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Surface plasmon coupling by atten-
uated total re ection for Drude-like
metals

We discuss the in uence of the optical properties of the metal used in a surface plasmon resonance
experiment on the lineshape of the measured resonance curve. We also examine whether it is better to

perform such experiments in the Kretschmann or Otto con guration, and nd that the Otto
con guration has some oen-overlooked advantages. In addition, we present a phenomenological

method for analyzing all possible lineshapes of surface plasmon resonance curves, that yields the complex
surface plasmon mode index without a priori knowledge of the composition of layers of metal and

dielectric in the experiment.

. Introduction
is chapter has been sub-
mitted to Optics Express for
publication.

A   for studying surface plasmons at the in-
terface between a metal and a dielectric is the attenuated total re ection
setup. emost widely used variant is known as the Kretschmann con g-
uration; it is used in many applications, for instance in the bio-analytical  Kretschmann, .

sciences. Various companies offer fully automated  analyzers for this  Liedberg, Nylander, and
Lunström, .
 : surface plasmon reso-
nance

purpose, starting with Biacore (now  Healthcare) in the early s;

 Rich and Myszka, ;
Fivash, Towler, and Fisher, .

Rich and Myszka give an overview of recent devices.

 Rich and Myszka, .

An alternative to the Kretschmann con guration, known as the Otto
con guration, is much less frequently employed because it is generally

 Otto, .presumed to be considerably more awkward experimentally. However,
there are experimental systemswhere theOtto con guration outperforms
the Kretschmann approach. One of the aims of the present chapter is to
investigate when this applies and why that is so. We will also discuss the
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Figure .: Dielectric function
(a) and index of refraction (b)
of the ctitious Drude metals
plasmonium (blue) and scat-
trium (red). e solid lines,
both le and right, indicate

the real parts of the displayed
quantity, and the dashed lines
the imaginary parts. e real

part of the dielectric func-
tion (solid line on le) is

plotted with its sign ipped,
i.e. as −ε′, so as to t both

quantities into a similar scale.

proper interpretation of  measurementswhen straying from the oen-
used metals of gold and silver.

Wewill base our discussion on theDrudemodel for the dielectric func-
tion of a metal:

ε(ω) = 1 −
ω2
p

ω(ω + iγ)
, (.)

where ωp is the bulk plasma frequency of the metal and γ is the damp-
ing frequency related to the electron scattering time τ by γ = 1/τ . e
Drude model is a good approximation for many metals, in particular for
the alkali metals such as lithium, sodium, and potassium. It applies also
quite well to more mundane metals such as silver and aluminum for fre-
quencies sufficiently far removed from an interband transition. We shall
de ne dimensionless frequencies Ω = ω/ωp and Γ = γ/ωp so that the
Drude model has only one material-dependent parameter:

ε(Ω) = 1 − 1
Ω(Ω + iΓ)

.

In all interesting cases Γ ≪ 1. e metallic regime is characterized by
Ω < 1.

F     it is useful to introduce two ctitious
Drude metals, which we will name plasmonium (Γ = 0.0035) and scat-
trium (Γ = 0.025). In this chapter, we will illustrate our ndings with
an octave of frequencies from Ω = 0.08 to Ω = 0.16, which is a rele-
vant range for the analysis of our experiments on aluminum discussed
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in the next two chapters. Plasmonium is similar to an idealized version
of silver, while for short wavelengths, scattrium is an idealized version of
aluminum. e dielectric functions ε = ε′ + iε′′ of plasmonium and scat-
trium are shown in Fig. .. Note that for this choice of parameters, we
can approximate ε′ ≈ −Ω−2 and ε′′ ≈ ΓΩ−3: the real parts of the dielectric
functions ε′ of the two Drude metals are nearly equal, but the imaginary
parts ε′′ differ by the ratio of the electron scattering times.

. Surface plasmons on an interface between two semi-in n-
ite materials

z

x

metal (ε1)

dielectric (ε2)

Hy

H+y2
H−y2

Figure .: Sketch of an inter-
face between two half-spaces of
dielectric and metal. A typical
Hy amplitude for the surface
plasmon mode is sketched in
orange. Hy must be continuous
across the interface.

