQL-92.

By means of an example, we have demonstrated that many potential opti-
mizations exist, that can take advantage of the described transformations. In the
example, we were able to merge two separate queries and two separate loops
processing the query results into one small and concise loop that is semantically
equivalent. Still, there are possibilities to further optimize this loop nest.
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CHAPTER 5

Forelem Extensions for Aggregate
Queries

This chapter proposes a method to express aggregation queries as forelem loop
nests. An aggregation query is characterized by function calls into different stages
of the aggregate function. These stages are defined, such that they can be used
from an forelem loop nest to implement an aggregation query. Subsequently, be-
fore we can discuss group-by queries which depend heavily on aggregation, we
introduce a syntax for working with the distinct keyword found in SQL. Typically,
duplicate elimination is performed as the last operation during query evaluation.
We propose that under several conditions, the distinct operation might be moved
into the index sets eliminating the separate loop for duplicate elimination. Finally,
we introduce a strategy for expressing group-by queries. We show that there are
many opportunities to apply the transformations proposed in Chapters 3 and 4.
In some cases it is possible to reduce the group-by query to a single forelem loop
nest.

5.1 Expressing Aggregate Functions

An aggregate function typically has three stages: initialization, update and final-
ization. The stages serve to initialize any variables, update the variables for each
tuple that is processed and to come to a final result. Not all aggregate functions
have to implement all three stages. For example, to implement the COUNT aggre-
gate, it is sufficient to implement initialization (to set the accumulator variable to
zero) and update. To implement AVG it is also necessary to implement the finaliza-
tion stage to perform the division of the sum.

For use within forelem loop nests we supply the following functions which
represent the stages of an aggregate function:

e agg_init (handle, agg_func) initializes the given handle with the given
aggregation function.



80 Forelem Extensions for Aggregate Queries

e agg_step (handle, agg_func, value) performs the step stage on the given
handle, with the provided aggregate function and value derived from the
current tuple.

e agg_finish (handle, agg_func) finishes the aggregate computation.

e agg_result (handle) returns the computed aggregate value for the handle.

At a later stage in optimization, these functions are replaced with inline variants of
the called aggregate function. For the COUNT aggregate this means that agg_init
is replaced with an assignment of the value zero to a variable to initialize the
computation, agg_step is replaced with a simple value increment and agg_£finish
is replaced with a no-op. By inlining the actual operations, the forelem loop nests
can be further optimized.

Let us consider the query

SELECT AVG (S.age)
FROM Sailors S

which performs the average aggregate function. We write this query as a forelem
loop nest as follows using the 4 functions representing the aggregate stages:

agg_init(aggl, avg);

forelem (i; i € pS)
agg_step(aggl, avg, S[i].age);

agg_finish(aggl, avg);

% = % U (agg_result(aggl))

When we append a WHERE clause to this query, for example WHERE S.rating = 10,
it is sufficient to replace the use of the index set pS in the forelem loop with
pS.rating[10]. Inlining the code performing the different stages of the aggre-
gate function, we obtain:

aggl.sum = 0;

aggl.count = 0;

forelem (i; i € pS)

{
aggl.sum += S[i].age;
aggl.count++;

}

aggl.result = aggl.sum / aggl.count;

X = % U (aggl.result)

From this code sample it is clear that the loop body computes the sum of the vec-
tor consisting out of all age fields in S (the entire table S is iterated by index set
pS). Similarly, the length of this vector is determined by incrementing the count
variable in the loop body. We described in Section 1.1 that vectorizing compilers
will recognize this pattern as reduction operator. The loop thus presents a vec-
torization opportunity for the optimizing compiler after the forelem code has been
translated to C code. Without inlining, this opportunity would not have appeared.
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5.2 Specification of distinct

Before we can describe how group-by queries are expressed as a forelem loop nest,
we have to introduce syntax for handling DISTINCT. When the DISTINCT keyword,
referred to as a set quantifier, is specified, redundant duplicate rows will be elim-
inated from the result table [45]. The keyword always operates on full tuples and
it is not possible to perform distinct on a single specified column.

Given a temporary table .7, p.7 .distinct specifies the index set on .7 that
contains unique rows. Duplicates are not present in this index set. Corresponding
to the SQL standard [45], the duplicate elimination is performed on the result
table. Let us consider the query:

SELECT DISTINCT S.sname, S.age
FROM Sailors S

This results in:

forelem (i; i € pS)

J = Z U (S[i].sname, S[i].age)
forelem (i; i € p.Z .distinct)

X = Z U TI[i]

In certain cases, it is possible to eliminate the loop iterating over the unique rows
of the result set. For this particular example, the loop over S does not have any
conditions on pS. This makes it possible to perform the distinct operation when
iterating over pS. Important is that this operation is applied on just the sname and
age fields which are subsequently projected into the result table, instead of on the
full tuples. If the operation is performed on the full tuples, tuples with equal sname
and age but different values for the other fields of the table will still be duplicated
in the result table.

The distinct syntax assumes by default that the distinct operation should be
applied to all fields of the table. To limit the operation of the distinct keyword to
specific fields, one can suffix a tuple of field names to the specification of distinct
in the index set.

For our example this means that we suffix the distinct keyword with the fields
sname and age. This results in the following condensed representation of the same

query:

forelem (i; i € pS.distinct(sname,age))
# = % U (S[i].sname, S[i].age)

We observe that by applying this transformation, the second loop has been elim-
inated. Naturally, the reverse transformation is also possible. By moving dis-
tinct back into a separate loop, application of other transformations is enabled
that would otherwise be prevented due to the presence of distinct in the index set.

Note that elimination of the second loop for performing duplicate elimination
is not always advantageous. Duplicate elimination is an expensive operation that
is preferably applied on a table which is as small as possible. In certain cases, mov-
ing distinct into an index set is beneficial, specially when the operation is moved
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to be applied on a smaller table, or when distinct is contained in a pre-computed
index set.

The correctness of this transformation can be verified using relational algebra.
The original loop nest, with an additional loop for eliminating the duplicates, is
expressed as:

6(7Tsname,age (S))

In terms of relational algebra, we will express the distinct keyword suffixed with
specific fields as a projection operation on these specific fields followed by dupli-
cate elimination. The transformed loop nest is then expressed as:

5(7Tsn,ame,ag€ (S))

which equals the expression for the original loop nest.

If in a single-level forelem loop all conditions are contained in the index set, it
is possible to move the distinct operation to the index set. The distinct operation
must then be limited to fields that will be added, or projected, to the result table.
It is clear that this is an extension of the transformation on a loop nest without
conditions.

As an example, consider:

forelem (i; i € pS.age[18])
7 = Z U (S[i].sname)

forelem (i; i € pJ .distinct)
X = A U (J[1].sname)

with the following corresponding relational algebra expression:
T sname (5(7Tsname (Uage:18 (S) ) ))
which can be simplified to:
5(7Tsname (Uage:18 (S)))
The loop nest can be transformed into the following loop nest:

forelem (i; i € pS.distinct(sname).age[18])
7 = Z U (S[i].sname)

Note that in this syntax the distinct operation is performed after the selection, so
the loop performs the following expression:

Tsname (6(7Tsname (Jage:18 (S) ) ))
where we can eliminate the outer projection again:
5(7Tsname (Uage:18 (S)))

As a result, this loop is equal to the initial loop nest consisting of two loops.

1We use the extended relational algebra proposed by Dayal et. al. [29] which defines relations and
operations on these relations in terms of multisets instead of sets. Furthermore, an explicit operator is
introduced for elimination duplicates: .
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If the loop body to which the distinct operation is moved contains an if-statement,
the conditions under which this transformation can be carried out are limited.
This makes sense, because the if-statement is now performed after the duplicate
elimination has been done, contrary to the above example. The if statement must
resemble a selection operation and when the fields used in the selection do not
end up in the result table, the selection test must use the equality operator. The
distinct operation must be applied to the fields that are added to the result tuple
and the fields used in the comparison.

To illustrate this, consider the following example corresponding to
6(7rsname (Uage:18 (S) ))

forelem (i; i € pS)
if (S[i].age == 18)
7 = Z U (S[i].sname)
forelem (i; i € p.Z .distinct)
X% = Z U (J[i].sname)

Transformed into:

forelem (i; i € pS.distinct(sname,age))
if (S[i].age == 18)
H = A U (S[i].sname)

Consider as intermediate step a loop nest which has distinct as part of the index set
and a separate loop for performing duplicate elimination. The relational algebra
expression for such a loop nest is:

5(7Tsname (O'agezls (5(7Tsname,age (S)))))

This equation can be obtained from the equation corresponding to the original
loop by applying the properties of the algebra described in [29]. 6 moves past
and ¢ commutes with o. Secondly, we are free to remove columns that will not be
projected or selected on further on.

To delete the distinct operator at the end of the chain (so at the left of the ex-
pression), either the projection at the end of the chain does not eliminate any new
columns, which is essentially the case handled earlier in this section, or the pro-
jection does not introduce any new duplicates. The use of the equality operator
during the selection in this case is crucial. The only way two tuples consisting of
an sname and age field with the same values for sname can be distinct is to have
different values for age. Since all tuples will have the value 18 for age after selec-
tion, all values for sname are distinct and the age column can be dropped without
problems.

Clearly, this does not hold for other operators. Consider the use of the < op-
erator instead of equality. For a selection on age < 18 all tuples with age < 18
qualify, even if sname is equal. After this selection, tuples are present with equal
sname.

After dropping the age column, the result is the following expression, which is
indeed equal to the expression corresponding to the transformed loop nest:

Tsname (Uage:18 (5(7Tsname,age (S))))
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To double-level loop nests similar transformations can be applied Let us consider
the following loop nest:

forelem (i; i € pB.color["red"])
forelem (j; j € pR.bid[B[i].bid])
7 = 7 U R[j]1.bid)
forelem (j; j € pZ .distinct)
Z = Z U (J[i].bid)

With the following corresponding relational algebra expression:

TR.bid(0(TR.bid (R M B.bid=R.bid (OB.color="rea” (B)))))

We apply properties from [29] to move ¢ past 7 and to distribute § over x:

(T Rr.bid(0(R) ™M B.bid=R.bid 0(0B.color="rea (B))))

To be able to remove the distinct elimination at the end of the chain, we must
ensure that the result of the join contains distinct values of bid because the final
projection is only on bid. This is possible when both R and op coi0or(B) contain
distinct values of bid before the join. Because no other fields are needed for the
execution of this loop nest, we move the projection inside the distinct eliminations
that take place before the join:

TRbid(0(TR.bid(R)) X B.bid=R.bid 0(TB.bid(0B.color="red” (B)))))
This corresponds with the following loop nest:

forelem (i; i € pB.distinct(bid).color["red"])
forelem (j; j € pR.distinct(bid).bid[B[i].bid])
X = % U (R[j].bid)

To describe a case where distinct cannot be moved to the index set, we consider
the query:

SELECT DISTINCT R.date
FROM Reserves R
WHERE R.bid = B.bid AND B.color = "red"

written in forelem as:

forelem (i; i € pB.color["red"]))
forelem (j; j € pR.bid[B[i].bid])
7 = Z U (R[]].date)
forelem (i; i € pJ .distinct)
X = % U T[i]

Let us look at the corresponding relational algebra expression, where the § opera-
tor has already been distributed over the join:

(7 R.date (6(R) M B.bid=R.bid 0(TB.color="reda” (B))))
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In order to eliminate § at the end of the chain, we must project on B.bid and
R.bid,R.date before the join. Only the date is projected into the result relation. This
final operation will introduce duplicates: consider reservations for a different boat
(bid) at the same date. So, in this case, we cannot eliminate the second loop per-
forming duplicate elimination.

We can, however, eliminate the separate duplicate elimination loop after first
performing a different transformation. When the Loop Collapse transformation
described in Section 3.3.5 is performed, the result is:

forelem (i; i € pBxR.(color®,bid®).[("red", bid®)1))
g = Z U (BxR[i].date™)

forelem (i; i € p7 .distinct)
A = % U TI[i]

Now the separate loop for distinct can be eliminated by moving the operation to
the index set, because we can apply all conditions prior to the duplicate elimina-
tion. This also works if the conditions are specified in an if-statement instead and
we apply distinct on all fields used.

5.3 Group-by queries

A group-by query groups tuples of a table by one or more fields, referred to as
grouping columns. The values of other columns in the tuples can be aggregated
using aggregate functions. Different methods for performing a group-by exist and
an appropriate one is usually selected by the query optimizer depending on how
table data is to be processed. These methods include performing the grouping
operation by hashing and sorting an intermediate table followed by discovering
and aggregating the groups.

We do not want to tie ourselves to a particular evaluation strategy for group-
by queries, so the exact iteration patterns remain encapsulated in the forelem loops.
Therefore our aim is to write a group-by query solely using forelem loops. In
essence, a group-by query iterates over all groups identified by the grouping
columns. Three stages are distinguished:

1. A temporary table .7 is created containing the selected columns of tuples
adhering to an optionally specified WHERE clause.

2. The groups are extracted from this temporary table based on the specified
grouping columns and stored in ¢.

3. For each group in turn, we iterate over the group’s members stored in .7
and perform the requested aggregate functions.

The three stages are written as three forelem loop nests. Subsequently, transfor-
mations can be applied, such as those described in Chapters 3 and 4. A potential
result is that all three loops are merged into a single loop nest.
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As an example, let us consider the query:

SELECT S.rating, MIN(S.age)
FROM Sailors S
GROUP BY S.rating

which we first express as three forelem loops:

forelem (i; i € pS)
J = Z U (S[i].rating, S[i].age)

forelem (i; i € p7)
Ty = P U (J[i].rating)
forelem (i; i € p9;.distinct)
Y = 94 U IH[i]

forelem (i; i € p¥)

{

agg_init(aggl, min)

forelem (j; j € pJ .rating[¥[i].rating])

agg_step(aggl, min, .7 [j].age)
agg_finish(aggl, min)

X = A U (4[i].rating, agg_result(aggl))

}

We then apply a number of transformations on these loops to attempt to merge
them into a single loop nest. In particular we will apply Temporary Table Reduc-
tion as described in Section 4.4.2. First, the first loop is duplicated such that the
second and third loop nests, each using the results generated by the first loop, get

a copy:

forelem (i; i € pS)

7 = Z U (S[i].rating, S[i].age)
forelem (i; i € p9)

Iy = I U (J[i].rating)
forelem (i; i € pZ;.distinct)

g = 94 U Plil

forelem (i; i € p¥)
{
agg_init(aggl, min)
forelem (j; j € pS)

I3 = 3 U (S[jl.rating, S[j]l.age)
forelem (j; j € pZ3.rating[¥4[i].rating])

agg_step(aggl, min, 73[j].age)
agg_finish(aggl, min)

X = A U (4[i].rating, agg_result(aggl))

}
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Now, we can apply Temporary Table Reduction to eliminate the generation of .7
and 3. For the third loop nest, this is accomplished by moving the index set con-
ditions to if-statements, performing the reduction and moving the if-statements
back to index set conditions.

forelem (i; i € pS)
D J5 U (S[i].rating)
forelem (i; i € p9;.distinct)
¢ = 94 U FH[i]

forelem (i; i € p¥)
{
agg_init(aggl, min)
forelem (j; j € pS.rating[¥[i].rating])
agg_step(aggl, min, S[j].age)
agg_finish(aggl, min)
X = £ U (¥Y[i].rating, agg_result(aggl))
}

On the first loop nest, it is now possible to eliminate the separate duplicate elimi-
nation loop using techniques described in Section 5.2.

forelem (i; i € pS.distinct(rating))
4 ¢ U (S[i].rating)

forelem (i; i € p¥)
{
agg_init(aggl, min)
forelem (j; j € pS.rating[¥[i].rating])
agg_step(aggl, min, S[j].age)
agg_finish(aggl, min)
X = X U (4[i].rating, agg_result(aggl))

}

Finally, another Temporary Table Reduction can be performed to merge both loop
nests into one, eliminating the generation of temporary table ¢.

forelem (i; i € pS.distinct(rating))
{
agg_init(aggl, min)
forelem (j; j € pS.rating[S[i].rating])
agg_step(aggl, min, S[j].age)
agg_finish(aggl, min)
% = % U (S[i].rating, agg_result(aggl))

}

Next, let us consider a more complicated example involving two tables and a
WHERE clause:
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SELECT B.bid, COUNT(*) AS reservationcount
FROM Boats B, Reserves R

WHERE R.bid = B.bid AND B.color = "red"
GROUP BY B.bid

As we have discussed, the WHERE clause will be performed by the first loop. We
express this query using three forelem loops for the three stages as follows:

forelem (i; i € pB.color["red"])
forelem (j; j € pR.bid[B[i].bid])
J = Z U (B[i].bid, R[j].™)

forelem (i; i € p7)
T = I U (J[i].B.bid)
forelem (i; i € p9;.distinct)
Y = 9 U H[i]

forelem (i; i € p¥)
{
agg_init(aggl, count)
forelem (j; j € p .B.bid[¥[i].B.bid])
agg_step(aggl, count)
agg_finish(aggl, count)
X = Z U (¥4[i].B.bid, agg_result(aggl))

}

Note that two fields named bid are added to .7, to avoid confusion the fields are
named B.bid and R.bid.

We use the same approach as used with the previous example: first duplicate
the loop nest generating .7, and second use Temporary Table Reduction to merge
this in the two remaining loop nests.

forelem (i; i € pB.color["red"])
forelem (j; j € pR.bid[B[i].bid])
Ty = 5 U (B[i].bid)
forelem (i; i € p9;.distinct)
Y = 94 U F[i]

forelem (i; i € p¥)
{
agg_init(aggl, count)
forelem (ii; ii € pB.(bid,color)[(¥4[i].bid,"red")])
forelem (jj; jj € pR.bid[B[ii].bid])
agg_step(aggl, count)
agg_finish(aggl, count)
X = A U (4[i].bid, agg_result(aggl))

}

Using the technique discussed in Section 5.2 we can eliminate the separate loop
performing distinct elimination that follows the first loop nest:
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forelem (i; i € pB.distinct(bid).color["red"])
forelem (j; j € pR.distinct(bid).bid[B[i].bid])
¥ = ¢ U (B[i].bid)

forelem (i; i € p¥)
{
agg_init(aggl, count)
forelem (ii; ii € pB.(bid,color)[(¢[i].bid,"red")])
forelem (jj; jj € pR.bid[B[ii].bid])
agg_step(aggl, count)
agg_finish(aggl, count)
X = £ U (¥4[i].bid, agg_result(aggl))
¥

Finally, we can eliminate the temporary table ¢:

forelem (i; i € pB.distinct(bid).color["red"])

forelem (j; j € pR.distinct(bid).bid[B[i].bid])

{
agg_init(aggl, count)
forelem (ii; ii € pB.(bid,color)[(B[i].bid,"red")])

forelem (jj; jj € pR.bid[B[ii].bid])
agg_step(aggl, count)

agg_finish(aggl, count)
% = % U (B[i].bid, agg_result(aggl))

}

5.4 Having keyword

With the having keyword a condition can be specified that will be tested against
each group. The condition usually only references grouping columns. This con-
dition can only be tested after all members of a group have been processed. The
condition cannot be moved into the index set of the enclosing loop.

As an example, we can extend the query used in the previous section to include
a HAVING clause, specifying that only boats with more than 5 reservations should
appear in the result table:

SELECT B.bid, COUNT(*) AS reservationcount
FROM Boats B, Reserves R

WHERE R.bid = B.bid AND B.color = "red"
GROUP BY B.bid

HAVING COUNT(*) > 5

Because a COUNT aggregate is already performed, we do not have to introduce an
additional aggregate computation. Before the tuple is added to the result set, we
add a test for the having condition:
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forelem (i; i € pB.distinct(bid).color["red"])
forelem (j; j € pR.distinct(bid).bid[B[i].bid])
{
agg_init(aggl, count)
forelem (ii; ii € pB.(bid,color)[(B[i].bid,"red")])
forelem (jj; jj € pR.bid[B[ii].bid])
agg_step(aggl, count)
agg_finish(aggl, count)
if (agg_result(aggl) > 5)
X = % U (B[i].bid, agg_result(aggl))
}

After this addition, the forelem loop nest now computes the desired result.

5.5 Example

In this section we demonstrate how the techniques discussed in this chapter can
be applied to a real-world code example. The following code fragment is based
on the file AboutMe.php from the RUBIS [75] benchmark. The code fragment is
written in pseudocode similar to PHP and edited for clarity.

$bidsResult =
mysql_query("SELECT item_id, bids.max_bid FROM bids, items
WHERE bids.user_id=$userId AND bids.item_id=items.id
AND items.end_date > NOW(Q)
GROUP BY item_id");
if (mysql_num_rows($bidsResult) == 0)
print("<h2>You did not bid on any item.</h2>\n");
else

{

print("<h3>Items you have bid on.</h3>\n");

while ($bidsRow = mysql_fetch_array($bidsResult))

{

$maxBid = $bidsRow['"max_bid"];
$itemId = $bidsRow["item_id"];
$itemResult =

mysql_query("SELECT * FROM items WHERE id=$itemId");

$currentPriceResult =
mysql_query("SELECT MAX(bid) AS bid FROM bids ".
"WHERE item_id=$itemId");
$currentPriceRow = mysql_fetch_array($currentPriceResult);
$currentPrice = $currentPriceRow["bid"];
if ($currentPrice == null)
$currentPrice = "none";
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$itemRow = mysql_fetch_array($itemResult);

$itemName = $itemRow["name"];
$itemInitialPrice = $itemRow["initial_price"];
$quantity = $itemRow["quantity"];
$itemReservePrice = $itemRow["reserve_price"];
$startDate = $itemRow["start_date"];

$endDate = $itemRow["end_date"];

$sellerId = $itemRow["seller"];

$sellerResult =
mysql_query("SELECT nickname FROM users
"WHERE id=$sellerId")

$sellerRow = mysql_fetch_array($sellerResult);
$sellerNickname = $sellerRow['"'nickname"];

print ("<TR><TD>"
"<a href=\"/PHP/ViewItem.php?itemId="
.$itemId."\">".$itemName.
"<TD>".$itemInitialPrice."<TD>".$currentPrice."<TD>"
.$maxBid."<TD>".$quantity.
"<TD>".$startDate."<TD>".$endDate.
"<TD><a href=\"/PHP/ViewUserInfo.php?"
"userId=".$sellerId."\">".$sellerNickname.
"</a>\n");

mysql_free_result($sellerResult);
mysql_free_result($currentPriceResult);
mysql_free_result($itemResult);

}

mysql_free_result($bidsResult);

}

As a first step, all SQL queries that are performed by calling the DBMS API are
replaced with forelem loop nests which execute in process. The code fragment con-
tains four queries. We will rewrite these queries as forelem loop nests and perform
preliminary transformations on these queries in turn. After that, we place the loop
nests into the code fragment. The first query is:

SELECT item_id, bids.max_bid FROM bids, items

WHERE bids.user_id=$userId AND bids.item_id=items.id
AND items.end_date >= NOW(Q)

GROUP BY item_id

This query is written as a forelem loop nest using the strategy discussed in Sec-
tion 5.3:
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forelem (i; i € pBids.user_id[$userId])
forelem (j; j € pItems.(id,end_date)[(Bids[i].item_id, [NOW(),00)])
7 = Z U (Bids[i].item_id, Bids[i].max_bid)

forelem (i; i € p9)
Ty = T U (J[i].item_id)
forelem (i; i € pZ;.distinct)
Y = 9 U Fli]

forelem (i; i € p¥)
{
forelem (j; j € pJ .item_id[¥[i].item_id])
r = (J[j].item_id, Z[j].max_bid)
X = A Ur
}

Note that [NOW (), o0) indicates the range in which the value of field end_date
must lie. And with the described transformations, we can write the query as a
single loop nest:

forelem (i; i € pBids.distinct(item_id).user_id[$userId])
forelem (j; j € pItems.distinct(id).(id,end_date)
[(Bids[i].item_id, [NOW(),00))]1)
{

forelem (ii; ii € pBids. (user_id,item_id)
[($userId,Bids[i].item_id)])
forelem (jj; jj € pItems.(id,end_date)
[(Bids[ii].item_id, [NOW(),00))])
(Bids[ii].item_id, Bids[ii].max_bid)

r =
= Z#ZUr

Vi
}

The second query to be considered is:
SELECT * FROM items WHERE id=$itemId
which is written as:

forelem (i; i € pItems.id[$itemId])
X = X% U Items[i]

The third query contains an aggregate function:
SELECT MAX(bid) AS bid FROM bids WHERE item_id=$itemId

Using the technique described in Section 5.1 we can express the query using forelem
loops as follows:
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agg_init(aggl, max);

forelem (i; i € pBids.item_id[$item_id])
agg_step(aggl, max, Bids[i].bid);

agg_finish(aggl, max);

X = % U (agg_result(aggl))

The aggregate operation can subsequently be inlined:

aggl.result = 0;
forelem (i; i € pBids.item_id[$item_id])
if (aggl.result == 0 || aggl.result < Bids[i].bid)
aggl.result = Bids[i].bid;
X = % U (aggl.result)

Finally, the fourth query:
SELECT nickname FROM users WHERE id=$sellerId
is easily converted to:

forelem (i; i € pUsers.id[$sellerId])
X = % U (Users[i].nickname)

We now rewrite the code fragment with the forelem loops for the four queries:

forelem (i; i € pBids.distinct(item_id).user_id[$userId])
forelem (j; j € pItems.distinct(id).(id,end_date)
[(Bids[i].item_id, [NOW(),00))]1)
{

forelem (ii; ii € pBids. (user_id,item_id)
[($userId,Bids[i].item_id)])
forelem (jj; jj € pItems.(id,end_date)
[(Bids[ii].item_id, [NOW(),00))]1)
r = (Bids[ii].item_id, Bids[ii].max_bid)
92’1:3?1Ur
}
if (is_empty (Z%1))
print("<h2>You did not bid on any item.</h2>\n");
else

{

print("<h3>Items you have bid on.</h3>\n");

while ($bidsRow € %))
{

$maxBid $bidsRow["max_bid"];
$itemId = $bidsRow["item_id"];

forelem (i; i € pItems.id[$itemId])
Do Ay U Items[i];
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aggl.result = 0;
forelem (i; i € pBids.item_id[$item_id])
if (aggl.result == 0 || aggl.result < Bids[i].bid)
aggl.result = Bids[i].bid;
X3 = A3 U (aggl.result);

$currentPriceRow = r € Xs;

$currentPrice = $currentPriceRow["bid"];

if ($currentPrice == null)
$currentPrice = "none";

$itemRow = r € Ho;

$itemName = $itemRow['"name"];
$itemInitialPrice = $itemRow["initial_price"];
$quantity = $itemRow["quantity"];
$itemReservePrice = $itemRow["reserve_price"];
$startDate = $itemRow["start_date"];

$endDate = $itemRow["end_date"];

$sellerId = $itemRow["seller"];

forelem (i; i € pUsers.id[$sellerId])
Hy = A4 U (Users[i].nickname)

$sellerRow = r € Hy;
$sellerNickname = $sellerRow['"nickname"];

print ("<TR><TD>" .
"<a href=\"/PHP/ViewItem.php?itemId="
.$itemId."\">".$itemName.
"<TD>".$itemInitialPrice."<TD>".$currentPrice."<TD>"
.$maxBid."<TD>".$quantity.
"<TD>".$startDate."<TD>".$endDate.
"<TD><a href=\"/PHP/ViewUserInfo.php?" .
"userId=".$sellerId."\">".$sellerNickname.
"</a>\n");

}

We now apply Loop Merge to merge the forelem loop producing the tuples into
result set %, with the while loop consuming these tuples. Before this transforma-
tion can be applied, we must perform a preparatory transformation that moves
the if-statement checking is_empty after the merged loop. The statements in the
else clause before the while loop are moved into the loop body and made condi-
tional. At the same time we perform an explicit table reduction which replaces
references into the result set with direct references into the database table. Sub-
sequently, Global Forward Substitution can be performed. This reduction is also
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applied on the result set #s.

results = 0;
forelem (i; i € pBids.distinct(item_id).user_id[$userId])
forelem (j; j € pItems.distinct(id).(id,end_date)
[(Bids[i].item_id, [NOW(),00))]1)
{

forelem (ii; ii € pBids. (user_id,item_id)
[($userld,Bids[i].item_id)])
forelem (jj; jj € plItems.(id,end_date)
[(Bids[ii].item_id, [NOW(),c0))]1)
r = (Bids[ii].item_id, Bids[ii].max_bid)

if (results == 0)
print("<h3>Items you have bid on.</h3>\n");

results++;

forelem (iii; iii € pItems.id[Bids[ii]["item_id"]])
Ay = Ko U Items[iii]

aggl.result = 0;
forelem (iii; iii € pBids.item_id[Bids[ii]["item_id"]])
if (aggl.result == 0 || aggl.result < Bids[iii].bid)
aggl.result = Bids[iii].bid;
$currentPrice = aggl.result;

if ($currentPrice == null)
$currentPrice = "none";

$itemRow = r € Ho;

$itemName = $itemRow['"name"];
$itemInitialPrice = $itemRow["initial_price"];
$quantity = $itemRow["quantity"];
$itemReservePrice = $itemRow["reserve_price"];
$startDate = $itemRow["start_date"];

$endDate = $itemRow["end_date"];

$sellerId = $itemRow["seller"];

forelem (iii; iii € pUsers.id[$sellerId])
Hy = A, U (Users[iii].nickname)

$sellerRow = r € %u;
$sellerNickname = $sellerRow['"nickname"];

print ("<TR><TD>" .
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"<a href=\"/PHP/ViewItem.php?itemId="
.$itemId."\">".$itemName.
"<TD>".$itemInitialPrice."<TD>".$currentPrice."<TD>"
.$maxBid."<TD>".$quantity.
"<TD>".$startDate."<TD>".$endDate.
"<TD><a href=\"/PHP/ViewUserInfo.php?" .
"userId=".$sellerId."\">".$sellerNickname.
"</a>\n");
}
}

if (results == 0)
print("<h2>You did not bid on any item.</h2>\n");

Further optimizations are possible. For example, def-use analysis will detect that
only a single row of %> is used. The analysis will also detect that the condition
id == Bids[ii]["item_id"] holds for all tuples iterated by iteration counter jj.
Therefore, this forelem loop is unnecessary and the data can simply be obtained
from Items[jj] instead.

Also from result set %, a single tuple is used. Therefore, the loop generating
this result set can be pruned to only iterate once. This can be accomplished either
by using the single modifier described in Section 4.2 or by using an additional
mask column as described in Section 3.3.5. After this transformation, explicit table
reduction can be applied on this loop.

Finally, the fact that the tables Bids and Items are closely used together might
indicate that the Loop Collapse transformation, described in Section 3.3.5 can be
of use here. This will eliminate the two joins currently present in the loop nest
and might open the road to further transformations. As an example, this has
the potential to make it possible to eliminate the query computing the MAX (bid)
aggregate.

5.6 Conclusions

In this chapter we demonstrated how aggregation queries can be written in terms
of a forelem loop and introduced a strategy for expressing group-by queries as
forelem loops. A syntax for duplicate elimination was introduced together with
conditions under which the duplicate elimination can be moved to the forelem
loops’” index sets. We have demonstrated that the transformations introduced in
the preceding chapters can be applied. Whereas a group-by query is first written
as three forelem loop nests, it is in certain cases possible to transform this to a single
forelem loop nest.

By means of an example, we have demonstrated that many potential optimiza-
tions exist that can take advantage of the described strategies and transformations.
In the example, we were able to merge a code fragment containing a group-by
query and three other queries into a single loop nest. Subsequently, the possibility
was shown how one of the queries can be fully eliminated. There are further pos-
sibilities to optimize this loop nest for example by restructuring the tables using
Loop Collapse.



CHAPTER 6

Query Optimization Using the
Forelem Framework

6.1 Introduction

This chapter explores the optimization of database queries using just simple com-
piler transformations. This optimization process is carried out by the consecutive
application of simple compiler transformations that are expressed in the forelem
intermediate representation as a series of forelem loops. So instead of using a tradi-
tional query optimizer which optimizes queries that have been expressed into an
initial query execution plan, the compiler transformations are the main query op-
timization transformations. This approach is different from other compiler-based
approaches to query optimization, such as [57, 73], that focus on code generation
and propose compiler-based techniques for the generation of efficient executable
code from algebraic query execution plans.

The optimization methodology that is proposed in this chapter is part of a
larger framework for the vertical integration of database applications. Extensive
vertical integration is not possible with traditional query optimization techniques,
because when code is generated from query evaluation plans and combined with
application code, further applicability of compiler transformations is obscured.
Therefore, it is important that queries are expressed, optimized and combined
with application code in a way that compiler optimizations can still be success-
fully exploited. The forelem framework provides such a way. Vertical integration
will be more thoroughly discussed in Chapter 7.

The techniques described in this chapter build upon the forelem intermediate
representation and the transformations introduced in the previous chapters. First,
a number of transformations will be introduced that are specific to the optimiza-
tion of queries expressed in the forelem intermediate representation. Secondly, the
application of the transformations will be illustrated. Thirdly, strategies will be
discussed for the sequence in which the transformations should be applied, as
well as strategies for the generation of efficient (C/C++) code from the optimized



98 Query Optimization Using the Forelem Framework

forelem intermediate representation of the query. Finally, using the TPC-H bench-
mark [91], it is demonstrated that queries optimized using compiler transforma-
tions in the forelem framework have a performance that is comparable to that of
contemporary database systems that employ traditional query optimization.

