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Preface (Introduction for non-scientists)

A       that is trapped on a Ęat two-
dimensional surface, henceforth called Flatland, as in a famous novel.  Abbott, .

Many devices and effects that are familiar from normal, three-dimension-
al optics also exist in Flatland, usually created by applying some sort of
material or structure to the surface. For example, there are mirrors (Fig-
ure ) and lenses (Figure ).

Figure : A Flatland mirror,
seen from above; it is tilted
at °. e surface plasmon
enters from the right side of the
ĕgure and is partially reĘected
downwards. (Reprinted from
González et al. (), with
kind permission of the author.
Copyright , the American
Physical Society.)

Figure : A Flatland lens,
seen from above. e surface
plasmon enters from the le
side of the ĕgure and is focused
to a small spot about halfway
through the ĕgure. (Reprinted
from Devaux et al. (), with
kind permission of the Optical
Society of America.)

Surface plasmons are special because they can only exist on the bound-
ary surface between a metal that conducts electricity very well, like sil-
ver or gold, and a non-metal substance, such as glass, plastic, or air. (As
always in science, there are exceptions to this rule: semiconductors can
also work instead of metals, and just recently a layer of graphene was

 Gómez Rivas, Kuttge, Kurz,
Haring Bolivar, and Sánchez-
Gil, .

proposed.) e metal has to be a good conductor, so that some of the

 Gorbach, .

electrons belonging to its atoms, called free electrons, can move more or
less unhindered through themetal, from atom to atom. Surface plasmons
cannot exist without free electrons.

In an ocean wave, the water level rises and dips, but nothing like that
happens in Flatland. In a surface plasmon, the wave is connected to back-
and-forthmovements of the free electrons in themetal. Moving electrons
create a wave on the outside of the metal, and the wave moves other elec-
trons inside the metal, which is how surface plasmons move.

Surface plasmons being trapped on the metal’s surface, or conĕned, is
actually one of the desirable properties of surface plasmons, and partly ex-
plains why they are such a popular research subject. Transforming light
into surface plasmons allows light to squeeze into tiny spaces, smaller than
it would otherwise be able to ĕt into. e more you try to conĕne regu-
lar light, the more it tends to spread out, and if you try to cram light into
a channel that is too small to contain it (less than half the light’s wave-
length), then it simply won’t ĕt. Surface plasmons, however, can be  Although that is a simpli-

ĕcation; more about that in
chapter .

stuffed into tiny strip-shaped metal channels or grooves. Researchers
 Maier and Atwater, .
 García-Vidal, .

can use them to develop ultra-small components for circuits that carry



 - 

light instead of electricity: this is the ĕeld of nanophotonics. Even though Nano is a word meaning,
roughly, smaller than one mi-
cron. It refers to the realm of

objects the size of a cell mem-
brane, a virus, or one one-

thousandth of a human hair.

surface plasmons were discovered over ĕy years ago, nanotechnology
has only caught up in the last ten to ĕeen years and made nanophoton-
ics possible.

Another important property of surface plasmons is that conĕning the
light into a small space squeezes all the energy it carries into a small space
too — this effect is known as ĕeld enhancement. Researchers can then
do processes that require a lot of energy without needing a lot of light,
because all the light’s energy is concentrated in one tiny place. is is
also important for antennas in nanophotonics. An antenna is nothing Novotny and van Hulst, .

more than a device that converts free radiation (cell tower signals) into
localized energy (the electronics in your mobile phone) and vice versa.
We can engineer tiny metal antennas in such a way that they have a single
spot where the ĕeld enhancement is very large. If we position a molecule
at that spot, themolecule can broadcast its energy very efficiently through
the antenna. So a good plasmonic antenna is an efficient bridge between
molecule-sized phenomena and human-scale signals in the laboratory.

One problemwith engineering photonic devices is that light is damped
when it interacts with metals. e light’s energy is simply converted into
heat. Obviously, that is a nuisance, but as is usual in science, someone has
ĕgured out a way to turn it into an advantage. Researchers are working
on an experimental cancer treatment that works with tiny particles called
“nanoshells” coated with a thin layer of metal. ese nanoshells can be Loo, Lowery, Halas,

West, and Drezek, . attached to antibodies that seek out cancerous tissue and congregate in
the tumor cells. Infrared light normally passes harmlessly through body
tissue; however, the nanoshells are engineered to act as receiver antennas
for the light, absorbing it and concentrating all the energy in a small space.
e resulting release of heat kills the cancer cells.

For further reading, I recommend a  Scientiĕc American article
about surface plasmons and their applications. For a more technical Atwater, .

reviewof the latest developments, there is an open-access article in Journal
of Physics D, only a few months old at the time of writing. Hayashi and Okamoto, .

Polarization and holes in metal sheets

T   of surface plasmon research was unleashed when
omas Ebbesen at  Corporation asked a technician tomake a grid of
tiny holes in ametal sheet. When Ebbesen picked up the sheet he was sur-
prised that he could partially see through it even though the holes were
supposedly tiny enough that hardly any light should have been able to
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get through. Moreover, the transmitted light was colored, and the color
changed when he turned the sheet and viewed it at an angle. He ĕrst
thought the technician hadmade amistake and drilled the holes too large,
but when it became clear that there was nothing wrong with the holes, he
and his co-workers hit upon surface plasmons as an explanation. is
resulted in a landmark paper and the discovery of an effect called ex-  Ebbesen, Lezec, Ghaemi,

io, and Wolff, .traordinary optical transmission.
Simply speaking, light falling on a small enough hole in a thin metal

sheet launches surface plasmons into Flatland from the edge of the hole.
ese surface plasmons travel across the metal sheet to the next hole,
where they turn into light again and pass through the hole. is extra light
augments the small amount of light that was already traveling through the
hole; combined, enough light travels through the metal sheet for it to be
translucent.

Chapter  describes researchwhere the opposite result occurs; we stud-
ied rectangular-shaped slits in a metal sheet, but only one slit at a time.
Studying the slits in isolation means that they still launch surface plas-
mons from their edges, but since the surface plasmons have no other slits
to go to, they just travel through Flatland to nowhere and eventually die
out. is actually causes less light to make it through the slit than other-
wise would.

We use this effect to create a tiny version of a device called a quarter-
wave plate. It takes light with linear polarization and converts it into cir-
cular polarization. Polarization is best thought of as two people, Alice and
Bob, holding opposite ends of a long rope (Figure ). If Alice wishes to
send a wave to Bob over the rope, she shakes her end back and forth, and
a wave travels down the rope to Bob. e rope oscillates back and forth
in one plane, and we call this linear polarization. However, Alice can also
spin her end of the rope in a circle, in which case a circular wave travels
down the rope to Bob; we call this circular polarization. ere are even
two variations, depending on whether Alice spins clockwise or counter-
clockwise, called le-handed and right-handed. Light can do the exact
same thing.

Since a quarter-wave plate converts linear polarization to circular, it
is as if Alice sends a linearly polarized wave to Bob, but by the time it
reaches Bob it has become circularly polarized. is polarization change
doesn’t happen in a rope, but it does happen in light. Quarter-wave plates
are present in  projection systems: the image meant for your le eye
is projected with le-handed circular polarization, and the one for your
right eye is right-handed. Filters in your  glasses make sure that each
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Figure : (a) Alice is send-
ing a linearly polarized wave

to Bob. (b) Alice is send-
ing a le-handed circu-

larly polarized wave to Bob.

(a) (b)

eye only sees the correct image.
Just as in Ebbesen’s extraordinary optical transmission, this miniatur-

ized quarter-wave plate also stems from an accidental discovery: in 
my co-worker Nikolay Kuzmin discovered by chance that circularly po-
larized light was coming out of the back sides of slits in a metal sheet. Kuzmin, , pp. –.

We continued this line of research in chapter , using the effects ex-
plored in chapter  to build a device that converts light with spin angu-
lar momentum into light with orbital angular momentum. Consider the
Earth: our planet has spin angular momentum because it revolves around
its own axis, causing day and night. eEarth also has orbital angularmo-
mentum because it orbits around the Sun, which causes the seasons. Par-
ticles of light also have both of these kinds of angular momentum. In fact,
a light particle spinning around like a top is just another way of looking
at circular polarization. Light is both a particle and a wave; spin angular
momentum is to a light particle as circular polarization is to a light wave.

Phase vortices

S,    is to a light particle as
phase vortex is to a light wave. “Phase vortex” sounds as if it came straight
out of Star Trek, but it can be easily illustrated with a nice piece of oceano-
graphical research from  (Figure .) Ray, .

e ocean tides exhibit phase vortices. For example, we can see one
in the middle of the Paciĕc Ocean, at about ° south and ° west. It
is not a whirlpool; in fact, if you were to travel there, you would notice
nothing special about that spot. e white lines indicate places where it
is high tide at the same time; each line is an hour earlier or later than its
neighbor. We could say that the instant of high tide “rotates” around the
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Figure : Tides in the world’s
oceans. Along each white line,
it is high tide at exactly the
same time, and neighboring
white lines’ high tides are
separated by one hour. e col-
ored spaces represent the tide
strength (blue is weaker and red
is stronger), and the amplitude
is indicated in centimeters.
(Public domain image. Credit
to  Goddard Space Flight
Center;  Jet Propulsion
Laboratory; Scientiĕc Visu-
alization Studio; Television
Production -/.
Special thanks to Dr. Richard
Ray, Space Geodesy branch,
/)

phase vortex. So when the lines all meet in the center of the phase vortex,
then when is it high tide? Always? Never? e answer is that the phase
vortices are always in the blue regions where the tide is weakest: there is
no tide there!

Light cando the same thing: we can create a laser beamwhere the “high
tide” of the light wave rotates around the center of the laser beam. Since
there is no tide in the center, the laser beam is dark there. We can also have
two, three, or more high tides rotating around one laser beam, and they
can go clockwise or counterclockwise: the number of high tides is called
topological charge. ese laser beams with dark holes in the middle, also
called donut beams, can be used to encode information densely.

 Padgett, Courtial, and Allen,
; Molina-Terriza, Torres,
and Torner, .

So, converting spin angularmomentum to orbital angularmomentum,
as we describe in chapter , means that we create a donut beam out of a
circularly polarized laser beam with no donut. Returning to the example
of the Earth, it is as if we couldmake it spin slower but orbit faster, thereby
lengthening the day and shortening the year. Hitting the Earth with a
giant comet would do that, but that requires the comet to contribute its
angular momentum. With our device, we can create donut beams non-
destructively, without adding or losing angular momentum.

One problem with donut beams is that they are hard to identify. e
donut part is easy to see, but light waves are so fast (trillions of cycles per
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second) that it’s completely impossible to measure the number of high
tides directly, or the direction in which they are rotating. However, we
need to know this information in order to use the beams. e usual way
of determination involves using a second laser beam to probe the ĕrst one.
However, with the research in chapter  we have created a device where
the second laser beam is not necessary. We used another metal sheet with
two slits: one to launch surface plasmons into Flatland and one to catch
them and take them out of Flatland. e slit takes a “slice” of the phase
vortex, similar to the way that a longitude line in Fig.  represents a slice
of the ocean. By examining the surface plasmons caught at the second slit,
we can recover all the information we need about the phase vortex: topo-
logical charge, and whether it is rotating clockwise or counterclockwise.

Aluminum and solitons

T   of this dissertation examines surface plasmons trav-
eling on an aluminum surface. Most surface plasmon research uses gold
or silver because these materials absorb less light. Aluminum absorbs
light in a certain frequency range, which makes it less desirable for some
uses. However, we are interested in aluminum speciĕcally because of this
feature!

e familiar shiny gray color of a polished metal surface arises when
the metal reĘects all the colors of visible light approximately equally. Fig-
ure  shows what percentage of light of each color aluminum reĘects (as
well as light that is invisible to the human eye and therefore has no color:
ultraviolet to the le and infrared to the right.) We see that this is true
for aluminum as well, but something else happens in the infrared, to the
right of the visible part of the spectrum: aluminum reĘects less light and
absorbs more.

In order to see why this is interesting we need to think about a soliton:
a short wave that remains unchanged as it travels along. Ocean waves,
for example, break and disperse, while short light pulses get longer and
spread out more as they travel. Solitons, on the other hand, do not. John
Scott Russell discovered them by chance in  when he observed one in
Scotland’s Union Canal. Figure  shows a modern-day reconstruction of
the discovery. Solitons remained an oddball curiosity for over a century
until they found an application in ĕber-optic communications: the abil-
ity to send a pulse of light through a ĕber without any distortion proved
invaluable.

Since pulses disperse in anymaterial, the existence of a soliton depends
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Figure : Percentage of light
reĘected by aluminum, versus
wavelength of the light (color).
To the le is ultraviolet light
(invisible to human eyes), then
visible light (indicated by a
rainbow of colors), and to the
right of that is infrared light
(again invisible.) About 
of visible light is reĘected,
but there is a downward dip
in the near infrared, which is
what we are interested in here.
e dots and the solid line
indicate measurements from
two different sources (Smith,
Shiles, and Inokuti, ; Rakić,
Djurišić, Elazar, and Majewski,
.) e inset shows the
interesting region in detail.

on two opposite effects that counterbalance each other. One of these ef-
fects, where blue light travels faster through the material than red light,
is called anomalous dispersion. It is oen found paired with an absorp-  is is a terribly inappropriate

name, because anomalous
dispersion is not an anomaly
at all: it is present in most
materials. ‘Anomalous’ implies
that it’s rare or not understood,
but in this case it’s simply the
opposite of normal dispersion,
where red light travels faster
than blue light in a material.

tion such as that of aluminum, shown in Fig. . Anomalous dispersion
can be counterbalanced by something called the Kerr effect in order to
create a soliton, whereas normal dispersion can’t. is is why anomalous
dispersion is an interesting subject of research.

Aluminum itself is not a goodmaterial for transporting solitons, for the
simple reason that it is opaque and therefore not very good at transport-
ing light pulses. However, aluminum paired with another material could
create some of the conditions for a surface plasmon soliton! It is with this
in mind that we conducted the research described in chapters , , and .

Chapter  is a discussion of how to conduct and interpret surface plas-
mon measurements. We discovered in the course of our aluminum re-
search that one of the usual methods for probing surface plasmons, called
theKretschmann conĕguration, does notwork aswell for surface plasmons
on aluminum as it does for gold and silver. e aluminum measurements
are more difficult to interpret, so one of the new ĕndings of chapter  is
an effective method of interpreting them. We also ĕnd that a different
arrangement of the experiment, called the Otto conĕguration, is actually
quite useful under these circumstances, even though it is usually consid-
ered less effective than the Kretschmann conĕguration.