T   for studying surface plasmons is the
interface between a half-space (z < 0) of metal (with relative permittivity
ε1) and a half-space (z > 0) of dielectric (with relative permittivity ε2).
Figure . is an illustration of this situation. With the interface at z = 0, and
assuming that the surface plasmons travel in the x direction, the surface
plasmon eld is fully determined by the y component of themagnetic eld
H. To determine this eld we calculate the transfer matrix for incoming  Davis, .

and outgoing Hy amplitudes from both sides of the interface:

[H
+
y2

H−y2
] = 1

t21
[ 1 r21
r21 1

] [H
+
y1

H−y1
] , (.)

whereH±yn indicates thewave traveling in the±z direction, and  and  rep-
resent the two half spaces. e coefficients r21 and t21 represent the inter-
face re ection and transmission amplitudes, respectively. ese complex  We note that t12t21 − r12r21 = 1

and r12 = −r21.amplitudes are given by the well-known Fresnel relations (which imply
that the appropriate elds are continuous across the interface):

rpq =
kzp/εp − kzq/εq
kzp/εp + kzq/εq

, tpq =
2kzp/εp

kzp/εp + kzq/εq
. (.)

Here k2
zp = εpk2

0−k2
x, where k0 = ω/c is the wave vector in vacuum. To nd

the plasmon mode we choose the sign of kz in each half space such that
the eldHy decays away from the interface. e allowed modes traveling
along the interface in the x direction, i.e. the surface plasmons, follow
from the requirement that they exist even if all incident elds (H+y1,H−y2)
vanish. is requirement yields two surface plasmon modes traveling in
the ±x directions, respectively:

1
t21
= 0 Ô⇒ kz1

ε1
+ kz2

ε2
= 0 Ô⇒ k∞x = ±k0

√
ε1ε2
ε1 + ε2

. (.)
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Figure .: Effective mode index
for a surface plasmon on an

interface between vacuum and
one of the ctitious metals plas-

monium (blue) and scattrium
(red). e solid lines (which

coincide almost exactly) indi-
cate the real part, and dashed
lines the imaginary part. e
real part of the index minus

 is displayed so as to t both
quantities in a similar scale.
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e result of (.) is the well-known surface plasmon dispersion rela-
tion on a at interface between half-spaces; we use the notation k∞SP to em-
phasize that the materials are semi-in nite. Since ε1 is complex-valued,
the value for k∞SP that follows from (.) is also complex and can be writ-
ten k∞SP = k∞SP

′ + ik∞SP
′′: the surface plasmon propagates as a damped har-

monic wave, with wavelength 2π/k∞SP
′ and 1/e amplitude damping length

1/k∞SP
′′. It is convenient to introduce the complex surface plasmon mode is should not be con-

fused with the intensity
damping length 1/2k∞SP

′′,
which some authors prefer.

index n∞SP = k∞SP/k0. Figure . shows the dependence of the real and imag-
inary parts of this index for surface plasmons travelling along a metal–
vacuum interface for plasmonium and scattrium, as a function of the fre-
quency ratio Ω.

When ∣ε′1∣2 > ε′′21 and ε2 = 1, we can approximate the mode index, by
expanding the square root of a complex number, as

n∞SP ≈

¿
ÁÁÀ ε′1

ε′1 + 1
(1 + iε′′1

2ε′1(ε′1 + 1)
) ,

which shows that the real part of the mode index only depends on the
real part of ε1. is explains why the real parts of the mode indices are Raether, , p. .

almost exactly the same for plasmonium and scattrium.

. Surface plasmons on a thin metal layer in the Kretsch-
mann con guration

I   on a at interface with semi-in-
nitely extending materials is con ned to the realm of theory. In reality,
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Kretschmann con guration Otto con guration

Surface plasmon
Evanescent wave

θ

Figure .: e Kretschmann
and Otto variants of the
attenuated total re ection
method for exciting surface
plasmons. In both cases, the
evanescent wave from total
internal re ection in the
high-index dielectric (blue)
phase-matches (in the direction
parallel to the interface) to the
surface plasmon mode on the
interface between the metal
(gray) and low-index dielectric
(white).

one needs a way of coupling from freely propagating light to the con ned
surface plasmon mode and vice versa. Since the surface plasmon mode’s
wave vector (.) is larger than the free-space wave vector for a light wave
of the same frequency, the difference in wave vector needs to be made
up somehow. Popular methods of coupling to surface plasmons include  Sambles, Bradbery, and Yang,