6.2 Specific Forelem Transformations for
Query Optimization

This section builds upon the forelem loop and transformations introduced in the
preceding chapters. In particular, in this chapter use will be made of the Loop In-
variant Code Motion, Loop Interchange and Loop Fusion transformations, which
will not be reiterated here. For more details, we refer the reader to Section 3.3.

A number of different compiler transformations are specifically introduced for
the optimization of queries expressed in the forelem intermediate representation.
Although these transformations support optimization of queries within the forelem
framework, these transformations can also be applied in general to optimize over-
all performance. The main contribution of this section is that the majority of the
techniques used for query optimization within the forelem framework can be de-
rived from existing optimizing compiler transformations.

6.2.1 Inline

The Inlining transformation inlines a function into its caller. This transformation is
commonly used to inline calls to short functions and methods to save the overhead
of performing a function call, or to enable further optimization by considering the
code of the inlined function in the context of the code that calls this function.

In the forelem framework, all subqueries are initially expressed as separate
functions. After inlining a subquery into its caller, the subquery can be consid-
ered together with the surrounding loops in the caller. For example, subqueries
are often called from a loop nest and after inlining the compiler might detect that
the subquery is invariant to the loop body from which it is called. As a result, the
Loop Invariant Code Motion transformation will move the subquery out of the
loop.

Consider the following subquery and loop:

subquery®()
{
count = 0;
forelem (ii; ii € pA.fieldl[value])
count++;
return count;

}

forelem (i; i € pB)

{

tmp = subquery®(Q)
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if (B[i].field2 < tmp)
X = £ U (B[i].fieldl)
}

the subquery is inlined into the caller as follows:

forelem (i; i € pB)
{
count = 0;
forelem (ii; ii € pA.fieldl[valuel)
count++;
tmp = count;
if (B[i].field2 < tmp)
X = A U (B[i].fieldl)
}

This has enabled subsequent transformations to be applied. The loop computing
the count variable is invariant to the loop iterating the table B. The subquery was
“uncorrelated”. Because of this, the loop computing count can be moved out of
the loop:

count = 0;
forelem (ii; ii € pA.fieldl[value])
count++;
forelem (i; i € pB)
{
tmp = count;
if (B[i].field2 < tmp)
X = A U (B[i].fieldl)
}

6.2.2 Iteration Space Expansion

Within the forelem framework a transformation known as Iteration Space Expan-
sion is defined. This transformation is inspired by the Scalar Expansion transfor-
mation, which is typically used to enable parallelization of loop nests. There is
also a relation with the expansion of the iteration spaces to transform irregular
access patterns into regular ones [95]. This transformation is briefly described in
this subsection, for a more detailed description see Section 12.3.

Iteration Space Expansion expands the iteration space of a forelem loop by re-
moving conditions on its index set. For a loop of the form, with SEQ denoting a
sequence of statements:

forelem (i; i € pA.field[X])
SEQ;

the following steps are performed:

1. the condition A[i].field == X is removed, which expands the iteration
space so that the entire array A is visited,



100 Query Optimization Using the Forelem Framework

2. scalar expansion is applied on all variables that are written to in the loop
body denoted by SEQ and references to these variables are subscripted with
the value tested in the condition, in this case A[i] . field,

3. all references to the scalar expanded variables after the loop are rewritten to
reference subscript X of the scalar expanded variable.

6.2.3 Table Propagation

The Table Propagation transformation is similar to Scalar Propagation that is typ-
ically performed by compilers. In Scalar Propagation, the use of variables whose
value is known at compile-time is substituted with that value. For example, in:

int x = 3;
int y = x + 3;

int z = x * 9;

the uses of x can be replaced with the value of x, 3:

int x = 3;
int y = 3 + 3;
int z = 3 * 9;

In Table Propagation, the use of a temporary table of which the contents are
known is replaced with a loop nest that generates the same contents as the tem-
porary table. This eliminates unnecessary copying of data to create the temporary
table, but also enables further transformations because the loop nest that gener-
ates the contents of the temporary table can now be considered together with the
loop nest that iterates the temporary table. For example, consider the following
forelem loops:

forelem (i; i € pX.field2[value])
g = Z U (X[i].fieldl)

forelem (i; i € p9)
forelem (j; j € pY.field2[.7[i].field1])
F* = X U (Y[j].fieldl)

The first loop generates a table .7, which is iterated by the second loop. The
table .7 is being “streamed” between these consecutive loops. Table 7 can be
propagated to the second loop nest:

forelem (i; i € pX.field2[value])
g = Z U (X[i].fieldl)

forelem (i; i € pX.field2[value])
forelem (j; j € pY.field2[X[i].field1])
* = X U (Y[j].fieldl)
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The result of the first loop, table .7, is now unused. Therefore, the first loop may
be eliminated by a succeeding compiler transformation, resulting in:

forelem (i; i € pX.field2[value])
forelem (j; j € pY.field2[X[i].field1])
X% = Z U (Y[]j].fieldl)

This final result gives the impression that a variant of Loop Fusion has been ap-
plied. Rather, in the forelem framework this optimization is expressed as two sep-
arate transformations: Table Propagation and Dead Code Elimination. Note that
this transformation is a generalized form of the Temporary Table Reduction trans-
formation discussed in Section 4.4.2.

6.2.4 Dead Code Elimination

Dead Code Elimination removes statements whose results are not used in any
subsequent statements. Such statements can be detected using, for example, def-
use analysis. In the forelem framework, tables are treated as variables. As a result,
statements that generate tables that are unused in the remainder of the forelem
representation of the problem will be removed by Dead Code Elimination.

6.2.5 Index Extraction

The Index Extraction transformation extracts the use of an index set from a forelem
statement. A new loop is created that iterates the index set and fills a temporary
table. The index set in the original loop is replaced with an unconditional iteration
of this temporary table. This transformation will transform the following loop:

forelem (i; i € pTablel.fieldl[valuel])
SEQ;

into:

forelem (i; i € pTablel.fieldl[valuel])
g = T U (.

forelem (i; i € p9)
SEQ;

In fact, this transformation can be seen as the opposite of Table Propagation. The

Index Extraction transformation extracts one or more forelem loops from a loop

nest to a new loop nest that generates a temporary table. The original loop nest is

modified to replace the extracted loops with a loop iterating the temporary table.
This transformation is useful in the following example:

forelem (i; i € pTablel.(field2,field3)[(valuel, value2)])
forelem (j; j € pTable2.fieldl[Tablel[i].field1])
forelem (k; k € pTable3.fieldl[Table2[j].field2])
forelem (1; 1 € pTable4.fieldl[Table3[k].field1])
if (Table4[1l].field2 == value3)
SEQ;
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where SEQ denotes a sequence of statements. In this case, the transformations de-
cided to move the tests of the conditions on Tablel to the outermost loop, because
two conditions are tested and potentially prunes the search space by a large ex-
tent. Due to the dependences between the other tables, the condition for Table4
is only tested in the inner loop.

Suppose that Table4 and subscript 1 are not used in SEQ, then the iteration of
this array is not necessary in this loop nest. Instead, the subscripts k that should
be iterated can be computed before executing this loop nest. This is done by ex-
ecuting the inner two loops and finding all subscripts k, for which a subscript 1
exists that satisfies the condition Table4[1].field2 == value3. The results of
this computation are stored in a temporary table, along with other fields from
Table3 that are referenced in SEQ. This operation results in:

forelem (k; k € pTable3.fieldl)
forelem (1; 1 € pTable4.fieldl[Table3[k].fieldl])
if (Table4[1].field2 == value4)
7 = Z U (Table3[k].fieldl)

forelem (i; i € pTablel.(field2,field3)[(value2, value3)])
forelem (j; j € pTable2.fieldl[Tablel[i].field1])
forelem (k; k € p7 .fieldl[Table2[j].field2])
SEQ;

Note that all references in SEQ to Table3 must be rewritten to refer to .7 instead.

6.3 Example

This section illustrates the usage of the transformations, by applying these on
query 13 from the TPC-H benchmark!. The SQL code for query 13 is as follows:

select c_count,
count (*) as custdist
from (
select c_custkey,
count (o_orderkey)
from
customer left outer join orders on
c_custkey = o_custkey
and o_comment not like ’%express¥requests¥®%’
group by
c_custkey
) as c_orders (c_custkey, c_count)
group by
c_count
order by

1Query 13 was chosen because of its size and usefulness to serve as an illustration. The other
queries would have taken up too much space
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custdist desc,
c_count desc;

When this query is translated into the forelem intermediate representation, the re-

sult is:

subquery0()
{
forelem (i; i € pCustomer) {
forelem (j; j € pOrders) {
if (customer[i].c_custkey == orders[j].o_custkey &&
!like(orders[j].o_comment, "%express¥%requests%")
7 = Z U (customer[i].c_custkey, orders[j].o_orderkey)
else
7 = Z U (customer[i].c_custkey, nil)
}
}

forelem (i; i € p7) {
¥ = ¢4 U (J[i].c_custkey)
}

distinct(¥)

forelem (i; i € p¥) {
count = 0;
forelem (j; j € p7.c_custkey[¥[i].c_custkey]) {
if (J[j].o.orderkey != nil)
count++;

}
S = & U (¥9[i].c_custkey, count)

}

return .¢¥;

}

. = subquery0(Q);
forelem (i; i € p.¥) {

Ty = T U (S[i].c_count)
}
forelem (i; i € p%) {

Y = % U (P[i].c_count)
}

distinct (%)

forelem (i; i € p%) {

count = 0;

forelem (j; j € pZ2.c.count[%[i].c_count]) {
count++;

}

R = A U (%[i].c_count, count)

}
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As a first step, the Inline transformation is performed, which will inline the sub-
query at the point where the subquery is called. For the above example this is
trivial. Subsequently, the Loop Interchange transformation is considered. The
only loop nest where Loop Interchange could possibly be applied is the loop nest
over the Customer and Orders tables. Usually, Loop Interchange would be ap-
plied at this location such that the condition on o_comment can be tested in the
outer loop. Note that in this case, the body of the if statement depends on both
loop iterators and as such the statement cannot be moved to the other loop.

The next transformation that can be applied on this example is Table Propaga-
tion. In the first step, the loop creating table .7 is propagated to the consecutive
loop nest accessing .7 and the loop creating .7 is propagated to the loops access-
ing 7.

forelem (i; i € pCustomer) {
forelem (j; j € pOrders) {
if (customer[i].c_custkey == orders[j].o_custkey &&
11ike(orders[j].o_comment, "%express¥%requests%")
7 = Z U (customer[i].c_custkey, orders[j].o_orderkey)
else
7 = Z U (customer[i].c_custkey, nil)
}
}

forelem (i; i € pCustomer) {
forelem (j; j € pOrders) {
if (customer[i].c_custkey == orders[j].o_custkey &&
!1ike(orders[j].o_comment, "%express¥requests¥%")
¢ = ¢ U (customer[i].c_custkey)
else
4 = & U (customer[i].c_custkey)
}
}

distinct(¥)

forelem (i; i € p¥) {
count = 0;
forelem (j; j € pJ .c_custkey[¥[i].c_custkey]) {
if (J[j].o.orderkey != nil)
count++;

}
S = Y U (¥9[i].c_custkey, count)

}

forelem (i; i € p) {
T = F U (L[i].c_count)

}
forelem (i; i € p) {

4% = % U (Y[i].c_count)
}

distinct (%)
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forelem (i; i € p%) {
count = 0;
forelem (j; j € p.ccount[%[i].c_count]) {
count++;

}

X = A U (%[i].c_count, count)

}

The transformation must be repeated several times for all propagations to be re-
solved. The result of the repeated application of the transformation is:

forelem (i; i € pCustomer) {
forelem (j; j € pOrders) {
if (customer[i].c_custkey == orders[j].o_custkey &&
!like(orders[j].o_comment, "%express%requests%")
7 = 7 U (customer[i].c_custkey, orders[j].o_orderkey)
else
7 = Z U (customer[i].c_custkey, nil)
}

}

forelem (i; i € pCustomer) {
forelem (j; j € pOrders) {
if (customer[i].c_custkey == orders[j].o_custkey &&
!1ike(orders[j].o_comment, "%express¥%requests¥%")
¥ = ¢ U (customer[i].c_custkey)
else
¥ = ¢ U (customer[i].c_custkey)
}
}

distinct(¥)

forelem (i; i € p¥) {
count = 0;

forelem (ii; ii € pCustomer.c_custkey[¥[i].c_custkey]) {
forelem (jj; jj € pOrders) {
if (customer[ii].c_custkey == orders[jj].o_custkey &&
!like(orders[jj].o_comment, "%express¥%requests%")
row = (customer[ii].c_custkey, orders[jj].o_orderkey)

else
row = (customer[ii].c_custkey, nil)
if (row.o_orderkey != nil)
count++;
}
}
Y = ¥ U (¥4[i].c_custkey, count)

}

forelem (i; i € p¥) {
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T = D U (SL[i].c_count)

}
forelem (i; i € p) {
Gy = 9 U (L[i].c_count)

}

distinct (%)

forelem (i; i € p..distinct(c_count)) {

count = 0;

forelem (j; j € p¥.c_count[.[i].c_count]) {
count++;

}

* = % U (L[1i].c_count, count)

}

Dead Code Elimination will remove statements that produce statements of which
the results are not used:

forelem (i; i € pCustomer) {
¢ = ¢ U (customer[i].c_custkey)

}

distinct(¥)

forelem (i; i € p¥) {
count = 0;

forelem (ii; ii € pCustomer.c_custkey[¥[i].c_custkey]) {
forelem (jj; jj € pOrders) {

if (customer[ii].c_custkey == orders[jj].o_custkey &&
Ilike(orders[jj].o_comment, "%express¥%requests¥'")
count++;
}
}
< = Y U (¥9[i].c_custkey, count)
}
forelem (i; i € p.¥.distinct(c_count)) {
count = 0;
forelem (j; j € p.c_.count[.[i].c_count]) {
count++;
}
X = % U (L[i].c_count, count)
}

Note that in case all transformations are repeated, Table Propagation will propa-
gate the loop iterating Customer and generating a table ¢, to the consecutive loop
accessing ¢.
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6.4 Optimization and Code Generation Strategies

In order to successfully optimize forelem loop nests using the transformations de-
scribed in Section 6.2, a strategy is needed that determines in which order the
transformations on the forelem loop nests are to be performed. The forelem frame-
work uses the following strategy:

e First, subqueries are inlined, so that these can be considered in combination
with the calling context.

e As a second step loops are reordered such that as many conditions as pos-
sible are tested in the outermost loops. Priority is given to move conditions
that test against a constant value to the outermost loop. This step is a com-
bination of the application of Loop Interchange with Loop Invariant Code
Motion.

e Thirdly, opportunities for the application of Iteration Space Expansion are
looked for. An example of such an opportunity is a loop iterating an index
set with a condition on a field, of which the body computes an aggregate
function. Iteration Space Expansion is followed by Loop Invariant Code
Motion, because the loop computing the aggregate function is often made
loop invariant by the Iteration Space Expansion transformation. Iteration
Space Expansion is not applied on loops iterating temporary tables.

o The fourth step is to apply Table Propagation to prepare for the elimination
of unnecessary temporary tables.

o Fifth, Index Extraction is performed on inner loops that iterate tables that
could be removed from the loop nest.

e Finally, Dead Code Elimination is performed to remove any loop that com-
putes unused results.

Experiments have been conducted with the queries from the TPC-H bench-
mark [91]. The different transformations that have been applied to each TPC-H
query during the forelem optimization phase are shown in Table 6.1.

Another optimization strategy is to perform a brute-force exploration of the
entire optimization space. This is useful, for example, for queries that are run
many times on changing data so that the costly optimization effort is worth it. We
plan to study brute-force exploration of the optimization search space in future
work.

Code generation

Next to strategies for the application of transformations on the forelem interme-
diate representation, there are also strategies for the generation of efficient code
from the forelem intermediate representation. These strategies are for a large part
concerned with the selection of forelem loops for which index sets should be gen-
erated at run-time and the selection of efficient data structures for such index sets.
The following rules are used for the code generation of index sets:
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Query # | Applied Transformations

1 Table Propagation, LICM, Dead Code Elimination
2 Inline, Loop Interchange, LICM, Iteration Space Expansion,
LICM, Index Extraction

3 Loop Interchange, LICM

4 Inline, Index Extraction

5 Loop Interchange, LICM, Index Extraction

6 None

7 Loop Interchange, LICM, Index Extraction

8 Loop Interchange, LICM, Index Extraction

9 Loop Interchange, LICM, Index Extraction, Table Propagation,
Dead Code Elimination

10 Loop Interchange, Table Propagation

11 Inline, Loop Interchange, LICM, Table Propagation,
Dead Code Elimination

12 Loop Interchange, LICM

13 Inline, Table Propagation, Dead Code Elimination
14 None

15 Inline, Loop Interchange, LICM, Table Propagation,
Dead Code Elimination

16 Inline, Loop Interchange, LICM, Table Propagation,
Dead Code Elimination

17 Iteration Space Expansion, LICM

18 Loop Interchange, LICM, Table Propagation,

Dead Code Elimination

19 None

20 Inline, Iteration Space Expansion, LICM

21 Loop Interchange, LICM

22 Inline, LICM

Table 6.1: An overview of the transformations applied to each TPC-H query, in
the order of application. The abbreviation LICM stands for Loop Invariant Code
Motion.
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1. Index sets without conditions address the fully array. No index set is gener-
ated in this case, instead the full array is iterated with subscripts ¢ € [0, len).

2. Index sets that are used in multiple loop nests get priority in being gener-
ated.

3. The index set of the outer loop is never explicitly generated, as the outer
loop is only iterated once.

4. For very small tables, index sets are not generated.

Different data structures are used as index set, such as flat arrays, hash tables or
tree structures, depending on the properties of the index set. For example, if it is
known that the field, for which an index set is created, has a unique value for each
row in the array, a one-to-one-mapping is set up using a flat array or hash table.
This property can be known to the code generator because the field was specified
as primary key in the table schema, or the generated code detects at run-time that
the table data satisfies this condition. For index sets that yield multiple subscripts
balanced tree is used.

Additionally, the code generator can easily generate both row-wise and column-
wise data access code. Within the forelem framework, a change from row-wise to
column-wise layout is a trivial transformation. Which layout should be used is
determined by the amount of fields in an array that are accessed.

6.5 Experimental Results

Experiments have been conducted using the queries from the TPC-H
benchmark [91]. All queries were parsed into the forelem intermediate represen-
tation, optimized using the transformations described in this chapter and C/C++
code has been generated from the optimized AST. These executables access the
database data through memory-mapped I/O. The execution time of the queries is
compared to the execution time of the same queries as executed by PostgreSQL [80]
and MonetDB [69].

All experiments have been carried out on an Intel Core 2 Quad CPU (Q9450)
clocked at 2.66 GHz with 4 GB of RAM. The software installation consists out of
Ubuntu 10.04.3 LTS (64-bit), which comes with PostgreSQL 8.4.9. The version of
MonetDB used is 11.11.11 (Jul2012-SP2), which is the latest version that could be
obtained from the MonetDB website [69] for use with this operating system.

On a TPC-H data set of scale factor 1.0, all queries were run with PostgreSQL,
forelem-generated code and MonetDB. The execution times of the different queries
in milliseconds are shown in Figure 6.1. PostgreSQL queries that took longer than
30 seconds to complete have been omitted from the figure for clarity. In the ma-
jority of cases, the forelem-optimized implementations have an execution time in
the same order of magnitude as MonetDB, in a few cases even surpassing it.

MonetDB and the forelem-generated code, have also been tested on a dataset
with scale factor 10.0. The execution times of the different queries in seconds
are shown in Figure 6.2. In more than half of the queries, the forelem-optimized
code performs the query with performance comparable to or faster than MonetDB.
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Figure 6.1: Execution time in milliseconds of the TPC
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MonetDB is clearly faster in a third of the queries. We intend to address this gap
in future work, by improving the used optimization strategies.

6.6 Conclusions

In this chapter, the optimization of database queries using compiler transforma-
tions has been described. This optimization process is carried out in the forelem
framework. The forelem framework provides an intermediate representation in
which queries can be naturally expressed and on which compiler transformations
can be applied to optimize the loop nest. Compiler transformations that are cur-
rently implemented within the forelem framework were illustrated and strategies
for the application of these transformations were discussed.

Experimentation using the queries from the TPC-H benchmark shows that the
queries that were optimized using compiler transformations within the forelem
framework are capable of achieving similar performance to that of contemporary
database systems. However, while the forelem framework has been designed to
provide full integral optimization, the forelem framework is still able to reach per-
formance comparable to contemporary database systems.



CHAPTER 7

Automatically Reducing Database
Applications To Their Essence

7.1 Introduction

In this chapter, we propose an optimization technique specifically targeting the
minimization of the number of instructions!. Essentially, the idea behind the tech-
nique is to locate and eliminate unnecessary instructions. These are instructions
that can be omitted without affecting the course of execution and the output of an
application. As a result of this elimination, an application is reduced to its essence.
As can be concluded from Chapter 2, the number of instructions of the resulting
executables can be significantly reduced when database applications are reduced
to their essence. Note that this approach does not take cycles per instruction (CPI)
into account at this point, but solely focuses on the reduction of the number of
instructions. If the CPI remains around the same level, this implies a reduction
of execution time by the same amount, directly improving the performance of
the software. More likely, however, is that the CPI will slightly increase. This is
attributed to the fact that the instructions performing memory traffic to and from
the database tables, instructions characterized by a higher CPI, are not eliminated.
Nevertheless, if the CPI would increase by 50%, then still up to 92.5% of the total
number of cycles to be executed is eliminated. This is a drastic improvement and
as a consequence the targeted hardware platform is more effectively exploited.
The large number of instructions that can be eliminated from database appli-
cations stems from that fact that these applications are typically developed with a
modular approach. At the foundation a database management system (DBMS) is
used and these systems have traditionally been developed as separate, indepen-
dent software (server) applications. This independence makes database systems
modular and enables their use in a variety of applications. Between database

Note that traditional compiler optimizations which target code compaction should not be confused
with the target of this chapter. Code compaction could still be used on the resulting codes from our
optimizations.
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systems and database applications various framework layers are often used to
facilitate development. This layered and modular approach allows for rapid pro-
totyping, development and deployment.

However, this approach does come at a price. It is well known that the cost of
the overhead induced by this modular and layered approach is significant. More
importantly, the stacking of layers obscures the essence of the database applica-
tion. The essence of the application can only be captured by breaking down these
layers. This has as result that the number of instructions is drastically reduced,
having a direct, very advantageous, effect on the application’s performance. Al-
though the fact that overhead is created by these layered approaches might be
obvious, the amount of overhead that is induced by these methods, up to 95% of
the total amount of instructions, is rather surprising (see later on in this chapter).

Another consequence of this stacking is that compiler optimizations are mostly
restricted to the application part of database applications while the optimization
of the DBMS server is mostly delegated to the query optimizer. In fact, there is
generally no integration of these two optimization efforts. If a query optimizer
is not aware of how the data is used within the application, or if the application
optimizer cannot influence optimization of the data access done by the query opti-
mizer, a database application can never be optimized to its full potential automat-
ically. Therefore, exposing the essence of a database application has as additional
advantage that application optimization and query optimization can be targeted
integrally, further increasing the performance of the application. In our approach,
both the application and its queries are optimized using optimizing compiler tech-
niques [104]. Optimizing compilers have been very effective in high performance
computing as well as in general computing by optimizing loop structures, data
structures, register allocation, data prefetching, etc.

The process of capturing the essence of the application consists out of auto-
matically stripping the layers of which a database application is built up. These
layers include a high-level development (scripting) language, frameworks that
facilitate rapid development in that language, the DBMS API layer, and so on.
By eliminating these layers, the essence of the application is parsed into a com-
mon (compiler) intermediate representation. In this intermediate representation,
all database accesses are exposed as accesses to arrays of structures, governed by
simple loop control structures. On the other hand, this approach allows current
development methodologies for DBMS applications to remain in place. For exam-
ple, current development environments and frameworks to develop Java-based
database applications or PHP-based web applications have been and are serving
programmers very well. The reduction process as proposed in this chapter will
be part of the backend code development process, so that the DBMS application
development methodology will not be directly affected by the reduction process.
Rather, an application is developed and tested as usual, but before extensive de-
ployment the code is passed through the code optimization backend to eliminate
as much overhead as possible. This way, we continue to take advantage of the
available software development tools which enhance programmer productivity
and combine this with a code optimization backend that significantly reduces the
number of instructions to be executed, thereby also improving the performance of
the application.



7.2. Attainable Results 115

The effectiveness of the proposed reduction scheme is validated using two web
applications: RUBBoS [74] and RUBIS [75]. Both web application benchmarks
have been developed by a collaboration between Rice University and INRIA. We
show that on average 75% of the instructions can be eliminated, and in specific
cases up to 95%, without affecting the execution and output of the application.

The remainder of this chapter is organized as follows. In Section 7.2 the results
of the initial study presented in Chapter 2, in which the instructions executed by
RUBBoS and RUBIS benchmarks were manually reduced, are briefly reiterated.
Section 7.3 describes the methods underlying the automatic instruction reduction
process. Section 7.4 discusses how these methods are implemented and can be
deployed within an operational workflow. In Section 7.5, we validate the effec-
tiveness of our approach by presenting the results generated with our prototype
compiler. Section 7.6 describes further optimizations that are possible on top of
the results reported in this chapter. Section 7.8 presents our conclusions.

7.2 Attainable Results

Chapter 2 presented an initial study into the reduction of unnecessary instructions
in database applications, among which the RUBBoS and RUBIS benchmarks. As
a result, we have shown the potential reductions of instructions that are possible
by hand optimizing these applications. For the purpose of identifying which in-
structions were eliminated, we categorized the non-essential instructions as “PHP
overhead”, “MySQL overhead” and “SQL API overhead”.

Figure 7.1, presents the quantification of the different categories for the RUB-
BoS and RUBiS benchmark in terms of the number of instructions. As can be
seen from this figure, the reduction ranges from 70.2% to 93.3%. From this figure
follows that up to 93.3% of instructions can be eliminated, without affecting the
results of the program. A direct result of this drastic reduction of the number of
instructions is a significant improvement in execution time and energy consump-
tion. For more details, the reader is referred to Chapter 2.

7.3 Vertical Integration

The results described in the previous section serve as a target for an automatic
optimization method. This automation is achieved by breaking down the layers
from which database applications are commonly built up. We refer to this pro-
cess as “vertical integration”. This section describes how the different layers are
broken down automatically.

7.3.1 PHP layer

PHP scripts are typically executed by parsing this script, followed by code gen-
eration and execution, resulting in a start-up overhead. Furthermore, PHP code
cannot be integrated with Apache and the various PHP database modules, which
are written in C. As a first stage in vertical integration, the PHP code is translated
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Figure 7.1: Quantification of the amount of executed non-essential instructions, in
10° of instructions, to generate a single page for different components from the
RUBBoS and RUBiS benchmarks.
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to C++ code. This translation thus serves two purposes: parsing and code gen-
eration overhead is eliminated and further vertical integration with the database
modules is enabled.

To accomplish this code translation, our toolchain contains a source-to-source
translator, which translates PHP source code to C++ source code. The source-
to-source compiler was extracted from the HipHop for PHP project, that has been
developed by Facebook [42]. The result of the automatic invocation of the HipHop
source-to-source translator is a generated C++ code, which is subsequently com-
piled and linked against the HipHop runtime. This runtime contains implementa-
tions of the PHP built-in functions and data types that are used by the generated
C++ code. It also features a built-in web server, which replaces the typical use
of the Apache HTTP server. The web server is vertically integrated into the exe-
cutable, further reducing the code size.

7.3.2 DBMS layer

The result of the previous step is a C++ source code, that performs calls to a DBMS
API to execute SQL queries. This can in fact be compared to an Embedded SQL
code. In this step, a vertical integration is performed of the database application
and the DBMS that performs data accesses based on the submitted queries. As
part of our prototype compiler, we have developed a source-to-source translator
that scans the C++ code for calls to a given DBMS API, and replaces the use of
this API with C++ code. At this moment, only the MySQL API is supported, but
extensions to support other DBMS APlIs are straightforward.

This replacement implies that calls to the DBMS API that submit a SQL query
for execution are also replaced with code performing the identical operation. To
achieve this the forelem intermediate representation is used, in which SQL queries
can be expressed as a series of simple loop structures. This intermediate represen-
tation has been designed such that it integrates well in the workflow of traditional
optimizing compilers. After parsing a SQL query into an Abstract Syntax Tree
(AST), a forelem loop is generated immediately from this AST. No query plan is
generated to support this translation. Subsequently, queries are optimized with
loop transformations, rather than sophisticated query planning. Another advan-
tage of the design of this intermediate representation is that it allows for straight-
forward integral optimization of the application code and its queries. Further
optimizations that are possible within this framework, but not yet accomplished
automatically, are described in Section 7.6.

Our source-to-source translator will detect DBMS API calls in the C++ code.
Important calls to detect are for example: opening a connection to the DBMS,
sending a query to the DBMS, retrieving the result set, accessing the result set
and releasing the result set. The translator will annotate the semantics of these
operations in the C++ AST. Commonly, to be able to submit a query to a DBMS, a
parameter must be passed that specifies the DBMS connection to use. The values
of these parameters are only known at runtime. Therefore, the code translator
performs an advanced static analysis on the database application code, in order
to deduce which connection is used in which DBMS API call. Similarly, such an
analysis is used to find exact query strings that are passed to the DBMS calls.
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Query strings that are constructed at runtime in the database applications, are
composed out of multiple calls to string manipulation routines.

As soon as all necessary data has been collected, the DBMS API calls can be
translated. A prerequisite for a successful translation of a call to execute a query
in the DBMS is that the connection is known as well as the query string. The con-
nection information is used to obtain table metadata and the data of the tables at
a later stage. Using libforelem, a library we developed that can manipulate forelem
ASTs, the SQL query is parsed. A check is done whether the query conforms to
the database schemas. For example, the following SQL query taken from RUBiS:

SELECT item_id, bids.max_bid
FROM bids, items

WHERE bids.user_id=$userld
AND bids.item_id=items.id
GROUP BY item_id

is written in forelem as:

forelem (i; i € pBids.user_id[$userId])
forelem (j; j € pItems.id[Bids[i].item_id])
7 = Z U (Bids[i].item_id, Bids[i].max_bid)
forelem (i; i € p9)
Y = 4 U (J[1].item_id)
forelem (i; i € p¥.distinct(item_id))
{
forelem (j; j € single(p.7 .item_id[¥[i].item_id]))
X = Z U (J[j].item.id, Z[]j].max bid)
}

In this loop nest, the notation pBids.user_id[$userId] denotes an index set. This
index set only contains subscripts i into table Bids for which the user_id value
of the tuple equals the value in the variable $userId. The forelem library will
determine how to generate code for this index set. If an index is defined on the
table in the original SQL database, an explicit index will be generated in the data
generation phase, that is kept updated when writes are done to this table. In case
an explicit index is not defined, libforelem may choose to insert code before the
loop to generate the necessary index set for this loop at runtime.

The forelem loop does not have a particular iteration order. The order in which
subscripts are stored in the index set, or the order in which these are iterated, is
not defined. Because of this, we are not limited in the range of transformations
and iteration schemas we can apply. In fact, index sets are the essence of forelem
loop nests as they encapsulate iteration and simplify the query loop code so that
aggressive compiler optimizations can be successfully applied.

A large variety of SQL queries can currently be expressed in terms of the
forelem intermediate representation. A special syntax is available for expressing
the use of aggregate functions. For the distinct keyword, a distinct tag exists for
the index sets. So, application of duplicate elimination will not complicate the
expression of the loop in forelem. This way, loop transformations can still be ap-
plied to the loop effectively. Joins are simply represented by nested forelem loops.
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Group by queries can be expressed in forelem using aggregates, the distinct tag
and by using multiple forelem loops. This results in an initial expression of the
query in forelem, like the example shown above, which is subsequently subjected
to transformations at the forelem level.

Observe that the structure of the loop allows for straightforward integration
with imperative application codes. Our source-to-source translation extends the
C++ AST with the forelem AST, so that code transformations can be defined that
target both the C++ as well as the forelem code. After these transformations have
been performed, C++ source code is generated for the forelem code when the C++
source file is rewritten. The C++ code that is generated from the forelem loop ac-
cesses the tables through a simple array of structures. Note, that such transforma-
tions are not possible if an existing DBMS were simply integrated into the same
process as the application program. This does not result in the DBMS API being
broken down. To be able to reduce the maximum amount of instructions, inter-
pretation of the DBMS API calls and the executed queries is a necessity.