In chapter , we demonstrate the ĕrst measurements of anomalous
dispersion for surface plasmons, and in chapter , we show how cooling
down the aluminum with liquid nitrogen enhances the effect quite a bit.
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Figure : Modern-day reen-
actment of Scott Russell’s

discovery of solitons in the
Union Canal. (Figure reprinted

from “Soliton wave receives
crowd of admirers” (),
with license.) e soliton

is visible as the “mountain”
of water behind the boat.

With this discovery, we are one step closer to creating a surface plasmon
soliton and the Flatland analog to ĕber-optic technology.

T   through all of this research is ĕnding and explor-
ing the Flatland equivalents of phenomena from optics in the normal,
three-dimensional world, such as solitons. We also exploit Flatland ef-
fects to bring about other phenomena in three-dimensional optics, such as
spin-to-orbit conversion. In the future, as surface plasmons becomemore
and more important, from antennas to sensors to curing cancer, technol-
ogy will move more into Flatland. For this, we need to have a Flatland
‘engineering toolbox’ that is as complete as our three-dimensional engi-
neering toolbox that has been ĕlled gradually over the past few centuries.




Introduction

is chapter is a short scientiĕc
introduction to the work de-
scribed in this thesis. Readers
interested in an introduction
accessible to non-scientists
should turn to page .

A   is a light wave bound to a metal surface, ĕrst pre-
dicted in  as a side-effect of bombarding metal ĕlms with fast elec-
trons and observed two years later. Surface plasmons occur inmany dif-

 Ritchie, .
 Powell and Swan, .

ferent geometries ofmetal, fromnanoparticles to Ęatmetal surfaces. is

 Moskovits, .

dissertation is about the latter type, which propagates along the two-dim-
ensional metal surface, as opposed to ‘normal’ light which travels through
three-dimensional space, as a sort of two-dimensional light wave. e  Bell et al., ; Bozhevolnyi

and Pudonin, ; Ditlbacher,
Krenn, Schider, Leitner, and
Aussenegg, .

surface plasmon’s restriction to the metal surface allows us to send opti-
cal signals through channels of extremely small size.

 Maier and Atwater, ;
García-Vidal, .. Devices using subwavelength slits in metal ĕlms

I       that a very narrow slit or scratch  Jasperson and Schnat-
terly, ; Sánchez-Gil and
Maradudin, ; Lalanne,
Hugonin, and Rodier, ;
Schouten, Kuzmin, et al., .

in a thin metal ĕlm, under certain circumstances, can convert incident
light with the correct polarization into surface plasmons, and vice versa.
Which metal is used makes an important difference.

Such conversions take a three-dimensional optical mode and change it
to a corresponding two-dimensional one, and back again. is conver-  Altewischer, van Exter, and

Woerdman, .sion is sensitive to the mode’s local phase front. is inĘuence of phase,
and the aforementioned sensitivity to polarization, allow all sorts of sur-
face plasmon effects having to do with polarization, phase, or both.

In chapter , taking a metal ĕlm made of gold,  nm thick, we ex-
amine how much light is transmitted through slits of varying thicknesses
from  to  nm, and how this transmitted light is polarized. Surface
plasmons are excited at one particular polarization, and we exploit this
to control the polarization of the transmitted light. At a certain slit width
andĕlm thickness, the slit turns out to be able to convert linearly polarized
light into circularly polarized, and vice versa. We also developed a sim-



 - 

ple model that explains this phenomenon in an intuitive way, by viewing
the slit as a waveguide with imperfectly conducting walls, albeit a very
short one. Our approach provides a convenient way to implement the
functionality of a quarter-wave plate at a very small scale.

We exploit this phenomenon again in chapter ; this time with circular
slits, where the slit creates an optical vortex from circularly polarized light,
thereby converting optical spin angularmomentum to optical orbital an- Beth, .

gular momentum. is curious interaction due to symmetry has been Allen, Beijersbergen,
Spreeuw, and Woerdman, . studied in birefringent materials, space-variant gratings, and even in

 Ciattoni, Cincotti, and
Palma, ; Marrucci,

Manzo, and Paparo, .
 Bomzon, Kleiner, and Has-
man, ; Lombard, Drezet,

Genet, and Ebbesen, .

electron beams.

 Karimi, Marrucci, Grillo,
and Santamato, .

Chapter  describes an experiment with two very narrow slits milled
parallel to each other in a very thin gold ĕlm. One slit is illuminated with
light, and at the slit it is partly converted to surface plasmons. e surface
plasmons travel across the ĕlm to the other slit, where they are converted
once again into light, and we record the light intensity distribution; dur-
ing transit, the shape of the plasmon wavefront changes due to diffrac-
tion. We use this diffraction to retrieve information about the incident
light’s phase; the phase cannot be measured directly, a well-known prob-
lem in physics, and is usually probed using interference with a second Fienup, .

light beam. In order to demonstrate this technique, we measure the Baranova, Zel’dovich,
Mamaev, Pilipetskii,
and Shkunov, .

phase of beams containing various optical vortices. is technique could
produce a wavefront sensor with a much higher spatial resolution than
achievable with the usual techniques, which could be interesting for as-
tronomy and  lithography.

. Anomalous dispersion of surface plasmons

D    of the velocity of light in a material
depending on the light’s wavelength. For example, if we send a pulse of red
light and a pulse of blue light into a glass brick at the same instant, they
will emerge from the other side at different times. Usually the red light
arrives earlier than the blue light (which is called “normal dispersion”),
but sometimes the reverse is true: “anomalous” dispersion. Anomalous
dispersion is a prerequisite for solitons, light pulses that can travel a long
distance without changing their shape. Anomalous dispersion is needed
to balance the normal dispersion caused by the other prerequisite for soli-
tons, the Kerr effect. When the two occur together, they can cancel each
other out, allowing a pulse that propagates without changing. ere have
been several, mainly mathematical, proposals for surface plasmon soliton
pulses in recent years.

 Feigenbaum and Orenstein,
; Bliokh, Bliokh, and
Ferrando, ; Davoyan,

Shadrivov, and Kivshar, ;
Sámson, Horak, MacDonald,
and Zheludev, ; Marini,

Skryabin, and Malomed, ;
Walasik, Nazabal, Chauvet,

Kartashov, and Renversez, .



 

Anomalous dispersion mostly occurs in the neighborhood of wave-
lengths that the material absorbs. An ideal metal behaves according to
the free-electronmodel, or Drudemodel, where there are no absorptions,
and the dispersion is always normal, in the frequency region of metallic
behavior. However, themetal aluminum has an absorption in the near in-
frared, a so-called parallel-band absorption, which we aim to exploit.  Strong, ; Bennett, Silver,

and Ashley, .
 Harrison, .

In the second part of this work, we try to answer the question of whether
this absorption also causes surface plasmons on an aluminum surface to
have anomalous dispersion. We probe this using a method where the sur-
face plasmons are excited by incoming light from a prism. is technique
has two variations, named aer the German physicists Kretschmann  Kretschmann, .

and Otto. e Otto conĕguration is generally considered to be disad-  Otto, .

vantageous compared to the Kretschmann conĕguration. In chapter , we
show that that is a misconception. In addition, we introduce a method of
analysis with which we can properly interpret experimental results using
lossy metals in both conĕgurations, which is impossible with the usual
approach.

Chapters  and  describe the results of measuring surface plasmons
with anomalous dispersion. In chapter  we demonstrate the existence
of surface plasmons with anomalous dispersion on an aluminum surface.
Subsequently, in chapter , we increase the degree of anomalous disper-
sion (expressed in the second-order dispersion parameter) by a great deal,
by cooling the metal to near the temperature of liquid nitrogen, approx-
imately  K. However, there is a tradeoff between more anomalous dis-
persion and more surface plasmon loss, because the surface plasmons de-
caymore quickly in the low-temperaturemetal: the parallel-band absorp-
tion also becomes stronger at low temperatures.  Liljenvall, Mathewson, and

Myers, ; Mathewson and
Myers, .





PART I

DEVICES USING
SUBWAVELENGTH
SLITS IN METAL
LAYERS






A subwavelength slit as a quarter-wave
retarder

We have experimentally studied the polarization-dependent transmission properties of a nanoslit in a
gold ĕlm as a function of its width. e slit exhibits strong birefringence and dichroism. We ĕnd,

surprisingly, that the transmission of the polarization parallel to the slit only disappears when the slit is
much narrower than half a wavelength, while the transmission of the perpendicular component is

reduced by the excitation of surface plasmons. We exploit the slit’s dichroism and birefringence to realize
a quarter-wave retarder.

. Introduction
is chapter was previously
published as: Chimento,
Kuzmin, et al. ().

T       through small perfo-
rations in metal ĕlms has a venerable history and has important appli-

 Lord Rayleigh, ; Bethe,
; Bouwkamp, ; Jones
and Richards, .

cations in the ĕeld of optical data storage. It dates back to the middle

 Bouwhuis et al., .
of the nineteenth century when Fizeau described the polarizing effect of
wedge-shaped scratches in such ĕlms.

 Fizeau, .is ĕeld has recently come back to center stage following the observa-
tion that, at a speciĕc set of wavelengths, the transmission of a thin metal
ĕlm containing a regular two-dimensional array of subwavelength aper-
tures is much larger than elementary diffraction theory predicts. is  Ebbesen et al., .

phenomenon of extraordinary optical transmission, which is commonly
attributed to surface plasmons traveling along the corrugated interface,
has spawned many studies of thin metal ĕlms carrying variously-shaped
corrugations and perforations. ese include holes with circular, cylin-
drical, or rectangular cross sections, either individually or in arrays, and  Astilean, Lalanne, and

Palamaru, .elongated slits. e polarization of the incident light is an important pa-
 Takakura, ; Yang and
Sambles, ; Suckling et al.,
.

rameter, in particular when the width of the hole or slit is subwavelength
in one or both directions. e case of a slit which is long in one dimension
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and subwavelength in the other seems particularly simple, as elementary
waveguide theory predicts that it acts as a perfect polarizer when the slit
width is less than about half the wavelength of the incident light.

For inĕnitely long slits, one can deĕne  and  polarized modes. : transverse electric
 : transverse magnetic e  mode’s electric ĕeld vector is perpendicular to the long axis of

the slit, and the  mode has its electric ĕeld vector parallel to the long
axis. In standard waveguide models, the metal is usually assumed to be
perfect, so that the continuity equation for the electric ĕeld implies that
its parallel component must be zero at the metallic boundaries. In a slit
geometry, this implies that -polarized light incident on such a slit will
not be transmitted by the structure if the wavelength λ of the incident
light is larger than twice the slit width w. is width is commonly re-
ferred to as the cutoff width. e -polarized mode, on the other hand,
can propagate unimpeded through the slit, the effective mode index in-
creasing steadily as the width is reduced. For this reason one expects Astilean et al., ;

Takakura, . very narrow slits in metal ĕlms to act as perfect polarizers.
 Fizeau, .

While the perfect metal model is an excellent approximation for wave-
lengths in the mid to far infrared or microwave domains, the model is
too naïve when the wavelength of the incident light is smaller, because
of the dispersion in the permittivity of metals. As a consequence, in the
visible part of the spectrum the  mode cutoff width of real metals like
silver and aluminum is slightly smaller than λ/2, and the cutoff is more Schouten, Visser, Lenstra, and

Blok, ; Schouten, Visser,
Gbur, Lenstra, and Blok, .

gradual. Although the  mode propagates through the slit, it couples to
surface plasmon modes on the front and back surfaces of the slit, which Schouten,

Kuzmin, et al., . act as a loss channel. Since these losses are heavily dependent on the slit
width, the transmitted intensity of the  mode is more dependent on Lalanne, Hugonin, and

Rodier, ; Baudrion
et al., ; Kihm, Lee,

Kim, Kang, and Park, .

this width than the perfectly conducting waveguide model predicts.
Herewe demonstrate that, for thinmetal ĕlms, such a nanoslit also acts

as an optical retarder, and that the / transmission ratio is around
unity well below the cutoff width, approaching zero only when the slit is
extremely narrow. We have employed these properties to turn such a slit
into a quarter-wave retarder.

. Description of experiment

I  ,   in Fig. ., we illu-
minate an array of ten 10 μm by 50–500 nm slits with a laser beam at
λ = 830 nm, at normal incidence (see Fig. ..) For all practical purposes,
each slit’s length can be considered inĕnite compared to its width and the
laser wavelength. e slits are milled through a 200 nm thick gold ĕlm
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QWP Sample Objective QWP LP

Camera

HWP

Polarizer Stokes analyzer Figure .: Sketch of the
experimental setup. :
half-wave plate, : quarter-
wave plate, : linear polarizer.
e sample (see Fig. .) is
illuminated on the gold side,
using light with a controlled
polarization. e transmitted
light’s polarization is analyzed
for each pixel of a  camera.
e Stokes analyzer consists
of a quarter-wave plate and a
linear polarizer, which can be
rotated independently of each
other under computer control
to any desired orientation.

using a focused Ga+ ion beam. e slits’ widths increase stepwise from
50 nm, well below the cutoff width for -polarized light, to 500 nm, at
which value the lowest  mode can propagate through the slit. e ĕlm
is deposited on a 0.5 mm thick Schott  borosilicate glass substrate,
covered by a 10 nm titanium adhesion layer which damps surface plas-
mons, ensuring that their propagation length is negligibly short on the
gold-glass interface. e laser beam width at the sample is approximately
4 mmso that, effectively, the structure is illuminated homogeneouslywith
a Ęat wavefront. e light transmitted by the structure is imaged on a   : charge-coupled device

camera (Apogee Alta ) by means of a 0.65  microscope objective.  : numerical aperture

e polarization of the light incident on the structure is controlled by a
combination of half-wave and quarter-wave plates, enabling us to perform
the experiment with a variety of input polarizations.