.scattering from a corrugation on the metal surface, increasing the wave
 Jasperson and Schnatterly,
.vector by using one of the nonzero diffraction orders of a grating on the

metal surface, or having the light enter from a dielectric with an index  Ritchie, Arakawa, Cowan, and
Hamm, .of refraction n0 that is higher than that of the dielectric that the surface

plasmon travels on, so that the wave vector is increased by a factor of n0.  Kretschmann, ; Otto,
.e latter method, which uses frustrated total internal re ection, has

two variations, known as the Kretschmann andOtto con gurations, illus-
trated in Fig. .. Both involve a high-index dielectric substrate, medium
, and a metal-dielectric interface –. e metal is the thin layer  in
the Kretschmann con guration, while the Otto con guration has a thin
dielectric layer  and a bulk metal on top as medium . If the light is inci-
dent in medium  at an angle θ larger than the critical angle θcr for total
internal re ection at the interface – (Otto) or – (Kretschmann), then
the eld at the interface – can phase-match with the surface plasmon  In the Otto con guration, this

eld is evanescent.mode at the interface –. When this happens, the re ection from the in-
terface – takes a sharp dive, since the energy is instead transferred to
the surface plasmon mode. is yields  curves such as that in Fig. ..
is is the principle behind  sensing. e angle at which the re ection
is most attenuated is known as the resonance angle θSPR.

e depth of the re ectance dip is ameasure for the coupling efficiency,
and is a function of themetal layer’s thickness. For each wavelength of the
incident light, there is an optimum for the metal thickness at which the
coupling is critical. At critical coupling, the internal damping is equal to
the reradiation losses.  Raether, , p. .
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Figure .: Typical  curve,
here calculated for a plasmo-

nium layer of critical coupling
thickness on a glass-like sub-
strate with n = 1.5, with vac-

uum on the outside. e critical
angle for total internal re ec-

tion from substrate to vacuum
is indicated by the gray line at
kx = k0. e resonance angle
θSPR, corresponding to a wave
vector parallel to the interface
kx = k0n0 sin θSPR, is the angle
at which the largest fraction of
the incident light is absorbed

into the surface plasmon mode.
0.99 1.00 1.01 1.02n0 sinθSPR
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I         for the surface plasmon
in these multilayer stacks, we generalize (.) toN layers. is is a pow- Davis, .

erful set of equations that contains everything we need to know about the
system:

[
H+yN
H−yN
] = [M00 M01

M10 M11
] [H

+
y0

H−y0
] , (.)

where

[M00 M01

M10 M11
] = (

N−1
∏
n=1

1
t(n+1)n

[ 1 r(n+1)n
r(n+1)n 1

] [e
ikzndn 0
0 e−ikzndn

])

× 1
t10
[ 1 r10
r10 1

] . (.)

As in the two-layer case, we can use this set of equations to calculate vari-
ous properties of the system. e requirement of having a solution in the
absence of incident elds yields

M11 = 0, (.)

and solving this for complex kx gives us the wave vector of the surface
plasmon mode. e re ectance, on the other hand, is obtained by calcu-
lating the ratio of outgoing to incident power on the side of layer , with
the condition of no incident eld on the side of layer N,

R = ∣−M10(kx(θ))
M11(kx(θ))

∣
2

, (.)
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Figure .: Free-space wave-
length dependence of the metal
thickness for critical coupling
in a three-layer Kretschmann
con guration of plasmonium
or scattrium on a glass substrate
with n = 1.5 and vacuum
on the other side. Note that
the critical thickness is given
in units of the bulk plasmon
wavelength λp = ωp/2πc.

with kx(θ) the real-valued wave vector of the light incident from layer .
On a related note, the thickness d1 of layer  for which the re ectance
vanishes is obtained by solving M10 = 0 for d1 with the constraint that kx
is real.

e re ectance of a three-layer Kretschmann system can be written as:

R = ∣ r01 + r12δ
1 + r01r12δ

∣
2
, (.)

with δ = e2ikz1d1 . e condition for surface plasmons (.) works out to
r01r12δ = −1.

Conversely, the condition for zero re ection and thus critical coupling,
M10 = 0, is equivalent to setting the numerator to zero. It is instructive to
write it thus:

−r01 = r12δ. (.)