The result of this query inlining is typically a loop that generates a result set,
see the .7, ¢4 and Z sets in the example above. Any suitable data structure can
be used to store this result set. The data structure used can be adapted to the
characteristics of the query, used tables and the application itself. For example, if
only a few results are expected, a more efficient data structure can be used to store
these results, contrary to the use of more advanced data structures for storing large
result sets. DBMS API calls that retrieve and access the result set are translated
into C++ codes that operate on the result set generated by the inlined query code.
For a more detailed discussion the reader is referred to Chapter 2.

After all uses of DBMS API have been translated by the source-to-source trans-
lator, the translator will determine which database tables and indices are used by
the translated queries. Because the operations performed by the DBMS are being
integrated into the application program, the accessed data must be migrated as
well. The used tables and indices are fetched from the DBMS and stored into local
binary files as arrays of structures, that are accessed by the application program
using memory-mapped 1/0O.

7.3.3 DBMS API layer

In the initial generated code, the influence of the DBMS API can still be found. For
example, at the original location of a DBMS query call, a loop evaluating the query
and generating a result set can now be found. A bit further on in the generated
source file, a loop will be found that accesses this result set. These two loops can
be merged, eliminating the need to explicitly create a result set. Code transforma-
tions like these become possible now that the DBMS API layer has been removed
and the application code and queries are expressed in a common intermediate.
Currently, our prototype optimizer does not perform such transformations yet.

7.4 Incorporation in an Operational Workflow

Current development methodologies to develop database applications are serving
programmers very well. A change in methodology to have the developers focus
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on instruction reduction manually is not cost effective. In general, hand optimiza-
tion of code is an elaborate and expensive task and may not weigh up to the costs
that are potentially saved. A clear advantage of our approach is that no modifi-
cation to current development methodologies is needed and the translation to a
significantly more compact code is performed fully automatically. This automatic
translation process can be easily integrated into an operational workflow as part
of the deployment phase where a new version of the application is to be deployed
on the production servers.

Many deployments of web applications are distributed, because a single server
can typically not handle the load. However, once a database application has been
vertically integrated, it operates on a data store that is local and private to that
application. Update actions, i.e. insert, delete and update statements, that are
performed by the application are applied on this local data store. For these up-
dates to become visible to other clients of the same database, this data must be
distributed to these clients. So, where database systems store data at a central-
ized location and provide access to this data through an AP]I, vertically integrated
applications store data locally and need a method to distribute updates.

A solution is needed to deal with the absence of a (remote) central data store.
A straightforward solution is to introduce a central data store in addition to the
local data stores and submit all updates to this central data store. The central data
store must then ensure all local data stores are kept synchronized. Essentially,
this means that write actions that are performed must update both a local and
remote data store, potentially hampering performance. This problem is similar
to the problem of synchronizing local database caches, of which several schemes
have been described in the literature [88, 64, 7, 76, 78]. In Chapter 8, this problem
will be discussed in more detail and a trade-off analysis is described to support
a decision support process to determine whether it is worthwhile to vertically
integrate a code that executing a certain query mix.

7.5 Validation

To validate the effectiveness of our approach, we have performed experiments
with the RUBBoS [74] and RUBIS [75] benchmarks. For each benchmark, instruc-
tion count measurements have been conducted on three versions of the code. The
first instruction count is the original version of the code written in PHP and exe-
cuted using Apache and MySQL. The second count is based on a vertically inte-
grated code, that has been transformed by our vertical integration compiler using
the procedure described in Section 7.3. The third count is the result of optimizing
the code by hand, also reported in Section 7.2.

All experiments have been carried out on an Intel Core 2 Quad CPU (Q9450)
clocked at 2.66 GHz with 4 GB of RAM. The software installation consists out of
Ubuntu 10.04.3 LTS (64-bit), which comes with MySQL 5.1.41 and Apache 2.2.14.
The instruction count measurements have been performed using the oprofile soft-
ware, sampling the INST_RETIRED hardware performance counter present on the
Intel Core 2 CPU.
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The different PHP scripts, or components, that make up each benchmark have
been benchmarked separately. For the instruction count measurement, each com-
ponent has been executed multiple times, if applicable with different CGI argu-
ments. This is to straighten out fluctuations, incorporate the effect of different CGI
parameters and to collect enough samples for the profiler to produce meaningful
results. Execution of a component is triggered by requesting the respective page
with an HTTP client (e.g. elinks -source). The final result is the average number
of instructions executed for a single execution of the component. oprofile reports
instruction count samples per process and only the instructions executed of these
processes that play a role in the generation of the page have been aggregated. So,
other processes running on the system did not influence the measurements. The
HTTP client has been excluded from the aggregate instruction counts.

7.5.1 Read-only Operations

Currently, our vertical integration compiler is able to transform the code of 7 PHP
scripts in RUBBoS and of 9 PHP scripts in RUBIS. The realized instruction count
reductions are shown in Figure 7.2. The bars on the left of the dashed line are
the results for the RUBBoS benchmark components, the results on the right for
RUBIS. PHP scripts that have been executed with different input parameters are
marked with “*” and the average was taken of the results. The white bar indicates
the percentage of instructions that has been eliminated, the gray the percentage of
instructions that remain.

The results show that our current vertical integration compiler is able to real-
ize a significant (43.0% to 87.0%) reduction in instructions for the different com-
ponents of RUBBoS and up to 95.3% for the RUBiS components.

Three of the RUBBoS components and 4 of the RUBiS components have also
been optimized by hand. The results of the hand-optimized codes are shown in
Table 7.1. Note that even though our compiler is a work-in-progress prototype,
it is already able to produce codes that achieve a performance close to hand-
optimized codes for these benchmarks (differences in the range of only 0.4% to
5.3%). Continued development of the prototype will decrease the gap between
automatically and hand optimized codes. Secondly, we notice that RUBBoS and
RUBIS are quite simple codes, where the optimization techniques that become
possible after incorporation of the query codes cannot be utilized to their fullest
potential. For example, in Chapter 2 we showed that in other applications the in-
tegration opportunities were much more versatile, in particular in the phase after
incorporation of the query codes, in the order of another 10%. Therefore, we be-
lieve that the results reported in this section form a lower-bound for results that
can be achieved for more complicated applications that we plan to survey in the
future.

7.5.2 Read/Write Operations

In this subsection, we present the reduction in instructions that can be obtained
for read/write components. Results for automatic and hand optimized codes for
4 read /write components of the RUBBoS benchmark are shown in Figure 7.3. We
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Figure 7.2: Percentage in instruction count reduction over the original
Apache/MySQL execution for 7 of the RUBBoS benchmark components on the
left and 9 of the RUBIS benchmark components on the right. Results realized by
an automatic transformation of the code are shown. A “*” indicates an average is

shown of performing experiments with different arbitrarily chosen input param-
eters.
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Component Automatic | Hand
RUBBoS StoriesOfTheDay 70.8% 76.1%
RUBBoS ViewComment 88.0% 93.3%
RUBBOS ViewStory 87.0% 92.7%
RUBIS SearchByCategory 65.6% 70.2%
RUBIS ViewBidHistory 72.7% 73.5%
RUBIS Viewltem 77 4% 77.8%
RUBIS ViewUserInfo 71.9% 74.9%

Table 7.1: Percentage in instruction reduction over the original Apache/MySQL
execution for only these RUBBoS and RUBIS benchmark components that have
been optimized by hand.

have selected these components from the RUBBoS benchmark, because they ex-
hibit more interesting query mixes compared to the components found in RUBIS.
The translation performed for the write operations is obtained by performing only
an update of the local data instead of updating data in a remote DBMS. The re-
sults indicate that a reduction in the number of instructions executed is possible
of around 70%.

Although notable speedups can be achieved with vertical integration of
Read /Write components, frequent updates to local data stores is not a scalable
solution for distributed deployments of the application. Therefore, we must con-
sider the performance effect of distributing the updated data to the other nodes
in the system. A number of methods to solve this problem will be described in
Chapter 8. In general, for codes with many write actions, the cost of distribut-
ing the updates may not weigh up to the benefits attained by vertical integration.
To quantify this, in Chapter 8 a trade-off analysis is presented to support auto-
matic decision making whether or not a code with a certain query mix should be
vertically integrated. In this chapter, we assume a setup where updates are im-
mediately applied on the local data and are synchronously submitted to a main
DBMS. Other setups are of course possible and a similar trade-off analysis can be
carried out in these cases.

Using this methodology, we make a prediction of the speedup that can be
achieved in query processing when a transition is made to query evaluation local
to the application and additionally sending updated data to a central DBMS. In
order to do so, the speedup is correlated to different ratios of remote writes against
local writes. That is, we can control the amount of write actions that are also ap-
plied at a central location. For writes that are only applied locally, this has as a
possible consequence that components that require this data can only be executed
on one particular host. This way, a distributed deployment of a web application
can be tuned in different ways.

The speedup predictions as described above can be displayed graphically in a
contour plot, see Figure 7.4. From the figure, the predicted speedup can be read
for a given component and remote/local write ratio. Note that all speedups re-
ported in the figure are above 1.0. So, even if all write actions are applied remotely
as well, it is predicted that an overall speedup can be achieved. This is due to the
fact that every component performs at least a single read action. In case of Store-
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Predicted speedup for different remote/local write ratios
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Figure 7.4: Contour plot of the predicted speedups (contour lines) for different
read/write benchmark components and remote/local write ratios.
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ModeratorLog a speedup of a factor of 4 can be attained if all write actions are only
executed locally. In case all actions are also performed remotely, still a speedup
between a factor 1.5 and 1.75 is possible. From this contour plot can be seen that
if the ratio is 0.5, meaning that the number of remote writes is one third of the
total writes, that speedups range from 1.5 to 2.25, with StoreComment being most
sensitive.

7.6 Further Optimizations

In the previous section, we have described that up to 95% of the instructions ex-
ecuted by database applications can be eliminated. As has been discussed in the
Introduction of this chapter, a reduction of the number of executed instructions
has a direct impact on the performance of the application.

Figure 7.5 shows the percentage reduction of the page generation time of the
surveyed benchmarks realized by the automatic code transformation performed
by our compiler. The page generation times were measured by storing time stamps
at the start and end of the various PHP scripts and computing the time elapsed.
Note that the percentage shown only reflects the reduction in page generation
time. This excludes any speedup in the stages before execution of the PHP script
has started, such as parsing the PHP script and generating executable code that
is done by the PHP module in the Apache web server. Due to the nature of our
measurements using oprofile, these were included in the instruction count mea-
surements reported in Section 7.5. Due to the use of HipHop for PHP, the PHP
parsing and code generation is no longer done at runtime, so the total reduction
of execution time is larger.

The results show that for the majority of the benchmark components the page
generation time is reduced by over 80%. For a number of pages, the page genera-
tion time is reduced by around 95%.

These achieved speedups are a direct result of the instruction count reduction.
To accomplish this reduction in instructions, the layers used to compose the data-
base application had to be broken down. For example, the use of a modular inter-
face to the DBMS has been removed and replaced with query evaluation within
the same process. This has reduced the number of executions to be executed, as
data no longer has to be boxed for transfer to and from a DBMS. Important is that
the elimination of the use of a DBMS has as a significant side effect that time is no
longer lost by transferring data between two processes on the system and context
switching overhead. So, even though the expected total reduction of execution
time is larger than reported, the reported reductions in page generation time are
still larger than the reported reduction in instruction count.

Note that all the results reported in this chapter up till now, have been ob-
tained without any advanced compiler optimizations, like loop transformations
and code optimizations, see the previous chapters. Due to the use of the forelem
intermediate representation, both the application logic as well as the database
queries are represented as loops. On these loop structures, a compiler can per-
form traditional, sophisticated loop optimization, resulting in a further substantial
improvement in performance. Additionally, other effective optimizing compiler
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Figure 7.5: Percentage in page generation time reduction over the original
Apache/MySQL execution for 7 of the RUBBoS benchmark components on the
left and 9 of the RUBIS benchmark components on the right. Results realized by
an automatic transformation of the code are shown. A “*” indicates an average is

shown of performing experiments with different arbitrarily chosen input param-
eters.
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techniques can be applied to further optimize the code, such as optimizations for
more efficient data structures, register allocation, cache usage and data prefetch-
ing. For an example of the transformations that can be applied after the DBMS
API has been replaced with forelem loops, see Chapter 3 (Section 3.4).

We have demonstrated in this chapter that an automatic reduction of a da-
tabase application to its essence is feasible. This uncovers a significant number
of unnecessary instructions, which are automatically eliminated, having a direct
beneficial impact on the application’s performance. The fact that the application
program logic and its queries are expressed in a common intermediate represen-
tation, forms a basis for the definition of code transformation specifically for da-
tabase applications.

7.7 Related Work

Cheung et al. describe a system, StatusQuo, to optimize the performance of data-
base applications written in Java accessing a database through JDBC or Hibernate
by considering both the application code as well as the queries [22]. Similar to our
approach they state that the hard separation between the application and data-
base code often results in applications with suboptimal performance. The system
is capable of automatically partitioning the database application into a Java and
SQL code, for optimal performance. To accomplish this, it may rewrite SQL into
Java code, or vice versa. Whereas StatusQuo translates imperative code into a
declarative form, our system translates declarative code into an imperative form.
Furthermore, we accomplish a significant reduction in the number of instructions
to be executed.

Holistic transformations for web applications are proposed in [66, 37], where
transformations are performed on both the application code and the database que-
ries performed by the application code. The division between application and
database codes remains in place however. A similar approach for database appli-
cations written in Java is discussed in [21].

7.8 Conclusions

In this chapter, we have presented the results of our prototype compiler that is
able to automatically reduce the number of instructions executed by database ap-
plications by up to 95%. These results have a direct effect on the performance of
the application, with page generation times also being reduced to up to 5% of the
original page generation times.

Next to these significant results, we have demonstrated that it is feasible to
automatically translate applications to a substantially reduced form. This is ac-
complished through the vertical integration methodology. Our current prototype
compiler is capable of achieving a performance near that of the hand-optimized
codes. In future work, we will further improve our compiler technology to match
and go even beyond the performance of the hand-optimized codes. Furthermore,
we are working on developing novel compiler optimizations that will further im-
prove the performance of queries translated using the forelem framework.
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The current prototype of the reduction process is capable of processing PHP
codes by a translation to C++ code using the HipHop for PHP project. Many other
programming languages and frameworks are also used to develop database appli-
cations. The general nature of the forelem framework does not restrict its usage to
the C and C++ programming languages. As such, our prototype can be extended
to be able to process applications written in other programming languages.



CHAPTER 8

A Trade-Off Analysis For Locally
Cached Database Systems

8.1 Introduction

As can be seen in Chapter 7, our approach to reduce database applications to their
essence calls for exploiting locally cached data. Locally cached databases are in
common use and different strategies have been described in the literature [88, 64,
7,76, 78]. Many strategies work by caching (part of) the data set to satisfy all,
or the majority, of the read operations locally. To handle write actions, however,
these methods commonly work by immediately forwarding write actions to the
main DBMS and by relying on the main DBMS to propagate updated data to the
local caches. Solutions for different caching schemes are often evaluated using
full transactional workloads, which in the case of e-business processing are often
read-dominant, as these applications have a high browse-to-order ratio [64]. As a
result of table caching, many of the read queries of these workloads do not have
to be passed to the main server, so it is clear that caching can noticeably improve
the performance in such cases [64, 7].

Contrary, if a workload is not read-dominant, the advantage of the local execu-
tion of read queries may not weigh up to the amount of time taken by the remote
execution of write queries. In fact, the overhead introduced by updating local
copies of the data next to, or in response to, write actions may become a prob-
lem. A similar problem occurs when full local copies of a database are cached
so that the data processing and data retrieval codes can be combined in the same
process. These local copies must be kept synchronized across multiple machines.
Evidently, this scales well for workloads that are heavily read dominant. For other
workloads, an analysis is required to determine whether the local caching of a da-
tabase will be beneficial, or that parts of this local cache are better served from a
remote DBMS. To our knowledge, a framework to perform such a trade-off anal-
ysis is not described in the literature as of yet. In this chapter we introduce a
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trade-off analysis for deciding whether or not the introduction of a local database
will be beneficial for a given set of query mixes.

The framework works by determining significant computational parameters
for local and remote query execution. Sequences of queries can be expressed in
terms of these parameters and these parameters in turn can be used to predict the
computational load of this query mix. In this chapter, the caching scheme that
is considered is one where writes to the local database must be accompanied by
writes to the remote, or master, database. For the sake of simplicity, the cost of
different schemes of propagating writes and updating local caches is not consid-
ered. Note that it is not our intention to predict actual performance of locally
cached database systems, but rather to provide an analysis for deciding whether
a locally cached database solution will have benefits over solely executing queries
on a remote DBMS.

The significant computational parameters within this framework can be de-
termined via two approaches. The first approach uses a separate benchmark to
approximate the computational load cost of different database operations. For the
second method, a database application is adapted such that the execution time of
the different query mixes can be measured. From these results, the values for the
separate parameters are computed.

To illustrate our methodology, we apply our method to a straightforward ex-
ample. This example is the RUBBoS benchmark [74], which models a web appli-
cation written in the PHP language and using MySQL as DBMS. Different query
mixes performed by this benchmark are used to collect measurements required
for the second approximation method and to validate our two proposed methods.
The use of the performance models are demonstrated on two different architec-
tures.

The chapter is organized as follows: in Section 8.2 the significant computa-
tional parameters are discussed. Section 8.3 introduces and describes the experi-
mental setup. Section 8.4 describes the first method to determine the significant
computational parameters and the second method is described in Section 8.5. In
Section 8.6 the trade-offs are analyzed for deciding whether to offload computa-
tional load from a main server using predictions generated with the framework.
The conclusions are presented in Section 8.7.

8.2 Significant Parameters

For estimating the computational load, approximate cost figures for different local
as well as remote operations are needed. The approximate cost of the local read,
insert and update operations will be referred to as R;, I, and U, respectively’.
For remote operations it has been observed that when a number of SQL state-
ments are executed operating on a same table (which fits in main memory), the
first SQL statement that is executed after opening the connection to the MySQL
server is more expensive than subsequent statements operating on the same table.
Therefore, when a sequence of remote operations is performed on the same table

!Note that the delete operation is not explicitly discussed in this chapter, the methods presented
can be easily extended to accommodate additional operations.
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(regardless of type), the first of these operations is marked as a “high” cost oper-
ation and the subsequent operations as “low” cost. High cost remote operations
will be referred to as R, (for read, remote high cost), I,;, (for insert, remote high
cost) and U,,. The low cost remote operations are referred to as R,;, I,; and U,;.
Because the performance model is to be used for a class of applications that typ-
ically open a connection, perform a number of queries and close the connection,
the high cost operations cannot be amortized over subsequent operations.

There is one exception to the above described rules. If two similar operations
on different tables are performed subsequently, then the second of these opera-
tions is to be counted as low cost. For example, if a select on table A is immedi-
ately followed by a select on table B, then the select on table B is counted as low
cost, while according to the general rule it should have been counted as high cost.
This exception is needed because there is empirical evidence that the cost for the
second select is significantly lower than for the first select, even though the select
is performed on a different table.

There is empirical evidence as to why this exception is required. We have
timed the average execution time of the separate queries in the StoreModeratorLog
benchmark in the Remote configuration (see Section 8.3). The results, in microsec-
onds, are in Table 8.1. For reads and inserts, the top 3 and bottom 3 results out
of 28 measurements were eliminated and the average is taken. For update oper-
ations, the top and bottom 2 results are eliminated out of 16 total measurements.
Behind each result, the minimum and maximum measurements (after elimination
of the top and bottom) are given within brackets. We observe from the table that
the cost for the second select are significantly lower than for the first select, even
though the select is performed on a different table.

Average Execution Time
Query Core 2 Core i7
select A 171 [165,177] | 149 [144, 160]
select B 82 [78, 86] 77 175, 79]
update A 99 [98, 100] 9391, 97]
update B | 93 [87,100] 80 [78, 81]
select B 66 [62, 69] 65 [63, 68]
select A 65 [63, 68] 64 [62, 62]
insert C 7971, 89] 72 [66, 79]

Table 8.1: Execution time in microseconds of the separate queries in the StoreMod-
eratorLog benchmark in the Remote configuration.

If the insertion of such exceptions were to be avoided, more parameters have
to be introduced. Apart from distinguishing only high and low cost operations
based on whether the table has been used in a query before in the active connec-
tion, distinctions can also be made in whether it is the very first query in the active
connection, what kind of index is used for the table that is being queried (normal
or primary), etc. An important consequence of having too many parameters in a
model is that all possible predictions can be obtained simply by tweaking with all
parameters. This renders the model useless. To avoid having too many parame-
ters we have deliberately chosen to not take further effects into account.
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Finally, next to the parameters for the approximate cost of the different opera-
tions, there is one parameter for the “base time”. The base time includes the time
required to execute the benchmark code which is submitting the queries, as well
as the time required to setup the connection to the remote database server. This
time is always measured separately for each respective benchmark. So, if pre-
dictions are to be made for a certain benchmark, its base time must be measured
beforehand.

Note that for benchmarks only performing local queries, the connection setup
time is subtracted from the base time. The connection setup time can be deter-
mined by taking the average difference of the page generation time of experiments
only performing local queries that do set up a connection to a remote database
server and of experiments that do not setup a connection. It is also possible to de-
fine the base time as solely the execution time of the benchmark code. However,
given the fact that we had more configurations which include both execution time
and connection setup time, we have chosen to define the base time as the accumu-
lation of these times.

8.3 Experimental Setup

Four components (PHP scripts) from the RUBBoS [74] benchmark will be used
for demonstrating the trade-off analysis. By exploiting the different read/write
characteristics of these four components the significant parameters will be deter-
mined with one of the components and the performance model will be validated
against the remaining three components. The RUBBoS benchmark was developed
by a collaboration between RICE University and INRIA and models a typical bul-
letin board system or news website with possibility to post comments. The PHP-
version of RUBBoS has been used and this code base was translated to C++ code
using the HipHop for PHP project [42]. The C++ code base facilitates the merger
of the application code processing the data and the data retrieval code. This is
done by embedding a generic local cache, based on flat C arrays, in the applica-
tion code. This is of course a gross oversimplification of the actual implementa-
tions of locally cached databases, but it ensures that we do not penalize particular
implementation choices made for these locally cached databases. The end result
is compiled to a native executable.

The resulting executables have been benchmarked on two generic Linux sys-
tems. The first system is based on an Intel Core 2 Quad CPU (Q9450) clocked
at 2.66 GHz with 4 GB of RAM. The software installation consists out of Ubuntu
10.04.3 LTS (64-bit), which comes with MySQL 5.1.41.

The second system is based on an Intel Core i7 CPU 2820QM clocked at 2.30
GHz with 8 GB of RAM. This machine was running Ubuntu 11.10 (64-bit), which
comes with MySQL 5.1.61. Similar configuration files were used as those for the
first system. In order to obtain consistent results the system was configured to dis-
allow the system from entering a sleep mode beyond C1 and the clock frequency
was locked at 2.30 GHz.

To be able to carefully analyze the trade-offs involved in offloading computa-
tional load of the main server for different query mixes, the page generation times
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were collected of web pages generated by performing different query mixes. The
page generation time is defined as the difference between the time the first line of
the (translated) PHP code started execution until the time the last line of the PHP
code is executed. This time does not include any initial startup cost for serving
the request for the web page. The web pages that were selected from RUBBoS are:

o StoreModeratorLog, which performs: two selects, conditionally two updates,
two selects and one insert.

o RegisterUser, which performs: one select, one insert and one select.
o StoreComment, which performs: one select, one insert and one update.
e StoreStory, which performs: one select, one insert.

With the four mentioned components, experiments have been performed in
different configurations. The results of these experiments are used in Sections 8.4
and 8.5 to create and to validate the performance model. The configurations
range from performing all queries “remotely” in the MySQL server to perform-
ing all queries “locally” in a generic data store. Note that while query execution
in MySQL is referred to as “remote” execution, the MySQL server is running on
the same system that performs the local operations. With “remote”, it is specified
that the request has to go out of process and a connection has to be set up with a
MySQL server. The exact configurations are as follows:

e Remote, all queries are executed through MySQL.

e L+R, all queries are executed locally and all write queries (insert, update and
delete) are also executed through MySQL.

o L+C, all queries are executed locally and a connection is setup to the MySQL
server (but no query is performed through MySQL). This result is used to
approximate the overhead of setting up a connection to the MySQL DBMS.

e Local, all queries are only executed locally.

e Base, no query is executed, however a connection is setup to the MySQL
server. This configuration is used to determine the base overhead of a bench-
mark by comparing the result with the result for L+C.

For the configurations in which queries are performed locally, such as L+R and
Local, the generated C++ code was modified by embedding a generic local cache.
This enables a clear estimation of the minimum computational cost of local data-
base operations. Remote updates are considered to be part of the updates which
are performed locally. That is, the local program will not continue until the up-
dated data has been committed in the main DBMS.

Specific implementations of local data stores will differ from this generic im-
plementation. For example, instead of evaluating a query which processes a write
action locally, an implementation can choose to simply forward the query to the
main DBMS and wait for an update to be propagated. Other implementations
of local data stores, such as the Oracle In-Memory Database Cache product [76],
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are capable of both processing the remote updates as part of the local transaction
(synchronously) and processing the remote updates asynchronously outside of
the transaction. The latter is said to yield significant performance benefits. How-
ever, whether synchronous or asynchronous updates should be used, depends on
the application and its requirements.

8.4 Method 1: Benchmarking

We devised a separate benchmark for determining the different approximate com-
putational load costs for both local and remote operations. This benchmark oper-
ates on a single table with a single table column. No primary key was specified
and an index has been created on this single column after creation of the table. To
determine the cost parameters, the execution time was measured of each of the
operations while operating on different table sizes. The table sizes ranged from 1
tuple up to 671088640 (227 + 8 x 2%6) tuples. When the benchmark is performed,
both architectures were configured to only use 2GB of RAM in total. This way
out-of-memory performance can be studied without generating very large data
sets. The different operations have been measured as follows:

e Read A select statement is performed, which in the where clause compares
the value of the table column with a randomly chosen value. Because the
table was populated with unique numbers, this always results in a result
set of equal size (1 tuple). Each experiment performs 5 statements and the
experiment is repeated 30 times. All execution times are averaged.

e Update An update statement is performed, updating a randomly chosen
value to the same value. Because the table was populated with unique num-
bers, similar to read, this always results in an update set of equal size. Each
experiment performs 5 statements and the experiment is repeated 30 times.
All execution times are averaged.

o Insert Simple insert operations are performed. This experiment is repeated 5
times, because there are not many fluctuations due to the absence of random
table access. Each experiment performs 5 insert operations.

For the remote operations the difference between the “high” cost and “low” cost
operations must be measured. This difference was measured by taking the first
value as “high” cost and the last value as “low” cost. The average of high cost and
low cost operations is taken over all performed experiments (which is for read
and update 30, so this gives 30 experiments with 5 query evaluations each). When
randomly generated values are used, the local experiment will pick a random
value for each run of the query while the remote experiment picks a random value
for each experiment (and the value is thus used in 5 statements).

The results of the benchmark runs with remote operations for the Core 2 and
Core i7 systems are shown in the top row of Figure 8.1. All execution times are in
microseconds. Due to the use of an index, the variance in the results for the remote
operations is low. When the same experiment is performed on a table without an
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Figure 8.1: Overview of execution time of remote operations on the top row, local

operations on the bottom row. Overall Performance depicts the measured query
execution time for increasing table size, expressed in number of tuples, up to a

table that no longer fits in main memory. In-memory Performance zooms in on the

range of table sizes that fits in main memory. Straight lines indicate the identified

plateaus.



136 A Trade-Off Analysis For Locally Cached Database Systems

index, a linear relation is indeed observed between the execution time of the query
and the size of the table.

It is important to realize that the experimental setup of this benchmark im-
plies that the high and low cost parameters serve a different purpose for out-of-
memory operations. The difference seen between high and low cost operations
for in-memory table sizes is too small to be noticed in out-of-memory operations.
Because the same random value is used for the set of 5 query runs from which
the high and low cost values are taken, high and low in fact stand for cold cache
and warm cache performance. The use of high and low cost for out-of-memory
operations in a computation depends on whether spatial locality is exploited by
the query mix. Therefore, the exception posed in Section 8.2 does not apply to
out-of-memory operations.

In the bottom row of Figure 8.1 the results for the local operations are shown.
For both local and remote operations it can be clearly seen where the database
table runs out of memory. In the graph for the local operations we observe that
for very small table sizes, the query execution times stay constant. This is likely
caused by the fact that the entire table fits in CPU cache if the table size is suffi-
ciently small.

Because there is a very large gap between the query execution times when the
table fits in system memory and when it does not, different sets of parameters are
determined for different table sizes. In the graphs, two plateaus are identified,
one for in-memory tables and one for out-of-memory tables. The plateaus were
determined by taking the average execution speed of each type of query for a table
size range were performance is similar and are plotted in the graphs as straight
lines.

The two largest tables in the RUBBoS data set consist of 200000 and 500001
tuples. For both architectures, this corresponds with an in-memory table size. We
thus use the parameter set for an in-memory table size. The parameters are shown
in microseconds in Table 8.2.

U, = 8.15 I, =1.82 R, =331

Core2 | Uy, =179.30 I, =149.52 R,), = 224.88
U =7325 I, =5325 R, =85.82
U, = 6.10 I, =123 R, = 2.38

Corei7 | U, =165.89 I, = 140.03 R,, = 196.49

U, = 87.28 I, = 66.95 Ry =98.92

Table 8.2: Determined significant parameters, in microseconds, for in-memory
table sizes.

These parameters will now be validated against the 6 query mixes taken from
the RUBBoS benchmark. From this benchmark, three components were used to
generate the query mixes: RegisterUser (R + I + R), StoreComment (R + 1 + U,
R+ U, I+U)and StoreStory (R+ I, I). For two of the components, the additional
query mixes have been generated by slightly modifying the code, for example to
bypass a query used for authentication. In general, experiments were performed
on a warmed up server and 1 or 2 top and bottom results were eliminated before
averaging the results.
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The parameters are validated by comparing the predictions, which are ob-
tained by filling the parameters into the formulas, to the actual measured page
generation times. Table 8.3 shows the deviation between the predicted and mea-
sured execution time for the RegisterUser, StoreComment and StoreStory bench-
marks. Note that the exec and Base values amongst benchmarks are different, the
one corresponding to the benchmark is used. The exec values are found by correct-
ing the Base values respective to the benchmark for the connection overhead. The
connection overhead is determined by subtracting the measured value for Local
from L+C. In case of StoreComment and StoreStory multiple experiments are avail-
able, the connection overhead is computed for all experiments and the average is
taken.

Core 2 Core i7
Deviation | Deviation
Local configuration

exec+R; + I + R -40.37% -54.10%
exec+R + I + U, -11.53% -6.52%
exec+R; + Up 6.10% 8.33%
exec+R; + I; 8.41% 5.98%

exec+R; + I -35.62% -39.84%

exec+1; -30.87% -30.13%

Remote configuration
Base+R,n + 11 + R -11.38% 2.37%
Base+Rrn + Irn + Uni 12.39% 27.00%

Base+R;n + Urn 34.04% 23.90%
Base+1,., + Ur -11.47% 10.82%

Base+R,n + Irn, 23.23% 20.87%

Base+1,1 -2.22% 24.16%

L+R configuration

Base+R; + I, +1; + R -7.29% 9.75%
Base+R; + Irn + I + Up + U, -16.06% 3.66%
Base+R; + U,n + U 10.84% 1.90%

Base+I,.n + 1) + Uy + Up -11.31% 12.70%
Base+R; + Irn + I -10.71% 12.59%
Base+1,n + I; -9.01% 10.35%

Table 8.3: Deviation of the predicted results, using the parameters determined
with the first approximation method, and actual results.

Observe that for both systems, the predictions for RegisterUser and StoreStory
are off by at least 30%. The query mixes all have in common that they contain an
insert. It is likely that the value determined for the I; parameter by the separate
benchmark is too small. This could be caused by the fact that more time is spent
updating the several indexes on these tables, compared to the single index that is
updated in the separate benchmark.

Table 8.3 also presents the results for the validation of the remote operation
parameters under the heading Remote. Four out of six of the Core 2 results are
within a 12.5% margin. The Core i7 results show a different picture, all predictions
are higher than the actual execution time, with the majority of the predictions
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being at least 20% too high. A possible explanation for this overestimate is that
the values of the parameters are too high in relation to the sizes of the tables in
the used data set. One way to improve the accuracy of these parameters is to
define plateaus to be lines with a slight slope instead of a straight line. Instead of
a parameter value, we will obtain parameter functions linear to the table size.
The results for the validation of performing all queries locally and performing
all write queries remotely as well are shown in Table 8.3 under the heading L+R. It
was observed that the predictions for the Core 2 system are for the majority within
a 11% margin. For the Core i7 system, the results appear to be slightly better with
half of the predictions in a 10% margin and all predictions within a 12.7% margin.

8.5 Method 2: In vivo

With the method described in the previous section, execution time is measured
using tables containing a single column. What is measured is in fact kernel perfor-
mance. A drawback of this method is that kernel performance is used to predict
application performance. To alleviate this drawback, a second, in vivo, method
is introduced where an existing benchmark is used to determine the significant
parameters as opposed to using a separate benchmark. The selected benchmark
should be modified such that it can be run with different query mixes. Ideally,
the selected benchmark already performs each of the read, insert and update op-
erations such that the different query mixes can be created by simply disabling
subsets of the queries in the benchmark. To obtain results for both local and re-
mote operations, the benchmark is run in both the L+C and Remote configurations.

