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
Plasmonic optical vortex tomography

We present a novel method for analyzing the wavefront of optical vortices which does not involve
interferometry, but rather uses surface plasmons. We employ a subwavelength slit in a gold ĕlm to cut
slices from an optical vortex beam, and measure the diffraction of the generated surface plasmons by

scattering them off a second slit. By moving the slits across the vortex beam, we create a tomogram, from
which we can determine the vortex charge of the incident beam at a glance. We present results for vortex

beams of integer and half-integer vortex charge.

. Introduction
Portions of this chapter were
previously published as:
Chimento, ’t Hoo, and Eliel
(a), Chimento, ’t Hoo,
and Eliel (b).

V      as varied as supercon-
ductors, superĘuids, Bose condensates, Ęuid Ęow, and optics. A property
that all vortices share is that, when traversing a closed path around a vor-
tex, an order parameter of the system changes by 2πQ, withQ the “charge”
of the vortex, the sign of which is associated with a direction of circula-
tion. In this chapter, we will concern ourselves with phase vortices in the
transverse ĕeld distribution of an optical beam, a subject that has attracted
considerable attention in recent years. Vortex beams have found applica-  Soskin and Vasnetsov, ;

Allen, Barnett, and Padgett,
.

tions in optics at both microscopic and astronomical scales. ey also
 Foo, Palacios, and Swartzlan-
der, .
 Jesacher et al., .

occur naturally in speckle ĕelds scattered from inhomogeneous or rough
surfaces.

 Baranova et al., .
An optical vortex in its simplest form, namely the transverse cross sec-

tion of a vortex beam, manifests itself as a doughnut-shaped intensity dis-
tribution; the phase increases azimuthally around the doughnut and the
intensity vanishes at the center because the phase is undeĕned there. e
number of cycles with which the phase increases on a closed loop around
the doughnut equals the vortex charge Q. e photons in a vortex beam
of charge Q carry Qh̵ orbital angular momentum.  Allen, Beijersbergen, et al.,

.ere are several ways tomeasure the charge of an optical vortex beam.
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Figure .: Schematic of the
experimental setup. e ap-
propriate diffraction order
of the fork hologram is se-

lected by means of an aperture
(not shown); the others are

blocked. A typical fork holo-
gram is shown in Fig. ., while
a typical nanostructure on the

sample is shown in Fig. ..
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Since it is a property of the light beam’s phase, some sort of interferometry
must be used. One way is to interfere the light beam with itself  or with a

 Harris, Hill, Tapster,
and Vaughan, .

plane wave and examine the fringe pattern, which contains a dislocation

 Padgett, Arlt, Simp-
son, and Allen, .

at the position of the vortex. Other ways are to build a mode sorter, or

 Mair, Vaziri, Weihs, and
Zeilinger, ; Leach,

Padgett, Barnett, Franke-
Arnold, and Courtial, .

use a multipoint interferometer and calculate the vortex charge from the
resulting interference pattern.

 Berkhout and Beij-
ersbergen, .

H   a simple and elegantmethod of determining the vor-
tex charge of an optical beam. It is based on the use of surface plasmons.
ese surface plasmons are generated by scattering the incoming vortex
beam off a narrow emitter slit milled in a surface plasmon-supporting e slits are physically identi-

cal, but we call them “emitter”
and “receiver” to distinguish
their role in the experiment.

gold ĕlm. A second receiver slit, which is some distance from the emit-
ter, picks up the diffracted surface plasmon wave, converting it back to
a free-space optical beam. By translating the gold ĕlm across the vortex
beam, we construct a tomographic pattern of the plasmonic diffraction
that allows direct visualization of the vortex charge if it is an integer. If
the vortex charge is not an integer, it is still possible to estimate it.

Surface plasmons are a convenient tool for this tomography, for three
reasons. For one, tomography, at its most fundamental, entails slicing
three-dimensional data into two-dimensional sections without loss of in-
formation. Surface plasmons propagate in two dimensions, providing a
means for tomography; surface plasmon diffraction provides a means of
analysis of the sliced ĕeld. Second, we can achieve subwavelength resolu-
tion in our tomograms by translating the subwavelength slits in subwave-
length steps. Finally, the coherent conversion of light to surface plasmons
and vice versa allows transportation from the emitter to the receiver with-
out loss of information, except for some power loss.

