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
A subwavelength slit as a quarter-wave
retarder

We have experimentally studied the polarization-dependent transmission properties of a nanoslit in a
gold ĕlm as a function of its width. e slit exhibits strong birefringence and dichroism. We ĕnd,

surprisingly, that the transmission of the polarization parallel to the slit only disappears when the slit is
much narrower than half a wavelength, while the transmission of the perpendicular component is

reduced by the excitation of surface plasmons. We exploit the slit’s dichroism and birefringence to realize
a quarter-wave retarder.

. Introduction
is chapter was previously
published as: Chimento,
Kuzmin, et al. ().

T       through small perfo-
rations in metal ĕlms has a venerable history and has important appli-

 Lord Rayleigh, ; Bethe,
; Bouwkamp, ; Jones
and Richards, .

cations in the ĕeld of optical data storage. It dates back to the middle

 Bouwhuis et al., .
of the nineteenth century when Fizeau described the polarizing effect of
wedge-shaped scratches in such ĕlms.

 Fizeau, .is ĕeld has recently come back to center stage following the observa-
tion that, at a speciĕc set of wavelengths, the transmission of a thin metal
ĕlm containing a regular two-dimensional array of subwavelength aper-
tures is much larger than elementary diffraction theory predicts. is  Ebbesen et al., .

phenomenon of extraordinary optical transmission, which is commonly
attributed to surface plasmons traveling along the corrugated interface,
has spawned many studies of thin metal ĕlms carrying variously-shaped
corrugations and perforations. ese include holes with circular, cylin-
drical, or rectangular cross sections, either individually or in arrays, and  Astilean, Lalanne, and

Palamaru, .elongated slits. e polarization of the incident light is an important pa-
 Takakura, ; Yang and
Sambles, ; Suckling et al.,
.

rameter, in particular when the width of the hole or slit is subwavelength
in one or both directions. e case of a slit which is long in one dimension
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and subwavelength in the other seems particularly simple, as elementary
waveguide theory predicts that it acts as a perfect polarizer when the slit
width is less than about half the wavelength of the incident light.

For inĕnitely long slits, one can deĕne  and  polarized modes. : transverse electric
 : transverse magnetic e  mode’s electric ĕeld vector is perpendicular to the long axis of

the slit, and the  mode has its electric ĕeld vector parallel to the long
axis. In standard waveguide models, the metal is usually assumed to be
perfect, so that the continuity equation for the electric ĕeld implies that
its parallel component must be zero at the metallic boundaries. In a slit
geometry, this implies that -polarized light incident on such a slit will
not be transmitted by the structure if the wavelength λ of the incident
light is larger than twice the slit width w. is width is commonly re-
ferred to as the cutoff width. e -polarized mode, on the other hand,
can propagate unimpeded through the slit, the effective mode index in-
creasing steadily as the width is reduced. For this reason one expects Astilean et al., ;

Takakura, . very narrow slits in metal ĕlms to act as perfect polarizers.
 Fizeau, .

While the perfect metal model is an excellent approximation for wave-
lengths in the mid to far infrared or microwave domains, the model is
too naïve when the wavelength of the incident light is smaller, because
of the dispersion in the permittivity of metals. As a consequence, in the
visible part of the spectrum the  mode cutoff width of real metals like
silver and aluminum is slightly smaller than λ/2, and the cutoff is more Schouten, Visser, Lenstra, and

Blok, ; Schouten, Visser,
Gbur, Lenstra, and Blok, .

gradual. Although the  mode propagates through the slit, it couples to
surface plasmon modes on the front and back surfaces of the slit, which Schouten,

Kuzmin, et al., . act as a loss channel. Since these losses are heavily dependent on the slit
width, the transmitted intensity of the  mode is more dependent on Lalanne, Hugonin, and

Rodier, ; Baudrion
et al., ; Kihm, Lee,

Kim, Kang, and Park, .

this width than the perfectly conducting waveguide model predicts.
Herewe demonstrate that, for thinmetal ĕlms, such a nanoslit also acts

as an optical retarder, and that the / transmission ratio is around
unity well below the cutoff width, approaching zero only when the slit is
extremely narrow. We have employed these properties to turn such a slit
into a quarter-wave retarder.