For unit eld amplitude incident on the multilayer stack, r01 on the le-
hand side of this equation gives the complex amplitude of the eld as re-
ected from the glass-metal interface. e right-hand side represents the

complex eld amplitude at the glass-metal interface that has passed up
and down through the metal lm and has been re ected off the metal-
air interface. Equation (.) means these two re ected waves with equal
amplitudes interfere destructively in the direction of the re ected beam,
yielding zero re ectance. All the power of the incident beam is coupled
into the surface plasmon, which dissipates it away. e critical coupling  Note that the critical coupling

condition requires equality of
two complex quantities.

thickness for the two ctitious metals are shown in Fig. ..
Figure . shows that in the Kretschmann con guration, critical cou-
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pling is not easily lost when changing the wavelength of the incident light
for a constant metal layer thickness. e difference in critical thickness
between plasmonium and scattrium in Fig. . re ects the accelerated de-
cay of the eld in the lossier metal, and so a thinner layer is required to
balance the two re ected elds. As a reality check, we show

that Fig. . does represent
realistic numbers: for silver,

a plasmonium-like metal
with λp = 138 nm, (.)

predicts a critical thickness
of 0.34 × 138 = 47 nm for
λ = 1000 nm (Ω = 0.138).

Likewise, for aluminum, a
scattrium-like metal with

λp = 79 nm, it predicts a critical
thickness of 0.2 × 79 = 14 nm
for λ = 500 nm (Ω = 0.16).

. Effect of electron scattering rate on the Kretschmann line-
shape

I  K  where the dip in re-
ectance is very narrow because ∣ε′1∣≫ 1 and ε′′1 ≪ ∣ε′1∣, the dip is oen

 Raether, , p. .

approximated by a Lorentzian resonance subtracted froma constant back-
ground of unit magnitude. In this limit, the resonance angle gives the real
part of the surface plasmon wave vector, and the half-width of the re ect-
ance dip reveals the imaginary part. Repeating the measurement over a
range of wavelengths yields the surface plasmon dispersion relation.

However, if ε′′1 ≪ ∣ε′1∣ does not apply, then the re ectance yields much
less information about the surface plasmon wave vector. Figure . illus-
trates this point by showing calculated Kretschmann re ectance curves
at two different frequencies for a layer of plasmonium, which ful lls the
conditions above, and a layer of scattrium, which does not ful ll ε′′1 ≪ ∣ε′1∣.
In the case of scattrium, even though the resonance angle and resonance
width vary with the wavelength, it is difficult to say exactly how the reso-
nance width should be de ned, since the resonance is highly asymmetric.
For example, the linewidths of the two curves in Fig. .b are obviously
different, but there is no apparent way to quantify them, since the line-
shapes are asymmetric.

In fact, the rule of thumb that holds for plasmonium — that the res-
onance width yields information about the imaginary part of the surface
plasmon wave vector — fails even on a basic intuitive level for scattrium:
in Fig. ., the purple curve’s linewidth is, if anything, wider than that of
the green curve, whereas one would expect it to be narrower because the
resonance is more heavily damped at the higher frequency of the green
curve, as we see from Fig. .. e discrepancy is caused by the phase
difference between the resonance and the background.

As we will show in the next section, the parallel wave vector at the
resonance angle, k0

√ε0 sin θSPR, does not necessarily correspond to the
actual surface plasmon wave vector, contrary to what is usually assumed
in Kretschmann experiments. In the case of a metal with low ε′′ such as
plasmonium, the difference is slight; but in scattrium, the actual surface
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Figure .: Calculated 
curves for the Kretschmann
con guration at two far-apart
frequencies. e layers are
plasmonium (a) and scattrium
(b) on a n = 1.5 glass-like
substrate. At each frequency,
the layer is taken to have the
proper thickness for critical
coupling. e critical angle
for total internal re ection in
the substrate, at kx = k0, is
indicated by a gray line. e
curves in (a) are typical in 
experiments. e position
of the re ectance minimum
corresponds to the real part of
the wave vector of the surface
plasmon, and its linewidth
corresponds to the imaginary
part. e scattrium-type curves
in (b) are asymmetric without
a well-de ned linewidth. eir
minimum does not correspond
to the real part of the surface
plasmon wave vector, and their
width does not correspond to
the imaginary part.

plasmon wave vector in scattrium is quite far removed from the parallel
wave vector at the resonance angle. is nding is similar to a damped
driven harmonic oscillator, where the damping parameter is related to ε′′.
It is well-known that a sufficiently damped, driven oscillator has its max-
imum response at a different frequency from the undamped resonance
frequency. In fact, as we will see in the next section, a damped driven os-
cillator on a coherent background is precisely what describes the surface
plasmon resonance.

. Analyzing Kretschmann lineshapes

I   , K suggested considering the
surface plasmon resonance a lightly damped driven oscillator, elegantly
described by a Lorentzian lineshape. e re ectance, in the neighbor-

 Kretschmann, .

hood of the resonance angle, is then the resonance subtracted from a con-
stant background of unit magnitude:

 Raether, , p. .

