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
Surface plasmon coupling by atten-
uated total reĘection for Drude-like
metals

We discuss the inĘuence of the optical properties of the metal used in a surface plasmon resonance
experiment on the lineshape of the measured resonance curve. We also examine whether it is better to

perform such experiments in the Kretschmann or Otto conĕguration, and ĕnd that the Otto
conĕguration has some oen-overlooked advantages. In addition, we present a phenomenological

method for analyzing all possible lineshapes of surface plasmon resonance curves, that yields the complex
surface plasmon mode index without a priori knowledge of the composition of layers of metal and

dielectric in the experiment.

. Introduction
is chapter has been sub-
mitted to Optics Express for
publication.

A   for studying surface plasmons at the in-
terface between a metal and a dielectric is the attenuated total reĘection
setup. emost widely used variant is known as the Kretschmann conĕg-
uration; it is used in many applications, for instance in the bio-analytical  Kretschmann, .

sciences. Various companies offer fully automated  analyzers for this  Liedberg, Nylander, and
Lunström, .
 : surface plasmon reso-
nance

purpose, starting with Biacore (now  Healthcare) in the early s;

 Rich and Myszka, ;
Fivash, Towler, and Fisher, .

Rich and Myszka give an overview of recent devices.

 Rich and Myszka, .

An alternative to the Kretschmann conĕguration, known as the Otto
conĕguration, is much less frequently employed because it is generally

 Otto, .presumed to be considerably more awkward experimentally. However,
there are experimental systemswhere theOtto conĕguration outperforms
the Kretschmann approach. One of the aims of the present chapter is to
investigate when this applies and why that is so. We will also discuss the
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Figure .: Dielectric function
(a) and index of refraction (b)
of the ĕctitious Drude metals
plasmonium (blue) and scat-
trium (red). e solid lines,
both le and right, indicate

the real parts of the displayed
quantity, and the dashed lines
the imaginary parts. e real

part of the dielectric func-
tion (solid line on le) is

plotted with its sign Ęipped,
i.e. as −ε′, so as to ĕt both

quantities into a similar scale.

proper interpretation of  measurementswhen straying from the oen-
used metals of gold and silver.

Wewill base our discussion on theDrudemodel for the dielectric func-
tion of a metal:

ε(ω) = 1 −
ω2
p

ω(ω + iγ)
, (.)

where ωp is the bulk plasma frequency of the metal and γ is the damp-
ing frequency related to the electron scattering time τ by γ = 1/τ . e
Drude model is a good approximation for many metals, in particular for
the alkali metals such as lithium, sodium, and potassium. It applies also
quite well to more mundane metals such as silver and aluminum for fre-
quencies sufficiently far removed from an interband transition. We shall
deĕne dimensionless frequencies Ω = ω/ωp and Γ = γ/ωp so that the
Drude model has only one material-dependent parameter:

ε(Ω) = 1 − 1
Ω(Ω + iΓ)

.

In all interesting cases Γ ≪ 1. e metallic regime is characterized by
Ω < 1.

F     it is useful to introduce two ĕctitious
Drude metals, which we will name plasmonium (Γ = 0.0035) and scat-
trium (Γ = 0.025). In this chapter, we will illustrate our ĕndings with
an octave of frequencies from Ω = 0.08 to Ω = 0.16, which is a rele-
vant range for the analysis of our experiments on aluminum discussed
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in the next two chapters. Plasmonium is similar to an idealized version
of silver, while for short wavelengths, scattrium is an idealized version of
aluminum. e dielectric functions ε = ε′ + iε′′ of plasmonium and scat-
trium are shown in Fig. .. Note that for this choice of parameters, we
can approximate ε′ ≈ −Ω−2 and ε′′ ≈ ΓΩ−3: the real parts of the dielectric
functions ε′ of the two Drude metals are nearly equal, but the imaginary
parts ε′′ differ by the ratio of the electron scattering times.

. Surface plasmons on an interface between two semi-inĕn-
ite materials

z

x

metal (ε1)

dielectric (ε2)

Hy

H+y2
H−y2

Figure .: Sketch of an inter-
face between two half-spaces of
dielectric and metal. A typical
Hy amplitude for the surface
plasmon mode is sketched in
orange. Hy must be continuous
across the interface.