. Description of experiment

I  ,   in Fig. ., we illu-
minate an array of ten 10 μm by 50–500 nm slits with a laser beam at
λ = 830 nm, at normal incidence (see Fig. ..) For all practical purposes,
each slit’s length can be considered inĕnite compared to its width and the
laser wavelength. e slits are milled through a 200 nm thick gold ĕlm
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QWP Sample Objective QWP LP

Camera

HWP

Polarizer Stokes analyzer Figure .: Sketch of the
experimental setup. :
half-wave plate, : quarter-
wave plate, : linear polarizer.
e sample (see Fig. .) is
illuminated on the gold side,
using light with a controlled
polarization. e transmitted
light’s polarization is analyzed
for each pixel of a  camera.
e Stokes analyzer consists
of a quarter-wave plate and a
linear polarizer, which can be
rotated independently of each
other under computer control
to any desired orientation.

using a focused Ga+ ion beam. e slits’ widths increase stepwise from
50 nm, well below the cutoff width for -polarized light, to 500 nm, at
which value the lowest  mode can propagate through the slit. e ĕlm
is deposited on a 0.5 mm thick Schott  borosilicate glass substrate,
covered by a 10 nm titanium adhesion layer which damps surface plas-
mons, ensuring that their propagation length is negligibly short on the
gold-glass interface. e laser beam width at the sample is approximately
4 mmso that, effectively, the structure is illuminated homogeneouslywith
a Ęat wavefront. e light transmitted by the structure is imaged on a   : charge-coupled device

camera (Apogee Alta ) by means of a 0.65  microscope objective.  : numerical aperture

e polarization of the light incident on the structure is controlled by a
combination of half-wave and quarter-wave plates, enabling us to perform
the experiment with a variety of input polarizations.

We analyze the polarization bymeasuring the Stokes parameters of the
light transmitted through each slit, using a quarter-wave plate and a lin-
ear polarizer. We deĕne the Stokes parameters according to the follow-
ing standard convention: S0 is the total intensity, S1 is the intensity of the S0 = Itotal

S1 = IH − IV
S2 = ID − IA
S3 = IR − IL

horizontal component ()minus the intensity of the vertical component
(), S2 is the intensity of the diagonal (° clockwise) component minus
the intensity of the anti-diagonal (° counterclockwise) component, and
S3 is the intensity of the right-handed circular component minus the in-
tensity of the le-handed circular component. Since the transmitted light
is fully polarized, it is convenient to use the normalized Stokes parameters
s1 = S1/S0, s2 = S2/S0, and s3 = S3/S0, so that each ranges from −1 to +1.

 nmTM

TE

 nm
 µm

Figure .: Sketch of the
sample. It consists of a 200 nm
gold ĕlm sputtered on top of
a glass substrate. Note that
the vertical scale is greatly
exaggerated compared to the
horizontal scale. Adapted from
Kuzmin (, p. ).
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(b) Incident: s1 =−1
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Slit width (nm)

(d) Incident: s2 =−1
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Slit width (nm)

(f) Incident: s3 =−1

Figure .: Normalized Stokes
parameters of the light trans-

mitted through the slit, for
illumination with (a) horizontal

linear polarization (s1 = +1),
(b) vertical linear polarization
(s1 = −1), (c) diagonal linear

polarization (s2 = +1), (d) an-
tidiagonal linear polarization
(s2 = −1), (e) le-handed cir-
cular polarization (s3 = +1),
and (f) right-handed circular
polarization (s3 = −1). e

polarization ellipses above each
graph provide a quick visual

indication of the polarization
state of the transmitted light.
e solid lines represent the

results of our model, described
later on in section ., based
on simple waveguide theory.

. Results and interpretation

T  S  of the transmitted light, for each of the six
basic Stokes input polarizations (s1,2,3 = ±1), is shown in Fig. .. Fig-
ures .a and .b conĕrm that the  and  directions are the slit’s
eigenpolarizations. However, each has its own damping and propaga-
tion constant, as we will show. In the general case, a slit is therefore both
dichroic and birefringent, both properties depending on the slit width w.

Figures .c–f show the variation of the Stokes parameters of the trans-
mitted light when the incident light is not polarized along one of the
slits’ eigenpolarizations. In all cases, s1 is seen to go to −1 as the slit
gets narrower, reĘecting the fact that very narrow slits transmit only -
polarized light.