From the results, the parameters are computed by setting up a linear system
of equations of the query mixes and the resulting execution times (subtracted by
the measured Base time for this benchmark, such that the execution time of only
the queries remains). The rank of the system of equations should be equal to the
number of unknowns and the number of equations in the system must be larger
than the rank to straighten out perturbations arising from the measured execution
times. When the number of specified equations is larger than the matrix’ rank, the
system can be solved using the least squares method. To determine the local cost
parameters, a system of 5 different equations is set up and solved. The resulting 3
values for the system’s variables are taken as parameters.

The remote cost parameters consist out of low cost and high cost parameters.
To find these parameters a system of 8 different equations is used. Of these 8
equations, 3 must reflect query mixes that determine the high cost parameters,
i.e. these are query mixes that only perform 1 read, 1 update or 1 insert. The
selected benchmark can be easily modified to only allow for execution of one of
these queries and to disable the other queries. The inclusion of these 3 query mixes
counters the tendency of the least squares method to move the values of the low
and high cost parameters towards each other. The high cost parameters are taken
from the 3 specific query mixes. The low cost parameters are obtained from the
solution of the system of equations.

We will demonstrate this method using the RUBBoS benchmark. The Store-
ModeratorLog component of the benchmark was modified to perform the neces-
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sary different query mixes to be able to determine all parameters. The addi-
tional query mixes required for determining the remote parameters have only
been performed with the Remote configurations. Because the RUBBoS data set in
use is categorized as small, the result will be a parameter set for in-memory table
sizes. With each query mix 12 experiments have been performed on a warmed-up
server, eliminating the top 2 and bottom 2 results and averaging the remaining
results. Using these results the linear systems of equations are set up to determine
the approximate cost for each of the operations. The cost of remote parameters is
approximated using the Remote results, while the L+C results are used to approx-
imate the local cost. From these results, the Base has been subtracted before the
numbers are entered into the system of equations. This is done to remove the base
time for the script execution as well as the time required to set up a connection to
the MySQL server. The resulting approximations are listed in Table 8.4.

U =16 I, =12.75 R, = 9.4938
Core2 | Uy, =181.0 I, =141.0  R., = 192.0

U, =88.3477 1I,, =35.8591 R, =66.7731

U, = 1.925 T, = 9.875 R, = 5.9906
Corei7 | Uy, = 154.1 L =109.7  Ryp,=162.9

Un = 86.4873 I, =22.3849 R, = 67.7115

Table 8.4: Significant parameters as determined using the second approximation
method.

Similar to the discussion in Section 8.4, these obtained parameters will be val-
idated by considering the deviation between the predicted and measured execu-
tion time. The results are shown in Table 8.5. For both platforms, one real outlier
is observed. The other results are all within acceptable margin from the measured
result. The Core i7 results are within a smaller margin from the measured results
compared to the Core 2 results. Overall, the predictions for both platforms are
clearly better than the predictions by the first method, where four out of six pre-
dictions were off by at least 30%. This is most likely caused by a small I; parame-
ter. Note, that the I; parameter value found by the second method is substantially
greater than the one found by the first method. For example, for the Core 2 system
the first method found a value of 1.82 while the second method found a value of
12.75.

Under the Remote heading in Table 8.5, the validation of the predictions for the
remote operations produced by the second method are shown. When the results
for the Core i7 system are compared to the results for the first method (Table 8.3),
the consistent overestimates are no longer present. Instead, the majority of the
results is within a margin of approximately 12.5%. The Core 2 results show a
similar trend with the majority of the results within a 13.25% margin, and two
real outliers. Compared to the first method, the results for the first and second
method are on the same footing for the Core 2 system.

Finally, the predictions for performing all queries locally and performing the
write queries remotely are shown in Table 8.5 under the L+R heading. The pre-
dictions for the Core 2 system are quite good, with all predictions being within
a 13.3% margin from the actual measured result and 4 out of 6 within 8.25%.
This is better than the predictions that resulted from the first method. The sec-
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Core 2 Core i7
Deviation | Deviation
Local configuration

exec+R; + 11 + R; -9.19% -31.34%
exec+R; + I, + U, -13.76% 7.38%
exec+R; + U; 16.75% 7.17%
exec+R; + I; 29.00% 15.10%
exec+R; + I -11.69% -4.83%
exec+1; -13.19% 6.56%

Remote configuration
Base+R.n + L1 + Ry -23.50% -20.40%

Base+R,n + Irn + Unt 7.36% 1.81%
Base+R,n + Urn, 26.33% 18.73%
Base+1,n + Uy -9.83% -12.60%
Base+R,n + In 13.25% -6.96%
Base+1,, -5.10% -8.87%

L+R configuration

Base+R; + Irn + 11 + Ry -2.70% 13.71%
Base+R; + Irp + I + U + Uy -10.84% -15.77%
Base+R; + U,n + U, 13.32% 6.83%
Base+1I., + 1, + U + U; -7.23% -9.52%
Base+R; + 1w + I -8.04% 12.84%
Base+1,, + I; -8.22% -15.98%

Table 8.5: Deviation of the predicted results, using the parameters determined
with the second approximation method, and actual results.

ond method, however, yields slightly worse results for the Core i7 system. All
results are within a 16% and 2 results are within a 9.5% margin.

8.6 Analysis of Trade Offs

In the preceding sections, the significant computational parameters were derived
and a performance model was determined. Using these results, it will be shown
how an analysis of the trade-offs for deciding whether to offload computational
load from a main server by local caching can be performed.

For predictions for remote operations and combined local and remote opera-
tions, the second method, in vivo, has been shown to produce slightly better results
than the first method. In order to carry out the analysis, the predictions used do
not have to be accurate within a few percent. We deem the predictions produced
with the in vivo method to be accurate enough, because with a 16% margin the
prediction method is more than able to show trends when offloading the compu-
tational load is beneficial. Additionally, if is also considered that the measured
results used for validation, and for parameter computation in case of the in vivo
method, have a 4% to 5% error margin on average, a 16% error for predictions is
quite good.
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As an example, for different query mixes the speedup has been computed of
fully remote execution of all queries versus local execution of reads and local as
well as remote execution of write actions. Each kind of operation is considered
to be performed on a separate table, i.e. all reads are performed on one table, all
inserts on another and all updates on yet another. The first of each operation is
a high cost one and the subsequent of each operation is a low cost one. Each
prediction includes the measured time required for setting up a connection to the
MySQL server. For the connection time the average of the connection overheads
measured in the benchmarks was used.

Figure 8.2 shows plots for a single update and a varying amount of reads and
inserts, a single insert and a varying amount of updates and reads and a single
read and a varying amount of inserts and updates. Plots are shown for the pa-
rameters found for the Core 2 system in the top row and the parameters found for
the Core i7 system at the bottom. For our analysis we are interested in the areas
with the largest speedup, because these areas indicate where offloading of com-
putational load can have most benefits. Also of interest are areas with a speedup
below 1.0, these areas indicate a slowdown meaning that a local cache is detriment
for this particular workload.

Considering the leftmost plots of Figure 8.2, where the number of reads and
inserts are varied, the effect of an increasing number of reads can be clearly seen
when the number of inserts is kept small: the achieved speedup increases. If the
number of reads is kept at zero, one or two and the number of inserts is increased,
a slowdown is predicted. Notice the area between the y-axis and the 1.0 contour
line, where the values are below 1.0. Because for these cases almost all operations
are also performed remotely, there is no advantage to local caching for such query
mixes. The plots in the middle column, depicting varying numbers of reads and
updates, are similar.

From the same plots it can be observed for the read-insert case that when 10
inserts are performed with the Core 2 system, approximately 18 reads are needed
to achieve a performance improvement of a factor of 2. For the Core i7 system ap-
proximately 13 reads are required against 10 inserts to have a factor of 2 speedup.
Less reads are required compared to the Core 2, because the speedup of the read
operations is significantly higher for the Core i7 system. When the derived pa-
rameters for the “low cost” remote read are considered, it can be seen that the
speedup of going from a remote read to a local read is 11.3 for the Core i7 system
and 7.0 for the Core 2 system.

A different situation is observed in the plots in the rightmost column of Fig-
ure 8.2, depicting varying numbers of updates and inserts and a single read. The
speedup is only predicted to be above a factor 1.5 when a single insert or update
is performed. Otherwise a speedup between 1.0 and 1.5 is seen up to 15 inserts,
20 updates, or a mix thereof. From this can be deduced that with only a single
read that is converted from a remote read (“high” cost, because only a single read
is done) to a local read, 15 inserts, 20 updates or a mix of these can be performed
while a speedup, albeit meager, is obtained. If more inserts and updates are per-
formed, a slowdown is seen. For the Core i7 system the area for which a small
speedup is obtained is larger, again due to the larger speedup that was found
for the conversion from a remote read to a local read. In this case, conversion
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from a remote “high” cost read to a local read should be considered, resulting in
a speedup of 20.2 for the Core 2 system and 27.2 for the Core i7 system.

The small area at the bottom left corner in which a speedup can be obtained
deserves further investigation. Figure 8.3 zooms in on this area, only plotting up
to 5 inserts and updates on the axes. A plot is shown with 15 reads (plots with
different amounts of reads have been omitted due to space restrictions). From the
plot can be concluded that when the number of reads is around 15, it is always
possible to obtain a factor of 2 speedup when the mix contains 5 inserts, 5 updates
or a mix thereof. For the same case, but with 20 reads, a speedup of approximately
2.5 for the Core 2 system and close to 3.0 for the Core i7 system is predicted. When
2 reads and updates are considered instead, it is concluded from the plot that a
speedup of 4.0 cannot be obtained for the Core 2, but with the Core i7 system this
is possible. This conclusion is in line with the left two columns of plots seen in
Figure 8.2. In these plots, a speedup of 4.0 is not seen for the Core 2 system and
only seen in a small region for the Core i7.

8.7 Conclusions

In this chapter a framework was introduced to support a trade-off analysis to help
decide whether introduction of a local cache of a database reduces the total com-
putational load. This framework uses two methods to obtain the values of the sig-
nificant computational parameters. The first method uses a separate benchmark
to obtain these parameters. We observed that the parameter values for local op-
erations approximated by this method were too low, while the parameter values
for remote operations were too high. We suspect that the accuracy of this method
can be improved by moving towards linear functions of table size instead of the
single values which are now used as plateaus. In the second method, an existing
benchmark was adapted to perform different query mixes. This in vivo method
produced better results. With the majority of the predicted results for both plat-
forms being within a 16% margin of the actual measured result, we deemed this
method to be accurate enough for our purposes of analyzing whether or not of-
floading computational load from the main server is beneficial, even though the
accuracy of the predictions can be improved.

Using this model with the in vivo approximation method, the characteristics of
offloading computational load of a main database server has been studied using a
local cache on two reference architectures. When computational load is offloaded
from the main server, all read actions are performed on the local cache. In this
case, all write actions must be forwarded to the main DBMS. The model shows
that, within this setup, the speedup going from a remote read to a local read is
a very dominant parameter and that an overall speedup of a certain query mix
can only be obtained when there are sufficient read actions present. Even though
accuracy of the predictions can be improved, we argue that performance mod-
els, like those proposed in this chapter, are well-suited to support an analysis to
determine whether offloading computational load is beneficial.
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Figure 8.2: Contour plots showing the speedup of remote operation versus lo-
cal operation and forwarding of updates for different query mixes and different
platforms.
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Core 2: 15R + xU + vyl

#inserts

#updates

Core i7: 15R + xU + vyl

#inserts

#updates

Figure 8.3: Contour plots showing speedup of remote operation versus local op-
eration and forwarding of updates for different query mixes performing 15 reads.
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CHAPTER 9

Transformations for Automatic Data
Structure Reassembly

0.1 Introduction

The first part of this thesis discussed how the forelem framework arose from the
unification of code optimization in seemingly distinct fields of programming: trans-
actional (database) applications and other (imperative) applications, and how this
framework unifies these distinct fields of programming by expressing queries in
an intermediate representation as a series of tuple accesses governed by simple
loop control. Subsequently, this intermediate representation is optimized by tra-
ditional optimizing compiler techniques, accomplishing results similar to query
optimization. In Chapter 7 the forelem framework was used to perform vertical
integration of database applications, where queries in a database application are
replaced with code segments that evaluate these queries using direct access to a lo-
cal data store. Subsequently, the application and data access codes are optimized
together.

In the second part of this thesis, the foundation of the forelem framework will
be generalized and the use of the forelem framework for different code optimiza-
tion problems will be discussed. Because the forelem framework was initially en-
visioned for database applications, its main features rely on viewing data as being
stored as (multi)sets of tuples. The access of data through a tuple space is thus
the main characteristic of the forelem framework. As a consequence, we propose
problems from different application domains to be (automatically) expressed in
terms of tuples, which enables the forelem framework to be used for optimization
of these problems. For example, sparse matrix computations are characterized by
the fact that next to the values, the column index and row index play an essential
role. It is this relation, which can be naturally expressed as a tuple.

Next to accessing data as tuples, the forelem framework allows the execution
order of tuple computations (transactions) to be out of order. This feature together
with the possibility of presenting data access without having to specify the exact
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data storage enables the forelem framework to automatically generate storage for-
mats. Because of this out of order execution, application of compiler optimiza-
tions has to be carefully handled. As standard compiler optimizations rely on
data dependence analysis and loop-carried dependencies, and these loop-carried
dependencies are non-existing in forelem loop nests, the conditions under which
the transformations can be applied have to be reconsidered, as has been discussed
in Chapter 3.

In this chapter, the forelem framework is extended to define compiler transfor-
mations that operate on three levels: the tuple level, the materialized loop index
level and the concretized data access level. The forelem tuple level provides an
elegant representation method for expressing different data access codes such as
database queries and sparse matrix algebra. Within the materialized loop index
level, index sets on the tuple space that specify access patterns are being repre-
sented as array accesses. This is done without specifying how the tuples or arrays
are actually stored. By giving the compiler transformation framework access to
this second level of data access, the compiler can address the order of data ac-
cess while the order of execution is not specified. Finally, within the concretized
data access level, loops are expressed using regular (integer) iteration bounds. At
this level, standard compiler optimizations can be applied taking into account the
different semantics for data dependencies.

This chapter is organized as follows: in Section 9.2 the forelem intermediate rep-
resentation is reiterated and generalized such that it applies to irregular computa-
tions as well. Section 9.3 demonstrates how Sparse BLAS routines are expressed
in the forelem intermediate representation. Section 9.4 introduces the orthogonal-
ization transformation, that can be used to impose a certain order on the iteration
of the data. This is a preparatory step to materialization, discussed in Section 9.5.
In this section, the process of transforming a loop to the materialized loop index
level is defined and several transformations applicable at the materialized loop
index level are described. Section 9.6 describes a number of transformations that
can be applied on materialized forelem loops, influencing the data storage format
that is generated. Section 9.7 outlines how loops are converted to the concretized
data access level. In Section 9.8, the results of initial experiments performed with
an important kernel, sparse matrix times £ vector multiplication, are presented.
Section 9.9 concludes this chapter.

9.2 The Forelem Intermediate Representation

In this section, the basics of the forelem intermediate representation as introduced
in Chapter 3 will be briefly reiterated and be generalized such that it applies to
irregular computations as well. As has been discussed, the intermediate repre-
sentation is centered around the forelem loop construct. Each forelem loop iterates
over a specific array of structures. The subscripts of this array that are accessed
are fetched from an “index set” that is associated with the array.

The arrays of structures that are iterated by forelem loops are modeled after
database tables which are defined as multisets. The structure reflects the format
of a database tuple. The intermediate representation operates at the tuple level, at
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which is it not determined how the tuples are stored. For instance, the tuples are
stored either row-wise or column-wise. In the latter case, a structure of arrays is
iterated. In an array of structures A a tuple at index i is accessed with A[i] and a
specific field field1 in that tuple is accessed with A[i].fieldl.

An index set is a set containing subscripts i € N into an array. Since each array
subscript is typically processed once per iteration of the array, these subscripts
are stored in a regular set. Index sets are named after the array they refer to,
prefixed with “p”. For example, pA is the index set of all subscripts into an array
A:Vs € A: 31 € pA: A[i] = s. Random access of an index set by subscript is not
possible, instead all accesses are done using the € operator.

The body of a forelem loop typically performs an action on the tuple subscripted
by the current value of the loop iterator. When used in the context of database
codes, the loop body often outputs tuples to a temporary or result set. Tempo-
rary sets are generally named 71, %, ..., 7, and result sets %1, %>, ..., %Zy. In the
context of, for example, sparse matrix codes a computation is typically performed
also involving data from dense matrices or vectors. Results could be stored in a
dense array.

Considering an array A with fields field1 and field2, a forelem loop that iterates
all entries of A, outputting the value of field1 of each row, is written as follows:

forelem (i; i € pA)
A = X U (A[i].fieldl)

Although the forelem loop appears to be very similar to a foreach loop that exists
in many common programming languages, forelem loops distinguish themselves
with the use of the index sets. Every forelem loop iterates a single array, using
subscripts from an index set that is associated with that array. Note that, the order
of the subscripts in the index set is undefined. The only thing that is defined is
which subscripts are to be iterated, but not in which order. As such, forelem loops
do not have explicit looping structures and the exact semantics of the iteration of
an array are determined in the course of the optimization process. Index sets are
the essence of forelem loop nests as they encapsulate iteration and simplify the loop
control so that aggressive compiler optimizations can be successfully applied.

Using conditions on index sets it is possible to narrow down the range of the
array that is iterated. For example, the index set denoted by pA.field2[k] con-
tains only those subscripts into A for which field2 has value k. This is expressed
mathematically as follows:

pA.field2[k] = {i|i € pAAA[i].field2 =k}

So, to only iterate entries of A in which the value of field2 is 10, the following forelem
loop is used:

forelem (i; i € pA.field2[10])
X% = % U (A[i].fieldl)

Note, that pA. field2[10] is not expressed more explicitly as the exact execution
of the loop will be determined during the optimization process. This index set
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forelem (i; i € pQO)
{
int sum = O;
forelem (j; j € pA.row[C[i].index])
forelem (k; k € pB.index[A[j].col])
sum += B[k].value * A[j].value;
C[i].value = sum;

}

Figure 9.1: Matrix-Vector Multiplication with sparse vectors.

might be explicitly generated (at compile- or run-time), combined with other in-
dex sets, moved or eliminated. Alternatively, during the optimization process it
may be decided to create a variant of array A only containing the tuples to be
iterated.

More sophisticated index sets are possible, such as having conditions on mul-
tiple fields, in this case on field1 and field2:

pA.(fieldl,field2)[(ki,ko)] =
{i|1i € pAAA[i]l.fieldl =Xk AA[i].field2 =ky}

Instead of a constant value, the values k,, can also be references to values from
another array. To use such a reference, the array, subscript into the array and
field name must be specified, e.g.: A[i].field. To select values field1l > 10 an
interval is used: (10, c0).

9.3 Expressing Sparse BLAS routines in Forelem

In this section, we will demonstrate how Sparse BLAS routines are expressed in
the forelem intermediate representation. Sparse structures are considered to be sets
of tuples. A sparse matrix is represented using tuples of the form (row, column,
value). Sparse vectors can be represented using (index, value). When con-
sider tables to only contain a single tuple for every unique (row, column) pair or
index.

As a first routine, we consider the Matrix-Vector Multiplication C' = AB. Fig-
ure 9.1 shows this multiplication where C and B are considered to be sparse vec-
tors and are thus represented as tables'. Note the repeated use of index sets to
define which tuples should be processed within an iteration. Figure 9.2 shows the
forelem representation for the same operation, but with C' and B are dense vectors.

Other BLAS routines can be similarly expressed. In Figure 9.3 an implemen-
tation of Triangular Solve Tx = B using forelem loops to access a matrix T is

IFor the interested reader, the SQL specification of this representation is: select distinct
A2.row, (select sum(B.value * A.value) from A, B where B.index = A.col and A.row =
A2.row) from A A2;
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for (i = 1; 1 <= N; i++)
{
int sum = O;
forelem (j; j € pA.row[i])
sum += B[A[j].col].value * A[j].value;
C[i] = sum;

}

Figure 9.2: Matrix-Vector Multiplication with dense vectors.

for (i = N; i >=1; i--)
{
forelem (j; j € pT.(col,row)[(i, i)]1)
x[i] = b[i] / T[j].value
forelem (j; j € pT.col[i])
b[T[j].row] = b[T[j].row] - T[j].value * x[T[j].col]

Figure 9.3: An implementation of Triangular Solve Tx = b written in the forelem
intermediate representation.

presented. As an additional example, Figure 9.4 shows an implementation of LU
Factorization. Note that every loop over the same sparse matrix A defines a dif-
ferent set of matrix elements to be iterated.

9.4 Orthogonalization

In forelem loops, iteration of a table of tuples is controlled by the index set. No
order is defined on the index set, which has as consequence that the iteration or-
der of the table is undefined. In this section, the orthogonalization transformation is
introduced, which makes it possible to impose a certain order in which the table
is iterated. This is achieved by partitioning the accesses to the array based on the
values of one or more table fields. The orthogonalization transformation is used
to control the order in which data is accessed as a preparatory step to Materializa-
tion, which is discussed in the next section.
Let A be a table with fieldl,field?2, ..., fieldn. Consider the loop:

forelem (i; i € pA)
. Ali]

In this loop, the tuples of A can be iterated in any order. As an example, assume
an iteration order is to be imposed on A such that tuples A are accessed in blocks
with equal values for fieldl. The orthogonalization transformation is carried out
to achieve this, resulting in the following loop nest:
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for (i = 1; 1 <= N; i++)
{
p = diag(i)
forelem (j; j € pA.(col,row)[(i, (i, o))
{
A[j].value = A[j].value / p
forelem (1; 1 € pA.(row,col)[(i, (i, o0))])
{
fillin = True
forelem (k; k € pA.(col,row)[(A[1].col, A[j].row)])
{
A[k].value = A[k].value - A[j].value * A[1l].value
fillin = False
}
if (fillin)
A=A U (A[k].row, A[k].col, - A[j].value * A[1l].value)

Figure 9.4: An implementation of LU Factorization written in the forelem interme-
diate representation.

forelem (ii; ii € A.fieldl)
forelem (i; i € pA.fieldl[ii])
. A[i]

A.fieldl in the outer loop denotes all possible values of fieldl that occur in A.
So, the iteration space of the outer loop consists out of every value of fieldl in A.

The original loop iterates all tuples of A. The transformed loop nest will for
every value of fieldl, iterate all tuples of A for which fieldl equals this value.
As a result, the transformed loop also iterates all tuples of A. Application of the
orthogonalization transformation is not limited to a single field. An example of
orthogonalization on two fields is:

forelem (ii; ii € A.fieldl)
forelem (jj; jj € A.field2)
forelem (i; i € pA.(fieldl,field2)[(ii,jjdD)
. Ali]

The outer loops that are introduced by the orthogonalization transformation
iterate all values of a given table field. If it is possible to express this range of
values as a subset of the natural numbers, i.e. A.fieldl C N, the encapsulation
transformation can be applied, which replaces the loop over all table field values
with a loop over a subset of the natural numbers. With the encapsulation trans-
formation, a loop
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forelem (ii; ii € A.fieldl)
where A.fieldl = {1,2,6,7,8,10}, is replaced with:
forelem (ii; ii € Njg)

with Nyg = [1..10]. In the encapsulated loop, the values 3,4, 5,9 will be iterated,
but note that no tuple will exist where fieldl equals any of these values. As a
result, the inner loop is not executed for these values, maintaining the iteration
space of the original loop.

9.5 Materialization

In this section, the materialization transformation is described, which materializes
the tuples iterated by a forelem loop using the accompanying index set to an array
in which the data is represented in consecutive order and is accessed with integer
subscripts. Although this can be seen as a simple normalization operation, it is an
important enabling step that allows the compiler to address and modify the order
of data access to these arrays. In fact, by materialization the execution order of an
inner loop is fixed. (In the case of nested loops, orthogonalization fixes the order
of the outermost loop). After two forms of materialization have been introduced,
a number of transformations targeting the order in which data access takes place
will be described.

A distinction is made between loop-independent and loop-dependent materi-
alization. In loop-independent materialization, conditions in the index set of the
loop to be materialized are not dependent on one of the outer loops. Materializa-
tion will result in a one-dimensional array. In loop-dependent materialization, the
resulting array will get an additional dimension for each dependent loop. Both
cases of materialization will now be discussed in turn.

9.5.1 Loop Independent Materialization

We first consider loop-independent materialization. The following loop iterates
all tuples of A whose field equals a value X:

forelem (i; i € pA.field[X])
. Ali]

To be able to determine which tuples of A to access, the index set is used. This is,
in fact, a indirection level. This indirection can be removed by materializing the
index into the tuple space as an array PA which only contains the entries of A that
should be visited by this loop. This results in:

forelem (i; i € Nx)
PA[i]

with Nx = [1, |PA|]. The array PA only contains elements from A for which the con-
dition A[i].field == X holds. The compiler is now enabled to address the order
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in which the data in PA is accessed, while the execution order of the loop is not
specified. For example, using the transformations that can be applied on the ma-
terialization form, which are described below, the compiler can determine to put
entries in PA in a specific order. The loop control is selected at the concretization
stage, where the compiler can ensure the loop control for the loop will iterate the
items of PA consecutively. For the general definition of loop-independent materi-
alization, consider a loop iterating a sparse structure A:

forelem (i; i € pA)
A[i]

which is transformed to:

forelem (i; i € Nx)
PA[i]

with Nx = [0, |PA|). This transformation materializes the sparse structure A to an
one-dimensional array PA.

The transformation can also be applied if the loop to be materialized is nested
in another forelem loop and the posed condition in the index set of the loop to be
materialized is independent of the outer loop. Consider, for example, where the
outer loop could be the result of the application of the encapsulation transforma-
tion:

forelem (i; i € N,)
forelem (j; j € pA.field[X])
. A[j] ... B[i]

Materialization of the inner loop will enable the compiler to address the order
of data access of A together with the other array or tuple space references. Ma-
terialization of the inner loop proceeds as explained above and the outer loop is
untouched:

forelem (i; i € N,)
forelem (j; j € Nx)
. PA[j] ... B[i]

with Nx = [1, |PA|] and PA only containing items that satisfy the condition.

9.5.2 Loop Dependent Materialization

If a loop to be materialized is contained in a loop nest and the conditions of its
index set have a dependency on another loop, then the above described loop-
independent materialization cannot be applied. Instead, loop-dependent materi-
alization must be used, which is described in this section. Because loop-dependent
materialization will result in higher-dimensional arrays, this results in more op-
portunities for the compiler to address and modify the order of data access to
these arrays. In general, a loop-dependent materialization has the form:
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forelem (i; i € N,)

forelem (n; n € N;)
forelem (p; p € pA.(field;, ...,field,D[(,...,n)])
. Alp]

The index set iterated in the inner loop has a dependency on one or more of
the outer loops. The iteration of A is materialized to an iteration of a multi-
dimensional array PA, in which each loop-dependent condition is represented as
an additional dimension in PA. The array PA only contains these items that are
iterated by the original index set on A:

forelem (i; i € N,)

forelem (n; n € N;)
forelem (p; p € Nx)
. PA[i]...[n][p]

with N« = [0, [PA[i]...[n]|). After this transformation, PA only contains entries that
satisfy the conditions of the original index set. The dimensions of the materialized
array correspond with the original conditions and thus with the loops on which
the condition depended. Loop transformations, such as Loop Interchange, will
thus have an effect on the order in which the data of PA is accessed. By taking this
into account, the compiler can determine an efficient order in which the store the
elements of PA, which has at this point not been set in stone.

To illustrate the loop-dependent materialization, consider a simple nested loop:

forelem (i; i € N,)
forelem (j; j € pA.row[i])
. A[j]

The index set of the inner loop, pA.row[i] is dependent on iterator i of the outer
loop. As a consequence, the array PA will obtain a dimension for this iterator i.
The result of the materialization transformation is as follows:

forelem (i; i € N,)
forelem (j; j € Nx)
. PA[i][]]

with Nx = [0, |PA[i]|). Because i was determining which row of A was iterated,
in the transformed loop 1i still controls the order in which the rows of the original
matrix A are accessed in the materialization PA.

In case the index set has dependencies on two loops, a three-dimensional ar-
ray is generated. Naturally, this has more degrees of freedom for optimization
than the two-dimensional materialization. The application of the transformation
is similar as in doubly-nested loops. In this example, the index set has dependen-
cies on two different outer loops:



156 Transformations for Automatic Data Structure Reassembly

forelem (i; i € N,)
forelem (j; j € N,,)
forelem (k; k € pA.(row,col)[(i,j)])
A[k].value = ...

This results in a three-dimensional array PA:

forelem (i; i € N,)
forelem (j; j € N,,)
forelem (k; k € Nx)
PA[i][j][k].value = ...

with Nx = [0, [PA[1][3]]).

9.5.3 Materialization Combined with Other Transformations

We will now demonstrate how the combination of materialization with other trans-
formations within the forelem framework leads to the automatic generation of dif-
ferent data storage formats for a particular problem. In this section, Matrix-Vector
Multiplication is considered with a sparse matrix A and dense vectors B and C:

forelem (i; i € N,,)
C[i] = 0;

forelem (i; i € N,;)
forelem (j; j € pA.row[i])
C[i] += B[A[j].col]l * A[j].value;

In the remainder of this example we will focus on the second loop and consider
that the first loop initializing C is left untouched. On the inner loop of this second
loop nest, the materialization transformation will be applied. Because the argu-
ment to the index set of the inner loop depends on the outer loop, loop-dependent
materialization will be performed. This will result in a two-dimensional array PA:

forelem (i; i € N,,)
forelem (j; j € Nx)
C[i] += B[PA[i][j].col] * PA[i][j].value;

Note that the arrays PA[i] will for every i only contain these elements of A that
satisfied A[j].row == i. As a next step, the loops are interchanged using the
Loop Interchange transformation. This is possible because no loop-carried depen-
dencies are present as the forelem loops do not guarantee a specific iteration order:

forelem (j; j € Nx)
forelem (i; i € N,,)
C[i] += B[PA[il[jl.col] * PA[i][j].value;

The iterator j still controls which entry within the current row (indicated by i) is
visited. These entries may not necessarily have the same column index, as entries
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which are zero are not present in PA. So, this loop nest will for each column num-
ber (outer loop) iterate all rows. This is the essence of the jagged diagonal storage
format, which in consecutive rows stores all first nonzero column entries of all
rows, all second nonzero column entries of all rows, and so on. The correspond-
ing column indices are stored in a separate array. Important is that this particular
storage format has been deduced without any predefinition of this format in the
framework. As will be described in Section 9.7, different variants of this jagged
diagonal storage format can be concretized.

9.6 Transformations on the Materialized Form

After a forelem loop has been put in a materialized form, the data to be processed
has been put in an array in consecutive order and is accessed with integer sub-
scripts. At this stage, the compiler can modify the exact order of data access to
these arrays and how this data is stored. In this section a number of transforma-
tions are described that affect the storage of the data processed by a loop nest.

9.6.1 Horizontal Iteration Space Reduction

The aim of Horizontal Iteration Space Reduction is to reduce unused fields from
a table’s schema. In fact, it is possible to perform this transformation before the
materialization stage.

Formally, the transformation is defined as follows. Let T be a table with fields
fieldl, field2, field3, field4, and Ca list of condition fields C C (fieldl field2)
and V a list of values. Consider the loop nest:

forelem (k; k € pT.C[V])
X = % U T[k].fieldl + T[k].field2

We define a new table T C T with fields fieldl, field2 and replace the use of T
with T’ in the loop.

9.6.2 Structure splitting

Before materialization tables are represented as multisets of tuples, accessible with
integer subscripts. By default, the array that is the result of the materialization
operation is an array of tuples or structures. In some cases, it is more efficient to
use a structure of arrays, i.e. the structures are split [94, 26]. Within the forelem
framework this is defined as the structure splitting transformation. Consider the
materialized loop nest:

forelem (i; i € N,;)
forelem (k; k € Nx)
. PA[i]1[k].value ...

Structure splitting will modify the data storage of the array and convert the data
accesses in the loop to:
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forelem (i; i € N,,)
forelem (k; k € Nx)
. PA.value[i][k]

9.6.3 Nx materialization

Materialized loops use the Nx index set as the set of integer subscripts to access
the materialized array. How exactly these integer subscripts are stored is initially
encapsulated within Nx and can be made explicit using N+ materialization. Con-
sider the following loop, the result of a materialization to PA:

forelem (i; i € N,,.)
forelem (k; k € Nx)
. PA[i][k]

As a prerequisite for the final code generation stage, Nx must be made explicit.
This can be achieved by converting Nx to a set PA_len. There are different means
in which this set can be defined. The first is to define the set as follows:

PA_len[q] = max(len(PA[ql))

in which case all PA_len[q] values are the same and a single set containing in-
tegers up to the maximum value can be stored for this loop nest. Padding is in-
serted in the array PA for the values PA[i][k] with k >= PA_len[i]. The sec-
ond way to create this array is to avoid inserting padding in PA. In this case
PA_len[q] = len(PA[i]).