T   for studying surface plasmons is the
interface between a half-space (z < 0) of metal (with relative permittivity
ε1) and a half-space (z > 0) of dielectric (with relative permittivity ε2).
Figure . is an illustration of this situation. With the interface at z = 0, and
assuming that the surface plasmons travel in the x direction, the surface
plasmonĕeld is fully determined by the y component of themagnetic ĕeld
H. To determine this ĕeld we calculate the transfer matrix for incoming  Davis, .

and outgoing Hy amplitudes from both sides of the interface:

[H
+
y2

H−y2
] = 1

t21
[ 1 r21
r21 1

] [H
+
y1

H−y1
] , (.)

whereH±yn indicates thewave traveling in the±z direction, and  and  rep-
resent the two half spaces. e coefficients r21 and t21 represent the inter-
face reĘection and transmission amplitudes, respectively. ese complex  We note that t12t21 − r12r21 = 1

and r12 = −r21.amplitudes are given by the well-known Fresnel relations (which imply
that the appropriate ĕelds are continuous across the interface):

rpq =
kzp/εp − kzq/εq
kzp/εp + kzq/εq

, tpq =
2kzp/εp

kzp/εp + kzq/εq
. (.)

Here k2
zp = εpk2

0−k2
x, where k0 = ω/c is the wave vector in vacuum. To ĕnd

the plasmon mode we choose the sign of kz in each half space such that
the ĕeldHy decays away from the interface. e allowed modes traveling
along the interface in the x direction, i.e. the surface plasmons, follow
from the requirement that they exist even if all incident ĕelds (H+y1,H−y2)
vanish. is requirement yields two surface plasmon modes traveling in
the ±x directions, respectively:

1
t21
= 0 Ô⇒ kz1

ε1
+ kz2

ε2
= 0 Ô⇒ k∞x = ±k0

√
ε1ε2
ε1 + ε2

. (.)
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Figure .: Effective mode index
for a surface plasmon on an

interface between vacuum and
one of the ĕctitious metals plas-

monium (blue) and scattrium
(red). e solid lines (which

coincide almost exactly) indi-
cate the real part, and dashed
lines the imaginary part. e
real part of the index minus

 is displayed so as to ĕt both
quantities in a similar scale.
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e result of (.) is the well-known surface plasmon dispersion rela-
tion on a Ęat interface between half-spaces; we use the notation k∞SP to em-
phasize that the materials are semi-inĕnite. Since ε1 is complex-valued,
the value for k∞SP that follows from (.) is also complex and can be writ-
ten k∞SP = k∞SP

′ + ik∞SP
′′: the surface plasmon propagates as a damped har-

monic wave, with wavelength 2π/k∞SP
′ and 1/e amplitude damping length

1/k∞SP
′′. It is convenient to introduce the complex surface plasmon mode is should not be con-

fused with the intensity
damping length 1/2k∞SP

′′,
which some authors prefer.

index n∞SP = k∞SP/k0. Figure . shows the dependence of the real and imag-
inary parts of this index for surface plasmons travelling along a metal–
vacuum interface for plasmonium and scattrium, as a function of the fre-
quency ratio Ω.

When ∣ε′1∣2 > ε′′21 and ε2 = 1, we can approximate the mode index, by
expanding the square root of a complex number, as

n∞SP ≈

¿
ÁÁÀ ε′1

ε′1 + 1
(1 + iε′′1

2ε′1(ε′1 + 1)
) ,

which shows that the real part of the mode index only depends on the
real part of ε1. is explains why the real parts of the mode indices are Raether, , p. .

almost exactly the same for plasmonium and scattrium.

. Surface plasmons on a thin metal layer in the Kretsch-
mann conĕguration

I   on a Ęat interface with semi-in-
ĕnitely extending materials is conĕned to the realm of theory. In reality,
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





Kretschmann conĕguration Otto conĕguration

Surface plasmon
Evanescent wave

θ

Figure .: e Kretschmann
and Otto variants of the
attenuated total reĘection
method for exciting surface
plasmons. In both cases, the
evanescent wave from total
internal reĘection in the
high-index dielectric (blue)
phase-matches (in the direction
parallel to the interface) to the
surface plasmon mode on the
interface between the metal
(gray) and low-index dielectric
(white).

one needs a way of coupling from freely propagating light to the conĕned
surface plasmon mode and vice versa. Since the surface plasmon mode’s
wave vector (.) is larger than the free-space wave vector for a light wave
of the same frequency, the difference in wave vector needs to be made
up somehow. Popular methods of coupling to surface plasmons include  Sambles, Bradbery, and Yang,