R = 1 −
4k∞SP

′′Δk′′SP
(kx − (k∞SP

′ + Δk′SP))2 + (k∞SP
′′ + Δk′′SP)2

, (.)

where k∞SP is the surface plasmon wave vector on the semi-in nite inter-
face, as given by (.), and ΔkSP is a displacement that the resonance un-
dergoes due to the presence of the coupling prism, approximated by:

 Raether, , p. .ΔkSP =
2∣k∞SP∣3

k2
0(∣ε′1∣ + ε2)

e2ikz1d1r01(k∞SP). (.)
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However, as Fig. . clearly shows, this approximation does not t very
well to metals that behave like scattrium. In addition, it assumes that the
resonance angle is equal to the angle corresponding to the surface plas-
mon wave vector. Various improvements to this tting function exist,
including ones that drop the latter assumption, but there is little moti- Kurihara, Naka-

mura, and Suzuki, . vation to expand the analysis beyond plasmonium-typemetals, since gold
is most oen used in commercial  systems anyway.

H     that is valid over a larger range of
angles, not just in the neighborhood of the resonance, and can be used
to t metals with larger Drude scattering parameters. We start from the
expression in (.) and write it as the coherent addition of a resonance to
a slowly varying background. In addition, we note that r−112 goes to zero
when kx = k∞SP (.) (the denominators of r12 and t12 are the same), so we
write the expression as a function of r−112 :

r012 =
r01 + r12δ
1 + r01r12δ

= r01 +
(1 − r01)2r12δ
1 + r01r12δ

= r01 +
(1 − r01)2δ
r−112 + r01δ

(.)

en we take a linear approximation of r−112 around the zero at k∞SP:

r−112 ≈ α(kx − k∞SP), α = ∂
∂kx

r−112 ∣
kx=k∞SP

(.)

with α a complex-valued constant. So far, this is the same approach by
which Kretschmann derived the Lorentzian resonance. However, instead
of taking unit background and resonance amplitudes, we make no more
approximations, instead writing the expression as follows:

R(kx) = ∣B +
Aeiϕk′′SP

k′SP + ik′′SP − kx
∣
2

, kx > kcr. (.)

We neglect the part of the re ectance curve under the critical angle, since
the linear approximation breaks down at that point.

We can use this expression for extracting the surface plasmon wave
vector from  curves. ere are ve t parameters in the expression:
B, the background amplitude; A, the resonance amplitude; ϕ, the phase
difference between the background and resonance; and k′SP and k′′SP, the
complex surface plasmon wave vector. e advantage of this expression
is that it yields a surface plasmon wave vector without requiring any ad-
vance knowledge of the composition or thicknesses of the layer system: it
is completely phenomenological.
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Figure .: Plot of the relative
error in the value of nSP (green
curves) made by using the
value obtained from tting
the numerically calculated
re ectance curves with (.).
e orange curves are the result
of simply estimating n′SP from
the resonance angle, which is
a fairly good approximation
for plasmonium (a), but not at
all for scattrium (b). e error
in the real part in (a) has been
multiplied by  to improve
visibility.

Figure . shows how effective the phenomenological t is, compared
to estimating the surface plasmon mode index from the resonance an-
gle. On the vertical axis, we plot the approximation error, i.e. the de-
viation between the calculated and estimated mode index. For low-loss
metals like plasmonium, the phenomenological t proves excellent (er-
ror < .), but it is acceptable to use the resonance angle (error < ).
For scattrium-like metals, the resonance angle is quite far off, whereas the
phenomenological t performs reasonably well.

A     for the phenomenological tting
procedure, we calculate  curves for a Kretschmann con guration ex-
periment for a wavelength range from 500 to 800 nm. As a substrate we
take  glass with Sellmeier dispersion; asmetal we take a 40 nm layer  Schott AG, .

of gold, the optical properties of which we approximate with a Drude
model with added Lorentzian oscillators, t to published values. Gold  Rakić, Djurišić, Elazar, and

Majewski, .is a plasmonium-like metal; however, around 500 nm, it has an interband
absorption which increases the loss so that it enters a more scattrium-like
regime. erefore, this wavelength range nicely tests both symmetric and
asymmetric  curves. We add an extra capping layer of 5 nmaluminum
oxide with Sellmeier dispersion to the calculations, in order to illustrate  Babeva, Kitova, Mednikarov,

and Konstantinov, .how the tting procedure performs with more than three layers. Finally,
we add Gaussian noise with a standard deviation of  to the signal. We
then treat these data asmeasured results and t themwith (.). We show
the results in Fig. ..