We analyze the polarization bymeasuring the Stokes parameters of the
light transmitted through each slit, using a quarter-wave plate and a lin-
ear polarizer. We deĕne the Stokes parameters according to the follow-
ing standard convention: S0 is the total intensity, S1 is the intensity of the S0 = Itotal

S1 = IH − IV
S2 = ID − IA
S3 = IR − IL

horizontal component ()minus the intensity of the vertical component
(), S2 is the intensity of the diagonal (° clockwise) component minus
the intensity of the anti-diagonal (° counterclockwise) component, and
S3 is the intensity of the right-handed circular component minus the in-
tensity of the le-handed circular component. Since the transmitted light
is fully polarized, it is convenient to use the normalized Stokes parameters
s1 = S1/S0, s2 = S2/S0, and s3 = S3/S0, so that each ranges from −1 to +1.

 nmTM

TE

 nm
 µm

Figure .: Sketch of the
sample. It consists of a 200 nm
gold ĕlm sputtered on top of
a glass substrate. Note that
the vertical scale is greatly
exaggerated compared to the
horizontal scale. Adapted from
Kuzmin (, p. ).



 - 

−1.0

−0.5

0.0

0.5

1.0

N
or

m
al

iz
ed

 S
to

ke
s

pa
ra

m
et

er
 (d

im
en

sio
nl

es
s)

(a) Incident: s1 = +1

s1
s2
s3

(c) Incident: s2 = +1 (e) Incident: s3 = +1

0 100 200 300 400 500
Slit width (nm)

−1.0

−0.5

0.0

0.5

1.0

N
or

m
al

iz
ed

 S
to

ke
s

pa
ra

m
et

er
 (d

im
en

sio
nl

es
s)

(b) Incident: s1 =−1

0 100 200 300 400 500
Slit width (nm)

(d) Incident: s2 =−1

0 100 200 300 400 500
Slit width (nm)

(f) Incident: s3 =−1

Figure .: Normalized Stokes
parameters of the light trans-

mitted through the slit, for
illumination with (a) horizontal

linear polarization (s1 = +1),
(b) vertical linear polarization
(s1 = −1), (c) diagonal linear

polarization (s2 = +1), (d) an-
tidiagonal linear polarization
(s2 = −1), (e) le-handed cir-
cular polarization (s3 = +1),
and (f) right-handed circular
polarization (s3 = −1). e

polarization ellipses above each
graph provide a quick visual

indication of the polarization
state of the transmitted light.
e solid lines represent the

results of our model, described
later on in section ., based
on simple waveguide theory.

. Results and interpretation

T  S  of the transmitted light, for each of the six
basic Stokes input polarizations (s1,2,3 = ±1), is shown in Fig. .. Fig-
ures .a and .b conĕrm that the  and  directions are the slit’s
eigenpolarizations. However, each has its own damping and propaga-
tion constant, as we will show. In the general case, a slit is therefore both
dichroic and birefringent, both properties depending on the slit width w.

Figures .c–f show the variation of the Stokes parameters of the trans-
mitted light when the incident light is not polarized along one of the
slits’ eigenpolarizations. In all cases, s1 is seen to go to −1 as the slit
gets narrower, reĘecting the fact that very narrow slits transmit only -
polarized light.

Let us examine Figs. .c–dmore closely, where the incident wave is di-
agonally linearly polarized (s2 = ±1). As the slit width w is reduced from
500 to 300 nm, the transmitted light gradually becomesmore andmore el-
liptically polarized, while themain axis of the polarization ellipse remains
oriented along the polarization direction of the incident light; see the line
of polarization ellipses in each frame. As w is reduced further to around
250 nm, the transmitted polarization assumes a more circular form. For
narrower slits, the polarization ellipse orients itself essentially vertically,
reĘecting the fact that the polarization becomes more linear, ultimately
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being purely -polarized at w = 50 nm. In Figs. .e–f, with circular in-
put polarization, a similar process happens asw is reduced, except that the
transmitted polarization changes gradually from almost circular to linear,
before becoming nearly -polarized at w = 50 nm.

We note that there is a point in Figs. .e–f, aroundw ≈ 250 nm, where
circular polarization is transformed into linear polarization. is implies
that the slit acts as a quarter-wave retarder, albeit with unequal losses for
the fast and slow axes. Because of the inequality of these losses, the inci-
dent diagonal polarization in Figs. .c–d is not transformed into a per-
fectly circular polarization. However, a properly oriented linear polariza-
tion incident on a w ≈ 250 nm slit whose orientation compensates for the
differential loss, will be transformed into circular polarization. Experi-
ments on other slits have shown that the measured dichroism is highly
dependent on the slit parameters, such as milling depth, and the inci-  Bosman, , p. .

dent wavelength. Realizing an ideal quarter-wave retarder therefore re-  Bogers, , p. .

quires either careful design and manufacture of the slit, or serendipity.
As expected, the curves of s2 and s3 as a function of w Ęip their sign

when the sign of the incident Stokes parameter is Ęipped. When the in-
cident light’s s2 and s3 are exchanged, on the other hand, so are s2 and s3
in the transmitted light. e curve of s1 remains the same for all non-s1
incident polarizations. e results shown in Fig. . can all be represented
in one ĕgure by plotting the measured Stokes parameters on the Poincaré
sphere. Reducing the slit width then traces out a path of the transmitted
polarization state over the Poincaré sphere’s surface, as shown in Fig. ..

I      , we write the inci-
dent ĕeld as a Jones vector, preceded by an arbitrary complex amplitude
such that the  component is real and positive:

Ein = Ã [
ETE

ETM eiψ
] , with ETE,ETM ≥ 0. (.)

We express the transmission properties of the slit as a Jones matrix. Its
off-diagonal elements are zero, because the  and  directions are the
slit’s eigenpolarizations, and the diagonal elements represent the complex
amplitude transmission. e output ĕeld is then the Jones vector:

Eout = [
tTE 0
0 tTM

] Ein. (.)

First, it is instructive to calculate the transmissionTTE andTTM in order to
get an idea of the slit’s dichroism. Here, we deĕne the transmissionT = ∣t∣2
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Figure .: Path of the trans-
mitted polarization state over
the Poincaré sphere as the slit

width decreases. e inci-
dent polarization state starts
at one of the poles or equato-
rial points, represented by the

boxlike markers. e spherical
markers, with size proportional

to the slit width, mark the
transmitted polarization state
as it travels over the sphere’s
surface. e solid lines are

the predictions of our model.

s3

s1

s2

Incident state:
s2 = +1
s2 = −1
s3 = +1
s3 = −1

as the ratio of power emerging from a slit to power incident on the area of
the slit. It can be calculated from the unnormalized Stokes parameter S1

for incident lightwith s1 = ±1. TTE andTTM are plotted in Fig. ., normal-
ized so thatTTE = 1 atw = 500 nm. As the slit widthw is decreased, we see
that the  and  transmission also decrease until w ≈ 350 nm. When
w is further reduced, the  transmission goes through a minimum at
w ≈ 150 nm, where the light-surface plasmon coupling is maximum. Lalanne et al., .

It increases again when the slit width gets even smaller, whereas the 
transmission goes through a gradual cutoff, becoming negligible only for
the narrowest slits. Apparently, a narrow slit in a thin metal ĕlm is not
such a good polarizer as oen assumed.

In order to calculate the phase lag Δφ between the  and -polar-
ized components of the transmitted ĕeld, we write the normalized Stokes
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Figure .: Dichroism of
a subwavelength slit. e
points show the measured
transmission for  and -
polarized incident light as
a function of the slit width
w, normalized to the 
transmission at w = 500 nm.
e solid lines show our
model’s result for the slit
transmission according to (.)
and (.).

parameters in terms of (.):

s1 = −
TRE2

TM − E2
TE

TRE2
TM + E2

TE
, (.)

s2 =
2
√
TRETMETE

TRE2
TM + E2

TE
cos(Δφ − ψ), (.)

s3 = −
2
√
TRETMETE

TRE2
TM + E2

TE
sin(Δφ − ψ), (.)

where TR = ∣tTM/tTE∣2 is shorthand for the transmission ratio, ETM and
ETE are the transmitted ĕelds, and ψ is the – phase lag; see (.). We
calculate Δφ from our measured Stokes parameters using (.), (.), and
(.). We see in Fig. . that Δφ decreases almost linearly with increasing
slit width. It passes through a value of π/2 at w ≈ 250 nm. Although the
retardation equals λ/4, the 250 nm slit does not act as an ideal quarter-
wave retarder because the amplitudes of the  and -polarized com-
ponents of the transmitted light are not equal, as noted earlier.

Figure . illustrates the slit’s dichroism and Fig. . its birefringence.
e effect that we observe in Fig. . as the slit width is decreased from
500 to 300 nm can be explained in terms of increasing birefringence and
small dichroism in that range. Below 300 nm, dichroism becomes more
important, and consequently, the main axis of the polarization ellipse ro-
tates. e dichroism observed here was also suggested by calculations by
Nugrowati, Pereira, and van de Nes, where ultrashort  pulses were  Nugrowati et al., .

shown to experience lower propagation speeds than  pulses through a
slit in an aluminum layer.

If the slit width is further decreased past the surface plasmon-induced
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Figure .: Birefringence of a
subwavelength slit. e points
represent the measured phase

difference between the  and
 modes as a function of the
slit width. ey are obtained

from a ĕt of the various Stokes
parameters of Fig. .. e solid
line shows the calculated phase
difference according to (.). At
a certain slit width, indicated by
the arrow, the phase difference

reaches π/2 and the slit acts
as a quarter-wave retarder.
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Figure .: Cross-section of our
model slit. e relevant phys-
ical quantities are illustrated.

e indices of refraction n1,2,3
are depicted using differently
colored materials, although
they could well be the same

material in an experiment. e
evanescent tails sketched in red

represent surface plasmons.
e light is transmitted through

the slit from le to right.
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minimum at w ≈ 150 nm, the dichroic effect becomes even larger. e
-polarized component of the transmitted light becomes weaker and
weaker, while the  component grows, causing the polarization ellipse
to collapse to a vertical line. We see that the waveguide’s  cutoff does
not resemble a sharp cutoff at w = λ/2 at all, but rather a gradual one.

. Waveguide model
We have made our com-
puter code for this model

available (Chimento, b).
W    to explain these experimental results by mod-
eling the slit as a simple lossy waveguide. Our metallic slit forms a rect-
angular waveguide with one dimension of the rectangle much larger than
the other. For that reason we can effectively describe each slit as a step-
index planar waveguide, with its walls made of a metal with relative per-
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mittivity ε. Inside the waveguide, the solutions to Maxwell’s equations
separate into  and  modes, each with a complex propagation con-
stant β. Although the equations are in closed form, we must calculate the
propagation constants for each mode, βTE and βTM, numerically.  Snyder and Love, .

For the  and  modes, we calculate complex reĘection and trans-
mission coefficients r21, t12, r23, and t23 (see Fig. .) using the Fresnel
equations at normal incidence, substituting the effective mode index for
the index of medium . e effectivemode index is calculated by dividing
the propagation constant by k0. As shown in Fig. ., the index  indicates
the medium from which the light is incident (air),  the waveguide, and 
the medium into which the transmitted light emerges (glass in our exper-
iment). is simpliĕcation avoids calculating overlap integrals between
the guided mode and themodes outside the waveguide, but still describes
the observed phenomena quite well. We can then treat the waveguide as a
Fabry-Pérot interferometer and calculate each mode’s complex transmis-
sion through a waveguide of length d,

t123 =
t12t23eiβd

1 − r21r23e2iβd
, (.)

which gives for the transmission

TTE =
n3

n1
∣tTE
123∣2, (.)

TTM =
n3

n1
∣tTM
123 ∣2 − 2∣c1∣2 − 2∣c3∣2. (.)

Here, c1 and c3 are the coupling constants of the slit system to a surface
plasmon mode traveling in one direction away from the slit on the inter-
face with medium  or , respectively. Numerical values for these param-
eters can be calculated using Eq. () of Lalanne et al., which gives an  Calculating c1 and c3 requires

evaluating an integral with
poles close to the real axis.
Common adaptive quadrature
algorithms for numerical
integration cannot handle
it, yielding a garbage answer
without obviously failing.
Gaussian quadrature works
for numerically evaluating the
integral.
 Lalanne et al., .

approximate analytical model for the coupling of a slit mode to a surface
plasmonmode. As an illustration of the important role these surface plas-
mon coupling constants play in the phenomenon described here, the 
transmission modelled with and without coupling to surface plasmons is
shown in Fig. .. e  mode does not couple to surface plasmons.

It is interesting to note in Fig. . that the surface plasmon coupling
coefficients on both sides exhibit a maximum at nw/λ ≈ 0.23 and a min-
imum at nw/λ ≈ 1, as predicted by Lalanne et al., where n is the index

 Lalanne et al., .of refraction of the medium outside the slit on each respective side. ese
two curves added together yield a maximum in the surface plasmon exci-
tation, and therefore a dip in the  transmission, at aroundw ≈ 150 nm.
Even though this dip is not at nw/λ ≈ 0.23 as Lalanne et al. predict, it is
caused by two plasmon excitation maxima that do follow the prediction.
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Figure .: Calculated effect
of surface plasmons on the

transmission of -polarized
light as a function of the slit

width w. e green line shows
the calculated  transmis-
sion neglecting coupling to
surface plasmons, based on
waveguide theory alone, i.e.

(n3/n1)∣tTM
123 ∣2. e orange line

shows the total fraction of en-
ergy 2∣c1∣2 converted to surface

plasmons on the illuminated
(air) side of the sample accord-

ing to Lalanne et al. ().
Likewise, the purple line shows
the fraction 2∣c3∣2 converted to
surface plasmons on the unil-
luminated (glass) side. Finally,

the red line shows the total
 transmission according

to (.). In these calculations,
we disregard the numerical

aperture of the imaging system.
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In our model we ignore the thin titanium adhesion layer present be-
tween the gold and the glass. According to the model, the ∣c3∣ coefficient
for a thick titanium layer would be slightly higher than that of the gold
layer. However, we expect that the layer is too thin to have any effect on
the coupling between the slit  mode and surface plasmons. It does not
prevent the light from scattering into the surface plasmon mode, but only
ensures that the surface plasmon mode is very lossy.