.scattering from a corrugation on the metal surface, increasing the wave
 Jasperson and Schnatterly,
.vector by using one of the nonzero diffraction orders of a grating on the

metal surface, or having the light enter from a dielectric with an index  Ritchie, Arakawa, Cowan, and
Hamm, .of refraction n0 that is higher than that of the dielectric that the surface

plasmon travels on, so that the wave vector is increased by a factor of n0.  Kretschmann, ; Otto,
.e latter method, which uses frustrated total internal reĘection, has

two variations, known as the Kretschmann andOtto conĕgurations, illus-
trated in Fig. .. Both involve a high-index dielectric substrate, medium
, and a metal-dielectric interface –. e metal is the thin layer  in
the Kretschmann conĕguration, while the Otto conĕguration has a thin
dielectric layer  and a bulk metal on top as medium . If the light is inci-
dent in medium  at an angle θ larger than the critical angle θcr for total
internal reĘection at the interface – (Otto) or – (Kretschmann), then
the ĕeld at the interface – can phase-match with the surface plasmon  In the Otto conĕguration, this

ĕeld is evanescent.mode at the interface –. When this happens, the reĘection from the in-
terface – takes a sharp dive, since the energy is instead transferred to
the surface plasmon mode. is yields  curves such as that in Fig. ..
is is the principle behind  sensing. e angle at which the reĘection
is most attenuated is known as the resonance angle θSPR.

e depth of the reĘectance dip is ameasure for the coupling efficiency,
and is a function of themetal layer’s thickness. For each wavelength of the
incident light, there is an optimum for the metal thickness at which the
coupling is critical. At critical coupling, the internal damping is equal to
the reradiation losses.  Raether, , p. .
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Figure .: Typical  curve,
here calculated for a plasmo-

nium layer of critical coupling
thickness on a glass-like sub-
strate with n = 1.5, with vac-

uum on the outside. e critical
angle for total internal reĘec-

tion from substrate to vacuum
is indicated by the gray line at
kx = k0. e resonance angle
θSPR, corresponding to a wave
vector parallel to the interface
kx = k0n0 sin θSPR, is the angle
at which the largest fraction of
the incident light is absorbed

into the surface plasmon mode.
0.99 1.00 1.01 1.02n0 sinθSPR
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I         for the surface plasmon
in these multilayer stacks, we generalize (.) toN layers. is is a pow- Davis, .

erful set of equations that contains everything we need to know about the
system:

[
H+yN
H−yN
] = [M00 M01

M10 M11
] [H

+
y0

H−y0
] , (.)

where

[M00 M01

M10 M11
] = (

N−1
∏
n=1

1
t(n+1)n

[ 1 r(n+1)n
r(n+1)n 1

] [e
ikzndn 0
0 e−ikzndn

])

× 1
t10
[ 1 r10
r10 1

] . (.)

As in the two-layer case, we can use this set of equations to calculate vari-
ous properties of the system. e requirement of having a solution in the
absence of incident ĕelds yields

M11 = 0, (.)

and solving this for complex kx gives us the wave vector of the surface
plasmon mode. e reĘectance, on the other hand, is obtained by calcu-
lating the ratio of outgoing to incident power on the side of layer , with
the condition of no incident ĕeld on the side of layer N,

R = ∣−M10(kx(θ))
M11(kx(θ))

∣
2

, (.)
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Figure .: Free-space wave-
length dependence of the metal
thickness for critical coupling
in a three-layer Kretschmann
conĕguration of plasmonium
or scattrium on a glass substrate
with n = 1.5 and vacuum
on the other side. Note that
the critical thickness is given
in units of the bulk plasmon
wavelength λp = ωp/2πc.

with kx(θ) the real-valued wave vector of the light incident from layer .
On a related note, the thickness d1 of layer  for which the reĘectance
vanishes is obtained by solving M10 = 0 for d1 with the constraint that kx
is real.

e reĘectance of a three-layer Kretschmann system can be written as:

R = ∣ r01 + r12δ
1 + r01r12δ

∣
2
, (.)

with δ = e2ikz1d1 . e condition for surface plasmons (.) works out to
r01r12δ = −1.

Conversely, the condition for zero reĘection and thus critical coupling,
M10 = 0, is equivalent to setting the numerator to zero. It is instructive to
write it thus:

−r01 = r12δ. (.)