In Fig. .b, we see that the phenomenological tting expression per-
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Figure .: Performance of the
phenomenological tting ex-
pression of (.) on realistic,
yet ctitious,  “measure-
ments,” calculated for a gold
layer capped with Al2O3 on
a  substrate. (a) Gener-

ated ctitious data points for
selected wavelengths, along

with the corresponding t as a
solid line. Note the transition
from a scattrium-like regime
to a plasmonium-like regime
as the wavelength increases.

(b) Comparison of the calcu-
lated surface plasmon mode

index nSP (blue lines; real part
solid, imaginary part dashed)
to that obtained from the t-
ting procedure (red dots; real

part closed, imaginary part
open). For comparison, the
green dots are the real part

of the mode index estimated
from the resonance angle.

forms admirably, much better in any case than estimating the real part of
the mode index from the resonance angle. As the metal gets lossier and
more scattrium-like, the t gets slightly worse. It has a tendency to un-
derestimate the imaginary part of the mode index, but that is not entirely
surprising since the asymmetric dip is much wider than the “measured”
angle range at 500 nm, as we see from the blue curve in Fig. .a.

. Otto con guration

T O  (Fig. .b) can be described by the same
mathematics as the Kretschmann con guration. e only difference is
that the thin layer ε1 is a low-index dielectric and the metal ε2 is on the
outside. Because of this similarity, the Otto con guration is oen consid-
ered equivalent to the Kretschmann con guration; but a common mis-
conception is that there is practical difficulty in realizing it experimentally
and it is therefore unattractive.

It is true that the original experimental realization of the Otto con g-
uration, with air as the low-index dielectric, involves bringing the metal
within a few microns of the prism and maintaining a constant air gap
width over the entire surface, which was, and is even now, notoriously
difficult to accomplish. For example, contamination by one or more dust
particles of 75 μm would make a one-micron air gap completely impos-  :.

sible. However, there is no reason why the low-index dielectric has to be
air. For example, in chapters  and , we describe Otto experiments using
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Figure .: Free-space wave-
length dependence of the gap
thickness necessary for critical
coupling in a three-layer Otto
con guration of a glass sub-
strate with n = 1.5 separated
from bulk plasmonium or
scattrium by a vacuum gap.
Compare Fig. .; the gap
thickness is several orders
of magnitude larger in the
Otto con guration than the
metal layer thickness in the
Kretschmann con guration.

a high-index int glass prism and magnesium uoride as the low-index
dielectric, where no gaps or moving parts are involved.

In this section, wewill explore inwhich circumstances theOtto con g-
uration ismore appropriate for  measurements than the Kretschmann
con guration. Wewill take the high-index dielectric to be a glass-like sub-
stance (n = 1.5) as before, the low-index dielectric to be vacuum, and the
metal to be a bulk layer of either plasmonium or scattrium.

F  , we use (.) to calculate the critical coupling thickness
for the vacuum gap between the glass and themetal, shown in Fig. .. In
the Otto con guration, the middle layer must be several orders of magni-
tude thicker than the middle layer in the Kretschmann con guration in
order to achieve critical coupling. is is because the surface plasmon’s
radiative losses must be equal to its damping losses at critical coupling, as
we previously explained. A vacuum gap is lossless compared to a metal
layer, and so the evanescent wave in the middle layer decays over a much
larger distance in the vacuum gap than it does in the metal layer. If it has
not decayed enough before bridging the gap, then the system is overcou-
pled. In addition, there is true total internal re ection at the glass-vacuum
interface in the Otto con guration, whereas the wave in the metal layer
in the Kretschmann con guration is not purely evanescent.

is is why the required layer thickness is many times that shown in
Fig. .; in order to balance the damping and reradiation losses, the eld
must cross a much larger distance compared to the Kretschmann case.
Also, unlike the Kretschmann case, the critical coupling thickness now
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Figure .: Calculated 
curves for the Otto con g-

uration at two far-apart fre-
quencies. e outer layers are
plasmonium (a) and scattrium
(b), with a vacuum gap of crit-

ical coupling thickness (see
Fig. . to read off the thick-

ness) and an n = 1.5 glass-like
substrate. e critical angle

for total internal re ection in
the substrate is indicated by

a gray line. Compare Fig. ..

exhibits a strong frequency dependence. e vacuum layer thickness d1

scales approximately with i/kz1 (.); kz1/k0 is a small imaginary number,
so d1 ∝ 1/ω. is means that when designing an Otto experiment for a
broad range ofwavelengths, amiddle layer of constant thicknesswill cause
the resonance to become undercoupled or overcoupledmuch closer to the
design wavelength than in the Kretschmann con guration.