Our model exhibits good agreement with the measurements, despite
the fact that it does not contain any ĕtting parameters. e slit’s gradual
 cutoff is predicted well, and can be ascribed to gold not being a per-
fect conductor at this wavelength, and to the considerable dispersion of
the reĘection coefficients r12 and r23 around cutoff. e model also pre-
dicts a plasmon-related  transmission dip at the right slit width. In
Fig. ., we compare these calculated values to our measurements. In our
calculations, we took the ĕnite  and its inĘuence on the  and 
transmission into account, which is explained in section Appendix ..

e complex transmission also gives us the relative phase delay be-
tween the  and  modes:

Δφ = arg tTM
123 − arg tTE

123 (mod 2π). (.)

is phase difference is plotted in Fig. . and compared to the values
calculated from our measurements using (.), (.), and (.). e val-
ues predicted by our simple model for the phase delay exhibit excellent
agreement with the measurements.
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e model presented here suggests exploring the parameter space in
order to design slits that act as non-dichroic quarter-wave retarders. e
requirements are that the  and  transmission are equal taking into
account the  loss to surface plasmons, and that the phase difference is
π/2. All these requirements are inĘuenced by themetal permittivity ε(λ),
the slit width w, and the ĕlm thickness d.

O   contradict a recently published proposal
for a quarter-wave retarder using perpendicular metallic nanoslits, in  Khoo, Li, and Crozier, .

which the width of the slits is varied purely to control the  transmis-
sion. Varying the width of the slit also changes the  transmission of the
incident light and the phase difference between the  and  compo-
nents.

. Summary

W      of a subwave-
length slit milled in a 200 nm thick gold-metal ĕlm as a function of the
slit width (50–500 nm), and of the polarization of the incident radiation
(at λ = 830 nm). As the slit width is decreased, the transmission of the
 mode diminishes quite gradually until it becomes very small at a slit
width of about λ/8, reminiscent of the phenomenon of waveguide cutoff.
In contrast, the transmission of the  mode does not vanish. Instead,
it exhibits a minimum associated with the efficient excitation of surface
plasmons.

Moreover, we have studied the birefringence of this subwavelength slit
and found that the phase lag between the  mode and  mode passes
through a value of π/2, so that a properly dimensioned slit can act as a
quarter-wave retarder. We have successfully explained our experimental
results with a simple waveguide model.
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Appendix . Reciprocity of the slit transmission
is section is an ap-

pendix that did not appear
in the published paper.

W      that we corrected our model
for the ĕnite  of the detector in our experiment. e necessity of this
correction was brought to our attention by an apparent violation of reci-
procity in the experiment. In the experiments described in the foregoing
sections, we illuminated the sample on the gold side (hereaer the ‘for-
ward’ conĕguration), but when we turned the sample around and per-
formed the experiment again while illuminating it from the glass side (the
‘reverse’ conĕguration), the results were different!

is is, of course, not really a violation of reciprocity, but it is caused
by the detector’s . e exit aperture of the slit is subwavelength, so it
radiates in all directions, but not uniformly. e slit’s scattering proĕle
depends on the shape of the mode inside the slit, and also on the medium
that the slit scatters into. erefore, not all the radiation that actually exits
the slit is emitted into the cone of angles that the detector can collect.
Which fraction is collected by the detector depends on the circumstances,
meaning that the two conĕgurations cannot be compared directly without
correcting for this effect.

We assume that the detector is situated in air, with an index of refrac-
tion n4. In the forward conĕguration, n1 = n4 and n3 is the index of the
glass substrate. Conversely, in the reverse conĕguration, n1 is the index
of the glass substrate and n3 = n4.

T        . We treat the slit as a
parallel-plate waveguidewithmetal walls inwhichwe assume that higher-
order modes do not propagate. e metal wall boundary is at x = ±w/2.
We call the complex amplitudes of the waveguide modes inside the slit
ẼTM(x, z) and ẼTE(x, z). ey depend on the permittivity ε, the index of
the slit material n2, and the slit width w.

To ĕnd the angular scattering proĕle of the modes, we take the Fourier
transform of the mode proĕle at the exit aperture of the slit: ẼTM(x,d)
and ẼTE(x,d). is gives us the scattered electric ĕeld amplitude F̃ as a
function of transversewavenumber kx. is is appropriate if the collection
objective is in the far ĕeld of the slit. We estimate the Fresnel number NF

using typical values for our experiment,

NF =
a2

Lλ
= w2

4Lλ
≈ (5 × 10−7)2

4 ⋅ 1 × 10−3 ⋅ 8 × 10−7
≈ 25 × 10−14

32 × 10−10
≪ 1, (.)

which justiĕes the assumption of Fraunhofer diffraction at 1 mmdistance
from the slit. L is in this case the working distance of the objective.
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Figure .: (a) Scattering
proĕle of a 250 nm wide slit,
as a function of angle. (b)
Transmission of scattered
light at the n3–n4 interface
as a function of scattering
angle. Note the Brewster angle
at the point where the 
transmission reaches unity.
Other parameters: λ = 800 nm,
n2 = 1.0, n3 = 1.5, n4 = 1.0.

e angle θ of the corresponding plane wave component is equal to

θ = arcsin(kx/n3k0), (.)

where k0 = 2π/λ is the wavenumber in free space. We plot the angular
scattering proĕles for a 250 nm wide slit in Fig. .a, calculated numeri-
cally by fast Fourier transform.

In the forward conĕguration (light incident on the air side) described
above, we have to take into account the Fresnel losses at the n3–n4 (glass-
air) interface. Part of the scattered energy never leaves the glass substrate,
due to total internal reĘection. e  and  components are also trans-
mitted differently, since there is a Brewster angle for .

For the transmission T = 1 − R, we write:

TTE(θ) = 1 −
⎛
⎜
⎝

n3 cos θ − n4
√

1 − ( n3
n4

sin θ)2

n3 cos θ + n4
√

1 − ( n3
n4

sin θ)2

⎞
⎟
⎠

2

(.)

TTM(θ) = 1 −
⎛
⎜
⎝

n3
√

1 − ( n3
n4

sin θ)2 − n4 cos θ

n3
√

1 − ( n3
n4

sin θ)2 + n4 cos θ

⎞
⎟
⎠

2

(.)

We plot these transmission proĕles in Fig. .b. ey are independent
of the slit width, or indeed any of the slit parameters. Also note that for
n3 = n4, T = 1, as it should be since there is no interface in that case.

e ĕnite  of the detector means that not all of the scattered light
is collected. Light outside a maximum acceptance angle θmax misses the
detector. Due to Snell’s law, NA = n3 sin θmax, and therefore

θmax = arcsin(NA/n3), (.)
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no matter what medium n4 the detector is actually in.
e detector signal, then, must be corrected by a factor

Ci =
∫

θmax

−θmax
Ti(θ) ∣F̃i(n3k0 sin θ)∣

2 dθ

∫
π/2

−π/2
∣F̃i(n3k0 sin θ)∣

2 dθ
, (.)

where i ∈ {TE,TM}, which is the ratio of energy entering the detector to
the total energy scattered from the slit. is factor depends on λ, ε, n2, n3,
n4, w, andNA. (It does not depend on d or n1; the factor containing d can
be taken outside the integrals and divided away, and n1 only inĘuences
the coupling to surface plasmon modes on the front interface.)

I      , we take λ, ε, n2,
and n4 as design parameters, so we will not examine their inĘuence on
the correction factor. e index n3 can take one of two values: for reverse
illumination, n3 = n4, whereas for forward illumination n3 ≠ n4. Since we
are only interested in the ratio of  to  transmission, we will examine
the ratio of the two correction factorsCTM/CTE in four situations: forward
and reverse illumination, and for low and high .

We examine the ratio because the values of CTM and CTE individually
are not particularly surprising; a high- detector will collect more of
the light in both forward and reverse illumination, obviously. Reverse
illumination also causes more light to enter the detector, no matter the
 because there is no total internal reĘection loss at the n3–n4 interface,
so Ti(θ) = 1 in (.).

In Fig. .a we plot the ratio CTM/CTE for reverse illumination, cal-
culated for two different numerical apertures. We see that the numerical
aperture does not inĘuence the shape of the curve very much.

Forward illumination, for which the ratio of the correction factors is
plotted in Figs. .b, is quite different. If the detector has low , it be-
haves much the same as in reverse illumination, with slightly more dif-
ference between  and . In the high- case, on the other hand, the
detector picks up more  light than  light for almost every slit width:
there is about a 6% difference. A look at Fig. . suggests that this happens
when the  is large enough that θmax is large enough that it includes the
Brewster angle at the n3–n4 interface, at which all the  light is trans-
mitted and not all the  light.
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Figure .: Ratio of the two 
correction factors CTM/CTE:
less than  means that the de-
tector picks up more  light,
more than  means the detec-

tor picks up more  light.
It is plotted for two different
 values: low (NA = 0.2,

purple), and high (NA = 0.8,
green). (a) Reverse illumination
(n1 = 1.5, n2 = n3 = n4 = 1.0);

(b) forward illumination
(n1 = n2 = n4 = 1.0, n3 = 1.5).
As usual, we take λ = 800 nm.






Spin-to-orbital angular momentum
conversion in a subwavelength slit

We demonstrate partial conversion of circularly polarized light into orbital angular momentum-carrying
vortex light with opposite-handed circular polarization. is conversion is accomplished in a novel
manner using the birefringent properties of a circular subwavelength slit in a thin metal ĕlm. Our

technique can be applied over a very wide range of frequencies and even allows the creation of
anisotropic vortices when using a slit without circular symmetry.

. Introduction
is chapter was previously
published as: Chimento,
Alkemade, ’t Hoo, and Eliel
().

T   of optical vortices arising from axial sym-
metry in birefringent materials has been studied in uniaxial crystals of
variable length, birefringent plates with a spatially varying optical axis  Ciattoni et al., ; Brasselet,

Izdebskaya, et al., .and half-wave retardation (“q-plates”), and in annular concentric aper-
 Marrucci et al., ; Karimi,
Piccirillo, Marrucci, and
Santamato, ; Brasselet and
Loussert, .

tureswhich resonantly excite surface plasmons. is interaction between

 Lombard et al., .

spin and orbital angular momentum of light by way of a Berry-Pancha-
ratnam phase has also been studied in space-variant gratings, plasmonic

 Bomzon et al., .
nanostructures in the context of selection rules, and also completely out-

 Gorodetski, Shitrit, Bretner,
Kleiner, and Hasman, .

side the domain of optics, in electron beams.

 Karimi, Marrucci, et al., .
We present here a novel method of accomplishing this conversion us-

ing a subwavelength slit in a metal ĕlm acting as a quarter-wave plate,
described in chapter . We show how this method relaxes the axial sym-
metry requirement, allowing greater versatility in the form of the vortex
created.

In optics, a spin angular momentum of ±h̵ is associated with a cir-
cularly polarized photon. Orbital angular momentum is oen associ-
ated with an optical vortex beam, where the phase increases azimuthally
around the optical axis. ese beams have a topological charge Q, equal
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to the number of full cycles the phasemakes in one trip around the optical
axis. e expectation value of the orbital angular momentum per photon
is Qh̵. e difference between the two forms of angular momentum is Allen, Beijers-

bergen, et al., . beautifully apparent in the interaction of a beam with small particles: in-
teraction with the spin angular momentum in the absence of absorption
requires particles that are birefringent; they will start to rotate about their
own axis, whereas interaction with a beam carrying orbital angular mo-
mentum causes particles, whether birefringent or not, to rotate about the
beam’s optical axis. O’Neil, MacVicar,

Allen, and Padgett, .

C   how a subwavelength slit in a metal ĕlm can act
as an optical retarder. A slit which is subwavelength in one direction, and
extended in the other, has two eigenpolarizations: parallel and perpendic-
ular to the slit. By careful design of the slit’s width and depth, it is possible
to construct a slit that behaves like a quarter-wave retarder for incident
light of a certain wavelength, with its fast axis (i.e. axis with the lowest
index of refraction) parallel to the orientation of the slit. One can achieve
similar results using subwavelength structures with different resonances
for orthogonal polarization components. Illuminating the straight slit Roberts and Lin, ;

Genevet et al., . with circularly polarized light results in linearly polarized light emerging
from the other side. e associated change in angular momentum means
that a torque is exerted on the sample. Beth, .

2.4 µm

Figure .: Diagram showing
the expected local polariza-
tion state of light transmit-

ted through the ring slit. e
transmitted intensity is con-
stant everywhere on the slit.

When the slit is circular, the fast and slow axes’ orientations vary along
the slit so that it acts as a space-variant quarter-wave plate. In this circu-
larly symmetric conĕguration, photonic spin angular momentum cannot
transfer to the sample, and must be converted to photonic orbital angu-
lar momentum in order to conserve the total angular momentum. is
intuitive picture is conĕrmed by taking the expectation value of the spin
and orbital angular momenta per photon, respectively denoted S and L,

 Berry, Jeffrey, and
Mansuripur, .

averaged over the whole beam in the input and output states. Whereas
the input state has S = h̵,L = 0, the output state (shown in Fig. .) has
S = 0,L = h̵. e total angular momentum per photon, J = S+L, is indeed
conserved.

. Near-ĕeld experiment

T   by experiment, we took a glass substrate of 0.5 mm
thickness. On it we deposited a titanium adhesion layer of 10 nm thick-
ness, and on that a gold ĕlm of 200 nm thickness. We milled a circular
slit, 20 μm in diameter and (180 ± 10) nm wide, through the gold ĕlm
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QWP Sample Objective QWP LP

Camera
Figure .: Sketch of the
experimental setup used to
image the ring slit. :
quarter wave plate; : linear
polarizer. e quarter-wave
plate and linear polarizer on
the right-hand side of the ĕgure
measure the local polarization
state of the light.

using a focused Ga+ ion beam. Fig. . shows a sketch of the structure.

 µm

Figure .: A sketch of the
nanostructure milled into the
sample.

We conducted the experiment using a diode laser with a wavelength of
830 nm. We used a quarter-wave plate to give the beam from this laser a
circular polarization state, σ̂+. (We deĕne the circular polarization basis
unit vectors σ̂± = (x̂ ± iŷ)/

√
2.) We then focused the beam weakly onto

the glass side of the sample. e beam diameter at the waist was 90 μm,
much larger than the nanostructure diameter of 20 μm, so that, effectively,
the structure was illuminated with a plane wave. We used a microscope
objective ( .) to image the slit onto a  camera (Apogee Alta ).

 : numerical aperture
 : charge-coupled device

We measured the polarization of the transmitted light as a function
of the transverse position within the image. To determine this polariza-
tion, we used a ĕxed linear polarizer and a computer-controlled rotat-
ing quarter-wave plate, as shown in Fig. ., from which we extracted the
Stokes parameters according to the method described in Schaefer, Col-
lett, Smyth, Barrett, and Fraher () as a function of position. Fig. .
shows the results of this experiment. We observe small variations in the
transmitted intensity along the ring, which are probably caused by small
variations in the slit width. e polarization state of the light emerging
from the structure, however, shows excellent agreement with the result of
our calculations, as shown in Fig. ..