Let us examine Figs. .c–dmore closely, where the incident wave is di-
agonally linearly polarized (s2 = ±1). As the slit width w is reduced from
500 to 300 nm, the transmitted light gradually becomesmore andmore el-
liptically polarized, while themain axis of the polarization ellipse remains
oriented along the polarization direction of the incident light; see the line
of polarization ellipses in each frame. As w is reduced further to around
250 nm, the transmitted polarization assumes a more circular form. For
narrower slits, the polarization ellipse orients itself essentially vertically,
reĘecting the fact that the polarization becomes more linear, ultimately
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being purely -polarized at w = 50 nm. In Figs. .e–f, with circular in-
put polarization, a similar process happens asw is reduced, except that the
transmitted polarization changes gradually from almost circular to linear,
before becoming nearly -polarized at w = 50 nm.

We note that there is a point in Figs. .e–f, aroundw ≈ 250 nm, where
circular polarization is transformed into linear polarization. is implies
that the slit acts as a quarter-wave retarder, albeit with unequal losses for
the fast and slow axes. Because of the inequality of these losses, the inci-
dent diagonal polarization in Figs. .c–d is not transformed into a per-
fectly circular polarization. However, a properly oriented linear polariza-
tion incident on a w ≈ 250 nm slit whose orientation compensates for the
differential loss, will be transformed into circular polarization. Experi-
ments on other slits have shown that the measured dichroism is highly
dependent on the slit parameters, such as milling depth, and the inci-  Bosman, , p. .

dent wavelength. Realizing an ideal quarter-wave retarder therefore re-  Bogers, , p. .

quires either careful design and manufacture of the slit, or serendipity.
As expected, the curves of s2 and s3 as a function of w Ęip their sign

when the sign of the incident Stokes parameter is Ęipped. When the in-
cident light’s s2 and s3 are exchanged, on the other hand, so are s2 and s3
in the transmitted light. e curve of s1 remains the same for all non-s1
incident polarizations. e results shown in Fig. . can all be represented
in one ĕgure by plotting the measured Stokes parameters on the Poincaré
sphere. Reducing the slit width then traces out a path of the transmitted
polarization state over the Poincaré sphere’s surface, as shown in Fig. ..

I      , we write the inci-
dent ĕeld as a Jones vector, preceded by an arbitrary complex amplitude
such that the  component is real and positive:

Ein = Ã [
ETE

ETM eiψ
] , with ETE,ETM ≥ 0. (.)

We express the transmission properties of the slit as a Jones matrix. Its
off-diagonal elements are zero, because the  and  directions are the
slit’s eigenpolarizations, and the diagonal elements represent the complex
amplitude transmission. e output ĕeld is then the Jones vector:

Eout = [
tTE 0
0 tTM

] Ein. (.)

First, it is instructive to calculate the transmissionTTE andTTM in order to
get an idea of the slit’s dichroism. Here, we deĕne the transmissionT = ∣t∣2
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Figure .: Path of the trans-
mitted polarization state over
the Poincaré sphere as the slit

width decreases. e inci-
dent polarization state starts
at one of the poles or equato-
rial points, represented by the

boxlike markers. e spherical
markers, with size proportional

to the slit width, mark the
transmitted polarization state
as it travels over the sphere’s
surface. e solid lines are

the predictions of our model.

s3

s1

s2

Incident state:
s2 = +1
s2 = −1
s3 = +1
s3 = −1

as the ratio of power emerging from a slit to power incident on the area of
the slit. It can be calculated from the unnormalized Stokes parameter S1

for incident lightwith s1 = ±1. TTE andTTM are plotted in Fig. ., normal-
ized so thatTTE = 1 atw = 500 nm. As the slit widthw is decreased, we see
that the  and  transmission also decrease until w ≈ 350 nm. When
w is further reduced, the  transmission goes through a minimum at
w ≈ 150 nm, where the light-surface plasmon coupling is maximum. Lalanne et al., .

It increases again when the slit width gets even smaller, whereas the 
transmission goes through a gradual cutoff, becoming negligible only for
the narrowest slits. Apparently, a narrow slit in a thin metal ĕlm is not
such a good polarizer as oen assumed.