W   the wavelength-dependent  curves for the Otto
system. We show a number of examples in Fig. .. ere are some no-
table differences from the equivalent  curves for theKretschmann sys-
tem (Compare Fig. ..)

For both plasmonium and scattrium, nothing special happens at the
critical angle, unlike the Kretschmann case. is is because the Otto con-
guration deals with true frustrated total internal re ection, where the

incident wave, which is evanescent in the gap, can still excite a propagat-
ing wave in the metal for some angles. e Kretschmann con guration,
on the other hand, has the vacuum on the outside, so whether the light
couples into the surface plasmon mode or not, it cannot travel into the
vacuum in any case; the total internal re ection is not frustrated, only
perturbed.

In addition, secondary resonances are visible at lower angles (kx <
k0) than the main plasmonic resonances. Calculating the mode pro le Davis, .

shows that these are waveguide modes in the vacuum gap, as suggested
by Tillin and Sambles. e Kretschmann con guration’s metal layer is Tillin and Sambles, .
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Figure .: Plot of the relative
error in the value of nSP (green
curves) made by using the
value obtained from tting
the numerically calculated
re ectance curves with (.).
e orange curves are the result
of simply estimating n′SP from
the resonance angle and n′′SP
from the half-width, which
is a good approximation for
plasmonium (a), but not for
scattrium (b). e error in
the real part in (a) has been
multiplied by  to improve
visibility.

not thick enough to support such modes.
In both cases, the resonance lineshape is approximately Lorentzian and

easy to interpret. Using the phenomenological tting expression of (.),
shown in Fig. ., on the ctitious measurements of Fig. . shows that
the analysis works well for both metals, performing comparably to the
Kretschmann con guration. e resonance angle (making sure to take
the resonance corresponding to the plasmon mode and not a waveguide
mode) is a good indicator of the real part of the surface plasmon mode
index for plasmonium, but not at all for scattrium. Again, this is because
the approximation of (.) breaks down close to the critical angle.

Since the curves in Fig. . all have a reasonably well-de ned line-
width, we can also estimate the imaginary part from the resonance’s half-
width at half-maximum. For scattrium, this yields reasonable results, but
for plasmonium, this estimate is even slightly better than using (.). is
indicates that, at least for the imaginary part of the mode index, the Otto
con guration produces much more easily interpretable experimental re-
sults than the Kretschmann con guration when studying surface plas-
mons on a metal with large ε′′.

. Conclusion

W     of the optical properties ofmet-
als on the resonance lineshape in  measurements and examined the
advantages and disadvantages of the Kretschmann and Otto con gura-
tions for  experiments.
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We have demonstrated that there are advantages to the Otto con g-
uration as a method of studying surface plasmons, contrary to what is
oen thought. In the case of a low-loss metal, such as our ctitious “plas-
monium,” it performs comparably to the Kretschmann con guration, al-
though the Kretschmann con gurationmay be preferable if working with
a large range of wavelengths. When working with high-loss metals such
as our ctitious “scattrium,” the resonance angle yields no information
about the real part of the surface plasmon mode index in either con gu-
ration. However, the linewidth of an Otto curve is always a good indica-
tor of the imaginary part of the mode index. Kretschmann curves, on the
other hand, can be asymmetric for high-loss metals, in which case they
do not have a well-de ned linewidth.

In addition, the Otto con guration allows the use of arbitrarily thick
layers of metal. is is important because a scattrium-type metal lm
must be very thin if used in the Kretschmann con guration: so thin,
in fact, that the thickness is of the same order as the electron scattering
length, possibly affecting the optical properties of the lm.