. Integer vortex experiment

F .  our experimental setup. We create a linearly polar-
ized beam of integer vortex charge by diffracting a Gaussian beam (λ =
830 nm) off of a computer-generated fork hologram, shown in Fig. .. Bazhenov, Vasnetsov,

and Soskin, . ebeamsdiffracted from this grating carry a vortex charge dependent on
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the diffraction order and the vortex inscribed in the hologram; we select
a diffraction order that carries the desired vortex charge. Once the beam
propagates to the far ĕeld of the hologram, it has the doughnut-shaped
intensity and azimuthal phase as described above.

Figure .: Typical design of
a fork hologram with vortex
charge .

A4f lens system transports the beam to the back focal plane of amicro-
scope objective, which focuses the far ĕeld of the beam onto the sample,
down to a size of several microns. On its way, the beam passes through
a half-wave plate which allows the experiment to be conducted with any
desired linear polarization.

e sample (Fig. .) consists of a gold ĕlm, 200 nm thick, attached to
a glass substrate by a 10 nm titanium adhesion layer. e strongly dissi-
pative titanium layer ensures that surface plasmons can only propagate on
the gold-air interface. e sample contains pairs of double slits, which  Schouten, Kuzmin, et al.,

.are ion-beam milled through the gold. e slits used in this experiment
are all 50 μm long and 100 nm wide, and the pairs are separated by 25,
50, and 75 μm. For comparison, the damping length of surface plasmons
on gold at this wavelength is around 50 μm. We illuminate the emitter
slit with our vortex beam and image the light emerging from the receiver
slit onto a  camera. e incident beam is polarized so as to couple  : charge-coupled device

optimally with surface plasmons.

 nm Au
 nm Ti
 µm glass

Figure .: Sketch of a typical
nanostructure on the sample.
e slits are  nm wide and
 μm long, and separated by
, , or  μm.

We illuminate the emitter slit with the beam, causing it to launch a sur-
face plasmon wave along the gold-air interface towards the receiver slit.

 e emitter also launches a
wave in the other direction, but
we do not detect this wave.

Its amplitude at the emitter is given by the local ĕeld amplitude incident
on the slit. In between the slits, the wave diffracts freely. e receiver
slit scatters the diffracted plasmonic ĕeld into free space. e diffraction
pattern contains information on both the phase and the amplitude of the
light incident on the emitter slit.

e sample is mounted so as to allow translation transverse to the opti-
cal axis. At the start of a measurement, the beam is incident to one side of
the slit pair. We translate the sample along the positive z-axis in 100 nm
increments so that the emitter slit travels through the beam. At each po-
sition of the sample, we record the intensity proĕle of the light scattered
from the receiver slit. We then assemble these proĕles together in a tomo-
gram, so that each vertical slice of the tomogram corresponds to one slice
of the incident vortex beam aer propagation from emitter to receiver.
Figure . shows a sketch of the tomography process.

We calculate the expected tomograms by modelling the emitter slit as
a plasmonic line source with its ĕeld amplitude given by the incident vor-
tex beam’s free-space ĕeld amplitude at that point on the sample. We then
calculate the evolution of this ĕeld under propagation from emitter to re-
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Figure .: Close-up sketch
of the tomography process.
A vortex beam, with a ring-
shaped transverse intensity

proĕle, is incident on the emit-
ter slit. e slit scatters the

incident light, launching sur-
face plasmons, proportional

to the ĕeld amplitude (which
is very low inside the ring.)
e surface plasmons prop-
agate to the receiver slit and
are scattered into free space.

incoming vortex beam

emitter slit
receiver slit

direct transmission (not used)

plasmon-assisted transmission

ceiver, using the Fresnel-Kirchhoff diffraction integral, modiĕed for sur-
face plasmons. Wemodel the receiver slit as another line, which scatters Teperik et al., .

light into free space proportional to the plasmonic amplitude it receives.