In order to calculate the phase lag Δφ between the  and -polar-
ized components of the transmitted ĕeld, we write the normalized Stokes



     -  

0 100 200 300 400 500
Slit width (nm)

0.0

0.2

0.4

0.6

0.8

1.0
Tr

an
sm

iss
io

n 
(d

im
en

sio
nl

es
s)

TM
TE

Figure .: Dichroism of
a subwavelength slit. e
points show the measured
transmission for  and -
polarized incident light as
a function of the slit width
w, normalized to the 
transmission at w = 500 nm.
e solid lines show our
model’s result for the slit
transmission according to (.)
and (.).

parameters in terms of (.):

s1 = −
TRE2

TM − E2
TE

TRE2
TM + E2

TE
, (.)

s2 =
2
√
TRETMETE

TRE2
TM + E2

TE
cos(Δφ − ψ), (.)

s3 = −
2
√
TRETMETE

TRE2
TM + E2

TE
sin(Δφ − ψ), (.)

where TR = ∣tTM/tTE∣2 is shorthand for the transmission ratio, ETM and
ETE are the transmitted ĕelds, and ψ is the – phase lag; see (.). We
calculate Δφ from our measured Stokes parameters using (.), (.), and
(.). We see in Fig. . that Δφ decreases almost linearly with increasing
slit width. It passes through a value of π/2 at w ≈ 250 nm. Although the
retardation equals λ/4, the 250 nm slit does not act as an ideal quarter-
wave retarder because the amplitudes of the  and -polarized com-
ponents of the transmitted light are not equal, as noted earlier.

Figure . illustrates the slit’s dichroism and Fig. . its birefringence.
e effect that we observe in Fig. . as the slit width is decreased from
500 to 300 nm can be explained in terms of increasing birefringence and
small dichroism in that range. Below 300 nm, dichroism becomes more
important, and consequently, the main axis of the polarization ellipse ro-
tates. e dichroism observed here was also suggested by calculations by
Nugrowati, Pereira, and van de Nes, where ultrashort  pulses were  Nugrowati et al., .

shown to experience lower propagation speeds than  pulses through a
slit in an aluminum layer.

If the slit width is further decreased past the surface plasmon-induced
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Figure .: Birefringence of a
subwavelength slit. e points
represent the measured phase

difference between the  and
 modes as a function of the
slit width. ey are obtained

from a ĕt of the various Stokes
parameters of Fig. .. e solid
line shows the calculated phase
difference according to (.). At
a certain slit width, indicated by
the arrow, the phase difference

reaches π/2 and the slit acts
as a quarter-wave retarder.
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Figure .: Cross-section of our
model slit. e relevant phys-
ical quantities are illustrated.

e indices of refraction n1,2,3
are depicted using differently
colored materials, although
they could well be the same

material in an experiment. e
evanescent tails sketched in red

represent surface plasmons.
e light is transmitted through

the slit from le to right.

c3

c3
c1

c1

r23
t23

r21
t12

n1 n3

n2 w

d

ε

ε

minimum at w ≈ 150 nm, the dichroic effect becomes even larger. e
-polarized component of the transmitted light becomes weaker and
weaker, while the  component grows, causing the polarization ellipse
to collapse to a vertical line. We see that the waveguide’s  cutoff does
not resemble a sharp cutoff at w = λ/2 at all, but rather a gradual one.

. Waveguide model
We have made our com-
puter code for this model

available (Chimento, b).
W    to explain these experimental results by mod-
eling the slit as a simple lossy waveguide. Our metallic slit forms a rect-
angular waveguide with one dimension of the rectangle much larger than
the other. For that reason we can effectively describe each slit as a step-
index planar waveguide, with its walls made of a metal with relative per-
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mittivity ε. Inside the waveguide, the solutions to Maxwell’s equations
separate into  and  modes, each with a complex propagation con-
stant β. Although the equations are in closed form, we must calculate the
propagation constants for each mode, βTE and βTM, numerically.  Snyder and Love, .