Regardless of which implementation is chosen, the resulting loop after N ma-
terialization is:

forelem (i; i € N,,))
forelem (k; k € PA_len[i])
. PA[i][k]

Note that in this loop the iteration order is still undefined. Only N« = [0, Nx) has
been replaced with PA_len[i] = [0,PA_len[i]). In a subsequent concretization step
the iteration order will be determined. For example, the loop:

forelem (k; k € PA_len[i])
is concretized to:

for (k = 0; k < PA_len[i]; k++)

9.6.4 Nx sorting

In case of loop-dependent materialization, N* encapsulates the sets of integer sub-
scripts used for iteration of the inner loop. These sets are ordered irrespective of
their cardinality. If the loop is to be parallelized, it is beneficial if the work is di-
vided into blocks with evenly sized values for PA_len (after Nx materialization).
One way to achieve this is by imposing an order on the iteration of Nx.

The aim of Nx sorting is to find an order of the iterator values i such that the
value of Nx decreases with subsequent iterations of the outer loop on i:
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forelem (i; i € N,;,)
forelem (k; k € Nx)
. PA[i][k]

Consider that Nx = [0, 1len(PA[i])). The goal is to iterate through N,,,, such that
len(PA[i]) decreases. Let perm(N,,) store the permutation of N,,, for which this
holds. Then, the loop is transformed to:

forelem (i; i € perm(N,,))
forelem (k; k € Nx)
. PA[i][k]

Note that this will affect the order of the data PA, which will be put in the corre-
sponding sorted order at the concretization stage.

9.6.5 Dimensionality Reduction

Loop-dependent materialization results in a multi-dimensional array by default.
If this array is concretized as a multi-dimensional array, padding may have to be
inserted for the uneven lengths of the rows. It is possible to avoid the introduction
of this padding by storing the rows back to back. This reduces the dimensionality
of the materialized array. Consider the loop nest:

forelem (i; i € N,;)
for (k = 0; k < PA_len[i]; k++)
. PA[i][k]

to reduce the dimensionality of the materialized array PA by one, this is trans-
formed into:

forelem (i; i € N,;)
for (k = PAptr[i]; k < PAptr[i+1]; k++)
. PA[Kk]

Based on the PA_len array, a new PA_ptr array is introduced, which keeps track
of the start and end of each row in PA. Note that the order of the iteration domain
[PA_ptr[i],PA_ptr[i + 1]) does not have to be defined and could be in any order.

9.7 Concretization

Concretization is a simple one-to-one mapping from a given materialized loop to a
C for loop that can be compiled by a regular C compiler. So, a forelem loop iterating
a subset of integers is transformed into a regular for loop. This transformation
selects a specific iteration order for the subset of integers. Essentially, at this point
the data storage format is generated that has been chosen by the optimization
process. Using the different transformations that can applied on a materialized
loop, described in the preceding section, many different storage formats can be
generated for a single loop nest.

To describe the basic concretization transformation, consider the following
loop as an example, which is the result of a materialization transformation:
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forelem (i; i € Nx)
. PC[1i]

As a first step, Nx materialization is applied, resulting in:

forelem (i; i € PA_len)
. PC[1i]

then the loop can be subsequently concretized to:

for (i = 0; i < PA_len; i++)
. PC[i]

At this point, a data storage format has been chosen by the optimization pro-
cess. For this particular, single-dimensional, case, storage as an array of consec-
utive values is the most likely candidate. Note that, this storage format is the
result of just merely a straightforward mapping of the materialized index set into
a (multi)dimensional data structure. This cannot be compared to substituting co-
ordinate storage by jagged diagonal storage, or the immediate selection of such a
pre-defined format.

To better illustrate the possibilities within the concretization process, we will
continue the Sparse Matrix-Vector Multiplication example from Section 9.5.3:

forelem (j; j € Nx)
forelem (i; i € N,,)
C[i] += B[PA[il[j]l.col]l * PA[i][j].value;

In this example the data access to PA is to be concretized. As a first step, the loop
with iterator variable i is concretized:

forelem (j; j € Nx)
for (i = 1; i <= m; i++)
C[i] += B[PA[i]l[j].col] * PA[i][j].value;

Given that iterator variable j indicates which column number to process, the con-
cretized inner loop will now iterate all rows to process in consecutive order. The
outer loop can be concretized to iterate the column numbers in consecutive order.
To do this, first Nx materialization is applied. If Nx is converted to a set PA_len
such that PA_len[q] = max(len(PA[q])), all values in the set are the same, so a
further conversion is possible to a single constant value, say k. The outer loop can
then be concretized to result in:

for (j = 1; j <= k; j++)
for (i = 1; i <=m; i++)
C[i] += B[PA[i]l[j].col] * PA[i][j].value;

These steps have led to a certain storage scheme for PA. This storage scheme con-
sists of a two dimensional array which has a row for each column number n,
containing all nonzero column entries at position n in the different rows. Unused
entries are padded with zero, so that every row has the same length. This enables
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that a generic two dimensional array can be used as storage scheme. If code is
generated for the C language, which uses row-major order for array storage, then
the rows containing the column values and indices must be stored one after the
other. The resulting array should be accessed with PA[column] [row], which is in
fact different from the order of the subscripts in the current forelem representation.
S0, as a result the following C code will be produced for this storage format:

for (j = 1; j <= k; j++)
for (i = 1; 1 <= m; i++)
C[i] += B[PA[j][i].col] * PA[j]l[i].value;

where k will be a constant indicating the maximum number of non zero columns
in a row in the resulting array PA.

Different transformations could have been applied in between the materializa-
tion and concretization steps to influence the data storage format that is generated
in the end. For example, the row field that is part of the original tuples is not used
in the code fragment. Using Horizontal Iteration Space Reduction, such unused
fields are eliminated. It is also possible to store the col and value fields in sep-
arate arrays. To accomplish this, the structure splitting transformation must be
performed before concretization. The concretized result in C code will be:

for (j = 1; j <= k; j++)
for (i = 1; 1 <= m; i++)
C[i] += B[PAcol[j][i]] * PAvalue[j]l[i];

Note that this generated storage scheme is described in the literature as simplified
Jagged Diagonal Storage, or ITPACK storage [12]. So, through the described trans-
formations, orthogonalization, materialization and concretization, many different
loops and accompanying data storage formats can be generated that achieve the
same result. Figure 9.5 illustrates how such data formats are generated, starting
from an unordered set of tuples. Established data storage formats, such as IT-
PACK and Jagged Diagonal Storage format [12], simply follow from the applica-
tion of the transformations described in this chapter. For example, the transforma-
tion sequence drawn in black in this figure is the sequence leading to the ITPACK
storage. The N+ materialization step is considered to be part of the concretization
step in this figure. Alternatively, when the structure splitting transformation in the
figure is followed by dimensionality reduction, Compressed Row Storage (CSR)
format is generated. Similarly, a transformation sequence that continues from or-
thogonalization on column can result in Compressed Column Storage (CCS) for-
mat.

Let us consider a different application of the transformations. If the alternative
form of Nx materialization is applied, a set PA_len is generated such that no zeros
have to be inserted into the data structure as padding. Through the application of
dimensionality reduction, the rows stored in memory, that thus contain column
entries, will be stored back to back in a vector. As a consequence, an additional
data structure is added to record the start of each row. When Nx sorting is applied,
rows with similar number of entries are placed close to each other, for example
by reordering the rows of the matrix by sorting on the number of non-zeros per
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Figure 9.5: An illustration of the application of orthogonalization, materialization
and concretization on sparse matrix tuples in (row | col | value) format. The
result of this concretization is commonly known as the ITPACK format (assuming
the arrays are stored in column-major order). The arrows displayed in gray depict
a non-exhaustive set of other possibilities.
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row. This can be helpful as a form of load balancing in the case of parallelization.
Although this transformation changes the order in which the rows are processed,
this does not introduce a problem because before the concretization the iteration of
the rows is specified as a forelem loop which does not impose a particular execution
order. Note that this concretization leads to the Jagged Diagonal Storage format
described in the literature [12]. This storage format follows from the application
of the generic transformations, contrary to be devised by hand which was the only
way to arrive this storage format up till now.

9.8 Initial Experimental Results

In this section, initial experimental results are presented of the performance of
codes and data storage formats optimized with the forelem framework. It is demon-
strated that these optimized codes are comparable in performance to hand-opti-
mized sparse routines using the CUDA framework. As an example, the sparse
Matrix-Vector Multiplication will be considered, with a sparse matrix A and dense
vectors B and C. From the materialization of this loop that has been described
in the previous section, three different concretizations have been generated for
which CUDA code has been generated?:

e Simple JDS: in this case, every row contains the nonzero column entries of a
single row in consecutive order. This is thus the result of a concretization if
no Loop Interchange was performed during the materialization.

o Simple DS 2: in this case, every row contains the nonzero column entries at
position n of every row. This is the format generated in that previous section
that is similar to ITPACK.

e JDS: Jagged Diagonal Storage format, as described in the previous section.

These generated implementations have been compared with Matrix-Vector Mul-
tiplication as implemented in the CUSP [14] library for different storage formats.
The CUSP library provides several routines for performing sparse linear algebra
on CUDA, which have been optimized for several, pre-defined, storage formats.
The formats implemented in CUSP that we have benchmarked are: Coordinate
format (COO), Compressed Sparse Row format (CSR) and a Hybrid (HYB) for-
mat. The Hybrid format employs a combination of the ELL format and COO
format and is described in detail in [14].

For the benchmark, 15 matrices have been selected from The University of
Florida Sparse Matrix Collection [28], also taking into account previous studies
on sparse matrix times vector multiplication see [14, 98]. The selected matrices
are listed in Table 9.1 and represent different problem classes.

The experiments have been performed on a workstation with a GeForce GTX
480 CPU with 1535MB of RAM. The multiplication operation has been repeated
1000 times. Figure 9.6 reports the execution time in milliseconds of 1000 Matrix-
Vector Multiplications for the different matrices and implementations.

2In the next chapter, the search space of all possible concretizations will be explored and character-
ized
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formats.
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Matrix name Dimensions Nonzeros
erdos971 472 x 472 2628
mcfe 765 x 765 24382
roadnet-PA 1090920 x 1090920 | 3083796
c8_matll 4562 x 5761 2462970
cant 62451 x 62451 4007383
consph 83334 x 83334 6010480
cop20k_A 121192 x 121192 2624331
mac_econ_fwd500 | 206500 x 206500 1273389
pdb1HYS 36417 x 36417 4344765
cagel2 130228 x 130228 2032536
lhr71 70304 x 70304 1494006
epb3 84617 x 84617 463625
torso3 259156 x 259156 4429042
stomach 213360 x 213360 3021648
shipsecl 140874 x 140874 3568176

Table 9.1: Details of the matrices that have been used in the benchmark.

The results indicate that the performance of the forelem generated kernels us-
ing automatically generated storage formats is in many cases comparable to the
hand-optimized CUSP routines. Due to the varying characteristics of the different
matrices, there is no all-round best storage format. For the majority of the matrices
however, the Simple JDS 2 and JDS implementations clearly perform better than
the Simple JDS implementation.

9.9 Conclusions

In this chapter, we have described the extension of the existing forelem framework
with materialization techniques. These techniques enable the compiler to address
the order of data access in a loop, while the order of execution of the loop is not
specified. Through different applications of the materialization and concretization
transformations, different data storage formats can be automatically generated.

As an application of these techniques, we demonstrated how Sparse BLAS rou-
tines can be expressed in the forelem representation and how the forelem framework
automatically generates data storage formats and implementations of the data ac-
cess codes. Initial experimental results demonstrated the effectiveness of this ap-
proach. Three forelem-generated CUDA implementations of sparse matrix-vector
multiplication were compared to three hand-optimized CUDA implementations
using three different, pre-defined, storage formats. The results show that the im-
plementations generated with the forelem framework show performance that is
comparable to hand-optimized code.

The Jagged Diagonal, ITPACK and ELLPACK data storage formats have been
exemplified in quite some papers in the past. The main reason is that sparse matrix
times vector multiplication is the main kernel for many large-scale simulations. In
this chapter, we have seen that these storage schemes naturally arise from a basic
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compiler transformation as Loop Interchange combined with index set material-
ization and therefore can be automatically derived.



CHAPTER 10

Search Space Characterization

10.1 Introduction

Sparse matrix computations are an important class of compute intensive codes
and are extensively used. Not surprisingly, many techniques have been devel-
oped to optimize sparse matrix computations. An important technique is the se-
lection of a smart data structure for storing the sparse matrix corresponding to the
computation to be carried out. However, wrapping the sparse matrix data in a
specific data structure obscures the compiler optimization process and thus forms
a major obstacle for further effective optimization and code generation.

As a consequence, many HPC applications rely on the use of sparse algebra
run-time libraries to provide efficient, hand-optimized, implementations of com-
mon sparse matrix operations. However, given the complexity of today’s CPU
and GPU architectures, predetermined implementations of sparse algebra rou-
tines cannot get maximum performance out of the architecture. This is also the
case for novel implementations based on expression templates to optimize perfor-
mance, such as Blaze [43].

Besides the continuing advances in the target architectures, the parametrized
nature of supplied sparse algebra routines and the fact that these routines are
implemented for a limited number of data layouts also inhibit maximum perfor-
mance from being achieved. For example, sparse matrix times matrix multiplica-
tion can be performed for a right-hand matrix with different numbers of columns
k. Commonly, sparse algebra libraries provide a single routine for this multiplica-
tion that is parametrized for k. However, there is no single implementation of this
computation that is a best fit for all possible parameters. Similarly, no sparse stor-
age format exists that is optimal for different computations, different parameters
for a computation or different sparse matrices. In short, predefined implementa-
tions based on predefined data layouts can never achieve optimal performance.
Furthermore, the way these routines are implemented, by abstracting, or obscur-
ing, the matrix data into a specific data structure, hampers optimizing compilers
from producing more efficient codes.
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Therefore, instead of maintaining predetermined implementations of sparse
algebra routines in run-time libraries, we argue for a transition towards automatic
instantiation of sparse algebra routines. In this chapter, we introduce computation-
driven reassembly of sparse data structures, which is a key component of this
automatic routine instantiation process. By combining sparse data structure re-
assembly with the code instantiation process, the construction of optimal data
structures is made an integral part of the code optimization process. With compu-
tation-driven reassembly, an optimal sparse matrix storage format is derived from
the actual sparse matrix computation, contrary to selecting a predefined storage
format as is done in existing methods. In this approach, code and data layout are
optimized hand in hand.

The automatic instantiation of sparse algebra routines and data layout reassem-
bly is implemented as a series of code transformations in the forelem framework [83].
Within the forelem framework, all data is accessed through a tuple space. Data to
be processed is specified as (multi)sets of tuples. In this case, the tuples arise
from “disassembling” the original sparse matrix structure. The computation is
expressed in terms of loops processing the tuples. Different transformations are
implemented in the framework, ranging from standard compiler optimizations,
such as Loop Interchange [4], Loop Fusion [52], Scalar Expansion and Def-Use
analysis [2, 50], to transformations that address the order in which tuples are ex-
ecuted and stored. Among these latter transformations is Materialization, which
is an important, enabling, transformation for computation-driven data structure
reassembly.

Because the optimization process is made responsible for automatic generation
of routines, the search space of this process is significantly enlarged. We demon-
strate that more than 130 principal forms! of sparse matrix times k vector(s) and
sparse matrix times matrix multiplication can be instantiated, with over 25 dif-
ferent reassemblies of the original sparse matrix data structure. So, essentially, 25
different data structures are being generated. This exemplifies the strength of our ap-
proach when compared to sparse algebra libraries, that on average implement 4,
or less, pre-defined sparse data storage formats. When combined with paramet-
ric compiler optimizations, such as loop unrolling and loop blocking, the search
space is enlarged by two to three orders of magnitude. A characterization of the
possible instantiation search space shows that there are many different optimal in-
stantiations. As a consequence, it is very hard, if not impossible, to predict which
instantiation would be optimal for a given matrix, computation, computation pa-
rameters and architecture instance.

In addition to the search through automatically instantiated sparse algebra
routines, a search through the parametric optimization search space, set up by
transformations such as loop blocking and loop unrolling, can be done. This
parametrized search space is complementary to the search space set up by the
transformations leading up to differently structured computations and storage
formats. We demonstrate that it is important to consider this second search space,
as, for a single matrix, an instantiation that is optimal for unroll level a, is not
necessarily the optimal instantiation for an optimal unroll level b. We show that

! Actually, 200 principal forms were generated, but for the experimentation 70 of these were deleted
because they were too inefficient and therefore caused unacceptably long experimentation times.
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with an exhaustive search through these combined search spaces, an automati-
cally instantiated routine can be found that mostly outperforms the implementa-
tions from existing sparse algebra libraries or at least is equivalent in performance.
This chapter is organized as follows. Section 10.2 describes how different rou-
tines are instantiated and how data structure reassembly is carried out. In Sec-
tion 10.3, an initial exploration is done of the search space of the different instanti-
ations of sparse matrix times k vector(s) multiplication. Section 10.4 quantifies the
irregularity of this search space using rank correlations. Section 10.5 discusses the
irregularity observed in two other sparse matrix kernels. Section 10.6 presents the
results of the comparison of our approach to a number of existing sparse algebra
libraries. Section 10.7 presents our conclusions and plans for future work.

10.2 Reassembling Data Structures

This section describes the process and techniques that are used to instantiate effi-
cient sparse algebra routines and reassemble the original sparse matrix data stor-
age automatically. Using these techniques, many different forms of a sparse al-
gebra routine can be generated, along with different reassemblies of the original
sparse data storage.

As these techniques are implemented in the forelem framework [83], we first
briefly introduce this framework. The principal syntactic construct in the forelem
framework is the forelem loop. A forelem loop iterates (a subset of) a multiset of
tuples and performs an operation on these tuples. As an example, consider a
multiset T containing tuples with fields fieldl and field2: (fieldl, field2).
Then, the following loop sums the values of fieldl of tuples of which field2
equals the value 9:

sum = 0;
forelem (i; i € pT.field2[9])
sum += T[i].fieldl;

Iteration of the forelem loop is controlled with the “index set” pT. field2[9], which
in this case contains all subscripts into T for tuples of which field2 equals 9. The
index set specifies which tuples will be visited, but does not specify the order in
which these tuples are visited, which is undefined.

For the sparse algebra kernels to be expressed as a forelem loop, the sparse data
structures are stored as sets of tuples and the dense data structures remain dense.
A sparse matrix A can be represented as a set of tuples of the form (row, column,
value). Based on this, we can express a loop computing the sparse matrix vector
product ¢ = Ab as follows:

forelem (m; m € pA)
C[A[m] .row] = C[A[m].row] + B[A[m].col] * A[m].value

The expression of the computation that is performed by a sparse algebra routine
in terms of tuples is the first step in the code instantiation process. The tuples
arise from “disassembling” the original sparse matrix data structure. All non-zero
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matrix elements are extracted from this original structure and are represented as
tuples, one tuple per non-zero element.

On this initial specification of the sparse computation, various transformations
can be applied that may modify the order in which the tuples are accessed and
thus may influence how the tuples are reorganized. Since in forelem loops no ex-
plicit order is imposed on the iteration, tuples may be visited in any order. How-
ever, through a transformation known as Orthogonalization [83], a certain order
can be imposed on the iteration based on the value of the fields of the tuples. A
possible result of Orthogonalization is the following loop nest, which processes
the above computation on a row-by-row basis:

for (i; i e N,)
forelem (m; m € pA.row[i])
C[i] = C[i] + B[A[m].col]l * A[m].value

where N,, is the number of rows in matrix A and the index set pA.row[i] makes
the forelem loop only iterate tuples in A with the value of field row equal to i.

To move towards a concrete implementation of this computation from this
point, the Materialization transformation performs an important enabling role.
The purpose of Materialization is to materialize the tuples iterated by a forelem
loop using the accompanying index set to an array in which the data is repre-
sented in consecutive order and is accessed with integer subscripts. So, at this
point tuples are physically reorganized into a particular order, based on the com-
putation. Although this transformation can be seen as a simple normalization
operation, it is an important enabling step that allows the compiler to address and
modify the order of data access to these arrays. In fact, by materialization the
execution order of an inner loop is fixed.

Note that these two transformations cause the original sparse data structure
to be reassembled on a row-by-row basis. A compiler performing these transfor-
mations can thus exert control on the order in which data is stored. Up till now,
optimizing compilers could not exert this amount of control on data storage order.
Techniques have been described in the literature that do modify data structures,
such as structure splitting [23], array regrouping [103] and field reordering [23],
but these techniques are limited to rearranging data stored in arrays of structures
in order to improve cache usage. Through Materialization much more invasive
transformations of the data structure are enabled, such as translation from an un-
ordered set of tuples to separate sequences of column indices and values stored in
the order of ascending row number. See also the previous chapter.

Finally, after all transformations have been carried out, an implementation in
C code is generated from the tuple program and a reassembled copy of the sparse
data structure is instantiated based on the organization of tuples selected by the
optimization process.

10.3 The Transformation Search Space

Using the approach described in the previous section, many different instantia-
tions of the same sparse matrix routine can be generated. Different instantiations
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can be distinguished because different transformations were performed before
and/or after Materialization or transformations were performed in a different or-
der. This section presents the results of the initial exploration of the search space
of instantiations of sparse matrix times k vectors multiplication.

The full transformation tree of sparse matrix times k vector multiplication is
shown in Figure 10.1. The starting point of the transformation space is labeled
with 1 and shown in the center of the figure. This is the minimal representation
of the computation as a forelem loop. From this point, there are several different
branches of transformations as shown in the picture, resulting in many different
variants, or principal forms. Whenever the label of a node is prefixed with “tmp”,
the node represents a stage for which no executable is generated. In all other cases,
the executables (variants) are labeled from 1 to 130. Next to these 130 different
implementations, also 25 different data structures are generated 2, ranging from
simple coordinate storage to compressed row or column schemes, with or with-
out zero-padded rows or columns, and jagged diagonal like schemes wherein the
rows of the matrix have been permuted or not. For all these data structures, also
corresponding initialization procedures are automatically generated.

An initial characterization of the search space of principal forms can be ob-
tained by looking at execution times®. For a given matrix, we can measure the
execution time for different variants and different values of k. The results of these
experiments are visualized in order of ascending execution time. The visualiza-
tion is limited to display the 200 best-performing experiments. Two of such plots
are shown in Figure 10.2. The dark gray star denotes the fastest experiment and
the light gray circle the 200th instance in the order. The ordered sequence of the
experiments is shown by the arrows, which fade out with increasing execution
time.

In our discussion of these two plots, we use the fact that variants from the
same subtrees in Figure 10.1 have numbers that are near each other. So, in the plot
a longer arrow is a jump to another subtree, generated from another orthogonal-
ization, etc. Both plots show a very different structure. We do notice, however,
that the fastest variant is in both cases from the same subtree, with the dark gray
star being located around 115. Subsequent fastest variants are different for both
matrices, as the arrows progress in a vastly different manner. Another artifact that
becomes clear is that for the Erdos971 matrix, variants from more different sub-
trees are within the 200 best results. For example, the variants in the region [0, 10]
are frequently hit for the Erdos971 matrix, but less so for the OPF_10000 matrix.

Further plots can be created for other matrices, sparse algebra kernels and ar-
chitectures. However, the two plots that are shown already present a clear differ-
ence in best performing variants for two matrices. One of the main questions is
whether a ranking of the variants on execution time for one configuration of ma-
trix, kernel and parameters can be used to predict the ranking for another matrix,
kernel and parameter configuration. In other words, whether two such rankings

?In this chapter, we did not consider loop blocking. If loop blocking would have been taken into
account, a multitude of different combinations of these data structures would have been generated.

3The execution times were measured on an Intel Xeon 5150 CPU at 2.66 Ghz, with 16GB RAM,
running Ubuntu Linux 10.04.4. To remove fluctuation from the results, the computation performed by
each variant is repeated 10 times. The compiler that was used is gcc 4.4. Several matrices have been
used for the experiments and these were obtained from the University of Florida Matrix Collection [28].
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bear any resemblance to one another. Instead of evaluating this graphically, we
will quantify the differences in ranking in the next section, using the technique of
Rank Correlations from the field of statistics.

10.4 Rank Correlations

As could be seen in the previous section, already the initial search space consist-
ing of the principal forms is rather erratic. Although the plots give a good first
impression of the transformation search space, these are not sufficient to come to a
satisfactory quantification of the irregularity. In this section, we will use the Rank
Correlation Coefficient as a measure for the relationship between two rankings.

Let a ranking be a permutation of a subset of n natural numbers: {i | i € NAi €
[1,n]}. Given two rankings with the same n, a Rank Correlation Coefficient indi-
cates the similarity of these two rankings. The coefficient takes on a value in the
interval [—1, —1], where 1 indicates the two rankings are equal and —1 indicates
the rankings are each others reverse. Different methods to compute a Rank Cor-
relation Coefficient exist. In this chapter, we make use of Kendall’s 7 [49], which
is easy to compute. Computation of the coefficient is carried out by scoring the
ranking. The score is computed by determining whether each pair of numbers in
the ranking sequence is in the same order compared to the other ranking. For ev-
ery in-order pair 1 is added to the score, for every out-of-order pair 1 is deducted
from the score. The final score is divided by the maximum possible score (all pairs
are in-order) to obtain the rank correlation coefficient.

The goal is to quantify the relationship of the ranking of variants for two ex-
periment instances, for which the matrix, ¥ and architecture are specified. The
quantification is performed for the n best performing variants. To be able to com-
pute the Rank Correlation Coefficient, a numerical ranking in [1,n] is necessary
for every variant in both experiments, so for the union of the variants found in
both experiment instances. However, it can be the case that a variant from the n
best performing variants for matrix A is not part of the best performing variants
for matrix B. For such variants, a ranking is not specified for matrix B. This prob-
lem is resolved by assigning such variants a ranking of n + 1. In summary, best
performing variants for a matrix A, which are not contained in the intersection of
best performing variants of matrix A and B, are assigned a ranking of n + 1 for
matrix B.

In Figure 10.3 the correlations of the rankings of the 10 best variants of exper-
iment instances of the same matrix, but different &, are quantified. The line y = =
indicates the symmetric axis in this picture. From this figure it is observed that
the correlation coefficient ranges from —0.4 to 0.5. That is, the majority of points
are closer to 0, indicating a very weak correspondence between the rankings.

Another perspective is shown in Figure 10.4, where n best variants is varied
and the rank correlation is shown between a number of vectors on the y axis and
50 vectors at the top, 10 vectors at the bottom. The plot quantifies the relationship
between a ranking for 50 (or 10) vector multiplications and y vector multiplica-
tions. Note that the results for 50 versus 50 (and 10 vs. 10) have been set to 0 for
clarity. For the OPF_10000, a clear relationship is seen between the ranking for 50
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Figure 10.3: Quantification of the ranking correlation between a number of vectors
« and y multiplied with the Erdos971 matrix, considering the 10 best variants. Note
that the values for x = y are set to 0 and the symmetry of the figure is highlighted
by the line y = z.

vectors and 100 vectors. However, for other values of k this relationship is weak.
In the Erdos971 plot, there is a strong correlation with & = 5 if the number of best
variants considered is increased. A similar, but not as strong, trend is found for
k = 50. Interesting is the clear reverse correlation area in the top-left corner of
the plot. The 10 best variants at £ = 10 are not included in the best variants for
k = 500.

The quantification presented in this section shows that the transformation
search space is indeed erratic. The lack of relationship between the rankings of
different instances of a matrix, and a number k£ makes it very hard, if not impos-
sible, to predict which variant would be optimal for a given instance. As a con-
sequence, optimization must be carried out by performing an exhaustive search
through this transformation search space.

Note that the transformation search space that has been described up till now
does not contain any parametric compiler optimizations such as loop blocking and
loop unrolling. Rather, the transformations that have been described affect the
order in which computation is performed and the manner in which the input data
is organized. In fact, application of parametric compiler optimizations is to be
done next to the transformations that have been described so far. The exploitation
of this parametric optimization search space is the second stage in our approach.
We will show in Section 10.6 that by considering the transformation search space
combined with a parametrized search space just containing Loop Unrolling, we
are able to generate codes that achieve better results than existing library imple-
mentations of sparse algebra routines.
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Figure 10.4: Quantification of the ranking correlation between a base number of
vectors (50 at the top, 10 at the bottom) with increasing number of best variants
being considered. Note that the values for y equal to base are set to 0 for clarity.
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10.5 Irregularity Of Other Kernels

In the preceding sections, we have focused on the sparse matrix times k vectors
kernel. We have also conducted experiments with two other sparse matrix ker-
nels: sparse matrix matrix multiplication and lower triangular solve for unit ma-
trices. The routines for sparse matrix times k vector multiplication and sparse
matrix matrix multiplication have been instantiated with a similar transformation
process of the code and data storage format. Because of this, the transformation
search space is similar to Figure 10.1. However, for the triangular solve kernel,
the transformation space is decreased from 130 to 76 variants, as can be seen in
the transformation tree depicted in Figure 10.5.
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Figure 10.5: The full transformation tree of triangular solve.

Also in the case of sparse matrix matrix multiplication and triangular solve,
the ordering of best-performing variants is highly irregular, as can be seen in Fig-
ure 10.6. These plots can be compared with the plot at the top of Figure 10.2,
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which concerns the same matrix. This comparison shows that for the same ma-
trix benchmarked on the same architecture, different kernels show vastly different
best-performing instantiations.

10.6 Comparison To Existing Sparse Computation
Libraries

In this section, a comparison is presented of the performance of sparse matrix
codes generated with our framework to existing sparse algebra libraries. A de-
tailed comparison is given for the sparse matrix times vector multiplication ker-
nel with & = 1, because this routine is present in every sparse algebra library.
The codes that have been generated by our framework follow from an exhaus-
tive search through the described transformation search space, combined with a
search through different possible Loop Unroll parameters.

The comparison comprises the following sparse algebra libraries: Blaze 1.2 [43],
with the matrix stored in both row-major and column-major order; MTL4 [40],
with the matrix stored in both row-major and column-major order; SPARSE1.3 [59];
SparseLib++ 1.7 [32], with the matrix stored in coordinate storage format, com-
pressed row storage format and compressed column storage format.

The experiments have been performed on two architectures. The first architec-
ture has already been introduced in this chapter and consists of an Intel Xeon 5150
CPU at 2.66 Ghz, with 16GB RAM, running Ubuntu Linux 10.04.4. The second ar-
chitecture is a machine that consists of an Intel Xeon E5-2650 CPU at 2.00 GHz,
with 64 GB RAM, running CentOS 5.0. The compiler used in both cases is gcc 4.4.
These architectures will be referred to as the Xeon 5150 and Xeon E5 architectures
respectively. Twenty matrices have been surveyed, taken from the University of
Florida Matrix Collection [28]. To remove fluctuation from the results, the compu-
tation performed by each variant or library is repeated 10 times.

The results for the Xeon 5150 architecture are shown in Figure 10.7. In this
figure, the result of the smaller matrices and the results of SPARSE1.3 have been
omitted for the sake of legibility. The matrices along the x-axis have been ordered
in increasing execution time for the code generated with our framework. The
execution time is arranged along the y-axis. From the figure can be observed that
although the row-major order variant of the different libraries is competitive in
performance, the code generated using our approach is always faster.

Figure 10.8 shows the speedup in execution time of the code generated by our
approach over the best-performing implementation from the existing sparse alge-
bra libraries. For the majority of instances, our approach realizes at least a factor
1.1 speedup in performance. In some cases, such as G2 _circuit and Raj1 for the
Xeon 5150, and 0r2010 for the Xeon E5, the code generated using our framework
is significantly faster, achieving speedups up to a factor of 1.9.

10.6.1 Search Space Reduction for Loop Unroll Optimization

In this section, we presented the results attained by our approach that followed
from an exhaustive search of the transformation search space and the parametrized
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Figure 10.6: The plots show the 200 best-performing experiment instances for the
sparse matrix matrix multiplication (above) and triangular solve (below) kernels.
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Figure 10.7: Comparison in execution time of automatically instantiated sparse
matrix times vector computation and the different sparse algebra libraries on the

Xeon 5150 architecture.
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optimization search space. So far, only Loop Unrolling has been considered in the
parametrized search. When other optimizations are included in the search, such
as loop blocking, the size of the search space will grow substantially. Therefore, it
is important to find methods to reduce the parametrized search space.

An often used technique for finding good parameter settings for parametric
optimizations is Iterative Compilation [54, 34]. Note that Iterative Compilation is
constrained to what we have described as the parametrized search space. In our
case, techniques are needed for finding instances that are optimal with respect to
the transformation search space and parametrized search space. For example, a
variant that is not optimal within the transformation search space, may become
the optimal variant after searching through the parametrized search space. The
technique must be able to deal with these “cross-overs”.