For unit ĕeld amplitude incident on the multilayer stack, r01 on the le-
hand side of this equation gives the complex amplitude of the ĕeld as re-
Ęected from the glass-metal interface. e right-hand side represents the
complex ĕeld amplitude at the glass-metal interface that has passed up
and down through the metal ĕlm and has been reĘected off the metal-
air interface. Equation (.) means these two reĘected waves with equal
amplitudes interfere destructively in the direction of the reĘected beam,
yielding zero reĘectance. All the power of the incident beam is coupled
into the surface plasmon, which dissipates it away. e critical coupling  Note that the critical coupling

condition requires equality of
two complex quantities.

thickness for the two ĕctitious metals are shown in Fig. ..
Figure . shows that in the Kretschmann conĕguration, critical cou-
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pling is not easily lost when changing the wavelength of the incident light
for a constant metal layer thickness. e difference in critical thickness
between plasmonium and scattrium in Fig. . reĘects the accelerated de-
cay of the ĕeld in the lossier metal, and so a thinner layer is required to
balance the two reĘected ĕelds. As a reality check, we show

that Fig. . does represent
realistic numbers: for silver,

a plasmonium-like metal
with λp = 138 nm, (.)

predicts a critical thickness
of 0.34 × 138 = 47 nm for
λ = 1000 nm (Ω = 0.138).

Likewise, for aluminum, a
scattrium-like metal with

λp = 79 nm, it predicts a critical
thickness of 0.2 × 79 = 14 nm
for λ = 500 nm (Ω = 0.16).

. Effect of electron scattering rate on the Kretschmann line-
shape

I  K  where the dip in re-
Ęectance is very narrow because ∣ε′1∣≫ 1 and ε′′1 ≪ ∣ε′1∣, the dip is oen

 Raether, , p. .

approximated by a Lorentzian resonance subtracted froma constant back-
ground of unit magnitude. In this limit, the resonance angle gives the real
part of the surface plasmon wave vector, and the half-width of the reĘect-
ance dip reveals the imaginary part. Repeating the measurement over a
range of wavelengths yields the surface plasmon dispersion relation.

However, if ε′′1 ≪ ∣ε′1∣ does not apply, then the reĘectance yields much
less information about the surface plasmon wave vector. Figure . illus-
trates this point by showing calculated Kretschmann reĘectance curves
at two different frequencies for a layer of plasmonium, which fulĕlls the
conditions above, and a layer of scattrium, which does not fulĕll ε′′1 ≪ ∣ε′1∣.
In the case of scattrium, even though the resonance angle and resonance
width vary with the wavelength, it is difficult to say exactly how the reso-
nance width should be deĕned, since the resonance is highly asymmetric.
For example, the linewidths of the two curves in Fig. .b are obviously
different, but there is no apparent way to quantify them, since the line-
shapes are asymmetric.

In fact, the rule of thumb that holds for plasmonium — that the res-
onance width yields information about the imaginary part of the surface
plasmon wave vector — fails even on a basic intuitive level for scattrium:
in Fig. ., the purple curve’s linewidth is, if anything, wider than that of
the green curve, whereas one would expect it to be narrower because the
resonance is more heavily damped at the higher frequency of the green
curve, as we see from Fig. .. e discrepancy is caused by the phase
difference between the resonance and the background.

As we will show in the next section, the parallel wave vector at the
resonance angle, k0

√ε0 sin θSPR, does not necessarily correspond to the
actual surface plasmon wave vector, contrary to what is usually assumed
in Kretschmann experiments. In the case of a metal with low ε′′ such as
plasmonium, the difference is slight; but in scattrium, the actual surface
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Figure .: Calculated 
curves for the Kretschmann
conĕguration at two far-apart
frequencies. e layers are
plasmonium (a) and scattrium
(b) on a n = 1.5 glass-like
substrate. At each frequency,
the layer is taken to have the
proper thickness for critical
coupling. e critical angle
for total internal reĘection in
the substrate, at kx = k0, is
indicated by a gray line. e
curves in (a) are typical in 
experiments. e position
of the reĘectance minimum
corresponds to the real part of
the wave vector of the surface
plasmon, and its linewidth
corresponds to the imaginary
part. e scattrium-type curves
in (b) are asymmetric without
a well-deĕned linewidth. eir
minimum does not correspond
to the real part of the surface
plasmon wave vector, and their
width does not correspond to
the imaginary part.

plasmon wave vector in scattrium is quite far removed from the parallel
wave vector at the resonance angle. is ĕnding is similar to a damped
driven harmonic oscillator, where the damping parameter is related to ε′′.
It is well-known that a sufficiently damped, driven oscillator has its max-
imum response at a different frequency from the undamped resonance
frequency. In fact, as we will see in the next section, a damped driven os-
cillator on a coherent background is precisely what describes the surface
plasmon resonance.

. Analyzing Kretschmann lineshapes

I   , K suggested considering the
surface plasmon resonance a lightly damped driven oscillator, elegantly
described by a Lorentzian lineshape. e reĘectance, in the neighbor-

 Kretschmann, .

hood of the resonance angle, is then the resonance subtracted from a con-
stant background of unit magnitude:

 Raether, , p. .