For the  and  modes, we calculate complex reĘection and trans-
mission coefficients r21, t12, r23, and t23 (see Fig. .) using the Fresnel
equations at normal incidence, substituting the effective mode index for
the index of medium . e effectivemode index is calculated by dividing
the propagation constant by k0. As shown in Fig. ., the index  indicates
the medium from which the light is incident (air),  the waveguide, and 
the medium into which the transmitted light emerges (glass in our exper-
iment). is simpliĕcation avoids calculating overlap integrals between
the guided mode and themodes outside the waveguide, but still describes
the observed phenomena quite well. We can then treat the waveguide as a
Fabry-Pérot interferometer and calculate each mode’s complex transmis-
sion through a waveguide of length d,

t123 =
t12t23eiβd

1 − r21r23e2iβd
, (.)

which gives for the transmission

TTE =
n3

n1
∣tTE
123∣2, (.)

TTM =
n3

n1
∣tTM
123 ∣2 − 2∣c1∣2 − 2∣c3∣2. (.)

Here, c1 and c3 are the coupling constants of the slit system to a surface
plasmon mode traveling in one direction away from the slit on the inter-
face with medium  or , respectively. Numerical values for these param-
eters can be calculated using Eq. () of Lalanne et al., which gives an  Calculating c1 and c3 requires

evaluating an integral with
poles close to the real axis.
Common adaptive quadrature
algorithms for numerical
integration cannot handle
it, yielding a garbage answer
without obviously failing.
Gaussian quadrature works
for numerically evaluating the
integral.
 Lalanne et al., .

approximate analytical model for the coupling of a slit mode to a surface
plasmonmode. As an illustration of the important role these surface plas-
mon coupling constants play in the phenomenon described here, the 
transmission modelled with and without coupling to surface plasmons is
shown in Fig. .. e  mode does not couple to surface plasmons.

It is interesting to note in Fig. . that the surface plasmon coupling
coefficients on both sides exhibit a maximum at nw/λ ≈ 0.23 and a min-
imum at nw/λ ≈ 1, as predicted by Lalanne et al., where n is the index

 Lalanne et al., .of refraction of the medium outside the slit on each respective side. ese
two curves added together yield a maximum in the surface plasmon exci-
tation, and therefore a dip in the  transmission, at aroundw ≈ 150 nm.
Even though this dip is not at nw/λ ≈ 0.23 as Lalanne et al. predict, it is
caused by two plasmon excitation maxima that do follow the prediction.
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Figure .: Calculated effect
of surface plasmons on the

transmission of -polarized
light as a function of the slit

width w. e green line shows
the calculated  transmis-
sion neglecting coupling to
surface plasmons, based on
waveguide theory alone, i.e.

(n3/n1)∣tTM
123 ∣2. e orange line

shows the total fraction of en-
ergy 2∣c1∣2 converted to surface

plasmons on the illuminated
(air) side of the sample accord-

ing to Lalanne et al. ().
Likewise, the purple line shows
the fraction 2∣c3∣2 converted to
surface plasmons on the unil-
luminated (glass) side. Finally,

the red line shows the total
 transmission according

to (.). In these calculations,
we disregard the numerical

aperture of the imaging system.
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In our model we ignore the thin titanium adhesion layer present be-
tween the gold and the glass. According to the model, the ∣c3∣ coefficient
for a thick titanium layer would be slightly higher than that of the gold
layer. However, we expect that the layer is too thin to have any effect on
the coupling between the slit  mode and surface plasmons. It does not
prevent the light from scattering into the surface plasmon mode, but only
ensures that the surface plasmon mode is very lossy.

Our model exhibits good agreement with the measurements, despite
the fact that it does not contain any ĕtting parameters. e slit’s gradual
 cutoff is predicted well, and can be ascribed to gold not being a per-
fect conductor at this wavelength, and to the considerable dispersion of
the reĘection coefficients r12 and r23 around cutoff. e model also pre-
dicts a plasmon-related  transmission dip at the right slit width. In
Fig. ., we compare these calculated values to our measurements. In our
calculations, we took the ĕnite  and its inĘuence on the  and 
transmission into account, which is explained in section Appendix ..

e complex transmission also gives us the relative phase delay be-
tween the  and  modes:

Δφ = arg tTM
123 − arg tTE

123 (mod 2π). (.)

is phase difference is plotted in Fig. . and compared to the values
calculated from our measurements using (.), (.), and (.). e val-
ues predicted by our simple model for the phase delay exhibit excellent
agreement with the measurements.
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e model presented here suggests exploring the parameter space in
order to design slits that act as non-dichroic quarter-wave retarders. e
requirements are that the  and  transmission are equal taking into
account the  loss to surface plasmons, and that the phase difference is
π/2. All these requirements are inĘuenced by themetal permittivity ε(λ),
the slit width w, and the ĕlm thickness d.