Figure 10.9 displays the relationship between the percentage of performance
an instance is distanced from the optimum for an unroll level of 1 and the global
optimum, considering all unroll levels. The execution time of the instances on
the Xeon E5 architecture are shown. The lines represent different matrices. In the
figure can be seen that variants at an unroll level of 1 must be searched up to about
28% distanced from the optimal performance found for an unroll level of 1, in
order to find the global optimum. For the majority of matrices surveyed, however,
the global optimum will be found by exploring the variants with a performance
within 18% of the optimum for an unroll level of 1. This is a good indicator that it
is not necessary to search the full parametrized search space to be able to eliminate
the problem of cross-overs.

The extent of the parametrized search space that must be searched in order
to find a global optimum is shown in Figure 10.10. Because the variants for an
unroll level of 1 must always be searched, the extent of the search space that must
be explored is at least 12.5%. For all matrices surveyed, it is only necessary to
explore up to 19.0% of the parametrized search space in order to find a global
optimum. This is a significant reduction compared to an exhaustive exploration
of the search space, indicating the feasibility of pruning the parametrized search
space in our approach.

10.6.2 Other Kernels

We also conducted the above described experiments on two other kernels: sparse
matrix times matrix multiplication (with a 100-column dense matrix) and lower
triangular solve with unit matrices. These experiments have been conducted on
the Xeon 5150 architecture. The comparison with sparse matrix matrix multipli-
cation from existing sparse algebra libraries has only been carried out with Blaze
and MTL4, because SPARSE1.3 and SparseLib++ did not contain API for this com-
putation. The SPMM column of Table 10.1, reports the speedups attained by the
generated routine over the fastest implementation from an existing library. In all
cases, a speedup of at least 1.17 is achieved, which is a decent improvement. For
several matrices, the generated routine achieves an impressive speedup beyond a
factor of 2 up to a speedup of a factor of 2.37.

An implementation of triangular solve is only found in the MTL4 and
SparseLib++ libraries. The results are shown in the TrSv column of Table 10.1.
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SPMM | TiSv SPMM | TiSv
Erdos971 2.28 2.11 pdb1HYS 1.36 1.04
mcfe 1.62 1.09 0r2010 1.36 1.45
blckhole 2.31 1.01 para-4 1.42 0.98
c-62 1.44 1.12 G2 _circuit 1.54 1.47
OPF_10000 1.59 117 144 117 1.01
Ihr71 1.45 1.12 cop20k_A 1.42 1.09
stomach 1.59 1.18 consph 1.32 0.97
Orsreg_1 2.37 0.98 Rajl 1.46 1.35
shipsecl 1.50 0.99 3dtube 1.49 1.04
shipsecb 1.48 1.03 net150 1.35 1.05

Table 10.1: Speedup in execution time of the sparse matrix matrix multiplication
and triangular solve kernels generated using our approach compared to the best-
performing implementation from the existing sparse algebra libraries on the Xeon
5150 architecture.

In the majority of cases, a speedup is realized by the automatically generated
routines, as big as a factor of 1.59 to 2.21 for a number of cases. For four cases
however, a slight decrease in performance is seen. The decrease is so slight that
the performance of the automatically generated routine is on par with the fastest
library routine found.

In the previous subsection it was shown that it is only necessary to search up
to 19% of the parametrized search space to find a global optimum. Similar results
are found for the two kernels discussed in this subsection: up to 17% of the search
space needs to be searched for sparse matrix matrix multiplication and up to 16%
for triangular solve. So, also for other kernels it is feasible to significantly prune
the search space.

10.7 Conclusions

In this chapter, we have described our approach for the automatic instantiation
of efficient sparse algebra routines. This instantiation is combined with the re-
assembly of the original sparse matrix data structure into a form that is better
aligned with the computation performed by the instantiated code. The transfor-
mations that lead to these different instantiations set up a large transformation
search space. We have shown this search space to be very erratic and as a conse-
quence no manageable subset of best-performing implementations can be chosen
tobe collected in a library. Rather, optimization must be carried out by performing
an exhaustive search through this transformation search space.

We have shown that in addition to this transformation search space, para-
metric optimizations, such as loop unrolling and loop blocking, must be consid-
ered. These parametric optimizations set up a parametrized search space, fur-
ther expanding the size of the search space as a whole. The size of the resulting
search space is two orders of magnitude larger than search spaces derived in It-
erative Compilation. Evidence has been presented that the search through the
parametrized search space can be pruned to 20%, while a global optimum is still
found.
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Finally, we have shown that when this search space is properly exploited this
results in variants of the computation that are faster than the implementations
found in existing sparse algebra libraries, or at least equivalent in performance.
Based on this, we argue that in order to get the maximum performance out of
an architecture one cannot count on existing libraries, but an exhaustive search
through a series of automatically instantiated routines must be performed.
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CHAPTER 11

Handling Data Dependencies In The
Forelem Framework

11.1 Introduction

Irregular computations are characterized by non-strided, unpredictable memory
access. This defeats hardware features such as caching based on spatial locality
and memory pre-fetching. Commonly, these irregular accesses are caused by the
use of pointer-linked data structures or, even worse, a data structure that is unsuit-
able for the computation that is carried out. Static compiler analysis breaks down
on pointer-linked data structures, as the order in which pointer-linked entities are
accessed cannot be determined at the time of compilation. As the compiler can-
not analyze the access pattern, it is refrained from applying effective techniques
to optimize memory access or to parallelize the program. Because compilers can
in most cases not exert extensive control on how data is stored, barely any oppor-
tunity is left to improve on this situation.

To overcome these problems, a different programming and optimization
paradigm is needed. In this paradigm, irregular computations should be ex-
pressed in a different manner, breaking down the used data structures and cap-
turing the essence of the computation. This will expose more information to the
compiler about the order in which data is visited and dependencies between data
that were encapsulated in data structures. Furthermore, this paradigm must en-
able the compiler to restructure the storage of data, next to restructuring the com-
putation. As a result, the number of opportunities to effectively optimize and
parallelize the computation will be greatly increased.

In this chapter, the forelem framework is extended so that data dependencies
can be handled properly allowing irregular computations to be fully optimized
and parallelized. Irregular computations can be naturally described within the
forelem framework as can be seen in the previous chapters. Any data structure
that is used by the computation is reduced to tuples. Dependencies that are en-
capsulated in loop nests are made explicit as dependencies between tuples. Com-



188 Handling Data Dependencies In The Forelem Framework

putations to be carried out are expressed as the iteration of a (sub)set of tuples
and an operation based on these tuples. The major benefit of expressing computa-
tion on the elementary tuple level, rather than on the (complicated) data structure
level, is that any obstructions introduced by the use of complicated data struc-
tures or unnatural encoding of dependencies are eliminated. As a consequence,
the compiler is provided with more opportunities to automatically optimize the
code. Furthermore, the compiler can explicitly control the way data is stored by
modifying the structure and organization of the tuples. This leads to modifica-
tions to the data structure(s) used by the computation and, hence, the actual data
structure(s) are constructed during the code generation phase.

Because dependency information is made explicit as dependencies between
tuples in the tuple pool on which is operated, it is trivial to deduce which opera-
tions on tuples can be executed at the same time. This makes the proposed exten-
sion to the forelem framework especially suited for the automatic parallelization of
codes. Using this extension, the central action for parallelization is to map a given
specification of the computation onto an execution model. Two execution models
will be described: affine embedding and static scheduling. The forelem framework
that is extended is equipped with transformations that can be applied before and
after the mapping onto a particular execution model, or execution scheduling.
These transformations can be applied in many different ways, giving rise to a
large optimization space. Effective application of these transformations leads to
the generation of codes that are competitive with hand-optimized codes.

To take advantage of this paradigm, it is not necessary to rewrite existing codes
to codes that operate on tuples. Rather, current implementations of irregular
computations in for instance the C programming language can be automatically
mapped into the tuple-based programming model. Consequently, sophisticated
parallel codes can be generated from a starting point provided in the C program-
ming language. We will demonstrate that from an ordinary triangular solve code
written in C, parallelized implementations can be automatically produced that up
till now could only be derived by hand. The performance of these automatically
generated implementations is comparable to that of hand-optimized implementa-
tions.

This chapter is organized as follows: Section 11.2 introduces the programming
model in which generic computations can be expressed in terms of tuples. Sec-
tion 11.3 discusses how tuple-based expressions of computations are mapped onto
an execution model. In Section 11.4 transformations are described that can be
applied before and after execution scheduling. Section 11.5 discusses the appli-
cability, versatility, university and transferability of the proposed programming
model. In Section 11.6 a case study is presented, in which through the use of the
proposed extension of the forelem framework implementations of triangular solve
are derived from a starting point written in the C programming language. Sec-
tion 11.7 presents our conclusions and plans for future work.
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11.2 Handling Data Dependencies Between Tuples

In this section, the expression of dependencies between tuples is discussed. A
method is introduced to explicate the dependencies between tuples in the tuple
iteration structure, allowing for irregular applications to be naturally expressed in
terms of loops processing tuples. First, we will give a small review on how tuples
are handled by the forelem framework.

11.2.1 Iteration of Tuples

Data to be processed is specified as (multi)sets of tuples. The computation is ex-
pressed in terms of loops processing the tuples. Different transformations are im-
plemented in the framework, ranging from standard compiler optimizations, such
as Loop Interchange [4], Loop Fusion [52], Scalar Expansion and Def-Use analy-
sis [2, 50], to transformations that address the order in which tuples are executed
and stored.

The principal syntactic construct in the forelem framework is the forelem loop.
A forelem loop iterates (a subset of) a multiset of tuples and performs an operation
on these tuples. As an example, consider a multiset T containing tuples with fields
fieldland field2: (fieldl, field2). Then, the following loop sums the values
of fieldl of tuples of which field2 equals the value 9:

sum = 0;
forelem (i; i € pT.field2[9])
sum += T[i].fieldl;

Iteration of the forelem loop is controlled with the “index set” pT. field2[9], which
in this case contains all subscripts into T for tuples of which field2 equals 9. The
index set specifies which tuples will be visited, but does not specify the order in
which these tuples are visited, which is undefined.

Naturally, forelem loops can also be nested. The value of a tuple in a tuple pool
can be used to access tuples in another tuple pool, say S:

forelem (i; i € pT.field2[9])
forelem (j; j € pS.fieldl[T[i].field1])
sum += S[j].field2;

The index set conditions are designed such that they can be rewritten to a condi-
tional clause of if statements. This property is used to rewrite loop nests into a
form with the conditions tested in the innermost loop, enabling a variety of loop
transformations to be performed. When this is done for the above loop nest, the
result is:

forelem (i; i € pT)
forelem (j; j € pS) {
if (T[i].field2 == 9 &&
S[j1.fieldl == T[i].fieldl)
sum += S[j].field2;
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This loop nest will produce equivalent results, since the statement in the inner
loop is executed for the same set of tuples from T and S. By moving the conditions
to the innermost loop, it has been made possible to apply the loop interchange
transformation, after which the conditions can be moved back from the inner loop
to the corresponding index sets.

11.2.2 The Ready Clause

The most important property of the forelem loop construct is that through the use
of index sets the tuples that should be visited are specified, but not in which order.
Iteration of the selected tuples may happen in any order. In other words, forelem
loops are inherently parallel.

For irregular codes, this is a problematic property, as statement instances in
an irregular code commonly have a dependency on another statement instance
to be executed first. In the case of linked list traversals, a certain element must
be visited before it is known what the next, or previous, item to visit is. Matrix
computation codes, such as triangular solvers, need to ensure writes to rows k €
[0,7) are completed before column ¢ can be processed.

To accommodate the specification of such dependencies, we propose to ex-
tend the forelem framework, or in particular the index set capabilities, with a ready
clause. The ready clause is an expression that for a given tuple t in tuple pool T
specifies which tuples r in tuple pool T must have been visited. Using this method,
dependencies can be set up between tuples in a tuple pool. As will be discussed in
Section 11.5.1, a bijection can be set up between the iteration space of an original
loop and tuples, which enables the ready clause to express dependencies between
statement instances as well.

The ready clause naturally extends the index sets that are used to control itera-
tion in forelem loops. An example of the syntax for this clause is:

forelem (q; q € pT.ready(r)[V(T[r]) = T[qll)
SEQ;

where SEQ denotes a sequence of statements and V(T[r]) = T[q] is the ready expres-
sion. For a more formal treatment of the ready expression, see Section 11.3. The
index set pT will contain subscripts q into tuple pool T, for which all tuples T[r]
in T that meet the specified ready condition have been processed. Additionally,
the subscript g may not have been processed already. As a definition, this evalu-
ation takes place before the forelem loop is entered. As a consequence, no further
subscripts will be added to the index set while the loop is in progress, including
new tuples that have become ready after any modifications to T that may have
occurred in the body of the forelem loop.

An example of a ready expression is T[r].z == T[q].y (see Section 11.3 how
this can be expressed formally), which specifies that in order to be able to process
T[ql, all tuples T[r] must have been visited that have a z field equal to the y field
of T[q]. In general, in ready clause expressions, the tuples addressed by r and the
iterator variable of the loop in which the clause is embedded (in the case of the
example q) are used as operands, and standard C operators such as ==, !=, | |, &&
and ! are used as operators.
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Note that the specification of dependencies in this manner allows the compiler
to find a suitable execution schedule for the computation at hand, without being
bound to redundant constraints. This is contrary to existing approaches, where
the dependencies are encoded in a particular nesting and ordering of loops. In
that case, a compiler may modify the loop nesting and ordering, as long as any
dependencies in the loop are not broken. So, the compiler has to deduce the actual
dependencies from an encoding in the loop structure and may find redundant de-
pendencies that are an artifact of encoding the actual dependency in this structure.

11.2.3 Tuple Marking

For a given tuple, the ready construct specifies a condition for tuples that must
have been processed already. This implies that the possibility must exist to make a
distinction between tuples that have been processed/visited and tuples that have
not been processed / visited.

To be able to make this distinction, we introduce the possibility of “marking”
tuples in a tuple pool. The following operations are defined:

1. reset(tuple_pool). Resets all marks in the given tuple pool.

. mark(tuple). Mark the specified tuple.

2

3. unmark(tuple). Unmark the specified tuple.

4. marked? (tuple). Returns whether the specified tuple is marked.
5

. unmarked? (tuple_pool). Returns whether the tuple pool contains any un-
marked tuples.

As we will see in the next subsection, with these operators it is possible to
come to a formalization of how forelem loops with a ready clause are executed.

11.2.4 Specification of the ready clause

So far, a number of requirements for the execution of forelem loops with a ready
clause have been put forward. An index set containing a ready clause is evaluated
before the forelem loop is entered. Through this requirement, it is guaranteed that
no new tuples can become ready during execution of the loop. A second require-
ment is that only subscripts into a tuple pool T are considered that have not yet
been visited and are thus not marked.

Similar to the ability to move the conditions tested in index sets to the inner
loop, it is possible to move the testing of the ready inside the loop. This must be
done while taking the requirements for the execution of these loops into consid-
eration. By making use of the tuple marking operations, these requirements can
be met and the result is a formal specification of how forelem loops with a ready
clause are executed:

visited = 0;
forelem (q; q € pT)
if (!marked?(T[q]) && ready(r)[V(T[r]) = T[all) {
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SEQ;
visited = visited U q;
}
for (q’; q’ € visited)
mark(T[q’]);

The first loop is a regular forelem loop which visits all subscripts of pT once and
tests whether these are marked and are ready for execution. This is equivalent to
a loop which computes which subscripts are to be visited before execution of the
actual loop. The actual execution of the statements SEQ has been merged into this
loop. Note that the requirement to disallow new tuples to become ready during
execution of the loop, resulting in these being added to the index set, is enforced
by updating the marks for tuples visited in the loop after this loop has completed
execution.

Note that this is only a formal, algebraic, specification of how forelem loops
with a ready clause should be executed. This specification is necessary to be able
to define transformations on these loops. In practice, loops are not executed in
this manner, rather the code is transformed to a suitable execution model as will
be discussed in Section 11.3.

11.2.5 Ensuring All Tuples Are Processed

Commonly, when a ready condition is present not all tuples of a tuple pool T are
to be processed in a single execution of the loop. Rather, a execution of the loop
will ready subsequent tuples, that are to be visited in subsequent executions of
the same forelem loop. So, to process all tuples in a tuple pool T (provided a ready
condition is specified such that execution of all tuples can indeed be reached),
a while loop is to be added. The tuple marking as described above ensures that
tuples are only visited once, even when the forelem loop is executed multiple times:

reset(T);
while (unmarked?(T))
forelem (q; q € pT.ready(r)[V(T[r]) = T[qll)
SEQ;

As a shorthand for this pattern, a whilelem notation is introduced:

whilelem (q; q € pT.ready(r)[V(T[r]) = T[qll)
SEQ;

so, when iteration of the index set is completed, the index set is re-instantiated as
long as T contains unmarked nodes.

In fact, the whilelem construct can be viewed as an synchronized execution
of all the tuples, where first all tuples are to be processed which can at first be
processed, then all tuples will be processed which were enabled by the previous
tuples, etc. One could also imagine a more dynamic implementation of whilelem
which allows the execution of a tuple at any stage. More formally, let us call this
whilever (whatever tuple can be processed is processed), and
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whilever (q; q € pT.ready(r)[V(T[r]) = T[qll)
SEQ;

implies that at each iteration mark[T[q]] will be executed as well as a “new” eval-
uation of the ready clause. In this case, the number of possible execution orders
is greatly enhanced. However, at the basis of the forelem loop concept is the as-
sumption that the index set pT can be precomputed, thereby still allowing the
index set to be precomputed whilst still allowing a random order of the tuples
to be executed. Therefore, this whilever construct is not further elaborated on in
this chapter. Also, note that whenever the number of tuples ready at each “stage”
equals one, then whilever is equal to whilelem.

11.3 Execution Models

The forelem loop with ready clause provides an algebraic means to specify the com-
putations that must be carried out on the tuples as well as the dependencies be-
tween these tuples. To come to an executable code, this abstract specification must
be mapped onto an execution model. In this section, this mapping process is de-
scribed together with two execution models: affine embedding and static schedul-
ing.
Consider tuples (fieldl, field2, ..., fieldn) withfieldl € F1,field2 €
F2,..,fieldn € Fn. The full tuple space TS that is set up by these tuples is defined
as F1xF2x...xFn. Leta tuple pool T be a subset of TS. Now, consider the following
forelem loop:

forelem (q; q € pT.ready(r)[T[r].y == T[ql.z])
SEQ;

The expression in the ready clause gives rise to projections A;, and V,,; that are
defined as follows:

V:F1xF2Xx..xFn—F1l'xF2' x ... xFn
with m < n. The ready expression in the loop is then replaced as follows:

forelem (q; q € pT.ready(r)[Vou: (TIr]) = A (T D)
SEQ;

in other words, all tuples T[r] that project onto the same set of tuples as A, (T[q])
must have been visited before T[q] can be visited. In case A, is invertible, then
one obtains A;,'(V,,:(T[r])) = T[q] or in short V(T[r]) = T[q]. This forelem loop
is still an algebraic specification of the computation to be performed and can be
executed through dynamic execution. In dynamic execution, the index set with
ready clause is evaluated dynamically at runtime. In the two subsequent subsec-
tions, two execution models are now defined that reformat the forelem loop to a
loop without ready clause. This reformatted loop can be subjected to further code
transformations and is used as a starting point to generate efficient executable
code. We refer to this process as “execution scheduling”.
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11.3.1 Affine Embedding

Whenever tuples contain integer fields, these tuples can be iterated by enumerat-
ing all possible values of these integer fields in all possible combinations. In affine
embedding, an enumeration order of these integer values is determined that sat-
isfies any ready condition, or tuple dependency, that is defined.

Given tuples (x, y, z) ina tuple pool T, where y and z are integer fields. The
notation T.y denotes the set of all values t.y of all tuples t in T. So, T.y and T.z
contain all values that occur for these fields in all tuples in the tuple pool. Suppose
these fields have values within the interval [0, V), then these fields have integer
ranges T.y C I, = [0,N)and T.z C I, = [0, N).

These integer ranges must be transformed such that the tuples are visited in an
order that does not violate the tuple dependencies. To accomplish this, a unimod-
ular matrix U (see for instance [13, 99] for a treatment of the use of unimodular
matrices for performing loop transformations) is defined such that:

Vi, r €T : Vou(r) = Nip(t) = U(r) < U(t)

where <! denotes lexicographical ordering. From U functions f, : I, — I, f. :
I, — I, follow such that:

Vt,r € T Vour(r) = Din(t) = (£, (r-y), fo(r2)) <' (fy(t.y), f=(t-2))

Using these functions, an affine embedding can be written as follows:

for (i; i € f,(T.y))
for (j; j € f.(T.2))
SEQ;

As an example, consider a simple triangular solve loop:

whilelem (q; q € pT.ready(r)[T[r].y == T[q]l-z])
B[T[ql.yl = B[T[al-y]l - Tlql.x * B[T[ql.z];

on tuples (x, y, z) containing values (A[j1[i], j, i), as will be described in
Section 11.5.1. Consider
0 1
v=(1 o)

which implies a loop interchange. Then it can be found that f, and f. are the
identity function. To show that the ready condition is satisfied, consider tuples
(y, z) (just the integer fields) at time ¢: (y, 2, t). For all tuples holds that: (1) y > z,
the tuple pool only contains the elements of the lower triangle; (2) for two tuples
a,b,if a.t < b.t then a.y < b.y, the y values denoting the row number j in A[j][i]
are processed in order. The ready function is defined such that V,.,.((4,7)) = (4)
and A ((4,4)) = (2)-
Now, for all tuples (k, m, t) holds that

{(n,p,8): 8 >t AVou((n,p)) = Ain((k,m))}
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is an empty set. Consider this is not the case, then 3(n,p, s) : s > t AV, ((n,p)) =
Ay ((k, m)). From the definitions of V,,; and A;,, we know that n = m. (1) gives
p > m. From (2) we know that n > p. So, n > p > m. Contradiction.

As a result, we can write an affine embedding of the triangular solve loop as
follows:

for (j; j € f,(T.y)
for (i; i € f.(T.z))
forelem (q; q € pT.(y,z2)[(j,1)D)
B[T[ql.y]l = B[T[ql.y]l - Tlql.x * B[T[ql.z];

Note that this is an intermediate representation of the loop nest. As will be further
described in Section 11.6.1, many different variants of the triangular solve code
can be generated from this loop nest.

11.3.2 Static Execution

Through a symbolic execution of a forelem loop with ready clause, it is possible
to derive a static execution schedule in which the tuples can be visited without
violating the ready clauses. This schedule can be stored and later be used to per-
form the actual computation, without disturbances caused by re-computation of
the ready clause.

In this subsection, we will consider the following loop nest:

reset(T);
while (unmarked?(T))
forelem (q; q € pT.ready(r) [Vou: (TIr]) = Ay (Tl 1)
SEQ;

To be able to derive a static execution schedule from this loop, all values used
in the ready clause may not be written to by SEQ. This enables a symbolic execution
of the forelem loop. Alternatively, a copy of the tuple pool can be used. Any other
field may be changed by the statements in SEQ without loss of generality.

The derivation is carried out by determining which subscripts q of the speci-
fied index set can be processed at the same time. In other words, the ready clause
is satisfied for these tuples. Groups of tuples are formed that can be executed at
the same time, which are called “levels”. Tuples are tagged with the level they
belong to, by adding a field name level to the tuple. This leads to the following
loop, which tags all tuples with the correct level:

reset(T);
1=0;
while (unmarked?(T)) {
forelem (q; q € pT.ready(r) [V, (TIr]) = Ay (TIQDDD
T[q].level = 1;
1=1+1;

}

Note that the forelem loops within the while loop make use of the two important
properties that have been defined in Section 11.2.2:



196 Handling Data Dependencies In The Forelem Framework

1. All visited tuples are marked after execution of the loop, such that no tuples
that were newly made ready are visited.

2. The loop does not visit tuples that have been visited already.

After the tagging has been carried out, the loop performing the actual compu-
tation can be carried out as follows:

for (1’ =0; 1’ <1; 1’++)
forelem (q; q € pT.level[l’])
SEQ;

Due to the absence of a ready clause in this loop nest, no dynamic evaluation of
the ready clause is necessary at run-time and the loop can be executed according
to a static execution schedule.

11.4 Transformations For Ready Loops

Several transformations are defined in the forelem framework that target loop struc-
ture and arrangement of tuples. In this section, a number of transformations are
described that are specific to forelem loops with a ready clause. These transfor-
mations can be divided into transformations that are applied before execution
scheduling and transformations that are applied after execution scheduling.

11.4.1 Before Execution Scheduling

An index set with a ready condition contains subscripts to tuples in a tuple pool
which have not yet been processed and are ready for execution. Due to the nature
of the forelem loop, the tuples referenced by these subscripts may be executed in
any order. In certain cases, it is useful to group sets of tuples with certain sim-
ilar properties for execution before scheduling takes place. This influences the
final execution schedule of this loop. In this section, the Projection transformation
is proposed to accomplish this. By applying the Projection transformation on a
given loop on different properties, a transformation space is set up yielding dif-
ferent variants of the same loop with different performance characteristics. The
Projection transformation is defined as follows. Consider:

forelem (q; q € pT.ready(r) [V,u,:(T[r]) = A, (TaDD)
SEQ;

where in the ready expression the following operands are used: T[q].fieldl,
T[ql.field2, ..., T[q].fieldn. For this particular loop, a grouped execution
is defined as follows:

forelem (q; q € pT.ready(r) [V,u:(T[r]) = A;n (TaDD)
forelem (p; p € pT.(fieldl, field2, ..., fieldn)
[(T[q].fieldl, T[q]l.field2, ..., T[ql.fieldn])
SEQ;
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To understand the validity of this transformation, it is important to note the fol-
lowing: if for a given tuple t in T all dependent tuples are ready based on fieldl,
field2, ..., fieldn, then for all other t’ in T with equal values for fieldl,
field?, ..., fieldn the ready sets are satisfied. Therefore, it is valid to process all
of these tuples in the inner loop. In this case, execution is grouped in groups of
tuples having equal values for fieldl, field2, ..., fieldn.

Next to conditioning the values of fieldl, field2, ..., fieldn in the inner
loop, conditions may be added to test on other properties of the tuples to define a
further projection. Important is that the fields that are present in the ready expres-
sion may never be omitted from condition testing in the inner loop.

Because we have defined forelem loops with a ready condition to only mark
tuples visited in the loop body as visited after the loop has finished execution, the
transformation needs to make a further modification. To avoid processing tuples
that are visited in the inner loop for a second time by the other loop, these tuples
must be marked as visited immediately, or at least within the loop body of the
outer loop.

With projection, tuples to be processed are grouped based on certain proper-
ties. This is similar to the Orthogonalization transformation [83] that is defined in
the forelem framework. Orthogonalization imposes a specific iteration order on a
loop, based on the values of one or more fields of the tuples. For example:

for (k; k € N)
forelem (q; q € pT.y[k])
SEQ;

executes SEQ for tuples with the same value for field y, with k’s value in increasing
order. In fact, the tuples to be executed are grouped into groups of tuples with
equal values for field y.

Although Orthogonalization seems similar to the Projection transformation
that has just been proposed, there is a fundamental difference. In the orthogo-
nalized loop, tuples are always ready for execution: there is no ready condition. To
see why orthogonalization does usually not have the desired effect, consider the
following:

for (k; k € N)
forelem (q; q € pT.y[k].ready(r) [V,u:(T[r]) = A (TlaDDD)
SEQ;

Only tuples t € T: t.y = k can be visited for which all dependent tuples are
ready. This may not be the case for all tuples t. So, after a full iteration of the
outer loop, not all tuples may have been processed. As a consequence, this loop
nest must be surrounded by a while loop that repeats execution of this loop nest
until all tuples have been visited. Naturally, as a result, the tuples are no longer
processed in exact increasing order of k, defeating the goal of orthogonalization.

11.4.2 After Execution Scheduling

Loop nests that are the result of mapping a forelem loop with ready clause onto
an execution model, can be subjected to further transformations. A number of
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these transformations will be described for loop nests that are the result of static
scheduling. An example is:

for (i = 0; 1 < L; i++)
forelem (q; q € pT.level[i])
SEQ;

where L is the number of levels that have been identified during the computation
of the schedule. Within this loop nest, execution of tuples contained in a certain
level can again be grouped based on certain properties. To accomplish this, the
Orthogonalization transformation can be used to group the tuples this example
code on field y:

for (i = 0; 1 < L; i++)
forall (j; j € Nj)
forelem (q; g € pT.(y,level)[(j, 1))
SEQ;

Since all tuples in a level can be processed in parallel, the loop with iteration j is
made a forall loop to indicate all identified groups can be processed in parallel.

An important difference with the Projection transformation described in the
previous section is that since Projection is performed before execution schedul-
ing, the grouped tuples are placed in separate levels. When Orthogonalization is
applied after scheduling, groups are identified within levels. Secondly, orthogo-
nalization after scheduling is not bound to any restrictions on the conditions like
is the case with Projection.

Another transformation that can be performed after scheduling is to ensure
sets of tuples with a certain property are processed at the same time. For example,
all tuples with equal values for the y field should be processed at the same time.
However, due to the imposed ready clause these tuples may be spread among
different levels. In order to still execute all tuples with equal y field at the same
time, the highest level in which such a tuple is placed should be found. All tuples
with equal y can be safely executed in that particular level.

This transformation can be implemented by analyzing and modifying the level
tags on the tuples. A pseudocode to perform this modification is as follows:

forelem (j; j € Nj) {

max_level = 0;
forelem (k; k € pT.y[jD)

max_level = MAX(max_level, T[j].level)
forelem (k; k € pT.y[jD)

T[j].level = max_level;

11.5 Characteristics of the Extended Forelem
Framework

The extended forelem framework that is proposed in this chapter has several com-
pelling characteristics. These include applicability, as the techniques that have been
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described can be applied to a wide variety of existing codes, universality as all data
structures can be represented in terms of tuples, transferability allowing sparse
codes to be generated from a dense specification of the computation, versatility
leading to many different implementations of the same computation and optimal-
ity as an implementation optimal for a particular architecture can always be found
in the different generated implementations. In this section, these characteristics
are discussed in turn.

11.5.1 Applicability

The extended forelem framework that is proposed in this chapter is applicable to a
large variety of existing codes. To demonstrate this, in this section we will show
how a C code is translated to a tuple program. The C code that we will consider
in this section is a simple triangular solver of lower triangular unit matrices:

for (int i = 0; 1 < N; i++)
for (int j =i + 1; j < N; j++)
B[j]l = B[j]1 - A[jI[i].value * B[i];

B is a vector consisting of N elements and A is an N x N matrix. First, the translation
of data accessed by this loop into a tuple space is addressed. This translation is
performed by forming tuples consisting of all array elements that are referenced
by the statements in the loop. When a loop contains multiple statements, one
tuple is formed containing all array elements accessed by all statements in the
loop body. In fact, a bijection is set up between the iteration space of the original
loop and the tuples.

In the case of the triangular solve example, the loop body only contains a single
statement, resulting in the tuple:

(A[3][1],B[3],B[1])

The fields of the tuple are labeled with x, y and z. The matrix and vector are stored
as arrays of doubles. To store all values of A, N? doubles are needed. This implies
that N? tuples are stored in the tuple space, so N? doubles are needed to store all
values for B[j] and another N? for B[i]. The total necessary storage capacity is
3N2 doubles.

The translation process tries to decrease the amount of storage that is neces-
sary. Because two fields of the tuple are values from an array B, it replaces the
values of B at this position with subscripts into B:

(A3][4), 3,1)

Now, N? doubles are needed to store the values A, 2N? integers to store the values
for fields y and z and N doubles to store B. A total of (N? + N) doubles and 2N?
integers. Considering doubles are typically stored in 8 bytes and integers in 4
bytes, the required storage capacity has almost been cut in half.
When the values for A in the tuples are replaced with subscripts, no storage
saving space is achieved:
((3,1),3,1)
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To store these tuples, 4N? integers are needed, N2 doubles and N doubles. Since
this does not present a saving of storage space over the previous tuple, the process
selected the previous tuple as “loop tuple”.

The loop bounds of the original loop indicate which of the loop tuples need
to be stored in the tuple loop. In this case, the loop bounds are i € [0, N) and
j €[i+1,N). So, only tuples withy > z are to be stored in the tuple pool.

The next step in the translation process is to translate the loops to forelemn loops,
that operate on the tuple space defined by the selected loop tuple. This translation
must preserve existing dependencies by translating these to corresponding ready
clauses. The triangular solve loop that is being considered has a true dependency
on array B: B[j] §* B[i]. This can be phrased as in order to execute the statement
that reads from B[i], so z = i, all tuples that write to B[i], so y = i must have
finished. So, the ready function is defined by the expression T[r].y == T[q].z.
As a result, triangular solve can be expressed using a whilelem loop as follows:

forelem (q; q € pT.ready(r)[T[r].y == T[ql.z])
B[T[ql.y] = B[T[ql.y] - T[al.x * B[T[q].z];

11.5.2 Universality

All possible data structures can be represented in terms of tuples. This follows
from the fact that computer memory in which these data structures are located can
be represented in terms of tuples: e.g. (addr, value) tuples. In this subsection
we demonstrate the universality of our approach by expressing linked list and
tree travels as whilelem loops. Consider linked list links defined as:

struct List {
void *data;
struct List *next;

b
This linked list can be iterated in C with a regular while loop:

struct List *1 = start;

while (1 != NULL) {
operate_on(l->data);
1 = 1->next;

}

The body of this while loop accesses the values 1, 1->next and 1->data, giving rise
to tuples (x, y, z), containing the values (1, 1->data, 1l->next). A whilelem
loop can be written, which performs exactly the same iteration:

whilelem (1; 1 € pT.ready(r)[T[r].z == T[1].x])
operate_on(T[1].y);

The ready expression states that a tuple T[1].x can be visited, once all tuples
T[r].z (z is the next field) have been visited. Note that this automatically leads
to the first link of the linked list to be visited. No tuple exists with a next field
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equal to the address of the first tuple in the list, therefore the empty set of tuples
that precedes the first tuple in the list have all been visited.