(a) (b)

Right-handed
Left-handed
Approx. linear

Figure .: (a) Measured inten-
sity transmitted through the
ring slit. (b) Local polarization
ellipses of the light transmitted
through the ring slit. Blue
ellipses indicate right-handed
elliptical polarization, red ones
indicate le-handed elliptical
polarization, and black lines
indicate polarization states with
ellipticity less than .
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Figure .: Measured nor-
malized Stokes parameters
s1 = S1/S0, s2 = S2/S0,

s3 = S3/S0 of the light trans-
mitted through the ring slit as
a function of azimuthal angle.
is shows the same informa-

tion as Fig. ., but here it is
easier to compare it to the ex-

pected results (solid lines), with
which we observe quite good

agreement. An angle of 0○ cor-
responds to  o’clock in Fig. .,
and increases counterclockwise.
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. Analytical model

T  measured in Fig. . suggests that the light emerg-
ing from the nanostructure is a superposition of radial and azimuthal po-
larization. Beams with such types of polarization, usually called vector
beams, were ĕrst described as waveguide modes with a dark spot in the Marcatili and

Schmeltzer, . center due to a polarization singularity. At ĕrst glance, one might expect
ourmetallic nanostructure to produce a vector beam, and thus have a dark
spot in the center of the far ĕeld. However, calculating the far ĕeld by nu-
merical Fourier transform shows that there is no dark spot in the center;
in fact, the local polarization state on the optical axis in the far ĕeld is
purely σ̂+, the same as the input polarization state.

In order to explore this further, we derived an analytical expression
for the far ĕeld by Fourier-transforming the ĕeld shown in Fig. . and
linearizing over the slit width ΔR,

EFF
0 ≈

1 + i√
2
πR0ΔR (J0(R0k⊥)σ̂+ − ie2iθ J2(R0k⊥)σ̂−) , (.)

where R0 is the radius of the ring, k⊥ the transverse component of the
wave vector, and Jn denotes the Bessel function of the ĕrst kind of order n.
is expression is valid for small ΔR in the paraxial approximation. ese
ĕelds are visualized in Figs. .(a) and (d). Note that the characteristic
length scale in the far ĕeld is given by the radiusR0 of the circular structure
— that is, the diffraction pattern does not arise from an aperture cutoff,
but from the interference between opposite points on the circular slit.

is expression indicates that half of the transmitted beam energy has
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QWP Sample Objective

Camera

LP
QWP
FTL

Figure .: Sketch of the
experimental setup used to
measure the polarization and
phase of the far ĕeld of the
slit. : quarter wave plate;
: Fourier-transforming
(2f) lens; : linear polarizer.
e objective’s focus is now
not on the camera but in the
focus of the . In this case,
the quarter-wave plate and
linear polarizer are simply
used to view the σ̂+ and σ̂−
components separately. is
conĕguration also includes a
Mach-Zehnder interferometer
which measures the phase of
each polarization component.
When not measuring the phase,
we simply block the reference
beam.

been converted from the σ̂+ to the σ̂− state, while acquiring a topological
charge of +. (e integral of any Jn(x) to inĕnite x is equal to  if n ≥ 0.)
is acquisition of topological charge by the opposite-handed component
of the emerging beam can be seen as the result of spin-to-orbital angular
momentum conversion, but it is equally instructive to consider it a Ber-
ry-Pancharatnam phase, the result of traveling from the north pole (σ̂+)
of the Poincaré sphere to the south pole (σ̂−) through all possible points
on the equator, twice.

We conĕrm this by calculating the expectation values of the spin and
orbital angular momenta per photon for both polarization components
separately. For the σ̂+ component we have S = h̵,L = 0, which is the same
as the input state. For the σ̂− component, we have S = −h̵,L = 2h̵.

. Far-ĕeld experiment

W  further experiments to explore this, using a 2f system to
examine the far ĕeld; see Fig. .. We used a quarter-wave plate and a lin-
ear polarizer to measure the intensity distribution of the σ̂+ and σ̂− com-
ponents of the far ĕeld separately. We also used amisalignedMach-Zehn-
der interferometer to visualize the phase of the light transmitted through
the slit. e interference pattern consists of parallel interference fringes,
which fork according to the topological charge carried by the beam. Fig-  Basistiy, Soskin, and Vas-

netsov, .ure . shows the results of our measurements compared to the calcula-
tion of (.). e interferograms in Figs. .(c) and (f) show that the σ̂−  In (f), the interference fringe

minima are marked in red,
using the technique described
in Cai, Liu, and Yang ().

component does indeed have a topological charge of +, whereas the σ̂+
component carries no topological charge.

. Discussion

W     when the amplitudes of the trans-
mitted polarization components are unequal, or when the retardation is
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Figure .: Calculated and
measured far-ĕeld diffraction

pattern of the circular slit, split
into σ̂+ (top row) and σ̂− (bot-

tom row) components. (a, d)
Calculated intensity and phase
in the far ĕeld; luminance indi-
cates intensity, and hue (cycling

according to the color bars
from 0 through 2π) indicates

phase. e σ̂− component has
∣Q∣ = 2. (b, e): Measured in-
tensity of both components,

showing good agreement with
the calculations. (c, f): Interfer-
ograms using reference beams
with appropriate polarization,

demonstrating the phase of
both components. In (c), the

fringes are parallel, indicating
a Ęat wavefront with Q = 0.

In (f), on the other hand, one
fringe splits into three, indi-

cating a helical wavefront with
∣Q∣ = 2, as in the calculations.

(a)

50 mrad

(b) (c)

(d)

50 mrad

(e) (f)

not exactly a quarter wave. We ĕnd that the polarization conversion effi-
ciency η is independent of the slit’s dichroism but depends on the relative
phase retardation Δφ between the polarization components as follows:

η = I−/Itotal = sin2(Δφ/2), (.)

where I− is the intensity of the σ̂− component. If the slit were to behave
like a half-wave retarder, then η would become unity. However, designing
a half-wave-like slit would once again require careful research to ĕnd a
suitable width, depth, and material.

is last result suggests that optical spin-orbit conversion is a universal
property of a circular nanoslit as long as the local polarization eigenmodes
have different propagation constants and are not damped too differently.
In order to obtain  conversion efficiency one obviously has to ad-
just the properties of the slit to the wavelength of the incident light in a
way similar to the design of a liquid-crystal based q-plate for a certain Marrucci et al., .

wavelength. An attractive beneĕt of this approach to optical spin-orbit
conversion is that it is universal, i.e. it can be used at wavelengths from
the deep UV to the far infrared.

O   what happenswhen themetallic nanoslit is no longer
cylindrically symmetric but encircles a singly connected domain. Since
the circular symmetry is broken, transfer of angular momentum to the
sample is no longer forbidden. For a quarter-wave-like slit with a circu-
larly polarized Gaussian beam incident on it, half of the emerging light
will have the opposite circular polarization and carry a charge  vortex
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with a broad orbital angular momentum spectrum. Contrary to the case
of a circular slit, this vortex will be anisotropic.

. Summary

W   spin-to-orbital angular momentum con-
version of an electromagnetic ĕeld upon transmission through a circu-
lar metallic nanoslit. When illuminated with circularly polarized light,
part of the ĕeld transmitted through the slit is converted to the opposite
handedness and its topological charge is increased or decreased by , cor-
responding to a conversion of spin angular momentum to orbital angular
momentum. e conversion efficiency is a function of the relative phase
delay that the slit imposes on orthogonal polarization components. is
means that full spin-orbit conversion could be achieved simply by pass-
ing the light through a slit in a thin metal ĕlm, if the slit were to behave
like a half-wave retarder. Using a slit without circular symmetry, on the
other hand, opens up a new world of possibilities for creating anisotropic
optical vortices.
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Appendix . Plasmon-assisted transmission
is section is an ap-

pendix that did not appear
in the published paper.

W   experiments on a ring slit similar to the one in
Fig. ., with an added groove which serves as a surface plasmon out-
coupler. On the same substrate, we milled a circular slit, 5 μm in diame-
ter and 200 nm wide, and then a circular groove concentric with the slit,
20 μm in diameter and also 200 nm wide. e groove is essentially a slit
which is not deep enough to reach all the way through the gold layer.
Due to the focused-ion beam being depth-calibrated for silicon substrates
and not gold, the exact depth of the groove is uncertain, but we estimate
(100 ± 25) nm. Fig. . shows a sketch of this structure.

 µm

 µm

Figure .: A sketch of the
groove-slit nanostruct-

ure milled into the sample.

Since the slit’s quarter-wave plate-like behavior relies strongly on the
loss due to surface plasmon generation, we can expect surface plasmons
to travel radially outwards from the slit. When these surface plasmons
reach the groove, they are partly scattered into free space as propagating
light. We expect this light to be radially polarized around the symmetry
axis of the slit. To measure this scattering, we conducted the experiment
in exactly the same way as described in section ., except that we over-
exposed the  camera in order to detect the much weaker scattering
from the groove.

Figures . and . show the results of this experiment. e transmit-
ted intensity (Fig. .a) is more complicated to interpret in this case. For
one thing, it exhibits blooming, which blots out a small section of the Blooming is the vertical

streaking visible when over-
exposure causes too many
electrons to accumulate in
the potential well of a 
pixel, making them over-

Ęow to neighboring pixels.

groove.
Also, the slit and groove are subwavelength, making it impossible to

image them perfectly. In practice, this means that the crisp boundaries
of the slit and groove are soened and widened, and unwanted garbage
shows up on the camera outside of the slit and groove. e usual way

Figure .: (a) Measured in-
tensity emitted by the ring

groove (delineated in red). e
light transmitted through the
smaller ring slit is obscured
by blooming due to overex-

posure. (b) Local polarization
ellipses of the light emitted by
the ring groove. Blue ellipses
indicate right-handed ellip-
tical polarization, red ones

indicate le-handed elliptical
polarization, and black lines
indicate polarization states

with ellipticity less than .

(a) (b)

Right-handed
Left-handed
Approx. linear
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Figure .: Measured nor-
malized Stokes parameters
s1 = S1/S0, s2 = S2/S0,
s3 = S3/S0 of the light emitted
by the ring groove as a func-
tion of azimuthal angle. is
shows the same information
as Fig. ., but here it is easier
to compare it to the expected
results (solid lines). Compare
Fig. ..

of explaining this phenomenon is to deĕne a  for the imaging system.  : point-spread function

e can also be viewed as the impulse response of the imaging system,
the impulse being an inĕnitesimal point source. e source ĕeld can then
be viewed as a superposition of inĕnitesimal point sources, and the ĕeld at
the image plane of the imaging system is a superposition of point spread
functions. In other words, the output ĕeld is the convolution of the input
ĕeld with the point spread function. e intensity point spread function
of an ideal imaging system is an Airy disc. In Fig. .a, the point spread  When dealing with the

ĕeld, one should actually use
a complex -vector-valued
point spread function (Marian
et al., ), but here we
will assume that there is no
coupling between  and 
components due to the imaging
system.

function is barely visible, because the outer rings of the Airy function are
very faint, but since the light emerging from the groove is much fainter
than the slit, they are of comparable intensity. erefore, the groove is
marked in Fig. .a in between two concentric circles.

Taking into account that the polarization measurements in Fig. . are
less accurate than those in Fig. ., we still note that the groove emits light
that is more or less radially polarized. We compare the measurements to
the expectation in Fig. ..

Here, also, we calculate the expectation value of the spin and orbital an-
gular momenta per photon averaged over the whole beam in the output
state of the plasmon-assisted transmitted light, shown in Fig. .. is
output state has S = 0,L = h̵, again showing that the total angular mo-
mentum per photon, J = S + L, is conserved.

Appendix . Plasmonic cross-talk between points on the ring
is section is an appendix that
did not appear in the published
paper.

C    in the slit-only sys-
temmay also help to explain why the polarization in Fig. .b is not purely
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linear. e light incident on the slit is converted linearly to a surface plas-
mon, barring an unknown attenuation and retardation factor which we
will ignore for now. ese surface plasmons travel from one side of the
circle to the other.

Only the  component excites a plasmon, with ẑ-polarization. e : transverse magnetic

plasmon propagates across the gold surface, undergoing diffraction, and
hits the slit again, scattering once again into , or r̂-polarized, light.
Since the plasmons only couple to radial polarization, the plasmonic con-
tribution to the transmission has a different polarization than the direct
contribution. e smaller plasmonic contribution should therefore be
visible as a deviation in the polarization of the light emerging from the
slit.

To calculate the diffraction the surface plasmons undergo during the
transit from one side of the ring to the other, we look at the Fresnel-Kirch-
hoff diffraction integral:  As in Griffiths (),

rrr denotes the separation
vector between a source

point r′ and a ĕeld point r:
rrr ≡ r− r′ = (x−x′)x̂+(z− z′)ẑ.

E(x, z) = 1
i
√
λSP
∫ E(x′, 0) e

ikr
√

r
cosη dx′

Since the diffraction takes place in two dimensions, the Huygens waves
scattered by each point on the wavefront are not spherical (eikr/r) but in-
stead damped cylindrical waves (eikr/

√
r). Here, z is the diffraction dis- Teperik, Archambault,

Marquier, and Greffet, . tance along the propagation axis. e separation vector rrr is the distance
between a source point x′ in the z = 0 plane and the point x that we are
interested in in the image plane. e angle η = arccos z/r is the angle be-
tween the propagation vector and the separation vector, so cosη can also
be written as k̂ ⋅ r̂rr.

Based on this, we can construct the following diffraction integral in
polar coordinates for our ring-slit geometry, shown in Fig. .:

ESP(R0, θ) =
1

i
√
λSP
∫

π/2

−π/2
E0,SP(R0, θ + ζ)

eikSPr
√

r
k̂ ⋅ r̂rrR0 dζ (.)

e physical meaning of this integral is that for each point on the ring, the
surface plasmon-assisted ĕeld is a sum of the contributions from points
elsewhere on the ring. e point (R0, θ) that we are interested in only
receives contributions from the facing inner side of the ring: angles θ+π/2
to θ + 3π/2.