O   contradict a recently published proposal
for a quarter-wave retarder using perpendicular metallic nanoslits, in  Khoo, Li, and Crozier, .

which the width of the slits is varied purely to control the  transmis-
sion. Varying the width of the slit also changes the  transmission of the
incident light and the phase difference between the  and  compo-
nents.

. Summary

W      of a subwave-
length slit milled in a 200 nm thick gold-metal ĕlm as a function of the
slit width (50–500 nm), and of the polarization of the incident radiation
(at λ = 830 nm). As the slit width is decreased, the transmission of the
 mode diminishes quite gradually until it becomes very small at a slit
width of about λ/8, reminiscent of the phenomenon of waveguide cutoff.
In contrast, the transmission of the  mode does not vanish. Instead,
it exhibits a minimum associated with the efficient excitation of surface
plasmons.

Moreover, we have studied the birefringence of this subwavelength slit
and found that the phase lag between the  mode and  mode passes
through a value of π/2, so that a properly dimensioned slit can act as a
quarter-wave retarder. We have successfully explained our experimental
results with a simple waveguide model.
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Appendix . Reciprocity of the slit transmission
is section is an ap-

pendix that did not appear
in the published paper.

W      that we corrected our model
for the ĕnite  of the detector in our experiment. e necessity of this
correction was brought to our attention by an apparent violation of reci-
procity in the experiment. In the experiments described in the foregoing
sections, we illuminated the sample on the gold side (hereaer the ‘for-
ward’ conĕguration), but when we turned the sample around and per-
formed the experiment again while illuminating it from the glass side (the
‘reverse’ conĕguration), the results were different!

is is, of course, not really a violation of reciprocity, but it is caused
by the detector’s . e exit aperture of the slit is subwavelength, so it
radiates in all directions, but not uniformly. e slit’s scattering proĕle
depends on the shape of the mode inside the slit, and also on the medium
that the slit scatters into. erefore, not all the radiation that actually exits
the slit is emitted into the cone of angles that the detector can collect.
Which fraction is collected by the detector depends on the circumstances,
meaning that the two conĕgurations cannot be compared directly without
correcting for this effect.

We assume that the detector is situated in air, with an index of refrac-
tion n4. In the forward conĕguration, n1 = n4 and n3 is the index of the
glass substrate. Conversely, in the reverse conĕguration, n1 is the index
of the glass substrate and n3 = n4.

T        . We treat the slit as a
parallel-plate waveguidewithmetal walls inwhichwe assume that higher-
order modes do not propagate. e metal wall boundary is at x = ±w/2.
We call the complex amplitudes of the waveguide modes inside the slit
ẼTM(x, z) and ẼTE(x, z). ey depend on the permittivity ε, the index of
the slit material n2, and the slit width w.

To ĕnd the angular scattering proĕle of the modes, we take the Fourier
transform of the mode proĕle at the exit aperture of the slit: ẼTM(x,d)
and ẼTE(x,d). is gives us the scattered electric ĕeld amplitude F̃ as a
function of transversewavenumber kx. is is appropriate if the collection
objective is in the far ĕeld of the slit. We estimate the Fresnel number NF

using typical values for our experiment,

NF =
a2

Lλ
= w2

4Lλ
≈ (5 × 10−7)2

4 ⋅ 1 × 10−3 ⋅ 8 × 10−7
≈ 25 × 10−14

32 × 10−10
≪ 1, (.)

which justiĕes the assumption of Fraunhofer diffraction at 1 mmdistance
from the slit. L is in this case the working distance of the objective.
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Figure .: (a) Scattering
proĕle of a 250 nm wide slit,
as a function of angle. (b)
Transmission of scattered
light at the n3–n4 interface
as a function of scattering
angle. Note the Brewster angle
at the point where the 
transmission reaches unity.
Other parameters: λ = 800 nm,
n2 = 1.0, n3 = 1.5, n4 = 1.0.

e angle θ of the corresponding plane wave component is equal to

θ = arcsin(kx/n3k0), (.)

where k0 = 2π/λ is the wavenumber in free space. We plot the angular
scattering proĕles for a 250 nm wide slit in Fig. .a, calculated numeri-
cally by fast Fourier transform.