Note that when a static execution schedule is generated for this whilelem loop
and the data storage is materialized, the linked list is automatically linearized into
an array. So, this process can be performed automatically with the generic tools
provided within this framework, instead of with specific frameworks that have
been developed for this in the past [94].

As another example, breadth-first traversal of a binary tree can be elegantly
expressed as a whilelem loop. Let T be a tuple pool with tuples (w, x, y, z) cor-
responding to values (n, n->data, n->left, n->right) of a simple binary tree
data structure. The following loop then visits the nodes of the tree in a breadth-
first order:

whilelem (n; n € pT.ready(r)[T[r].y == T[n].w ||
T[r].z == T[n].w])
operate_on(T[n].x);

The ready condition specifies that a node T[n], which is either the left or right
child of a parent node, can be visited once the parent node has been visited. Be-
cause nodes are only marked as visited after execution of the forelem loop (which
is embedded in the whilelem loop as discussed in Section 11.2.5), no new nodes
become ready during the execution of the loop. As a consequence, there is the
guarantee that nodes are indeed visited in a level-by-level order of the tree.

11.5.3 Transferability

Sparse matrix codes are often developed separately from dense matrix codes. This
is because sparse matrices are stored in custom, pre-defined, data structures, con-
trary to dense matrix codes that store the data as a regular multi-dimensional
array. It is this large difference in data structures that leads to the existence of
separate code bases for dense and sparse matrix algebra.

Programs that are expressed in the extended forelem framework proposed in
this chapter, can operate on both dense and sparse data storage, since both of these
can be stored into a set of tuples that can be operated on. As a consequence, when
a dense linear algebra computation is translated to a forelern loop, a sparse version
of this routine can be derived automatically. To see this, consider tuples containing
(A[j1[i]1, j, i) from Section 11.5.1 and the loop body of the triangular solve
code:

B[T[q]l.y] = B[T[al.y] - Tlql.x * B[T[q].z];

As has been observed in the literature [15], this statement is a no-op in case
T[q]l.x == 0 and this implies that all tuples with T[q].x == ® can be omitted
without affecting the end result of the computation. This corresponds with remov-
ing all matrix elements A[j]1[i] == 0. The result is an expression of the original
computation that operates on sparse storage.

As another example, consider sparse matrix times vector multiplication:
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for (i = 0; 1 < N; i++)
for (j = 0; j < M; j++)
C[i] = C[i] + A[iI[j] * B[jl;

this yields a tuple space T with tuples (i, A[i][j], j). Since this loop does not
exhibit true dependencies, it can be expressed as a forelem loop without having to
make use of a ready condition:

forelem (m; m € pT)
C[T[m].x] = C[T[m].x] + T[m].y * B[T[m].z];

Also in this case, tuples with T[m].y == 0 are no-op statements, and such tuples
can be deleted from the tuple space without affecting the final result. Again, a
transfer is made to a sparse data storage. By applying different transformations
that are supplied with the forelem framework to this loop nest, different forms of
this sparse data storage are automatically generated. For example, through Or-
thogonalization and Materialization the loop nest can be put into a form such that
the computation is performed on a row-by-row basis and the tuples are explicitly
organized in a row-by-row order in the array PT:

forall (i = 0; i < N; i++)
forelem (m; m € Nx)
C[i] = C[i] + PT[il[m].y * B[PT[i][m].z];

where Nx = [0, |PT[i]|). Further transformations may, for example, lead to a loop
from which Compressed Row Storage is derived:

forall (i = 0; i < N; i++)
forall (m = PTptr(i); m < PT_ptr(i+1); m++)
C[i] = C[i] + PT[m].y * B[PT[m].z];

Other sparse data formats that can be generated automatically include, for exam-
ple, Jagged Diagonal Storage, a sparse data storage format that up till now could
not be derived automatically.

11.56.4 Versatility

The extended forelem framework that is proposed in this chapter, is backed by a
versatile transformation framework that contains transformations that restructure
the computation (projection, scheduling, orthogonalization), data storage (orthog-
onalization and concretization) as well as transformations that address efficiency
of the final code (loop blocking, loop unrolling). Using these transformations, a
search space is set up that contains many different variants of the same loop with
different performance characteristics.

Chapter 10 showed that this search space contains at least 130 principal forms
of the sparse matrix times k vector multiplication and 76 principal forms of the
triangular solve computation. A principal form is an instantiation of the compu-
tation with a different loop structure and different data storage derived from this
loop structure. In Figure 11.1 we plot again the transformation tree leading to the
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Figure 11.1: Transformation tree of the triangular solve computation. Through the
application of transformations on the starting point 1, 76 different principal forms

are generated.
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76 different principal forms of triangular solve, see also page 178. The form in
the center, labeled with 1, is the starting point. The edges represent transforma-
tions that result in many different principal forms. The nodes that are prefixed
with “tmp” are intermediate stages of the transformation process for which no
executable is generated and these do not count as principal form.

11.5.5 Optimality

For all computations that are expressed in the extended forelem framework, either
directly, or indirectly through a mapping from an original program code written in
for instance C, a very large search space of possible implementations is set up. As
we have described, the implementations in this search space have different orders
in which the computation is carried out, different execution schedules leading
to different parallelizations of the computation, different data structures and are
subjected to different final parametrized optimizations that tune the executable
code.

In this large search space, implementations of the computation can be found
that are optimal for a given target architecture and make best use of the archi-
tecture’s resources. The optimal implementation will vary for architecture, class
of input data, etc. Note that because this search space is significantly larger than
the search space that is exploited by contemporary compilers, optimal implemen-
tations can be found that are not found by contemporary compilers. The results
of the work discussed in the previous subsection show that for the sparse matrix
times k vector(s) multiplication always an implementation is found that is faster
than the implementations supplied by several hand-optimized sparse algebra li-
braries, speedups are observed as large as 46%. Automatically generated imple-
mentations for triangular solve achieve in the majority of cases a speedup, up to
30% to 56% and in some cases no speedup is reported but the performance of the
generated implementation is at least on par with the implementations provided
by the sparse algebra libraries. For a further discussion of optimality, see also the
next section.

11.6 Case Study: Triangular Solve

In this section, we demonstrate that from an ordinary triangular solve code in
C, within the extended forelem framework parallelized implementations are pro-
duced, that up till now could only be derived by hand. The performance of these
parallelized implementations is compared with that of a hand-optimized triangu-
lar solver.

11.6.1 Transformation Process to Produce Parallelized
Implementations

The starting point is a triangular solve code written in C. This is a lower triangular
solve code for unit matrices:
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for (dnt i = ®; i < N; i++)
for (int j =i + 1; j < N; j++)
B[j]1 = B[j1 - A[jI[i]l * B[il;

B is a vector consisting of N elements and A is an N x N matrix. As has been shown
in Section 11.5.1, the optimization process will select (A[j1[1i], j, i) as an ap-
propriate loop tuple for this loop. The fields of the tuples are named %, y, and z.
Derived from the loop bounds, a tuple space is created that contains tuples for
j > i, so tuples with fields such thaty > z.

whilelem (q; q € pT.ready(r)[T[r].y == T[ql.z])
B[T[al.y]l = B[T[aql.y] - Tlal.x * B[T[al.z]l;

Now that the computation is expressed within the extended forelem framework,
transformations are applied and a mapping is done onto one of the execution
models. From a different application of the transformations and different selec-
tions of execution models, many different implementations are generated. For
example, in Section 11.3.1 a mapping of the triangular solve loop onto the affine
embedding execution model was derived:

for (j; j € f,(T.y)
for (i; i € f.(T.z))
forelem (q; q € pT.(y,z)[(§,1)])
B[T[ql.y]l = B[T[al.y]l - Tlal.x * B[T[ql.z];

From the facts that f, and f, are identity functions and that only tuples withy > z
are present in the tuple pool, can be deduced that the inner for loop with iteration
variable i can be executed in parallel. This loop is eliminated to give the forelem
loop another degree of freedom:

for (j; j € fy(T.¥))
forelem (q; q € pT.y[j])
B[T[ql.y] = B[T[al.y] - Tlal.x * B[T[q]l.z];

This way, the 76 different principal forms as described in Section 11.5.4 can be
generated from different affine embeddings. Additionally, further transforma-
tions will lead to a loop that operates on an efficient sparse data storage, such as
described in Section 11.5.3.

Also implementations will be produced by mapping the computation onto the
static execution model. For example:

1=0;
reset (T);
while (unmarked?(T)) {
forelem (q; q € pT.ready(r)[T[r]l.y = T[ql.z])
T[q].level = 1;
1=1+1;

}
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for (1’ =0; 1’ <1; 1’++)
forelem (q; q € pT.level[l’])
B[T[al.y]l = B[T[al.y]l - Tlal.x * B[T[q].z];

In this implementation, the ready clauses are first processed to find out which
tuples can be processed at the same time. The loop nest that follows no longer
needs the ready clause in order to perform the computation correctly, but rather
uses the resulting “level” information. A static schedule is beneficial when the
second loop nest, that actually performs the computation, is carried out multiple
times for the same tuples, but a different array B.

This implementation is similar to implementations of triangular solvers de-
scribed in the literature, that consist out of an processing step, or analysis phase,
to analyze the structure of the sparse matrix and a solve phase that uses the result
of this analysis to perform a highly parallel triangular solve computation [8, 72].
Contrary to the implementations described in the literature, which are derived by
hand by an expert programmer, the implementation described in this section is
produced automatically from an ordinary dense version of triangular solve using
the extended forelem framework described in this chapter.

Further transformations can be performed. For example, Materialization, as
described in Chapter 9, can be used to materialize the tuples into a two-dimensional
array, where the tuples are stored in a level-by-level order. This results in the fol-
lowing computation loop nest:

for (1’ =0; 1’ <1; 1’++)
forelem (q; q € Nx)
B[PT[1’1[ql.y] = B[PT[1’][q].y] -
PT[1’]1[ql.x * B[PT[1’]1[ql.z];

where Nx = [0, |[PT[1']|).

11.6.2 Experimental Evaluation

We have conducted a preliminary experimental evaluation with codes that have
been generated using the extended forelem framework. Various implementations
have been generated for the affine embedding execution model and one imple-
mentation for the static scheduling execution model. CUDA codes have been gen-
erated that were compiled with the CUDA 5.0 toolkit. The resulting executables
have been timed on a machine containing an Intel Xeon E5-2650 CPU at 2.00GHz,
hosting an NVidia Telsa K20m GPU with 4799MB of RAM. The experiments were
run for 16 matrices, obtained from the University of Florida Matrix Collection [28].
These matrices were reformatted to only store the lower triangle of the matrix and
ones were placed on the diagonal, the sparsity patterns were preserved.

In Table 11.1, the results are shown for 8 different implementations based on
the affine embedding execution model. All reported execution times are in mil-
liseconds. These 8 implementations differ both in loop structure, as well as in data
storage format. The data storage formats are also the result of transformations car-
ried out by the compiler, that have modified the tuples into a form suitable for the
computation to be carried out. As can be seen in the table, all implementations
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I II. I11. IV. V. VI VII. | VIIL
Erdos971 3.04 | 1.73 | 293 | 1.64 | 238 | 0919 | 2.34 | 0.904
mcfe 597 | 319 | 555 | 281 | 415 | 1.63 | 4.17 1.6
blckhole 139 | 812 | 135 | 7.75 | 10.8 | 4.32 11 431
OPF_10000 | 347 | 180 | 328 | 162 | 229 104 217 96

hr71 1420 | 320 | 1370 | 273 | 361 162 351 148
stomach 1980 | 920 | 1870 | 837 | 1160 | 538 | 1150 | 501
3dtube 794 | 242 | 756 | 185 | 264 128 246 117

orsreg_1 142 | 846 | 13.7 | 8.08 11 459 | 113 | 458
shipsecl 1150 | 712 | 1010 | 562 | 780 372 740 346
shipsecb 1540 | 905 | 1360 | 718 | 1020 | 477 944 442
pdb1HYS 313 | 192 | 279 | 145 | 204 93.8 191 86.5

0r2010 1270 | 792 | 1210 | 719 | 1020 | 442 | 1070 | 407
G2 _circuit 946 | 607 | 908 | 575 | 771 341 830 332
144 1450 | 636 | 1350 | 568 | 794 371 745 345
cop20k_A 1450 | 526 | 1380 | 466 | 650 289 617 264
consph 708 | 432 | 658 | 332 | 473 221 452 205

Table 11.1: Execution time of different implementations based on the affine em-
bedding execution model. All times reported are in milliseconds.

exhibit different performance characteristics. Some implementations are clearly
faster than other implementations for all surveyed matrices. In this case, imple-
mentation VIII. always presents the fastest execution time.

With the extended forelem framework, one implementation was generated that
is based on the static execution model. This implementation is especially suited
when the same matrix is processed multiple times, with different values for the
vector B. We have conducted a preliminary comparison of the performance of the
automatically generated implementation to the performance of the parallelized
triangular solve provided with the CUDA 5.0 toolkit in the CUSPARSE library [72].

The implementation supplied by the CUSPARSE library consists of both an
analysis and solve phase that run on the GPU. The automatically generated im-
plementation performs the analysis phase on the CPU and runs the computation
loop nest on the GPU. For the 0r2010 matrix, the automatically generated analy-
sis phase, running on the CPU, is 20 times slower than the CUSPARSE analysis
running on the GPU. Even though the execution times for the solve phase are the
ones of prime interest since the analysis phase only has to be performed once per
matrix, we intend to address this deficiency in future work.

The execution time of the solve phase of CUSPARSE and the automatically
generated implementation using the extended forelemn framework are shown for
the 16 different matrices in Table 11.2. For a number of matrices, e.g. stomach,
shipsecl and G2 _circuit, the automatically generated implementation is faster than
the implementation provided by CUSPARSE. This exemplifies the strength of our
approach, due to the use of versatile transformations, implementations can be au-
tomatically found that beat hand-optimized implementations. In most other cases,
the performance of the automatically generated implementation is with a differ-
ence of a factor of 2 to 3 competitive with the hand-optimized version. Notable
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CUSPARSE | Generated
Erdos971 0.136 0.193
mcfe 1.66 3.33
blckhole 0.456 1.19
OPF_10000 0.443 0.493
1hr71 0.881 8.03
stomach 22.1 16.5
3dtube 49.6 81.7
orsreg_1 0.279 0.461
shipsecl 243 15.6
shipsecb 32.0 20.4
pdb1HYS 100.0 128.0
or2010 0.86 0.937
G2 _circuit 8.58 7.79
144 6.47 6.72
cop20k_A 2.93 2.83
consph 7.1 5.46

Table 11.2: Execution times of the solve phase of the triangular solve algorithm
of both CUSPARSE and the automatically generated implementation using the
extended forelem framework. Times reported are in milliseconds.

exception is the Ihr71 matrix, for which a approximately factor of 10 slowdown is
observed.

11.7 Conclusions

In this chapter, we have described an extension to the forelem framework for the
expression of data dependencies and the optimization of irregular parallel com-
putations. By expressing computations using the ready clause, more information
is exposed to the compiler about the order in which data is visited. Furthermore,
the compiler is enabled to reorganize the processed data in a more optimal form,
next to the ability to restructure the computation.

Another major benefit of this programming model is that from dependency
information that is expressed as dependencies between tuples in a tuple pool, it is
trivial to deduce which operations on tuples can be executed at the same time. As
a consequence, this framework is especially suited for the automatic paralleliza-
tion of irregular codes. We have described that through the application of transfor-
mations that are implemented in the underlying optimization framework, many
different implementations can be generated with different performance character-
istics and that an effective exploitation of this search space leads to automatically
generated implementations that are competitive with hand-optimized codes.

We have shown that from an ordinary (dense) triangular solve code written in
C, ahighly parallelized implementation can be generated automatically, that com-
putes on sparse data storage. Preliminary experiments that have been conducted,
demonstrate that the performance of this automatically generated implementa-
tion is competitive to the performance of hand-optimized codes.



CHAPTER 12

Controlling Distributed Execution of
Forelem Loops

12.1 Introduction

This chapter presents the results of a preliminary investigation into the suitability
of the forelem framework for the automatic parallelization of database applica-
tions or automatic generation and optimization of Big Data applications for ex-
ecution on multiple compute nodes. As has been discussed in this thesis, the
forelem framework introduces a universal approach for the optimization of an ap-
plication’s data layout and storage. By incorporating details about the data access
performed by the application into the optimization process, the application and
its data access method can be synchronized. This synchronization leads to a better
alignment of the application’s computational loops with the order in which data
is accessed. This can even lead to changes in the storage layout and format of the
application. In this chapter extensions to the forelem framework are described so
that data distribution can be explicitly controlled in addition to (local) data layout.

The approach that has been chosen for these extensions relies on the techniques
derived from the optimization of program code and data distribution to map pro-
gram codes onto parallel computers, see for instance [51]. In the forelem frame-
work the distribution of data is being handled by special loop constructs which
express parallel execution coupled with data decomposition. This data decom-
position can be specified by an “automatic” decomposition of the value range of
one or more particular fields in the database model. This approach is very generic
allowing multiple data decompositions to be considered at compile time.

Big Data applications can also take advantage of the ability of the forelem frame-
work to support vertical integration of application code and data access frame-
works. Similar to regular database applications, Big Data applications typically
access data through a framework that abstracts away peculiarities of accessing
a particular file format, database system or distributed file system. Such frame-
works inhibit optimizing compilers from potentially optimizing data access as
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performed by an application. Through the use of the forelem framework, the data
access operations that are performed through a data access framework are ex-
pressed in the generic intermediate representation, unlocking many more poten-
tial optimization opportunities.

This chapter takes the following approach: first a scheme is described to in-
fluence the distribution of forelem loops and the selection of a data distribution.
Secondly, an important transformation in the context of distributed applications,
Iteration Space Expansion, is described in detail. Thirdly, it is demonstrated how
this scheme can be used together with the compiler optimization techniques that
are implemented in the forelem framework to automatically parallelize database
applications and generate Big Data codes. On a set of loops parallelized using a
data distribution based on the value range of one of the fields, we demonstrate a
number of transformations that optimize for the re-use of a selected data distribu-
tion. As a consequence, the forelem framework has the power to automatically dis-
tribute program codes similar to MapReduce-style computations. In other words,
optimizing compiler technology is enabled to be used in the optimization and
parallelization of database applications.

The viability of the forelem framework to be used for the optimization of Big
Data applications is illustrated using two typical MapReduce examples. We show
how from a problem expressed in SQL, a forelem intermediate representation of
the problem can be derived and be subsequently optimized through the applica-
tion of transformations present in the forelem framework. From this intermediate
representation, different codes can be generated using different data layouts. Ini-
tial experiments show the importance of considering a good data layout for the
problem at hand. Implementations generated with the forelem framework realize
a performance improvement of a factor 3 compared to a Hadoop implementation
when the same input data file is used. Performance improvements up to a factor
120 can be reached if the input data with an optimized layout is automatically
generated.

This chapter is organized as follows Section 12.2 describes the extensions to
the forelem framework for expressing distributed execution of forelem loops. Sec-
tion 12.3 discusses the Iteration Space Expansion transformation. Section 12.4 il-
lustrates how the proposed extension and the transformations in the forelem frame-
work are used together and reinforce each other. Section 12.5 illustrates the via-
bility of the forelem framework to optimize Big Data Applications. Section 12.6
discusses the conclusions.

12.2 Distribution of Forelem Loops

In Chapter 11 we used the observation that since forelem loops may iterate their
index set in any order, forelem loops are inherently parallel. So, in fact, no special
semantics are needed to be able to execute a forelem loop in parallel. However,
when execution of a forelem loop is to be distributed to multiple nodes, control
over what parts of the forelem loop is executed on what node is necessary to be
able to optimize data decomposition and distribution. In the remainder of this
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chapter, with “parallel execution”, we mean parallel execution distributed over
multiple processors (or compute nodes).

Within the forelem framework, parallelization consists out of loop scheduling,
which is the problem of scheduling a parallel loop’s iterations onto the available
processors, and secondly out of data distribution (or decomposition) to the pro-
cessors. It is assumed that accesses to data that is not available locally are resolved
by performing remote communication to a processor that does have the necessary
data available. Loop scheduling is implemented through the application of Loop
Blocking to the iteration space of a forelem loop. A distinction is made between
direct and indirect loop scheduling, both of which will be described in this section.
Finally, it is shown how the data set can be decomposed based on the created loop
schedule.

Loop scheduling follows from the application of Loop Blocking to the iteration
space of a forelem loop. With direct loop scheduling, the iteration space is blocked
by partitioning the index set that is iterated by the forelem loop. On the other hand,
indirect loop scheduling is achieved by blocking on the value range of a field in the
accessed array.

As an example, consider an array A with fields field1 and field2, and the follow-
ing loop where SEQ denotes a sequence of statements:

forelem (i; i € pA)
SEQ;

In order to parallelize this loop to N processors, a loop schedule must be created.
To create a direct loop schedule, Loop Blocking splits the iteration space of this
loop, which is the index set pA, into N partitions:

PA=piAUpAU...UpnA
and the forelem loop becomes:
for (k = 1; k <= N; k++)

forelem (i; i € pipA)
SEQ;

Subsequently, to parallelize this loop to N processors, each processor must be
assigned a partition of the index set pA. This is achieved by replacing the for loop
with a forall loop, indicating that the outer loop is executed in parallel:

forall (k = 1; k <= N; k++)
forelem (i; i € piA)
SEQ;

As a next step, the data can be decomposed according to the selected partitioning.
So, a decomposition of table A is created:
A=A UAU...UAN

based on the partitioned index sets p;A. Note that, this decomposition of A yields
an index set pA, for every A;. The loop operating on the decomposed data is:
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forall (k = 1; k <= N; k++)
forelem (i; i € pAg)
SEQ;

where in the loop body data is accessed through for example A;[i].field1. Note
that, in case data accesses are performed to data that is not available locally af-
ter the data decomposition, these accesses can be resolved by performing remote
communication to a processor that does have the necessary data available.

In indirect data partitioning, Loop Blocking is not done based on the iterated
index set, but on the value range of one of the table’s accessed fields. Consider the
same starting point:

forelem (i; i € pA)
SEQ;

Array A is to be distributed into IV partitions based on field1. The notation A.field1
denotes the set of values of the field1 found in all subscripts of A. If X = A.fieldl,
then

X=X1UXU...UXpN

is a partitioning of X into N segments. The blocked loop is:

for (k = 1; k <= N; k++)

for (1 € Xp)
forelem (i; i € pA.field1[1])
SEQ;

In this loop nest the outer loop can be parallelized. In the parallelized loop nest
a processor Py, is responsible for processing partition X;, of this partitioning and
will execute the original forelem loop only for i € pA,l € X, : A[i].fieldl = [. This
results in:

forall (k = 1; k <= N; k++)

for (1 € Xp)
forelem (i; i € pA.field1[1])
SEQ;

Also in this case, the table A can be decomposed based on the selected indirect loop
schedule. The decomposition of A into N parts A, with corresponding index sets
pA, is based on the partitioning X into X. This results in the following loop nest:

forall (k = 1; k <= N; k++)

for (1 € Xp)
forelem (i; i € pAy.fieldl[1])
SEQ;

where the loop body accesses, for example, Aj[i].fieldl. Note that, this data
decomposition guarantees that pA, only contains subscripts i such that values
Ai[i].fieldl are always contained in X;. Based on this observation, the loop can
be simplified to:
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forall (k = 1; k <= N; k++)
forelem (i; i € pAg)
SEQ;

without affecting the final result.

Within the forelem framework, the optimization of the data distribution is per-
formed after the selection and optimization of the data partitioning or loop schedul-
ing. The process of data distribution optimization depends on the communication
model that is used to transfer data between processors, on any initial data distri-
bution that is present and on the loop schedules that have been selected for other
forelem loops in the application that access the same data.

Many static and dynamic approaches to loop scheduling have been described
in the literature [79, 92, 19]. A static loop schedule is determined entirely at
compile-time. Dynamic approaches schedule iterations to idle processors at run-
time and have the opportunity to better balance the load in case the cost for each
loop iteration is not equal.

An example dynamic scheduling approach is Guided Self-Scheduling (GSS) [79].
In GSS, iterations of loops are scheduled to idle processors at runtime. Iterations
are allocated in groups called chunks. The process starts with a large chunk size
and this size gradually decreases with the course of execution. The next chunk
size to use is determined by dividing the number of remaining iterations by the
number of processors. Processors that finish their chunk earlier than other proces-
sors are assigned a new smaller chunk. This technique results in a better balancing
of the work.

12.3 lteration Space Expansion

This section introduces the Iteration Space Expansion transformation, which is an
important transformation to enable efficient distributed execution of forelemn loops.
Furthermore, the transformation can turn turn forelem loops into a form suitable
for MapReduce-like processing. Before this transformation is described in detail,
a number of related transformations are reviewed.

Previous in Chapter 6 Iteration Space Expansion has been described. Iteration
Space Expansion is advantageous in codes that exhibit irregular access patterns
that are made regular by iterating the (expanded) iteration space in which the
irregular accesses are contained. For example, consider the following loop from a
sparse matrix code [95]:

for (4 = 0; 1 < N; i++)
{

for (q € colIndex(A))
{

result[i] += M’[i, q] * right[q]l;
}
}

A = {start[i], start[i] + 1, ..., start[i + 1] - 1}
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where colIndex exhibits an irregular access pattern. The iteration space of the
inner loop is expanded to iterate the entire positive integer range:

for (i = 0; 1 < N; i++)

{

for (q = 0; q < INT_MAX; qg++)

{
}

result[i] += M’’[i, q] * right[q];

}

where M’ ’[i, q] is defined by

if (q € colIndex(A))
M[i, q] = M'[i, ql;
else
M’[i, q] = 0;

so that the semantics are preserved, because for subscripts i, g for which M’ is
not defined, 0 is returned. This code is an intermediate step in an optimization
process and enables new optimization opportunities because the two loops are
now regular.

For Iteration Space Expansion in the context of forelem loops, the following
example is considered:

count = 0;

forelem (i; i € pA.field[X])
count++;

tmp = count;

Essentially, the example counts the number of array subscripts for which field
equals a value X. This can be seen as the computation of an aggregate value, for
example as part of a group-by computation where the aggregate is computed for
different values X. The example can be rewritten as follows, with the condition
made explicit:

count = 0;
forelem (i; i € pA)
if (X == A[i].field)
count++;
tmp = count;

Let us recap Iteration Space Expansion as described in Chapter 6. The Iteration
Space Expansion transformations now consists of three steps. Firstly, the condi-
tion on field is eliminated, so that the body of the if statement (the actual loop
body) is executed for all subscripts of A. In fact, the iteration space is expanded
from pA. field[X] to pA. Secondly, the scalar count is expanded to a vector, sub-
scripted by A[i] . field. Thirdly, any reference to the scalar count is rewritten to
access the vector, with X as subscript. The value that is assigned to tmp is then
equivalent to the value assigned in the original code. This results in:
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count[] = 0;

forelem (i; i € pA)
count[A[i].field]++;

tmp = count[X];

The transformation is generalized as follows, see also Chapter 6. For a loop of the
form

forelem (i; i € pA.field[X])
SEQ;

the following steps are performed:

1. the condition A[i].field == X is removed, which expands the iteration
space so that the entire array A is visited,

2. scalar expansion is applied on all variables that are written to in the loop
body denoted by SEQ and references to these variables are subscripted with
the value tested in the condition, in this case A[i] . field,

3. all references to the scalar expanded variables after the loop are rewritten to
reference subscript X of the scalar expanded variable.

As an additional example of the transformation, consider the following loop which
computes the average of a set of values:

count = 0;
sum = 0;
forelem (i; i € pA.fieldl[X])
{
sum += A[i].field2;
count++;

}

tmp = sum / count;
When the same transformation steps are carried out, the result is:

count[] = O;

sum[] = O;
forelem (i; i € pA)
{

sum[A[i].fieldl] += A[i].field2;
count[A[i].field1]++;

}

tmp = sum[X] / count[X];

A useful application of the Iteration Space Expansion transformation is in loop
nests that compute an aggregate function for a series of values. For example:
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forelem (i; i € pA.distinct(fieldl))

{
count = 0;
forelem (j; j € pA.field[A[i].field])
count++;
A = X U (A[i].field, count)
}

which computes the count aggregate function for all distinct values of fieldl in
array A. The Iteration Space Expansion transformation is applied to the inner loop,
to result in:

forelem (i; i € pA.distinct(fieldl))
{
count[] = 0;
forelem (j; j € pA)
count[A[j].field]++;
X = % U (A[i].field, count[A[i].field])
}

The inner loop that computes the count array is now fully independent of the
outer loop. Loop Invariant Code Motion is applied to move the inner loop out of
the outer loop:

count[] = O;
forelem (j; j € pA)
count[A[j].field]++;
forelem (i; i € pA.distinct(fieldl))
X% = A U (A[i].field, count[A[i].field])

As a result of the preceding transformation, the array A only has to be iterated
once to compute all aggregates, at a cost of higher memory usage to store the
count array. In fact, the loop resulting from this chain of transformations is similar
to a hash aggregation strategy that is used in database systems. Furthermore, the
first loop allows for straightforward parallelization:

count[] = O;
forall (k = 1; k <= N; k++)
forelem (j; j € prA)
count[A[j].field]++;
forelem (i; i € pA.distinct(fieldl))
X = A U (A[i].field, count[A[i].field])

12.4 lllustration of the application of transformations

This section illustrates how the distribution of forelem loops over multiple proces-
sors described in Section 12.2, the transformations defined in the forelem frame-
work (see for instance Chapter 3), and the Iteration Space Expansion transforma-
tion described in the previous section are used together and reinforce each other.
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In particular, we will show that two adjacent loops which access the same table
and are distributed based on different fields of this table can be transformed so that
both loops use the same data distribution and a costly data redistribution is not
necessary.

As a starting point, the following two adjacent loops on Table are considered:

forelem (i; i € pTable)
SEQ;

forelem (i; i € pTable)
SEQ;

where the first loop is distributed based on field1 and the second loop on field2:

forall (j = 1; j <= N; j++)

for (k € X))
forelem (i; i € pTable.fieldl[k])
SEQ;

forall (j = 1; j <= N; j++)

for (k € X))
forelem (i; i € pTable.field2[k])
SEQ;

Even if Table.fieldl = Table.field2 and the two decompositions are the
same, data partitioning conflicts can occur. This is because a partitioning of Table
based on field1 is not equal to a partitioning of Table on field2. The fact that the
column contents are equal does not imply the column contents are in the same
order (the columns are multisets).

To resolve this, either Table is not distributed for the first loop or a redistribu-
tion of the table data is performed in between the first and second loop. Evidently,
both are suboptimal solutions. However, if the forelem loop bodies compute an ag-
gregate function, then a solution is possible.