R = 1 −
4k∞SP

′′Δk′′SP
(kx − (k∞SP

′ + Δk′SP))2 + (k∞SP
′′ + Δk′′SP)2

, (.)

where k∞SP is the surface plasmon wave vector on the semi-inĕnite inter-
face, as given by (.), and ΔkSP is a displacement that the resonance un-
dergoes due to the presence of the coupling prism, approximated by:

 Raether, , p. .ΔkSP =
2∣k∞SP∣3

k2
0(∣ε′1∣ + ε2)

e2ikz1d1r01(k∞SP). (.)
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However, as Fig. . clearly shows, this approximation does not ĕt very
well to metals that behave like scattrium. In addition, it assumes that the
resonance angle is equal to the angle corresponding to the surface plas-
mon wave vector. Various improvements to this ĕtting function exist,
including ones that drop the latter assumption, but there is little moti- Kurihara, Naka-

mura, and Suzuki, . vation to expand the analysis beyond plasmonium-typemetals, since gold
is most oen used in commercial  systems anyway.

H     that is valid over a larger range of
angles, not just in the neighborhood of the resonance, and can be used
to ĕt metals with larger Drude scattering parameters. We start from the
expression in (.) and write it as the coherent addition of a resonance to
a slowly varying background. In addition, we note that r−112 goes to zero
when kx = k∞SP (.) (the denominators of r12 and t12 are the same), so we
write the expression as a function of r−112 :

r012 =
r01 + r12δ
1 + r01r12δ

= r01 +
(1 − r01)2r12δ
1 + r01r12δ

= r01 +
(1 − r01)2δ
r−112 + r01δ

(.)

en we take a linear approximation of r−112 around the zero at k∞SP:

r−112 ≈ α(kx − k∞SP), α = ∂
∂kx

r−112 ∣
kx=k∞SP

(.)

with α a complex-valued constant. So far, this is the same approach by
which Kretschmann derived the Lorentzian resonance. However, instead
of taking unit background and resonance amplitudes, we make no more
approximations, instead writing the expression as follows:

R(kx) = ∣B +
Aeiϕk′′SP

k′SP + ik′′SP − kx
∣
2

, kx > kcr. (.)

We neglect the part of the reĘectance curve under the critical angle, since
the linear approximation breaks down at that point.

We can use this expression for extracting the surface plasmon wave
vector from  curves. ere are ĕve ĕt parameters in the expression:
B, the background amplitude; A, the resonance amplitude; ϕ, the phase
difference between the background and resonance; and k′SP and k′′SP, the
complex surface plasmon wave vector. e advantage of this expression
is that it yields a surface plasmon wave vector without requiring any ad-
vance knowledge of the composition or thicknesses of the layer system: it
is completely phenomenological.
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Figure .: Plot of the relative
error in the value of nSP (green
curves) made by using the
value obtained from ĕtting
the numerically calculated
reĘectance curves with (.).
e orange curves are the result
of simply estimating n′SP from
the resonance angle, which is
a fairly good approximation
for plasmonium (a), but not at
all for scattrium (b). e error
in the real part in (a) has been
multiplied by  to improve
visibility.

Figure . shows how effective the phenomenological ĕt is, compared
to estimating the surface plasmon mode index from the resonance an-
gle. On the vertical axis, we plot the approximation error, i.e. the de-
viation between the calculated and estimated mode index. For low-loss
metals like plasmonium, the phenomenological ĕt proves excellent (er-
ror < .), but it is acceptable to use the resonance angle (error < ).
For scattrium-like metals, the resonance angle is quite far off, whereas the
phenomenological ĕt performs reasonably well.

A     for the phenomenological ĕtting
procedure, we calculate  curves for a Kretschmann conĕguration ex-
periment for a wavelength range from 500 to 800 nm. As a substrate we
take  glass with Sellmeier dispersion; asmetal we take a 40 nm layer  Schott AG, .

of gold, the optical properties of which we approximate with a Drude
model with added Lorentzian oscillators, ĕt to published values. Gold  Rakić, Djurišić, Elazar, and

Majewski, .is a plasmonium-like metal; however, around 500 nm, it has an interband
absorption which increases the loss so that it enters a more scattrium-like
regime. erefore, this wavelength range nicely tests both symmetric and
asymmetric  curves. We add an extra capping layer of 5 nmaluminum
oxide with Sellmeier dispersion to the calculations, in order to illustrate  Babeva, Kitova, Mednikarov,

and Konstantinov, .how the ĕtting procedure performs with more than three layers. Finally,
we add Gaussian noise with a standard deviation of  to the signal. We
then treat these data asmeasured results and ĕt themwith (.). We show
the results in Fig. ..