In the forward conĕguration (light incident on the air side) described
above, we have to take into account the Fresnel losses at the n3–n4 (glass-
air) interface. Part of the scattered energy never leaves the glass substrate,
due to total internal reĘection. e  and  components are also trans-
mitted differently, since there is a Brewster angle for .

For the transmission T = 1 − R, we write:

TTE(θ) = 1 −
⎛
⎜
⎝

n3 cos θ − n4
√

1 − ( n3
n4

sin θ)2

n3 cos θ + n4
√

1 − ( n3
n4

sin θ)2

⎞
⎟
⎠

2

(.)

TTM(θ) = 1 −
⎛
⎜
⎝

n3
√

1 − ( n3
n4

sin θ)2 − n4 cos θ

n3
√

1 − ( n3
n4

sin θ)2 + n4 cos θ

⎞
⎟
⎠

2

(.)

We plot these transmission proĕles in Fig. .b. ey are independent
of the slit width, or indeed any of the slit parameters. Also note that for
n3 = n4, T = 1, as it should be since there is no interface in that case.

e ĕnite  of the detector means that not all of the scattered light
is collected. Light outside a maximum acceptance angle θmax misses the
detector. Due to Snell’s law, NA = n3 sin θmax, and therefore

θmax = arcsin(NA/n3), (.)
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no matter what medium n4 the detector is actually in.
e detector signal, then, must be corrected by a factor

Ci =
∫

θmax

−θmax
Ti(θ) ∣F̃i(n3k0 sin θ)∣

2 dθ

∫
π/2

−π/2
∣F̃i(n3k0 sin θ)∣

2 dθ
, (.)

where i ∈ {TE,TM}, which is the ratio of energy entering the detector to
the total energy scattered from the slit. is factor depends on λ, ε, n2, n3,
n4, w, andNA. (It does not depend on d or n1; the factor containing d can
be taken outside the integrals and divided away, and n1 only inĘuences
the coupling to surface plasmon modes on the front interface.)

I      , we take λ, ε, n2,
and n4 as design parameters, so we will not examine their inĘuence on
the correction factor. e index n3 can take one of two values: for reverse
illumination, n3 = n4, whereas for forward illumination n3 ≠ n4. Since we
are only interested in the ratio of  to  transmission, we will examine
the ratio of the two correction factorsCTM/CTE in four situations: forward
and reverse illumination, and for low and high .

We examine the ratio because the values of CTM and CTE individually
are not particularly surprising; a high- detector will collect more of
the light in both forward and reverse illumination, obviously. Reverse
illumination also causes more light to enter the detector, no matter the
 because there is no total internal reĘection loss at the n3–n4 interface,
so Ti(θ) = 1 in (.).

In Fig. .a we plot the ratio CTM/CTE for reverse illumination, cal-
culated for two different numerical apertures. We see that the numerical
aperture does not inĘuence the shape of the curve very much.

Forward illumination, for which the ratio of the correction factors is
plotted in Figs. .b, is quite different. If the detector has low , it be-
haves much the same as in reverse illumination, with slightly more dif-
ference between  and . In the high- case, on the other hand, the
detector picks up more  light than  light for almost every slit width:
there is about a 6% difference. A look at Fig. . suggests that this happens
when the  is large enough that θmax is large enough that it includes the
Brewster angle at the n3–n4 interface, at which all the  light is trans-
mitted and not all the  light.
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Figure .: Ratio of the two 
correction factors CTM/CTE:
less than  means that the de-
tector picks up more  light,
more than  means the detec-

tor picks up more  light.
It is plotted for two different
 values: low (NA = 0.2,

purple), and high (NA = 0.8,
green). (a) Reverse illumination
(n1 = 1.5, n2 = n3 = n4 = 1.0);

(b) forward illumination
(n1 = n2 = n4 = 1.0, n3 = 1.5).
As usual, we take λ = 800 nm.