We have also demonstrated a method for analyzing  curves that
allows extraction of the complex surface plasmon mode index without
any knowledge of the composition, thicknesses, or optical properties of
the various layers of metal and dielectric involved in the attenuated total
re ection coupling system. is phenomenological method of analysis
yields values for the imaginary part of the mode index even when con-
fronted with an asymmetric Kretschmann lineshape. It also yields more
accurate values for the real part than can be obtained from the resonance
angle, and works well for metals with large or small ε′′.
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Appendix . Surface plasmon resonance curves beyond crit-
ical coupling

I  ,    the critically coupled case of
, by adjusting the thickness of the middle layer (metal in the Kretsch-
mann con guration, air in the Otto con guration) depending on the fre-
quency of the incident light. is is not feasible in a real experiment, un-
less one is willing to deal with a layer of adjustable thickness, such as an
oil layer whose thickness is changed by adjusting the mechanical pressure
on the two surrounding solids; even then, it is impossible to measure a  Quail, Rako, and Simon, .

broad range of wavelengths all at once.
erefore, in this appendix we evaluate a more realistic experimental

situation for our ctitious metals plasmonium and scattrium. We take
the plasma frequency of both metals to be h̵ωp = 15 eV, allowing us to
put in actual wavelengths; and we take a layer thickness appropriate to a
wavelength of 800 nm (Ω = 0.10). at is, in the Kretschmann con g-
uration, 24.3 nm for plasmonium and 10.0 nm for scattrium; and in the
Otto con guration, 2.4 μm for plasmoniumand 1.4 μm for scattrium. We
“measure” at six wavelengths, from 500 to 1000 nm.

Figure . shows the re ectance curves for the Kretschmann con g-
uration. ey are not so different from the curves in Fig. ., bearing
out our assertion that the coupling efficiency does not have a very strong
dependency on the frequency in the Kretschmann con guration. It is in-
teresting to note that the intuitive rule of thumb, that the resonance line-
width is related to the imaginary part of the surface plasmon wave vec-
tor, now seems to apply to scattrium; the blue (λ = 500 nm) resonance is
broader in both plasmonium and scattrium, and this corresponds tomore
absorption in the metals at higher frequencies.

Figure ., on the other hand, shows the re ectance curves for the
Otto con guration. e secondary waveguide modes are once again visi-
ble at angles less than the critical angle, but this time they are closer to
the critical angle. It is also immediately apparent that the coupling is
much worse when the layer thickness is not optimized for critical cou-
pling. e coupling to scattrium’s surface plasmon mode at kx = 1.01k0

for λ = 500 nm is much weaker than the coupling to the waveguide mode
at kx = 0.97k0. In plasmonium, the surface plasmon mode has all but
disappeared at 500 nm, visible as a tiny blip at kx = 1.015k0.

Note that themain resonance in scattrium is not necessarily plasmonic
at all wavelengths; it appears to the le of the critical angle, i.e. kmode < k0,
for λ = 900 and 1000 nm. It is a hybrid between a surface plasmon and
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Figure .:  curves for a
number of representative wave-

lengths, for a Kretschmann
experiment with (a) a 24.3 nm

layer of plasmonium on a glass-
like substrate with n = 1.5
surrounded by vacuum; (b)
a 10.0 nm layer of scattrium
on the same substrate, also

in vacuum. e metal layers’
thicknesses are designed for

critical coupling at λ = 800 nm,
but not for other wave-

lengths. Compare to Fig. ..

waveguidemode, being strongly damped in the intermediate layer, but not
entirely evanescent away from the interface. is emphasizes the modal
character of the Otto plasmon; when the layer width is different from the
critical layer width for surface plasmon mode, the effective index shis.

In all cases, even for resonances away from critical coupling, the phe-
nomenological expression of (.) still yields accurate results. e sim-
plermethod of extracting the real part of the surface plasmonwave vector
from the resonance angle is a reasonable approximation in the Otto con-
guration, whereas it does not work in Kretschmann con guration if the

lineshapes are asymmetric, as is the case with scattrium.
e conclusion stands, that the Otto con guration is a better exper-

imental technique for probing surface plasmons on lossy scattrium-like
metals. However, we note that if a broad enough wavelength range is re-
quired, then a constant gap width degrades the coupling to the surface
plasmon mode, and in that case it is better to deal with the Kretschmann
con guration’s asymmetric lineshapes.
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Figure .:  curves for a
number of representative wave-
lengths, for an Otto experiment
with (a) plasmonium separated
from a n = 1.5 glass-like
substrate by a vacuum gap of
2.4 μm; (b) scattrium sepa-
rated from the same substrate,
by a vacuum gap of 1.4 μm.
e gaps’ thicknesses are de-
signed for critical coupling
at λ = 800 nm, but not for
other wavelengths. Compare to
Fig. ..