For instance, assume SEQ of the first loop consists of incrementing a counter,
thereby computing the multiplicity of all values of field1 in Table. An outer loop is
required to perform the aggregate function for every distinct field1 value in Table,
and the first loop results in:

forelem (i; i € pTable.distinct(fieldl))
{
count = 0
forelem (j; j € pTable.fieldl[Table[i].field1])
count++;
H1 = % U (Table[i].fieldl, count)

}

This loop nest is suboptimal as it makes multiple passes through Table in the inner
loop. To enable parallelization of this loop nest, Iteration Space Expansion is used,
resulting in:
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forelem (i; i € pTable.distinct(fieldl))

{
// Initialize count to zero for all dimensions
count[] = O
forelem (j; j € pTable)
count[Table[j].fieldl]++;
H1 = X, U (Table[i].fieldl, count[Table[i].field1l])
}

Because the computation of count is now independent of i, the loop computing
the count array can be moved out of the enclosing loop:

count[] = 0
forelem (j; j € pTable)
count[Table[j].fieldl]++;
forelem (i; i € pTable.distinct(fieldl))
H1 = X U (Table[i].fieldl, count[Table[i].field1])

As a next step, the loop computing the count array is parallelized:

count[] = 0
forall (k = 1; k <= N; k++)
for (1 € X.)

forelem (j; j € pTable.fieldl[1])
count[Table[j].fieldl]++;
forelem (i; i € pTable.distinct(fieldl))
H1 = X, U (Table[i].fieldl, count[Table[i].field1])

Writes to count are performed to a global array which potentially generates sig-
nificant amount of communication. (However, careful analysis will indicate that
the writes to count are in this case controlled by the distribution of X, such that
no two distinct nodes will write to the same subscript of count). The amount of

communication can be reduced by creating a local array county, for each processor
Pki

count[] =
forall (k

{

0
=1; k <= N; k++)

count, = 0
for (1 € X.)
forelem (j; j € pTable.fieldl[1])
county[Table[j].fieldl]++;
}
forelem (i; i € pTable.distinct(fieldl))
{
count[Table[i].fieldl] = Y n_, county[Table[i].fieldl]
H1 = X, U (Table[i].fieldl, count[Table[i].field1l])
}
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An alternative parallelization approach is to parallelize both loops and not only
the loop computing the count array. As a consequence of parallelizing the loop
creating the result table, the processors should create partial result tables % i
which are later combined. Both loops are parallelized with X = Table.fieldl,
which results in:

forall (k = 1; k <= N; k++)
for (1 € X,)
{
forelem (i; i € pTable.fieldl[1])
county[Table[i].fieldl]++
forelem (i; i € pTable.distinct(fieldl))
Fy = %1 U (Table[i].fieldl, county[Table[i].fieldl1])
}

sum[] = O
forall (k = 1; k <= N; k++)
forelem (i; i € p%i k)
sum[Z#; 1 [1].fieldl] += % ;[i].count
forelem (i; i € pTable.distinct(fieldl))
X% = %1 U (Table[i].fieldl, sum[Table[i].field1])

Now, we return to the initial example. We consider two of the above loops, where
the former is parallelized with X = Table.fieldl and the latter with
X = Table.field2. Then the first two forall loops are:

forall (k = 1; k <= N; k++)
for (1 € X)

forelem (i; i € pTable.field1[1])
count; ,[Table[i].field1]++
forelem (i; i € pTable.distinct(fieldl))
F = 1 U (Table[i].fieldl, count, ,[Table[i].fieldl])

}

forall (k = 1; k <= N; k++)
for (1 € X.)
{

forelem (i; i € pTable.field2[1])
county ;[Table[i].field2]++
forelem (i; i € pTable.distinct(field2))
Ho = Hoyp U (Table[i].field2, count,j[Table[i].field2])
}

As has been indicated at the beginning of this section, data partitioning conflicts
will occur for these two loops. These could be solved by performing an expensive
data redistribution in between the execution of these two loops. However, in this
case a better solution is to exploit the possibility to reorder the loops such that the
two parallelized loops computing the count aggregate are consecutive to one an-
other. This is possible because these loops do not have a dependency on the other
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loops (the second forall loops) in the code fragment. The two outermost loops
iterate the same bounds, allowing application of the Loop Fusion transformation:

forall (k = 1; k <= N; k++)
for (1 € X))
{

forelem (i; i € pTable.field1[1])
count ;[Table[i].field1]++
forelem (i; i € pTable.distinct(fieldl))
H = 1 U (Table[i].fieldl, count; [Table[i].fieldl])
forelem (i; i € pTable.field2[1])
county i [Table[i].field2]++
forelem (i; i € pTable.distinct(field2)))
Ho = Hop U (Table[i].field2, countyj[Table[i].field2])

}

In the case that Table.fieldl = Table.field2, another series of statement re-
ordering and Loop Fusion is possible in the loop body resulting in:

forall (k = 1; k <= N; k++)

for (1 € X))

{
forelem (i; i € pTable.field1[1])
{

count ;[Table[i].field1]++

county p[Table[i].field2]++
}
forelem (i; i € pTable.distinct(fieldl))

Fix = P U (Table[i].fieldl, count; j[Table[i].fieldl])
forelem (i; i € pTable.distinct(field2))

Ho = Hop U (Table[i].field2, countyj[Table[i].field2])

}

Because the two counting loops us the same partitioning of X, it is possible to fuse
these two loops. In other words, the loops use the same data distribution and no
data redistribution is necessary in between loops. This technique can be extended
to other combinations of loops, such as for example:

forelem (i; i € pTable)
X = 2 U (...)

forelem (i; i € p%)
SEQ;

The second loop consumes tuples produced by the first loop. If the second loop
does not have any restricting dependencies, the body of the second loop can be
moved to the position in the first loop where the tuples are produced. As a result,
also in this case both loops make use of the same data distribution of Table.
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Although the interaction of the different transformations is rather powerful,
it should be noted that we have only considered one particular case of two con-
secutive forelem loops. In general, database applications are not that simple and
consist of many queries, embedded or not embedded in application code, so, the
complexity of these interactions will grow exponentially. Although not addressed
in this thesis, it is important to reckon that strategies will have to be developed to
keep the optimization process manageable.

12.5 Application on Big Data Programs

In this section, it will be illustrated how the described forelem framework is used
to optimize Big Data applications. The two examples from the original MapRe-
duce [30] paper are considered which process data that is typically acquired from
the use of the World Wide Web: web server page request logs and a database of
links between web pages. We show that, using the forelem framework and start-
ing with a SQL representation of the problem, a MapReduce-like program can be
automatically derived and that transformations can be applied as usual on the
forelem representation of the problem. Secondly, to show the importance of a good
data layout, we explore the performance of different codes generated for these
examples, using different data layouts, and compare this performance to the im-
plementation of the examples in Hadoop.

12.5.1 URL Access Count

The first example concerns URL access count. Consider logs of web page requests,
which are mapped to tuples (url, 1). The reduction operator is described in the pa-
per as mapping (url, list(values)) to (url, total_count). Considering a table access,
with a single column containing the URLs, this computation can be described as
the following SQL query:

SELECT url, COUNT(url) FROM access GROUP BY url
The forelem framework will generate the following loop nests from this query:

forelem (i; i € pAccess.distinct(url))
4 = 4 U (Access[i].url)
forelem (i; i € p¥)
{
count = 0;
forelem (j; j € pAccess.url[¥4[i].url])
count++;
X = X U (4[i].url, count)
}

The inner loop of the forelem loop iterating p¥ suits the application of the Iteration
Space Expansion transformation:
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forelem (i; i € pAccess.distinct(url))
4 = 4 U (Access[i].url)
forelem (i; i € p¥)
{
count[] = 0;
forelem (j; j € pAccess)
count [Access[j].url]++;
A = X U (4[i].url, count[¥4[i].url])
}

As the inner loop has been made fully independent of the enclosing loop, the loop
can be moved outwards:

forelem (i; i € pAccess.distinct(url))
4 = ¢4 U (Access[i].url)

count[] = O;

forelem (j; j € pAccess)
count[Access[j].url]++;

forelem (i; i € p¥)
X = X U (4[1i].url, count[¥4[i].url])

The transformation sequence so far has turned the multiple irregular accesses to
the Access array into a single regular iteration. As a next step, the first and third
loops are merged using a transformation called Table Propagation, which will
propagate the loop creating table ¢ to the loop accessing ¢, effectively eliminating
the streaming of a table between two loops:

count[] = O;
forelem (j; j € pAccess)
count[Access[j].url]++;
forelem (i; i € pAccess.distinct(url))
H = A U (Access[i].url, count[Access[i].url])

The first loop is a good candidate for parallelization. The index set pAccess is
divided over IV processors (direct loop scheduling) such that the loop can be exe-
cuted in parallel:

count[] = O;
forall (k = 1; k <= N; k++)
forelem (j; j € prAccess)
count[Access[j].url]++;
forelem (i; i € pAccess.distinct(url))
X = A U (Access[i].url, count[Access[i].url])

A problem with this loop nest is that all processors write to the shared count array
to store the results, which will be a big bottleneck in the code that will be generated
from this intermediate representation. To alleviate this, every processor is given a
local count array, from which a single value is reduced in the second loop:
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county, n[] = O;
forall (k = 1; k <= N; k++)
forelem (j; j € prpAccess)
county [Access[j].url]++;
forelem (i; i € pAccess.distinct(url))
A = % U (Access[i].url, Egzlcountk[Access[i].url])

Note that this code fragment bears similarity to a MapReduce program. In fact,
the first loop maps every row of access to an accumulation of the Access[i].url
subscript of the count array. This could be represented as a tuple (url, 1). The sec-
ond loop iterates over all keys, which are all distinct URLs in access and retrieves
the result of an aggregate function, in this case count.

In general, two adjacent forelem loops where the former loop stores values in an
array subscripted by a field of the array being iterated, and the latter loop accesses
elements of this array, can be written as a MapReduce program. The map function
iterates the table that is iterated by the former loop. This table is fragmented by a
MapReduce framework, so that each instance of the map function processes a table
fragment. This corresponds with a data distribution for the above code fragment
where each processor has the rows that are referenced by the index set fragment
stored locally. Instead of writing to a global array, emitIntermediate is called.
For the above example, tuples (Access[i].url, 1) are generated, where the 1 is
a dummy value, because it is not used.

The example code increments the value stored in the count array for every
occurrence of a value Access[i].url. In the MapReduce program, a pair will
be generated for every Access[i].url. So, the reduction function has to incre-
ment a counter for every occurrence of the same value Access[i] .url. Because a
MapReduce framework will collect all pairs for a unique key, the reduction func-
tion simply needs to count all values for every unique key. If the above example
is written in MapReduce pseudocode similar to that used in [30], the program
would be:

map (key, value):
# Assume value represents the content of the
# access table
access = value
for a in access:
emitIntermediate(a.url, 1)

reduce(key, values):
count = 0
for v in values:
count++
emit(key, count)

12.5.2 Reverse Web-Link Graph

As a second example from the MapReduce paper we consider the Reverse Web-
Link Graph. For each link from a source to a target page, a pair (target, source)
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is emitted. The original example reduces to a pair (target, list(source)), which
we will modify to reduce to a pair (target, source_count). To write a SQL query
for this program, consider a table links that contains tuples (source, target), which
has been previously filled, for example by parsing webpages source and extracting
all links to target pages. The following two queries are defined:

CREATE VIEW target_links AS
SELECT DISTINCT target FROM links;
SELECT T.target,
(SELECT COUNT(*) FROM links L
WHERE L.target=T.target)
FROM target_links T;

which compute the number of incoming links to each registered target page. Ex-
pression of these queries in the forelem framework results in the following loops:

forelem (i; i € pLinks.distinct(target))
J = Z U (links[i].target)
forelem (i; i € p9)
{
count = 0;
forelem (j; j € pLinks.target[links[i].target])
count++;
* = % U (links[i].target, count)

}

Using Table Propagation (see Section 6.2.3, this can be turned into a single loop
nest:

forelem (i; i € pLinks.distinct(target))
{
count = 0;
forelem (j; j € pLinks.target[links[i].target])
count++;
* = % U (links[i].target, count)

}

Let us consider a different transformation chain for this example. The outer loop
iterates all distinct values of target. In fact, the value range of Links.target is iter-
ated. Let X = Links.target and parallelize the loop using indirect loop schedul-
ing:

forall (k = 1; k <= N; k++)
{
for (1 € X
{
count = 0;
forelem (j; j € pLinks.target[1])
count++;
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X = £ U (1, count)
}
}

Subsequently, Iteration Space Expansion is applied on the inner loop and the loop
is moved outwards one level:

forall (k = 1; k <= N; k++)
{
count[] = O;
forelem (j; j € pLinks)
count[links[j].target]++;
for (1 € Xp)
A = X U (1, count[l])
}

In the current loop, every processor will compute its own copy of the count array.
Also, the processors will contend for access to the result table . One possibility
is to give every processor a private copy of % and merge the copies to a final result
table in the master node:

forall (k = 1; k <= N; k++)
{
count[] = 0;
forelem (j; j € pLinks)
count[links[j].target]++;
for (1 € X))
. = A U (1, count[1l])
}

Z = UkN:I 2z
Another possibility is to move the loop computing the array further outwards:

count[] = 0;
forelem (j; j € pLinks)
count[links[j].target]++;
forall (k = 1; k <= N; k++)
for (1 € Xp)
X = % U (1, count[l])

And to undo the parallelization of the second loop:

count[] = 0;
forelem (j; j € pLinks)
count[links[j].target]++;
forelem (i; i € pLinks.distinct(target))
% = % U (links[i].target, count[links[i].target])

Instead of parallelizing the second loop, the first loop can be selected for paral-
lelization. This will result in loops similar in structure to the first example (see
Section 12.5.1).
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Figure 12.1: Execution time in minutes for the Hadoop implementation and vari-
ous forelem implementations of the Access Count example.

12.5.3 Initial Performance Comparison

A number of initial experiments have been conducted with Hadoop and forelem-
generated implementations of the two described examples. Different implemen-
tations were generated with the forelem framework, using different data layouts.
The experiments have been performed on the DAS-4 cluster at Leiden Univer-
sity [48]. The cluster nodes each contain 8 processing cores, 48GB of main memory
and 10 TB of local storage in a software RAIDO configuration. The Hadoop exper-
iments were performed on a Hadoop cluster of 7 data nodes and one master node
running the task tracker. The forelem implementation is a C code generated using
the forelem framework, which uses MPI and OpenMP message exchange and lo-
cal parallelization. This implementation is also run on 7 nodes and one separate
master node.

The Access Count example has been run on a generated data file of 320GB,
which is a comma separated file containing URL, data, server name that processed
the request and a status code. The file has been stored onto the HDFS for process-
ing with Hadoop and was evenly distributed over nodes according to a static,
direct, loop schedule for processing by the forelem implementation. The Reverse
Link count example has been run on a comma separated file containing source
and target URL pairs. This file had a size of 177GB.

The results of these experiments are visualized in Figures 12.1 and 12.2. The
numbers shown are averages of 4 runs, the variance between the experiments
is negligible. The experiments show that the forelern implementations realize a
performance improvement of a factor 3 when the same input data is used as is
used by Hadoop, and up to a factor 120 if the input data is available with an
optimized layout. It should be noted that if it is possible to reformat the data,
large performance improvements can be achieved.
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Figure 12.2: Execution time in minutes for the Hadoop implementation and vari-
ous forelem implementations of the Reverse Link Count example.

Different versions of the forelem implementation have been generated. The first
reads the text file in the same format as the Hadoop implementation. The code that
has been generated from the forelem loop does not iterate through a pre-formatted
array, but instead iterates the lines in the text file, which are split into the separate
fields.

In the other experiments the use of a binary file that contains the pre-formatted
array has been studied. This array is mapped into memory and processed by the
code generated from the forelem intermediate representation. The experiments
show that the use of such a format is not beneficial if the data file contains strings,
due to the padding required in the binary format. As a result, the binary files are
considerably larger than the text files and time taken by the I/ O subsystem to read
this file does not weigh up to the savings in parsing. When parallelism is reduced
to a single core per node (i.e. to minimize the amount of disk seeks triggered by
multiple processes reading different data from the disk) the performance does not
improve. Instead, the CPU was kept busy, indicating that the disk read speed is
not a problem when only a single thread per node is used. It is likely that there is
a sweet spot where the number of threads is in balance with the throughput from
the I/O system.

The forelem framework is capable of automatically reformatting the data layout
of a program. As an example, the strings (URLs and hosts) in the arrays have been
replaced with integer keys. These integer keys are used to subscript another array;,
which contains the string value for each key. In fact, the data model has been
made relational. This significantly improves the performance, as indicated by
the “integer keyed” experiments, which implies that it is worthwhile to consider
such data reformatting if this is feasible in the context of the problem, for example
when the data has not yet been collected in a specific format. A final experiment
has been done by removing unused structure fields and column-wise storage of
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the data. These data relayout operations can also be done automatically by the
forelem framework. A performance increase is not observed after performing this
relayout, possibly because it does not weigh up to the initial start up cost of the
MPI and OpenMP frameworks.

12.6 Conclusions

This chapter described an extension of the forelem to express distributed execution
of forelem loops. These extensions enable the forelem framework to exert control
over the data distribution and decomposition across multiple compute nodes in
addition to the control of (local) data layout as was discussed in Chapter 9.

In the context of distributed forelem codes, the Iteration Space Expansion trans-
formation plays an important role. Through the use of this transformation and
the other transformations present in the forelem framework, changes are not only
made to the loop structure of the program but also to the data layout by refor-
matting this layout. Also, it has been described how these extensions can be used
to translate a problem expressed in SQL to a parallelized forelem representation of
the problem, from which a MapReduce-like program can be deduced.

The viability to use the forelem framework to optimize Big Data applications
has been illustrated using two example MapReduce problems. These problems
have been expressed in the forelem intermediate representation and were subse-
quently optimized. From this forelem intermediate representation different codes
have been generated, using different data layouts. The performance of these dif-
ferent codes have been compared to a Hadoop implementation of the same prob-
lem. From these initial experiments follows that data layout plays an important
role. When the same data file is used, performance improvements were obtained
of at least a factor 3. If it is possible to reformat the data, the implementations
generated using the forelem framework with reformatted data show performance
improvements up to a factor 120.
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Summary & Future Perspectives

In this thesis, we have investigated a solution for the unification of imperative
and declarative codes. This has resulted in the forelem intermediate representa-
tion. Declarative codes can be represented in the form of loops performing tuple
accesses with simple loop control. These loops are especially suited to be made
part of the workflow of traditional optimizing compilers. In fact, we have shown
that many established compiler transformations can be re-targeted to operate on
forelem loops. Through the application of these transformations, queries expressed
in forelem loops can be optimized to performance comparable with that of contem-
porary state-of-the-art database systems (as described in Chapter 6) and transfor-
mations can be carried out that intertwine execution of the application code with
the execution of the data access code as was illustrated by the examples in Chap-
ters 3,4 and 5.

The automatic reduction methodology discussed in Chapter 7 exemplifies the
strength of the design of the forelem framework. The described prototype compiler,
powered by the forelem framework, is capable of eliminating up to 90% of the
instructions executed by two web applications. This process reduces database
applications to their essence and unlocks more possibilities for the optimization
of the performance of these applications.

Part of the automatic reduction process is to create a local copy of the data that
is operated on. For large, distributed, deployments of web applications this may
form a bottleneck. Whether this is the case depends on the application. In the case
of e-business processing, the workloads are often read-dominant [64], so a local
data copy is advantageous. On the other hand, when write actions are performed
that trigger updates in all local copies of the data, the performance advantage of
the vertically integrated application is most likely lost. To provide a solution to
these problems, an analysis method is needed to determine when vertical integra-
tion and performing all reads on a local copy of the data is beneficial and when it is
not. In Chapter 8 an initial study towards such an analysis was presented. Given
a set of query mixes executed by an application it can be determined whether
vertical integration will be beneficial.
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The application of the forelem framework in the domain of database applica-
tions has been successful. Due to the generic nature of this framework, we found
that this framework is also applicable to other application domains. In Part II of
this thesis the application of this framework in a number of these different appli-
cation domains has been studied. A focus was the optimization of the used data
storage format together with the code operating on this data. Data structures are
in fact reassembled, by first translating the data structure into tuples on which a
sequence transformations are performed leading to the generation of a new data
storage format. Transformations that affect the generation of the final data storage
format were described in Chapter 9.

These transformations set up a large search space of possible loops and data
storage formats that can be generated from a single initial forelern loop. In Chap-
ter 10 this search space was characterized and explored. For a number of sparse
matrix kernels, it was shown that through effective exploitation of this search
space an optimized code can be found that in most cases outperforms implemen-
tations of this routine found in sparse algebra libraries, but is at least on par in
performance.

Chapter 11 introduced the ready clause, which allows dependencies between
tuples to be described in a natural way. As a consequence, sets of tuples that
can be processed in parallel can be deduced in a straightforward manner. Two
execution models were presented for the parallel execution of forelem loops. Us-
ing these techniques, a parallel code for triangular solve could be automatically
deduced and was shown to be competitive in performance to hand-optimized
parallel implementations of triangular solve.

Finally, Chapter 12 discussed how distributed execution of forelem loops can
be controlled by a compiler. Next to the optimization of local data storage for-
mats that have been discussed in Part II of this thesis, this would give the forelem
framework the capability to optimize the data decomposition and distribution as
well. These capabilities were used to give an initial impression of the viability of
the forelem framework to optimize Big Data applications.

Although two different classes of applications were discussed in this thesis,
database applications and sparse matrix algebra, the optimization methodologies
were based on a single intermediate representation. Many optimizations that were
proposed for database applications in Part I of this thesis can also be applied to the
irregular applications discussed in Part II of this thesis and vice versa. This gives
rise to a lot of avenues for further research, a number of which will be briefly
discussed in this chapter.

Based on the automatic global integrated optimization process that performs
vertical integration of database applications, there are several directions for future
work that are interesting from both a scientific and engineering point of view.

At the core of the global optimization process is the ability to express (SQL)
queries in terms of forelem loops. The majority of SQL queries, including nested
queries and group-by queries, can be written as forelem loops using the techniques
described in this thesis. For a production system, future work is needed is sup-
port these parts of the SQL standard that cannot yet be expressed in the forelem
intermediate representation.
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Also the new common intermediary level, where application and data access
codes are combined, should be further exploited. We intend to look into the appli-
cation of existing code transformations at this new level as well as to investigate
new basic code transformations that enhance the performance of the application.
Existing transformations to be investigated include traditional loop transforma-
tions and vectorization. Furthermore, using the established technique of Def-Use
analysis, elimination of unused query results and redundant queries is obtained
for free. New basic code transformations will be researched, that can optimize
code patterns found in database applications that cannot be handled by the ex-
isting compiler techniques. These transformations will rely on combining knowl-
edge from both the application program and its queries. This may lead to new so-
phisticated techniques for the automatic optimization and merging of what were
originally separate queries.

Chapter 3 proposed the Loop Collapse and Reverse Loop Collapse transfor-
mations. These transformations affect the schemas of the tables in addition to
the loop structure of the code. By applying these transformations, the schema of
the tables used by the application can be optimized based on the operations that
are performed on the tables by the application code. The new intermediary level
provides a good test bed to study the effectiveness of these transformations. Tech-
niques can be developed to automatically optimize schemas of database tables,
based on the different queries that are performed on these tables and the further
processing of the data by the application code. Furthermore, the relation of these
techniques with materialization discussed in Chapter 9 should be investigated.

In the context of sparse matrix algebra, we want to examine the effects of ex-
ploiting specific sparse matrix characteristics in the transformation process. This
may result in the automatic generation of hybrid data storage formats. We also in-
tend to investigate the effects of combining the loop blocking transformation with
the materialization and concretization transformations. Materialization of a loop
nest that is blocked should result in a blocked data storage format. The investiga-
tion should focus on whether further transformations can be devised to result in
new forms of blocked data storage formats and the performance characteristics of
the different formats should be explored.

The experimental evaluations presented in Part II of this thesis have focused
on sparse matrix algebra. The optimization techniques that have been described
are generic in nature, however. To demonstrate the effectiveness of our approach,
we intend to conduct an extensive experimental evaluated of the proposed opti-
mization techniques on a large variety of irregular codes. This will include further,
more complicated, sparse matrix algebra routines, as well as routines from differ-
ent domains such as graph algorithms.

Chapter 12 presented an initial overview of the extensions of the forelem frame-
work to be able to control distributed execution of forelem loops. Through this
control, different codes making use of different data decompositions and distri-
butions can be generated automatically. The end goal is that within the forelem
framework, from a single initial representation of a computation in the forelem in-
termediate representation, different variants can be generated for serial, locally
parallel (multicore CPU or GPU), distributed and combined locally parallel and
distributed execution. These different variants make use of different local data
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storage formats and different data decompositions and distributions.

Methods for the automatic optimization of data decomposition and distribu-
tion within the forelem framework have not been investigated and remain a topic
for future work. For Big Data applications it must be taken into account however
that often the data to be processed is already stored and the data generation code
is not part of the optimization process. The volume of the stored data may prohibit
preprocessing, reformatting or redistribution of the data to better suit the compu-
tation. Strategies have to be investigated to find a middle ground between the
reformatting of the existing data and the optimization of the computation. Note
that, although many of such capabilities can be implemented in existing systems
such as Hadoop, or are already implemented (e.g. binary storage in between jobs),
there is at this moment no possibility for automatic optimization because many of
these details are obscured from optimizing compilers.

At all levels, substantial improvements are possible in the code generators.
For example: the code generator for CPU code can be extended with support for
multi-core processing and SIMD instructions; the code generator for GPU code
can be improved with optimizations to address coalescing, memory banking and
interleaved computation; and the code generator for distributed codes can make
better use of MPI by using better performing MPI primitives and to support inter-
leaved computation and communication. Finally, the generated MPI code should
also be made capable of fault tolerance by supporting continued execution if one
of the nodes failed. Next to being able to handle a static loop schedule deter-
mined at compile-time, the code should be able to handle some amount of dy-
namic scheduling as well to allow for load balancing and failure recovery.

The forelem framework is presented as a versatile framework that unifies opti-
mization of imperative and declarative codes. For the different application areas
of this framework, different transformations have been devised. While such trans-
formations were defined within the context of a particular application area, these
transformations are generic in nature and are well of use in other application do-
mains. For example, transformations that have been described in Part I in the
context of database applications can also be applied on generic codes described in
Part IL

Finally, it is interesting to see how techniques developed specifically for a sin-
gle application domain can be used for the optimization of problems from another
domain. So far, the focus of this research has been on the domains of database ap-
plications and sparse matrix algebra. It will be exciting to see whether investiga-
tions into other application domains will unveil further code transformations that
can be expressed in a generic nature and that will subsequently result in improved
performance of code from other application domains. This in particular shows the
strength of the forelem framework as a versatile framework for the specification of
code transformations and the optimization of tuple-based codes.
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Samenvatting

Een veelzijdig optimalisatieraamwerk gebaseerd op tupels

Het hart van een computer is de Centrale Verwerkingseenheid (CVE, Engels:
CPU, Central Processing Unit). Deze eenheid voert programma’s uit welke zijn
opgebouwd uit elementaire instructies zoals het lezen van data uit het geheugen
en het uitvoeren van simpele operaties op data. Het opstellen van programma’s
in dit soort elementaire instructies is een zeer tijdrovend proces. Dit heeft geleid
tot de ontwikkeling van programmeertalen, waarin programma’s op een hoger,
abstracter niveau kunnen worden uitgedrukt. Met behulp van software kunnen
programma’s die zijn geschreven in zo'n programmeertaal automatisch worden
vertaald naar een machinecode die door de Centrale Verwerkingseenheid kan
worden uitgevoerd.

Programmeertalen kunnen worden ingedeeld in verschillende paradigma’s.
Twee paradigma’s die in dit proefschrift centraal staan zijn imperatieve program-
meertalen en declaratieve programmeertalen. Met imperatieve programmeerta-
len wordt de berekening die moet worden uitgevoerd stap voor stap beschreven.
Er wordt dus exact vastgelegd hoe de berekening moet worden uitgevoerd. Daar-
entegen wordt met declaratieve programmeertalen vastgelegd wat moet worden
gedaan, bijvoorbeeld welke data moet worden opgehaald uit een database, maar
niet hoe en niet in welke volgorde.

Tijdens de vertaalslag naar machinecode kunnen programma’s worden aange-
past zodat deze efficiénter werken, onder de voorwaarde dat de semantiek /beteke-
nis van het programma ongewijzigd blijft. Deze efficiéntere machinecodes voeren
het programma uit in minder tijd of werkgeheugen. In de praktijk is de manier
waarop deze optimalisaties worden uitgevoerd afhankelijk van het programmeer-
paradigma. Bij de optimalisatie van declaratieve programma’s ligt de nadruk
op het bepalen van een efficiént stappenplan voor het ophalen van de gespeci-
ficeerde data. Dit stappenplan bestaat uit een aaneenschakeling van aanroepen
naar vooraf vastgelegde routines die al in machinecode zijn uitgedrukt. Impera-
tieve programma’s worden in de regel vertaald naar machinecode met een “com-
piler”. Geavanceerde compilers zijn uitgerust met transformaties. Dit zijn trans-
formaties als het herordenen van de stappen die door het programma worden
uitgevoerd of het selecteren van efficiénte instructies om de benodigde berekenin-
gen uit te voeren. Deze transformaties hebben als doel specifieke functionaliteiten
en karakteristieken van het beoogde hardwareplatform beter te benutten. Compi-
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lers die in staat zijn dit soort optimaliserende transformaties toe te passen worden
“Optimizing Compilers” genoemd.

In de regel worden applicatieprogramma’s geschreven in een imperatieve pro-
grammeertaal. Specificaties voor het ophalen van data uit een database worden
veelvuldig geschreven in een declaratieve programmeertaal. Een voorbeeld van
zo'n declaratieve taal is SQL en specificaties geschreven in SQL worden “queries”
genoemd. Database applicaties zijn applicatieprogramma’s die data verwerken
welke zijn opgeslagen in een database. Zulke applicaties zijn dus opgebouwd uit
zowel imperatieve als declaratieve codes. Deze codes worden onathankelijk van
elkaar geoptimaliseerd op verschillende manieren en in verschillende modules.
Dus, de declaratieve codes die data ophalen worden onafhankelijk geoptimali-
seerd van imperatieve codes die de opgehaalde data verder verwerken.

Het eerste deel van dit proefschrift richt zich op database applicaties en in het
bijzonder op web applicaties. Web applicaties verzorgen interactieve websites,
waarop bijvoorbeeld reizen kunnen worden geboekt of aankopen gedaan. Deze
applicaties zijn in het algemeen modulair opgebouwd: naast de applicatie zelf
wordt er gebruik gemaakt van een web server en een databasesysteem (DBMS:
Database Management System). Door deze modulariteit kunnen web applicaties
in een (zeer) kort tijdbestek worden geimplementeerd. Echter, deze modulariteit
heeft zijn prijs. Door de verschillende modules met elkaar te integreren kunnen
deze applicaties vele malen efficiénter worden gemaakt. 90% van de machine-
code instructies kunnen worden geélimineerd zonder dat dit het eindresultaat
beinvloed. Naast een significante verhoging in snelheid leidt dit ook tot een be-
sparing van energie: minder servers zijn nodig om eenzelfde aantal bezoekers te
kunnen verwerken.

Het integreren van deze verschillende modules betekent ook dat de verschil-
lende methodologién om declaratieve en imperatieve programma’s te optimali-
seren moeten worden samengevoegd. In dit proefschrift wordt een raamwerk
geintroduceerd om deze integratie te faciliteren: het forelem raamwerk. Het forelem
raamwerk biedt een generieke methode om declaratieve codes voor de toegang
tot data uit te drukken in codes gebaseerd op imperatieve constructies zoals sim-
pele loops (de forelem loop) en benaderingen van arrays. Dit maakt het mogelijk
oorspronkelijk declaratieve codes te mengen met imperatieve codes. Een belang-
rijke consequentie hiervan is dat traditionele analyses voor imperatieve codes,
zoals het ontdekken van ongebruikte resultaten, alsook traditionele imperatieve
transformaties, kunnen worden toegepast op deze gecombineerd codes. Hiermee
wordt het aantal optimalisatiemogelijkheden sterk vergroot.

Hoewel het forelem raamwerk in eerste instantie is ontwikkeld voor database
applicaties is het door de generieke aard ook toepasbaar in andere gebieden. Om-
dat het raamwerk is ontworpen voor database applicaties, is het opgebouwd rond
het wiskundige concept van tupels. Tupels zijn echter zeer geschikt als elemen-
taire data representatie voor imperatieve codes, omdat tupels de meest funda-
mentele objecten zijn om met elkaar gerelateerd waarden te koppelen.

In het tweede deel van dit proefschrift wordt het gebruik van het forelem raam-
werk bestudeerd voor het optimaliseren van irreguliere applicaties. Irreguliere
applicaties zijn moeilijk te optimaliseren door compilers, omdat het verloop van
de berekening van te voren niet geheel vast staat. Een optimalisatiemethode
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wordt beschreven waarbij data gebruikt door een berekening wordt vertaald naar
tupels en de berekening zelf uitgedrukt wordt als forelem loops die deze tupels
verwerken en manipuleren. Op deze manier kan zowel de berekening worden
herordend alsmede de manier waarop tupels worden opgeslagen en gestructu-
reerd. In feite leidt dit tot de automatische generatie van datastructuren door een
compiler. Deze technieken worden bestudeerd aan de hand van sparse matrix
berekeningen. Sparse matrices kennen vele toepassingen in het wetenschappelijk
rekenen en technische wetenschappen, zoals circuit simulaties en vloeistofdyna-
mica.

Om het raamwerk toepasbaar te maken voor meerdere klassen van irreguliere
applicaties, wordt een uitbreiding beschreven voor het coderen van data afhanke-
liikheden. Een conditie kan worden aangegeven dat een tupel pas mag worden
verwerkt als tupels die aan de conditie voldoen al verwerkt zijn. Ten slotte be-
schrijft dit proefschrift een uitbreiding voor het uitdrukken van gedistribueerde
berekening in het forelem raamwerk.

Het forelem raamwerk dat is beschreven in dit proefschrift is in staat om zowel
traditionele imperatieve codes (zoals sparse matrix berekeningen) en declaratieve
codes (zoals database queries) te optimaliseren. Dit maakt het raamwerk veelzij-
dig en in vele gebieden toepasbaar. Ook kunnen optimalisatietechnieken die zijn
ontwikkeld in een bepaald gebied worden toepast in andere gebieden, iets dat
zonder onderliggend generiek raamwerk niet mogelijk is.
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