In Fig. .b, we see that the phenomenological ĕtting expression per-
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Figure .: Performance of the
phenomenological ĕtting ex-
pression of (.) on realistic,
yet ĕctitious,  “measure-
ments,” calculated for a gold
layer capped with Al2O3 on
a  substrate. (a) Gener-

ated ĕctitious data points for
selected wavelengths, along

with the corresponding ĕt as a
solid line. Note the transition
from a scattrium-like regime
to a plasmonium-like regime
as the wavelength increases.

(b) Comparison of the calcu-
lated surface plasmon mode

index nSP (blue lines; real part
solid, imaginary part dashed)
to that obtained from the ĕt-
ting procedure (red dots; real

part closed, imaginary part
open). For comparison, the
green dots are the real part

of the mode index estimated
from the resonance angle.

forms admirably, much better in any case than estimating the real part of
the mode index from the resonance angle. As the metal gets lossier and
more scattrium-like, the ĕt gets slightly worse. It has a tendency to un-
derestimate the imaginary part of the mode index, but that is not entirely
surprising since the asymmetric dip is much wider than the “measured”
angle range at 500 nm, as we see from the blue curve in Fig. .a.

. Otto conĕguration

T O  (Fig. .b) can be described by the same
mathematics as the Kretschmann conĕguration. e only difference is
that the thin layer ε1 is a low-index dielectric and the metal ε2 is on the
outside. Because of this similarity, the Otto conĕguration is oen consid-
ered equivalent to the Kretschmann conĕguration; but a common mis-
conception is that there is practical difficulty in realizing it experimentally
and it is therefore unattractive.

It is true that the original experimental realization of the Otto conĕg-
uration, with air as the low-index dielectric, involves bringing the metal
within a few microns of the prism and maintaining a constant air gap
width over the entire surface, which was, and is even now, notoriously
difficult to accomplish. For example, contamination by one or more dust
particles of 75 μm would make a one-micron air gap completely impos-  :.

sible. However, there is no reason why the low-index dielectric has to be
air. For example, in chapters  and , we describe Otto experiments using
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Figure .: Free-space wave-
length dependence of the gap
thickness necessary for critical
coupling in a three-layer Otto
conĕguration of a glass sub-
strate with n = 1.5 separated
from bulk plasmonium or
scattrium by a vacuum gap.
Compare Fig. .; the gap
thickness is several orders
of magnitude larger in the
Otto conĕguration than the
metal layer thickness in the
Kretschmann conĕguration.

a high-index Ęint glass prism and magnesium Ęuoride as the low-index
dielectric, where no gaps or moving parts are involved.

In this section, wewill explore inwhich circumstances theOtto conĕg-
uration ismore appropriate for  measurements than the Kretschmann
conĕguration. Wewill take the high-index dielectric to be a glass-like sub-
stance (n = 1.5) as before, the low-index dielectric to be vacuum, and the
metal to be a bulk layer of either plasmonium or scattrium.

F  , we use (.) to calculate the critical coupling thickness
for the vacuum gap between the glass and themetal, shown in Fig. .. In
the Otto conĕguration, the middle layer must be several orders of magni-
tude thicker than the middle layer in the Kretschmann conĕguration in
order to achieve critical coupling. is is because the surface plasmon’s
radiative losses must be equal to its damping losses at critical coupling, as
we previously explained. A vacuum gap is lossless compared to a metal
layer, and so the evanescent wave in the middle layer decays over a much
larger distance in the vacuum gap than it does in the metal layer. If it has
not decayed enough before bridging the gap, then the system is overcou-
pled. In addition, there is true total internal reĘection at the glass-vacuum
interface in the Otto conĕguration, whereas the wave in the metal layer
in the Kretschmann conĕguration is not purely evanescent.

is is why the required layer thickness is many times that shown in
Fig. .; in order to balance the damping and reradiation losses, the ĕeld
must cross a much larger distance compared to the Kretschmann case.
Also, unlike the Kretschmann case, the critical coupling thickness now
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Figure .: Calculated 
curves for the Otto conĕg-

uration at two far-apart fre-
quencies. e outer layers are
plasmonium (a) and scattrium
(b), with a vacuum gap of crit-

ical coupling thickness (see
Fig. . to read off the thick-

ness) and an n = 1.5 glass-like
substrate. e critical angle

for total internal reĘection in
the substrate is indicated by

a gray line. Compare Fig. ..

exhibits a strong frequency dependence. e vacuum layer thickness d1

scales approximately with i/kz1 (.); kz1/k0 is a small imaginary number,
so d1 ∝ 1/ω. is means that when designing an Otto experiment for a
broad range ofwavelengths, amiddle layer of constant thicknesswill cause
the resonance to become undercoupled or overcoupledmuch closer to the
design wavelength than in the Kretschmann conĕguration.