Aer some calculation, we can write:

ESP(R0, θ) = iE0,SP(R0, 0)̃f(kSPR0) (.)
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ζ

(R0, θ + π/2)

(R0, θ + 3π/2)

(R0, θ)

rrr(ζ)

Figure .: Diffraction ge-
ometry of surface plasmons
traveling inside the circular
slit from one side to the other.
e plasmon-assisted trans-
mission at each point on the
ring (R0, θ) is the sum of con-
tributions from the plasmonic
ĕeld launched on the semicircle
opposite on the ring. When
converted back to light, this
plasmonic contribution should
be purely radially polarized,
which should be visible as
an alteration of the polariza-
tion direction of the directly
transmitted contribution.

where

f̃(q) = 1
4

√ q
π ∫

π/2

−π/2
ei(ζ+2q cos(ζ/2)) 1 + cos ζ

(cos(ζ/2))3/2
dζ

Adding the direct and plasmonic contributions, we see that the light
emerging from the slit is not necessarily linearly polarized anymore:

Ẽ0,out(R0, θ) =
i√
2
eiθ ((1 + Ã̃f(kSPR0)) r̂ + θ̂) (.)

where Ã is the unknown attenuation and retardation due to conversion
between light and surface plasmons and vice versa. e plasmonic con-
tribution adds a small degree of ellipticity to the polarization everywhere,
depending on the phase of Ã.






Plasmonic optical vortex tomography

We present a novel method for analyzing the wavefront of optical vortices which does not involve
interferometry, but rather uses surface plasmons. We employ a subwavelength slit in a gold ĕlm to cut
slices from an optical vortex beam, and measure the diffraction of the generated surface plasmons by

scattering them off a second slit. By moving the slits across the vortex beam, we create a tomogram, from
which we can determine the vortex charge of the incident beam at a glance. We present results for vortex

beams of integer and half-integer vortex charge.

. Introduction
Portions of this chapter were
previously published as:
Chimento, ’t Hoo, and Eliel
(a), Chimento, ’t Hoo,
and Eliel (b).

V      as varied as supercon-
ductors, superĘuids, Bose condensates, Ęuid Ęow, and optics. A property
that all vortices share is that, when traversing a closed path around a vor-
tex, an order parameter of the system changes by 2πQ, withQ the “charge”
of the vortex, the sign of which is associated with a direction of circula-
tion. In this chapter, we will concern ourselves with phase vortices in the
transverse ĕeld distribution of an optical beam, a subject that has attracted
considerable attention in recent years. Vortex beams have found applica-  Soskin and Vasnetsov, ;

Allen, Barnett, and Padgett,
.

tions in optics at both microscopic and astronomical scales. ey also
 Foo, Palacios, and Swartzlan-
der, .
 Jesacher et al., .

occur naturally in speckle ĕelds scattered from inhomogeneous or rough
surfaces.

 Baranova et al., .
An optical vortex in its simplest form, namely the transverse cross sec-

tion of a vortex beam, manifests itself as a doughnut-shaped intensity dis-
tribution; the phase increases azimuthally around the doughnut and the
intensity vanishes at the center because the phase is undeĕned there. e
number of cycles with which the phase increases on a closed loop around
the doughnut equals the vortex charge Q. e photons in a vortex beam
of charge Q carry Qh̵ orbital angular momentum.  Allen, Beijersbergen, et al.,

.ere are several ways tomeasure the charge of an optical vortex beam.
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Figure .: Schematic of the
experimental setup. e ap-
propriate diffraction order
of the fork hologram is se-

lected by means of an aperture
(not shown); the others are

blocked. A typical fork holo-
gram is shown in Fig. ., while
a typical nanostructure on the

sample is shown in Fig. ..

 nm

Fork hologram λ/

Camera

Surface plasmon

Sample

Since it is a property of the light beam’s phase, some sort of interferometry
must be used. One way is to interfere the light beam with itself  or with a

 Harris, Hill, Tapster,
and Vaughan, .

plane wave and examine the fringe pattern, which contains a dislocation

 Padgett, Arlt, Simp-
son, and Allen, .

at the position of the vortex. Other ways are to build a mode sorter, or

 Mair, Vaziri, Weihs, and
Zeilinger, ; Leach,

Padgett, Barnett, Franke-
Arnold, and Courtial, .

use a multipoint interferometer and calculate the vortex charge from the
resulting interference pattern.

 Berkhout and Beij-
ersbergen, .

H   a simple and elegantmethod of determining the vor-
tex charge of an optical beam. It is based on the use of surface plasmons.
ese surface plasmons are generated by scattering the incoming vortex
beam off a narrow emitter slit milled in a surface plasmon-supporting e slits are physically identi-

cal, but we call them “emitter”
and “receiver” to distinguish
their role in the experiment.

gold ĕlm. A second receiver slit, which is some distance from the emit-
ter, picks up the diffracted surface plasmon wave, converting it back to
a free-space optical beam. By translating the gold ĕlm across the vortex
beam, we construct a tomographic pattern of the plasmonic diffraction
that allows direct visualization of the vortex charge if it is an integer. If
the vortex charge is not an integer, it is still possible to estimate it.

Surface plasmons are a convenient tool for this tomography, for three
reasons. For one, tomography, at its most fundamental, entails slicing
three-dimensional data into two-dimensional sections without loss of in-
formation. Surface plasmons propagate in two dimensions, providing a
means for tomography; surface plasmon diffraction provides a means of
analysis of the sliced ĕeld. Second, we can achieve subwavelength resolu-
tion in our tomograms by translating the subwavelength slits in subwave-
length steps. Finally, the coherent conversion of light to surface plasmons
and vice versa allows transportation from the emitter to the receiver with-
out loss of information, except for some power loss.

. Integer vortex experiment

F .  our experimental setup. We create a linearly polar-
ized beam of integer vortex charge by diffracting a Gaussian beam (λ =
830 nm) off of a computer-generated fork hologram, shown in Fig. .. Bazhenov, Vasnetsov,

and Soskin, . ebeamsdiffracted from this grating carry a vortex charge dependent on
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the diffraction order and the vortex inscribed in the hologram; we select
a diffraction order that carries the desired vortex charge. Once the beam
propagates to the far ĕeld of the hologram, it has the doughnut-shaped
intensity and azimuthal phase as described above.

Figure .: Typical design of
a fork hologram with vortex
charge .

A4f lens system transports the beam to the back focal plane of amicro-
scope objective, which focuses the far ĕeld of the beam onto the sample,
down to a size of several microns. On its way, the beam passes through
a half-wave plate which allows the experiment to be conducted with any
desired linear polarization.

e sample (Fig. .) consists of a gold ĕlm, 200 nm thick, attached to
a glass substrate by a 10 nm titanium adhesion layer. e strongly dissi-
pative titanium layer ensures that surface plasmons can only propagate on
the gold-air interface. e sample contains pairs of double slits, which  Schouten, Kuzmin, et al.,

.are ion-beam milled through the gold. e slits used in this experiment
are all 50 μm long and 100 nm wide, and the pairs are separated by 25,
50, and 75 μm. For comparison, the damping length of surface plasmons
on gold at this wavelength is around 50 μm. We illuminate the emitter
slit with our vortex beam and image the light emerging from the receiver
slit onto a  camera. e incident beam is polarized so as to couple  : charge-coupled device

optimally with surface plasmons.

 nm Au
 nm Ti
 µm glass

Figure .: Sketch of a typical
nanostructure on the sample.
e slits are  nm wide and
 μm long, and separated by
, , or  μm.

We illuminate the emitter slit with the beam, causing it to launch a sur-
face plasmon wave along the gold-air interface towards the receiver slit.

 e emitter also launches a
wave in the other direction, but
we do not detect this wave.

Its amplitude at the emitter is given by the local ĕeld amplitude incident
on the slit. In between the slits, the wave diffracts freely. e receiver
slit scatters the diffracted plasmonic ĕeld into free space. e diffraction
pattern contains information on both the phase and the amplitude of the
light incident on the emitter slit.

e sample is mounted so as to allow translation transverse to the opti-
cal axis. At the start of a measurement, the beam is incident to one side of
the slit pair. We translate the sample along the positive z-axis in 100 nm
increments so that the emitter slit travels through the beam. At each po-
sition of the sample, we record the intensity proĕle of the light scattered
from the receiver slit. We then assemble these proĕles together in a tomo-
gram, so that each vertical slice of the tomogram corresponds to one slice
of the incident vortex beam aer propagation from emitter to receiver.
Figure . shows a sketch of the tomography process.

We calculate the expected tomograms by modelling the emitter slit as
a plasmonic line source with its ĕeld amplitude given by the incident vor-
tex beam’s free-space ĕeld amplitude at that point on the sample. We then
calculate the evolution of this ĕeld under propagation from emitter to re-
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Figure .: Close-up sketch
of the tomography process.
A vortex beam, with a ring-
shaped transverse intensity

proĕle, is incident on the emit-
ter slit. e slit scatters the

incident light, launching sur-
face plasmons, proportional

to the ĕeld amplitude (which
is very low inside the ring.)
e surface plasmons prop-
agate to the receiver slit and
are scattered into free space.

incoming vortex beam

emitter slit
receiver slit

direct transmission (not used)

plasmon-assisted transmission

ceiver, using the Fresnel-Kirchhoff diffraction integral, modiĕed for sur-
face plasmons. Wemodel the receiver slit as another line, which scatters Teperik et al., .

light into free space proportional to the plasmonic amplitude it receives.

. Tomograms

F .  the calculated andmeasured tomograms for incident
beams of vortex charge Q = +1, −1, and −3, respectively, using slits sep-
arated by 25 μm. e tomographic patterns are very different from the
original ring-shaped vortex beams. First, the pattern is no longer rota-
tionally symmetric, but has a two-fold symmetric, elongated shape. Sec-
ond, the patterns for beams with vortex charge Q = +1 and Q = −1 are
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Figure .: Calculated (a–c) and
experimental tomograms (d–f)
for beams on slits separated
by 25 μm, with vortex charge
Q = +1 (a and d), Q = −1 (b
and e), and Q = −3 (c and f).
Note that the intensity zeroes in
(c) and (f) occur nicely along a
straight line.

each other’s mirror image. ird, the orientation of the long axis of the
pattern carries the sign of the vortex charge. Finally, the magnitude of
the vortex charge can be read off directly from the number of spatially
separated intensity zeroes in the pattern. Our calculations, which are in
excellent agreement with our experimental results, indicate that these in-
tensity zeroes correspond to phase vortices in the tomogram.

Figure . shows calculated and measured tomograms for a Q = −1
incident beam for slit pairs with increasingly larger separations. As the
distance between the slits increases, the tomographic pattern remains es-
sentially the same but spreads out more, approaching Fraunhofer diffrac-
tion of the surface plasmons.

. Interpretation

T       why the observed to-
mographic patterns look as they do. e surface plasmon ĕeld ampli-
tude at the emitter slit diffracts as the plasmons travel from the emitter to
the receiver. We can consider the ĕeld’s amplitude at the emitter equiv-
alent to an amplitude mask in a screen, with bright areas corresponding
to slits. e screen is illuminated from behind by a plane wave at an an-
gle determined by the ĕeld’s phase at the emitter. If we place a second
screen at some distance, corresponding to the receiver, then the positions
of the bright and dark spots in the tomogram follow directly by consider-
ing where constructive and destructive interference occur on the second
screen.

We discuss the Q = −3 case in some detail with the aid of Fig. .. In



 - 

Figure .: Calculated (a–c)
and experimental tomograms

(d–f) for a Q = −1 vortex beam
on slits separated by distances
of 25 μm (a and d), 50 μm (b
and e), and 75 μm (c and f).
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Figure .: (a) Calculated inten-
sity pattern of a Q = −3 vortex
beam. ree important cross

sections are indicated by verti-
cal lines. (b) Calculated tomo-

gram for a Q = −3 vortex beam
on slits separated by 25 μm (cf.
Fig. .c). e indicated cross
sections are identical to those

of Fig. .a. Local minima and
maxima in the tomograms are

marked by × and ○, respec-
tively. ese marks correspond
to those in the diffraction pat-
terns depicted schematically

in Figs. ., ., and ..
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Fig. .a we depict the intensity pattern of the incident beam at the surface
of the gold ĕlm; it is intersected by three vertical lines labeled ,  and ,
corresponding to three different positions of the emitter slit. In Fig. .b
we show the tomogram of the Q = −3 beam, with the equivalent three
positions of the receiver slit. Line  is tangent to the ring of maximum
intensity of theQ = −3 input beam. In the tomogram, the intense diffrac-
tion spot along line  corresponds to the case that the emitter slit picks up
an essentially single-spot intensity distribution with a slanted phase front,
arising from the azimuthal phase dependence of the incident beam. e
corresponding diffraction pattern is that of a plane wave incident at an
angle through a single slit: a single off-axis spot results (see Fig. .).

Figure .: Diffraction pattern
of light at a single slit under

oblique incidence. Corre-
sponds to line  in Fig. ..

When the emitter slit is positioned more towards the center of the in-
cident beam, along line , the generated plasmonic ĕeld is bimodal with
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a dip between the intensity maxima. In this region the phase of the plas-
monic ĕeld varies steeply and linearly with position along the emitter slit.
At this particular position of this slit, the relative phase of the two max-
ima of the bimodal intensity distribution equals 2π. Conceptually, the
plasmonic diffraction pattern should therefore be similar to the pattern
arising from a double slit illuminated at an angle in such a way that the
two slits have equal phase, up to a factor 2π (see Fig. .).

2π

Figure .: Diffraction pattern
of light at a double slit under
oblique incidence, such that
the local ĕeld at the slits is in
phase. Corresponds to line  in
Fig. ..

Finally, when the emitter slit is at line , the center of the incident beam,
the plasmonic ĕeld will again be bimodal, now with a phase difference of
3π. e diffraction pattern at the receiver slit will be double-slit-like with
a zero in the center as a result of destructive interference (see Fig. .).

3π

Figure .: Diffraction pattern
of light at a double slit in
antiphase. Corresponds to line
 in Fig. ..