. Tomograms

F .  the calculated andmeasured tomograms for incident
beams of vortex charge Q = +1, −1, and −3, respectively, using slits sep-
arated by 25 μm. e tomographic patterns are very different from the
original ring-shaped vortex beams. First, the pattern is no longer rota-
tionally symmetric, but has a two-fold symmetric, elongated shape. Sec-
ond, the patterns for beams with vortex charge Q = +1 and Q = −1 are
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Figure .: Calculated (a–c) and
experimental tomograms (d–f)
for beams on slits separated
by 25 μm, with vortex charge
Q = +1 (a and d), Q = −1 (b
and e), and Q = −3 (c and f).
Note that the intensity zeroes in
(c) and (f) occur nicely along a
straight line.

each other’s mirror image. ird, the orientation of the long axis of the
pattern carries the sign of the vortex charge. Finally, the magnitude of
the vortex charge can be read off directly from the number of spatially
separated intensity zeroes in the pattern. Our calculations, which are in
excellent agreement with our experimental results, indicate that these in-
tensity zeroes correspond to phase vortices in the tomogram.

Figure . shows calculated and measured tomograms for a Q = −1
incident beam for slit pairs with increasingly larger separations. As the
distance between the slits increases, the tomographic pattern remains es-
sentially the same but spreads out more, approaching Fraunhofer diffrac-
tion of the surface plasmons.

. Interpretation

T       why the observed to-
mographic patterns look as they do. e surface plasmon ĕeld ampli-
tude at the emitter slit diffracts as the plasmons travel from the emitter to
the receiver. We can consider the ĕeld’s amplitude at the emitter equiv-
alent to an amplitude mask in a screen, with bright areas corresponding
to slits. e screen is illuminated from behind by a plane wave at an an-
gle determined by the ĕeld’s phase at the emitter. If we place a second
screen at some distance, corresponding to the receiver, then the positions
of the bright and dark spots in the tomogram follow directly by consider-
ing where constructive and destructive interference occur on the second
screen.

We discuss the Q = −3 case in some detail with the aid of Fig. .. In
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Figure .: Calculated (a–c)
and experimental tomograms

(d–f) for a Q = −1 vortex beam
on slits separated by distances
of 25 μm (a and d), 50 μm (b
and e), and 75 μm (c and f).
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Figure .: (a) Calculated inten-
sity pattern of a Q = −3 vortex
beam. ree important cross

sections are indicated by verti-
cal lines. (b) Calculated tomo-

gram for a Q = −3 vortex beam
on slits separated by 25 μm (cf.
Fig. .c). e indicated cross
sections are identical to those

of Fig. .a. Local minima and
maxima in the tomograms are

marked by × and ○, respec-
tively. ese marks correspond
to those in the diffraction pat-
terns depicted schematically

in Figs. ., ., and ..
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Fig. .a we depict the intensity pattern of the incident beam at the surface
of the gold ĕlm; it is intersected by three vertical lines labeled ,  and ,
corresponding to three different positions of the emitter slit. In Fig. .b
we show the tomogram of the Q = −3 beam, with the equivalent three
positions of the receiver slit. Line  is tangent to the ring of maximum
intensity of theQ = −3 input beam. In the tomogram, the intense diffrac-
tion spot along line  corresponds to the case that the emitter slit picks up
an essentially single-spot intensity distribution with a slanted phase front,
arising from the azimuthal phase dependence of the incident beam. e
corresponding diffraction pattern is that of a plane wave incident at an
angle through a single slit: a single off-axis spot results (see Fig. .).

Figure .: Diffraction pattern
of light at a single slit under

oblique incidence. Corre-
sponds to line  in Fig. ..

When the emitter slit is positioned more towards the center of the in-
cident beam, along line , the generated plasmonic ĕeld is bimodal with
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a dip between the intensity maxima. In this region the phase of the plas-
monic ĕeld varies steeply and linearly with position along the emitter slit.
At this particular position of this slit, the relative phase of the two max-
ima of the bimodal intensity distribution equals 2π. Conceptually, the
plasmonic diffraction pattern should therefore be similar to the pattern
arising from a double slit illuminated at an angle in such a way that the
two slits have equal phase, up to a factor 2π (see Fig. .).

2π

Figure .: Diffraction pattern
of light at a double slit under
oblique incidence, such that
the local ĕeld at the slits is in
phase. Corresponds to line  in
Fig. ..