W   the wavelength-dependent  curves for the Otto
system. We show a number of examples in Fig. .. ere are some no-
table differences from the equivalent  curves for theKretschmann sys-
tem (Compare Fig. ..)

For both plasmonium and scattrium, nothing special happens at the
critical angle, unlike the Kretschmann case. is is because the Otto con-
ĕguration deals with true frustrated total internal reĘection, where the
incident wave, which is evanescent in the gap, can still excite a propagat-
ing wave in the metal for some angles. e Kretschmann conĕguration,
on the other hand, has the vacuum on the outside, so whether the light
couples into the surface plasmon mode or not, it cannot travel into the
vacuum in any case; the total internal reĘection is not frustrated, only
perturbed.

In addition, secondary resonances are visible at lower angles (kx <
k0) than the main plasmonic resonances. Calculating the mode proĕle Davis, .

shows that these are waveguide modes in the vacuum gap, as suggested
by Tillin and Sambles. e Kretschmann conĕguration’s metal layer is Tillin and Sambles, .
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Figure .: Plot of the relative
error in the value of nSP (green
curves) made by using the
value obtained from ĕtting
the numerically calculated
reĘectance curves with (.).
e orange curves are the result
of simply estimating n′SP from
the resonance angle and n′′SP
from the half-width, which
is a good approximation for
plasmonium (a), but not for
scattrium (b). e error in
the real part in (a) has been
multiplied by  to improve
visibility.

not thick enough to support such modes.
In both cases, the resonance lineshape is approximately Lorentzian and

easy to interpret. Using the phenomenological ĕtting expression of (.),
shown in Fig. ., on the ĕctitious measurements of Fig. . shows that
the analysis works well for both metals, performing comparably to the
Kretschmann conĕguration. e resonance angle (making sure to take
the resonance corresponding to the plasmon mode and not a waveguide
mode) is a good indicator of the real part of the surface plasmon mode
index for plasmonium, but not at all for scattrium. Again, this is because
the approximation of (.) breaks down close to the critical angle.

Since the curves in Fig. . all have a reasonably well-deĕned line-
width, we can also estimate the imaginary part from the resonance’s half-
width at half-maximum. For scattrium, this yields reasonable results, but
for plasmonium, this estimate is even slightly better than using (.). is
indicates that, at least for the imaginary part of the mode index, the Otto
conĕguration produces much more easily interpretable experimental re-
sults than the Kretschmann conĕguration when studying surface plas-
mons on a metal with large ε′′.

. Conclusion

W     of the optical properties ofmet-
als on the resonance lineshape in  measurements and examined the
advantages and disadvantages of the Kretschmann and Otto conĕgura-
tions for  experiments.
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We have demonstrated that there are advantages to the Otto conĕg-
uration as a method of studying surface plasmons, contrary to what is
oen thought. In the case of a low-loss metal, such as our ĕctitious “plas-
monium,” it performs comparably to the Kretschmann conĕguration, al-
though the Kretschmann conĕgurationmay be preferable if working with
a large range of wavelengths. When working with high-loss metals such
as our ĕctitious “scattrium,” the resonance angle yields no information
about the real part of the surface plasmon mode index in either conĕgu-
ration. However, the linewidth of an Otto curve is always a good indica-
tor of the imaginary part of the mode index. Kretschmann curves, on the
other hand, can be asymmetric for high-loss metals, in which case they
do not have a well-deĕned linewidth.

In addition, the Otto conĕguration allows the use of arbitrarily thick
layers of metal. is is important because a scattrium-type metal ĕlm
must be very thin if used in the Kretschmann conĕguration: so thin,
in fact, that the thickness is of the same order as the electron scattering
length, possibly affecting the optical properties of the ĕlm.