. Non-integer vortex experiment

I    the application of thismethod tomore complex
vortex-carrying ĕelds, we also conducted experiments with a non-integer
vortex beam, using a spiral phase plate to generate the desired ĕeld with

 Oemrawsingh et al., .

vortex charge Q = 3 1
2 . Figure . is a sketch of a spiral phase plate. e

far-ĕeld diffraction pattern of such a beam is not rotationally symmet-
ric, so we oriented the phase plate to produce an incident intensity pat-
tern as shown in Fig. .a, with the slits oriented vertically. e incident
pattern shows three close-lying, separated Q = +1 vortices in the cen-
ter, with an additional one intruding from the bottom. Figures .b and
.c show two measured tomograms at different slit separations, while
Figs. .d and .e show the corresponding calculations. ese tomo-
grams are devoid of any symmetry. Speciĕcally, the three vortices are not
arranged along a straight line, unlike the integer-vortex case. ey also
show a fourth vortex intruding from the side, although the visibility of
the fourth vortex in the measurements is somewhat marginal. Currently
we do not account for any inhomogeneity in the slit width; this problem
might be solved by using a ptychographical algorithm, which iteratively
reconstructs a ĕeld’s complex amplitude, and the transfer function of the
object used to probe it.  Maiden and Rodenburg,

.

Figure .: Sketch of a typical
spiral phase plate.

For a better understanding of the relation between the fractional part
of the vortex charge and the presence and position of the fourth vortex in
the tomogram, we calculated the tomograms of beamswith various vortex
charges between+3 and+4, shown in Fig. .. We see that asQ increases,
the fourth vortex, as seen in Fig. ., approaches the three existing vor-
tices, and eventually joins them in a straight line at Q = +4. e vortices
are arranged in a straight line only when Q is an integer. is suggests
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Figure .: (a) Far-ĕeld dif-
fraction pattern of a Q = +3 1

2
vortex beam; (b) experimental
tomogram of this beam on slits
separated by  μm; (c)  μm;
(d) calculated tomogram of an

ideal Q = +3 1
2 vortex beam

on slits separated by  μm; (e)
 μm. ree intensity nodes

are visible, but they are not
arranged along a straight line.

that a non-integer vortex charge can be determined from the deviation of
the vortices’ arrangement from a straight line, the angle of which is de-
termined mainly by the ratio of the distance between the slits to the spot
size of the beam. Our calculations indicate that any dependence on Q is
less than ° and may be a numerical artifact.

. Summary

W     of surface plasmon polaritons to
analyze a vortex-carrying light beam slice by slice, in order to recover
information about the beam’s phase: speciĕcally, its vortex charge. Al-
though the determination of non-integer vortex charges is not possible
at a glance, we have shown through calculations that the magnitude of a
non-integer vortex charge may be determined by measuring how much
the arrangement of the vortices deviates from a straight line.

Phase retrieval normally requires some technique such as interferom-
etry or a combination of near-ĕeld and far-ĕeld measurements. e cur-
rent experiment’s two slits can be considered to measure the surface plas-
mons’ near ĕeld and far ĕeld. erefore, the technique might be general-
ized to phase retrieval of arbitrary ĕelds. Also, the sample’s small size and
the small distances between the optics involved suggest that the experi-
ment can be easily miniaturized. erefore, it has a potential application
as a wavefront sensor.

Figure .: Calculated tomo-
grams of vortex beams with Q
ranging from +3 to +4 on slits

separated by  μm. (a) Q = +3;
(b) Q = +3 1

4 ; (c) Q = +3
1
2 ;

(d) Q = +3 3
4 ; (e) Q = +4.

e locations of the intensity
zeroes are indicated with dots.

In (a) and (e), the size of the
original vortex ring is super-
imposed on the tomogram.
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PART II

ANOMALOUS
SURFACE PLASMON
DISPERSION IN
ALUMINUM






Surface plasmon coupling by atten-
uated total reĘection for Drude-like
metals

We discuss the inĘuence of the optical properties of the metal used in a surface plasmon resonance
experiment on the lineshape of the measured resonance curve. We also examine whether it is better to

perform such experiments in the Kretschmann or Otto conĕguration, and ĕnd that the Otto
conĕguration has some oen-overlooked advantages. In addition, we present a phenomenological

method for analyzing all possible lineshapes of surface plasmon resonance curves, that yields the complex
surface plasmon mode index without a priori knowledge of the composition of layers of metal and

dielectric in the experiment.

. Introduction
is chapter has been sub-
mitted to Optics Express for
publication.

A   for studying surface plasmons at the in-
terface between a metal and a dielectric is the attenuated total reĘection
setup. emost widely used variant is known as the Kretschmann conĕg-
uration; it is used in many applications, for instance in the bio-analytical  Kretschmann, .

sciences. Various companies offer fully automated  analyzers for this  Liedberg, Nylander, and
Lunström, .
 : surface plasmon reso-
nance

purpose, starting with Biacore (now  Healthcare) in the early s;

 Rich and Myszka, ;
Fivash, Towler, and Fisher, .

Rich and Myszka give an overview of recent devices.

 Rich and Myszka, .

An alternative to the Kretschmann conĕguration, known as the Otto
conĕguration, is much less frequently employed because it is generally

 Otto, .presumed to be considerably more awkward experimentally. However,
there are experimental systemswhere theOtto conĕguration outperforms
the Kretschmann approach. One of the aims of the present chapter is to
investigate when this applies and why that is so. We will also discuss the
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Figure .: Dielectric function
(a) and index of refraction (b)
of the ĕctitious Drude metals
plasmonium (blue) and scat-
trium (red). e solid lines,
both le and right, indicate

the real parts of the displayed
quantity, and the dashed lines
the imaginary parts. e real

part of the dielectric func-
tion (solid line on le) is

plotted with its sign Ęipped,
i.e. as −ε′, so as to ĕt both

quantities into a similar scale.

proper interpretation of  measurementswhen straying from the oen-
used metals of gold and silver.

Wewill base our discussion on theDrudemodel for the dielectric func-
tion of a metal:

ε(ω) = 1 −
ω2
p

ω(ω + iγ)
, (.)

where ωp is the bulk plasma frequency of the metal and γ is the damp-
ing frequency related to the electron scattering time τ by γ = 1/τ . e
Drude model is a good approximation for many metals, in particular for
the alkali metals such as lithium, sodium, and potassium. It applies also
quite well to more mundane metals such as silver and aluminum for fre-
quencies sufficiently far removed from an interband transition. We shall
deĕne dimensionless frequencies Ω = ω/ωp and Γ = γ/ωp so that the
Drude model has only one material-dependent parameter:

ε(Ω) = 1 − 1
Ω(Ω + iΓ)

.

In all interesting cases Γ ≪ 1. e metallic regime is characterized by
Ω < 1.

F     it is useful to introduce two ĕctitious
Drude metals, which we will name plasmonium (Γ = 0.0035) and scat-
trium (Γ = 0.025). In this chapter, we will illustrate our ĕndings with
an octave of frequencies from Ω = 0.08 to Ω = 0.16, which is a rele-
vant range for the analysis of our experiments on aluminum discussed
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in the next two chapters. Plasmonium is similar to an idealized version
of silver, while for short wavelengths, scattrium is an idealized version of
aluminum. e dielectric functions ε = ε′ + iε′′ of plasmonium and scat-
trium are shown in Fig. .. Note that for this choice of parameters, we
can approximate ε′ ≈ −Ω−2 and ε′′ ≈ ΓΩ−3: the real parts of the dielectric
functions ε′ of the two Drude metals are nearly equal, but the imaginary
parts ε′′ differ by the ratio of the electron scattering times.

. Surface plasmons on an interface between two semi-inĕn-
ite materials

z

x

metal (ε1)

dielectric (ε2)

Hy

H+y2
H−y2

Figure .: Sketch of an inter-
face between two half-spaces of
dielectric and metal. A typical
Hy amplitude for the surface
plasmon mode is sketched in
orange. Hy must be continuous
across the interface.

T   for studying surface plasmons is the
interface between a half-space (z < 0) of metal (with relative permittivity
ε1) and a half-space (z > 0) of dielectric (with relative permittivity ε2).
Figure . is an illustration of this situation. With the interface at z = 0, and
assuming that the surface plasmons travel in the x direction, the surface
plasmonĕeld is fully determined by the y component of themagnetic ĕeld
H. To determine this ĕeld we calculate the transfer matrix for incoming  Davis, .

and outgoing Hy amplitudes from both sides of the interface:

[H
+
y2

H−y2
] = 1

t21
[ 1 r21
r21 1

] [H
+
y1

H−y1
] , (.)

whereH±yn indicates thewave traveling in the±z direction, and  and  rep-
resent the two half spaces. e coefficients r21 and t21 represent the inter-
face reĘection and transmission amplitudes, respectively. ese complex  We note that t12t21 − r12r21 = 1

and r12 = −r21.amplitudes are given by the well-known Fresnel relations (which imply
that the appropriate ĕelds are continuous across the interface):

rpq =
kzp/εp − kzq/εq
kzp/εp + kzq/εq

, tpq =
2kzp/εp

kzp/εp + kzq/εq
. (.)

Here k2
zp = εpk2

0−k2
x, where k0 = ω/c is the wave vector in vacuum. To ĕnd

the plasmon mode we choose the sign of kz in each half space such that
the ĕeldHy decays away from the interface. e allowed modes traveling
along the interface in the x direction, i.e. the surface plasmons, follow
from the requirement that they exist even if all incident ĕelds (H+y1,H−y2)
vanish. is requirement yields two surface plasmon modes traveling in
the ±x directions, respectively:

1
t21
= 0 Ô⇒ kz1

ε1
+ kz2

ε2
= 0 Ô⇒ k∞x = ±k0

√
ε1ε2
ε1 + ε2

. (.)
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Figure .: Effective mode index
for a surface plasmon on an

interface between vacuum and
one of the ĕctitious metals plas-

monium (blue) and scattrium
(red). e solid lines (which

coincide almost exactly) indi-
cate the real part, and dashed
lines the imaginary part. e
real part of the index minus

 is displayed so as to ĕt both
quantities in a similar scale.
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e result of (.) is the well-known surface plasmon dispersion rela-
tion on a Ęat interface between half-spaces; we use the notation k∞SP to em-
phasize that the materials are semi-inĕnite. Since ε1 is complex-valued,
the value for k∞SP that follows from (.) is also complex and can be writ-
ten k∞SP = k∞SP

′ + ik∞SP
′′: the surface plasmon propagates as a damped har-

monic wave, with wavelength 2π/k∞SP
′ and 1/e amplitude damping length

1/k∞SP
′′. It is convenient to introduce the complex surface plasmon mode is should not be con-

fused with the intensity
damping length 1/2k∞SP

′′,
which some authors prefer.

index n∞SP = k∞SP/k0. Figure . shows the dependence of the real and imag-
inary parts of this index for surface plasmons travelling along a metal–
vacuum interface for plasmonium and scattrium, as a function of the fre-
quency ratio Ω.

When ∣ε′1∣2 > ε′′21 and ε2 = 1, we can approximate the mode index, by
expanding the square root of a complex number, as

n∞SP ≈

¿
ÁÁÀ ε′1

ε′1 + 1
(1 + iε′′1

2ε′1(ε′1 + 1)
) ,

which shows that the real part of the mode index only depends on the
real part of ε1. is explains why the real parts of the mode indices are Raether, , p. .

almost exactly the same for plasmonium and scattrium.

. Surface plasmons on a thin metal layer in the Kretsch-
mann conĕguration

I   on a Ęat interface with semi-in-
ĕnitely extending materials is conĕned to the realm of theory. In reality,
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





Kretschmann conĕguration Otto conĕguration

Surface plasmon
Evanescent wave

θ

Figure .: e Kretschmann
and Otto variants of the
attenuated total reĘection
method for exciting surface
plasmons. In both cases, the
evanescent wave from total
internal reĘection in the
high-index dielectric (blue)
phase-matches (in the direction
parallel to the interface) to the
surface plasmon mode on the
interface between the metal
(gray) and low-index dielectric
(white).

one needs a way of coupling from freely propagating light to the conĕned
surface plasmon mode and vice versa. Since the surface plasmon mode’s
wave vector (.) is larger than the free-space wave vector for a light wave
of the same frequency, the difference in wave vector needs to be made
up somehow. Popular methods of coupling to surface plasmons include  Sambles, Bradbery, and Yang,

.scattering from a corrugation on the metal surface, increasing the wave
 Jasperson and Schnatterly,
.vector by using one of the nonzero diffraction orders of a grating on the

metal surface, or having the light enter from a dielectric with an index  Ritchie, Arakawa, Cowan, and
Hamm, .of refraction n0 that is higher than that of the dielectric that the surface

plasmon travels on, so that the wave vector is increased by a factor of n0.  Kretschmann, ; Otto,
.e latter method, which uses frustrated total internal reĘection, has

two variations, known as the Kretschmann andOtto conĕgurations, illus-
trated in Fig. .. Both involve a high-index dielectric substrate, medium
, and a metal-dielectric interface –. e metal is the thin layer  in
the Kretschmann conĕguration, while the Otto conĕguration has a thin
dielectric layer  and a bulk metal on top as medium . If the light is inci-
dent in medium  at an angle θ larger than the critical angle θcr for total
internal reĘection at the interface – (Otto) or – (Kretschmann), then
the ĕeld at the interface – can phase-match with the surface plasmon  In the Otto conĕguration, this

ĕeld is evanescent.mode at the interface –. When this happens, the reĘection from the in-
terface – takes a sharp dive, since the energy is instead transferred to
the surface plasmon mode. is yields  curves such as that in Fig. ..
is is the principle behind  sensing. e angle at which the reĘection
is most attenuated is known as the resonance angle θSPR.

e depth of the reĘectance dip is ameasure for the coupling efficiency,
and is a function of themetal layer’s thickness. For each wavelength of the
incident light, there is an optimum for the metal thickness at which the
coupling is critical. At critical coupling, the internal damping is equal to
the reradiation losses.  Raether, , p. .
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Figure .: Typical  curve,
here calculated for a plasmo-

nium layer of critical coupling
thickness on a glass-like sub-
strate with n = 1.5, with vac-

uum on the outside. e critical
angle for total internal reĘec-

tion from substrate to vacuum
is indicated by the gray line at
kx = k0. e resonance angle
θSPR, corresponding to a wave
vector parallel to the interface
kx = k0n0 sin θSPR, is the angle
at which the largest fraction of
the incident light is absorbed

into the surface plasmon mode.
0.99 1.00 1.01 1.02n0 sinθSPR
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I         for the surface plasmon
in these multilayer stacks, we generalize (.) toN layers. is is a pow- Davis, .

erful set of equations that contains everything we need to know about the
system:

[
H+yN
H−yN
] = [M00 M01

M10 M11
] [H

+
y0

H−y0
] , (.)

where

[M00 M01

M10 M11
] = (

N−1
∏
n=1

1
t(n+1)n

[ 1 r(n+1)n
r(n+1)n 1

] [e
ikzndn 0
0 e−ikzndn

])

× 1
t10
[ 1 r10
r10 1

] . (.)