Finally, when the emitter slit is at line , the center of the incident beam,
the plasmonic ĕeld will again be bimodal, now with a phase difference of
3π. e diffraction pattern at the receiver slit will be double-slit-like with
a zero in the center as a result of destructive interference (see Fig. .).

3π

Figure .: Diffraction pattern
of light at a double slit in
antiphase. Corresponds to line
 in Fig. ..

. Non-integer vortex experiment

I    the application of thismethod tomore complex
vortex-carrying ĕelds, we also conducted experiments with a non-integer
vortex beam, using a spiral phase plate to generate the desired ĕeld with

 Oemrawsingh et al., .

vortex charge Q = 3 1
2 . Figure . is a sketch of a spiral phase plate. e

far-ĕeld diffraction pattern of such a beam is not rotationally symmet-
ric, so we oriented the phase plate to produce an incident intensity pat-
tern as shown in Fig. .a, with the slits oriented vertically. e incident
pattern shows three close-lying, separated Q = +1 vortices in the cen-
ter, with an additional one intruding from the bottom. Figures .b and
.c show two measured tomograms at different slit separations, while
Figs. .d and .e show the corresponding calculations. ese tomo-
grams are devoid of any symmetry. Speciĕcally, the three vortices are not
arranged along a straight line, unlike the integer-vortex case. ey also
show a fourth vortex intruding from the side, although the visibility of
the fourth vortex in the measurements is somewhat marginal. Currently
we do not account for any inhomogeneity in the slit width; this problem
might be solved by using a ptychographical algorithm, which iteratively
reconstructs a ĕeld’s complex amplitude, and the transfer function of the
object used to probe it.  Maiden and Rodenburg,

.

Figure .: Sketch of a typical
spiral phase plate.

For a better understanding of the relation between the fractional part
of the vortex charge and the presence and position of the fourth vortex in
the tomogram, we calculated the tomograms of beamswith various vortex
charges between+3 and+4, shown in Fig. .. We see that asQ increases,
the fourth vortex, as seen in Fig. ., approaches the three existing vor-
tices, and eventually joins them in a straight line at Q = +4. e vortices
are arranged in a straight line only when Q is an integer. is suggests
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Figure .: (a) Far-ĕeld dif-
fraction pattern of a Q = +3 1

2
vortex beam; (b) experimental
tomogram of this beam on slits
separated by  μm; (c)  μm;
(d) calculated tomogram of an

ideal Q = +3 1
2 vortex beam

on slits separated by  μm; (e)
 μm. ree intensity nodes

are visible, but they are not
arranged along a straight line.

that a non-integer vortex charge can be determined from the deviation of
the vortices’ arrangement from a straight line, the angle of which is de-
termined mainly by the ratio of the distance between the slits to the spot
size of the beam. Our calculations indicate that any dependence on Q is
less than ° and may be a numerical artifact.

. Summary

W     of surface plasmon polaritons to
analyze a vortex-carrying light beam slice by slice, in order to recover
information about the beam’s phase: speciĕcally, its vortex charge. Al-
though the determination of non-integer vortex charges is not possible
at a glance, we have shown through calculations that the magnitude of a
non-integer vortex charge may be determined by measuring how much
the arrangement of the vortices deviates from a straight line.

Phase retrieval normally requires some technique such as interferom-
etry or a combination of near-ĕeld and far-ĕeld measurements. e cur-
rent experiment’s two slits can be considered to measure the surface plas-
mons’ near ĕeld and far ĕeld. erefore, the technique might be general-
ized to phase retrieval of arbitrary ĕelds. Also, the sample’s small size and
the small distances between the optics involved suggest that the experi-
ment can be easily miniaturized. erefore, it has a potential application
as a wavefront sensor.

Figure .: Calculated tomo-
grams of vortex beams with Q
ranging from +3 to +4 on slits

separated by  μm. (a) Q = +3;
(b) Q = +3 1

4 ; (c) Q = +3
1
2 ;

(d) Q = +3 3
4 ; (e) Q = +4.

e locations of the intensity
zeroes are indicated with dots.

In (a) and (e), the size of the
original vortex ring is super-
imposed on the tomogram.
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