We have also demonstrated a method for analyzing  curves that
allows extraction of the complex surface plasmon mode index without
any knowledge of the composition, thicknesses, or optical properties of
the various layers of metal and dielectric involved in the attenuated total
reĘection coupling system. is phenomenological method of analysis
yields values for the imaginary part of the mode index even when con-
fronted with an asymmetric Kretschmann lineshape. It also yields more
accurate values for the real part than can be obtained from the resonance
angle, and works well for metals with large or small ε′′.
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Appendix . Surface plasmon resonance curves beyond crit-
ical coupling

I  ,    the critically coupled case of
, by adjusting the thickness of the middle layer (metal in the Kretsch-
mann conĕguration, air in the Otto conĕguration) depending on the fre-
quency of the incident light. is is not feasible in a real experiment, un-
less one is willing to deal with a layer of adjustable thickness, such as an
oil layer whose thickness is changed by adjusting the mechanical pressure
on the two surrounding solids; even then, it is impossible to measure a  Quail, Rako, and Simon, .

broad range of wavelengths all at once.
erefore, in this appendix we evaluate a more realistic experimental

situation for our ĕctitious metals plasmonium and scattrium. We take
the plasma frequency of both metals to be h̵ωp = 15 eV, allowing us to
put in actual wavelengths; and we take a layer thickness appropriate to a
wavelength of 800 nm (Ω = 0.10). at is, in the Kretschmann conĕg-
uration, 24.3 nm for plasmonium and 10.0 nm for scattrium; and in the
Otto conĕguration, 2.4 μm for plasmoniumand 1.4 μm for scattrium. We
“measure” at six wavelengths, from 500 to 1000 nm.

Figure . shows the reĘectance curves for the Kretschmann conĕg-
uration. ey are not so different from the curves in Fig. ., bearing
out our assertion that the coupling efficiency does not have a very strong
dependency on the frequency in the Kretschmann conĕguration. It is in-
teresting to note that the intuitive rule of thumb, that the resonance line-
width is related to the imaginary part of the surface plasmon wave vec-
tor, now seems to apply to scattrium; the blue (λ = 500 nm) resonance is
broader in both plasmonium and scattrium, and this corresponds tomore
absorption in the metals at higher frequencies.

Figure ., on the other hand, shows the reĘectance curves for the
Otto conĕguration. e secondary waveguide modes are once again visi-
ble at angles less than the critical angle, but this time they are closer to
the critical angle. It is also immediately apparent that the coupling is
much worse when the layer thickness is not optimized for critical cou-
pling. e coupling to scattrium’s surface plasmon mode at kx = 1.01k0

for λ = 500 nm is much weaker than the coupling to the waveguide mode
at kx = 0.97k0. In plasmonium, the surface plasmon mode has all but
disappeared at 500 nm, visible as a tiny blip at kx = 1.015k0.

Note that themain resonance in scattrium is not necessarily plasmonic
at all wavelengths; it appears to the le of the critical angle, i.e. kmode < k0,
for λ = 900 and 1000 nm. It is a hybrid between a surface plasmon and
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Figure .:  curves for a
number of representative wave-

lengths, for a Kretschmann
experiment with (a) a 24.3 nm

layer of plasmonium on a glass-
like substrate with n = 1.5
surrounded by vacuum; (b)
a 10.0 nm layer of scattrium
on the same substrate, also

in vacuum. e metal layers’
thicknesses are designed for

critical coupling at λ = 800 nm,
but not for other wave-

lengths. Compare to Fig. ..

waveguidemode, being strongly damped in the intermediate layer, but not
entirely evanescent away from the interface. is emphasizes the modal
character of the Otto plasmon; when the layer width is different from the
critical layer width for surface plasmon mode, the effective index shis.

In all cases, even for resonances away from critical coupling, the phe-
nomenological expression of (.) still yields accurate results. e sim-
plermethod of extracting the real part of the surface plasmonwave vector
from the resonance angle is a reasonable approximation in the Otto con-
ĕguration, whereas it does not work in Kretschmann conĕguration if the
lineshapes are asymmetric, as is the case with scattrium.

e conclusion stands, that the Otto conĕguration is a better exper-
imental technique for probing surface plasmons on lossy scattrium-like
metals. However, we note that if a broad enough wavelength range is re-
quired, then a constant gap width degrades the coupling to the surface
plasmon mode, and in that case it is better to deal with the Kretschmann
conĕguration’s asymmetric lineshapes.
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Figure .:  curves for a
number of representative wave-
lengths, for an Otto experiment
with (a) plasmonium separated
from a n = 1.5 glass-like
substrate by a vacuum gap of
2.4 μm; (b) scattrium sepa-
rated from the same substrate,
by a vacuum gap of 1.4 μm.
e gaps’ thicknesses are de-
signed for critical coupling
at λ = 800 nm, but not for
other wavelengths. Compare to
Fig. ..