As in the two-layer case, we can use this set of equations to calculate vari-
ous properties of the system. e requirement of having a solution in the
absence of incident ĕelds yields

M11 = 0, (.)

and solving this for complex kx gives us the wave vector of the surface
plasmon mode. e reĘectance, on the other hand, is obtained by calcu-
lating the ratio of outgoing to incident power on the side of layer , with
the condition of no incident ĕeld on the side of layer N,

R = ∣−M10(kx(θ))
M11(kx(θ))

∣
2

, (.)
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Figure .: Free-space wave-
length dependence of the metal
thickness for critical coupling
in a three-layer Kretschmann
conĕguration of plasmonium
or scattrium on a glass substrate
with n = 1.5 and vacuum
on the other side. Note that
the critical thickness is given
in units of the bulk plasmon
wavelength λp = ωp/2πc.

with kx(θ) the real-valued wave vector of the light incident from layer .
On a related note, the thickness d1 of layer  for which the reĘectance
vanishes is obtained by solving M10 = 0 for d1 with the constraint that kx
is real.

e reĘectance of a three-layer Kretschmann system can be written as:

R = ∣ r01 + r12δ
1 + r01r12δ

∣
2
, (.)

with δ = e2ikz1d1 . e condition for surface plasmons (.) works out to
r01r12δ = −1.

Conversely, the condition for zero reĘection and thus critical coupling,
M10 = 0, is equivalent to setting the numerator to zero. It is instructive to
write it thus:

−r01 = r12δ. (.)

For unit ĕeld amplitude incident on the multilayer stack, r01 on the le-
hand side of this equation gives the complex amplitude of the ĕeld as re-
Ęected from the glass-metal interface. e right-hand side represents the
complex ĕeld amplitude at the glass-metal interface that has passed up
and down through the metal ĕlm and has been reĘected off the metal-
air interface. Equation (.) means these two reĘected waves with equal
amplitudes interfere destructively in the direction of the reĘected beam,
yielding zero reĘectance. All the power of the incident beam is coupled
into the surface plasmon, which dissipates it away. e critical coupling  Note that the critical coupling

condition requires equality of
two complex quantities.

thickness for the two ĕctitious metals are shown in Fig. ..
Figure . shows that in the Kretschmann conĕguration, critical cou-
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pling is not easily lost when changing the wavelength of the incident light
for a constant metal layer thickness. e difference in critical thickness
between plasmonium and scattrium in Fig. . reĘects the accelerated de-
cay of the ĕeld in the lossier metal, and so a thinner layer is required to
balance the two reĘected ĕelds. As a reality check, we show

that Fig. . does represent
realistic numbers: for silver,

a plasmonium-like metal
with λp = 138 nm, (.)

predicts a critical thickness
of 0.34 × 138 = 47 nm for
λ = 1000 nm (Ω = 0.138).

Likewise, for aluminum, a
scattrium-like metal with

λp = 79 nm, it predicts a critical
thickness of 0.2 × 79 = 14 nm
for λ = 500 nm (Ω = 0.16).

. Effect of electron scattering rate on the Kretschmann line-
shape

I  K  where the dip in re-
Ęectance is very narrow because ∣ε′1∣≫ 1 and ε′′1 ≪ ∣ε′1∣, the dip is oen

 Raether, , p. .

approximated by a Lorentzian resonance subtracted froma constant back-
ground of unit magnitude. In this limit, the resonance angle gives the real
part of the surface plasmon wave vector, and the half-width of the reĘect-
ance dip reveals the imaginary part. Repeating the measurement over a
range of wavelengths yields the surface plasmon dispersion relation.

However, if ε′′1 ≪ ∣ε′1∣ does not apply, then the reĘectance yields much
less information about the surface plasmon wave vector. Figure . illus-
trates this point by showing calculated Kretschmann reĘectance curves
at two different frequencies for a layer of plasmonium, which fulĕlls the
conditions above, and a layer of scattrium, which does not fulĕll ε′′1 ≪ ∣ε′1∣.
In the case of scattrium, even though the resonance angle and resonance
width vary with the wavelength, it is difficult to say exactly how the reso-
nance width should be deĕned, since the resonance is highly asymmetric.
For example, the linewidths of the two curves in Fig. .b are obviously
different, but there is no apparent way to quantify them, since the line-
shapes are asymmetric.

In fact, the rule of thumb that holds for plasmonium — that the res-
onance width yields information about the imaginary part of the surface
plasmon wave vector — fails even on a basic intuitive level for scattrium:
in Fig. ., the purple curve’s linewidth is, if anything, wider than that of
the green curve, whereas one would expect it to be narrower because the
resonance is more heavily damped at the higher frequency of the green
curve, as we see from Fig. .. e discrepancy is caused by the phase
difference between the resonance and the background.

As we will show in the next section, the parallel wave vector at the
resonance angle, k0

√ε0 sin θSPR, does not necessarily correspond to the
actual surface plasmon wave vector, contrary to what is usually assumed
in Kretschmann experiments. In the case of a metal with low ε′′ such as
plasmonium, the difference is slight; but in scattrium, the actual surface
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Figure .: Calculated 
curves for the Kretschmann
conĕguration at two far-apart
frequencies. e layers are
plasmonium (a) and scattrium
(b) on a n = 1.5 glass-like
substrate. At each frequency,
the layer is taken to have the
proper thickness for critical
coupling. e critical angle
for total internal reĘection in
the substrate, at kx = k0, is
indicated by a gray line. e
curves in (a) are typical in 
experiments. e position
of the reĘectance minimum
corresponds to the real part of
the wave vector of the surface
plasmon, and its linewidth
corresponds to the imaginary
part. e scattrium-type curves
in (b) are asymmetric without
a well-deĕned linewidth. eir
minimum does not correspond
to the real part of the surface
plasmon wave vector, and their
width does not correspond to
the imaginary part.

plasmon wave vector in scattrium is quite far removed from the parallel
wave vector at the resonance angle. is ĕnding is similar to a damped
driven harmonic oscillator, where the damping parameter is related to ε′′.
It is well-known that a sufficiently damped, driven oscillator has its max-
imum response at a different frequency from the undamped resonance
frequency. In fact, as we will see in the next section, a damped driven os-
cillator on a coherent background is precisely what describes the surface
plasmon resonance.

. Analyzing Kretschmann lineshapes

I   , K suggested considering the
surface plasmon resonance a lightly damped driven oscillator, elegantly
described by a Lorentzian lineshape. e reĘectance, in the neighbor-

 Kretschmann, .

hood of the resonance angle, is then the resonance subtracted from a con-
stant background of unit magnitude:

 Raether, , p. .

R = 1 −
4k∞SP

′′Δk′′SP
(kx − (k∞SP

′ + Δk′SP))2 + (k∞SP
′′ + Δk′′SP)2

, (.)

where k∞SP is the surface plasmon wave vector on the semi-inĕnite inter-
face, as given by (.), and ΔkSP is a displacement that the resonance un-
dergoes due to the presence of the coupling prism, approximated by:

 Raether, , p. .ΔkSP =
2∣k∞SP∣3

k2
0(∣ε′1∣ + ε2)

e2ikz1d1r01(k∞SP). (.)
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However, as Fig. . clearly shows, this approximation does not ĕt very
well to metals that behave like scattrium. In addition, it assumes that the
resonance angle is equal to the angle corresponding to the surface plas-
mon wave vector. Various improvements to this ĕtting function exist,
including ones that drop the latter assumption, but there is little moti- Kurihara, Naka-

mura, and Suzuki, . vation to expand the analysis beyond plasmonium-typemetals, since gold
is most oen used in commercial  systems anyway.

H     that is valid over a larger range of
angles, not just in the neighborhood of the resonance, and can be used
to ĕt metals with larger Drude scattering parameters. We start from the
expression in (.) and write it as the coherent addition of a resonance to
a slowly varying background. In addition, we note that r−112 goes to zero
when kx = k∞SP (.) (the denominators of r12 and t12 are the same), so we
write the expression as a function of r−112 :

r012 =
r01 + r12δ
1 + r01r12δ

= r01 +
(1 − r01)2r12δ
1 + r01r12δ

= r01 +
(1 − r01)2δ
r−112 + r01δ

(.)

en we take a linear approximation of r−112 around the zero at k∞SP:

r−112 ≈ α(kx − k∞SP), α = ∂
∂kx

r−112 ∣
kx=k∞SP

(.)

with α a complex-valued constant. So far, this is the same approach by
which Kretschmann derived the Lorentzian resonance. However, instead
of taking unit background and resonance amplitudes, we make no more
approximations, instead writing the expression as follows:

R(kx) = ∣B +
Aeiϕk′′SP

k′SP + ik′′SP − kx
∣
2

, kx > kcr. (.)

We neglect the part of the reĘectance curve under the critical angle, since
the linear approximation breaks down at that point.

We can use this expression for extracting the surface plasmon wave
vector from  curves. ere are ĕve ĕt parameters in the expression:
B, the background amplitude; A, the resonance amplitude; ϕ, the phase
difference between the background and resonance; and k′SP and k′′SP, the
complex surface plasmon wave vector. e advantage of this expression
is that it yields a surface plasmon wave vector without requiring any ad-
vance knowledge of the composition or thicknesses of the layer system: it
is completely phenomenological.
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Figure .: Plot of the relative
error in the value of nSP (green
curves) made by using the
value obtained from ĕtting
the numerically calculated
reĘectance curves with (.).
e orange curves are the result
of simply estimating n′SP from
the resonance angle, which is
a fairly good approximation
for plasmonium (a), but not at
all for scattrium (b). e error
in the real part in (a) has been
multiplied by  to improve
visibility.

Figure . shows how effective the phenomenological ĕt is, compared
to estimating the surface plasmon mode index from the resonance an-
gle. On the vertical axis, we plot the approximation error, i.e. the de-
viation between the calculated and estimated mode index. For low-loss
metals like plasmonium, the phenomenological ĕt proves excellent (er-
ror < .), but it is acceptable to use the resonance angle (error < ).
For scattrium-like metals, the resonance angle is quite far off, whereas the
phenomenological ĕt performs reasonably well.

A     for the phenomenological ĕtting
procedure, we calculate  curves for a Kretschmann conĕguration ex-
periment for a wavelength range from 500 to 800 nm. As a substrate we
take  glass with Sellmeier dispersion; asmetal we take a 40 nm layer  Schott AG, .

of gold, the optical properties of which we approximate with a Drude
model with added Lorentzian oscillators, ĕt to published values. Gold  Rakić, Djurišić, Elazar, and

Majewski, .is a plasmonium-like metal; however, around 500 nm, it has an interband
absorption which increases the loss so that it enters a more scattrium-like
regime. erefore, this wavelength range nicely tests both symmetric and
asymmetric  curves. We add an extra capping layer of 5 nmaluminum
oxide with Sellmeier dispersion to the calculations, in order to illustrate  Babeva, Kitova, Mednikarov,

and Konstantinov, .how the ĕtting procedure performs with more than three layers. Finally,
we add Gaussian noise with a standard deviation of  to the signal. We
then treat these data asmeasured results and ĕt themwith (.). We show
the results in Fig. ..

In Fig. .b, we see that the phenomenological ĕtting expression per-
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Figure .: Performance of the
phenomenological ĕtting ex-
pression of (.) on realistic,
yet ĕctitious,  “measure-
ments,” calculated for a gold
layer capped with Al2O3 on
a  substrate. (a) Gener-

ated ĕctitious data points for
selected wavelengths, along

with the corresponding ĕt as a
solid line. Note the transition
from a scattrium-like regime
to a plasmonium-like regime
as the wavelength increases.

(b) Comparison of the calcu-
lated surface plasmon mode

index nSP (blue lines; real part
solid, imaginary part dashed)
to that obtained from the ĕt-
ting procedure (red dots; real

part closed, imaginary part
open). For comparison, the
green dots are the real part

of the mode index estimated
from the resonance angle.

forms admirably, much better in any case than estimating the real part of
the mode index from the resonance angle. As the metal gets lossier and
more scattrium-like, the ĕt gets slightly worse. It has a tendency to un-
derestimate the imaginary part of the mode index, but that is not entirely
surprising since the asymmetric dip is much wider than the “measured”
angle range at 500 nm, as we see from the blue curve in Fig. .a.

. Otto conĕguration

T O  (Fig. .b) can be described by the same
mathematics as the Kretschmann conĕguration. e only difference is
that the thin layer ε1 is a low-index dielectric and the metal ε2 is on the
outside. Because of this similarity, the Otto conĕguration is oen consid-
ered equivalent to the Kretschmann conĕguration; but a common mis-
conception is that there is practical difficulty in realizing it experimentally
and it is therefore unattractive.

It is true that the original experimental realization of the Otto conĕg-
uration, with air as the low-index dielectric, involves bringing the metal
within a few microns of the prism and maintaining a constant air gap
width over the entire surface, which was, and is even now, notoriously
difficult to accomplish. For example, contamination by one or more dust
particles of 75 μm would make a one-micron air gap completely impos-  :.

sible. However, there is no reason why the low-index dielectric has to be
air. For example, in chapters  and , we describe Otto experiments using
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Figure .: Free-space wave-
length dependence of the gap
thickness necessary for critical
coupling in a three-layer Otto
conĕguration of a glass sub-
strate with n = 1.5 separated
from bulk plasmonium or
scattrium by a vacuum gap.
Compare Fig. .; the gap
thickness is several orders
of magnitude larger in the
Otto conĕguration than the
metal layer thickness in the
Kretschmann conĕguration.

a high-index Ęint glass prism and magnesium Ęuoride as the low-index
dielectric, where no gaps or moving parts are involved.

In this section, wewill explore inwhich circumstances theOtto conĕg-
uration ismore appropriate for  measurements than the Kretschmann
conĕguration. Wewill take the high-index dielectric to be a glass-like sub-
stance (n = 1.5) as before, the low-index dielectric to be vacuum, and the
metal to be a bulk layer of either plasmonium or scattrium.

F  , we use (.) to calculate the critical coupling thickness
for the vacuum gap between the glass and themetal, shown in Fig. .. In
the Otto conĕguration, the middle layer must be several orders of magni-
tude thicker than the middle layer in the Kretschmann conĕguration in
order to achieve critical coupling. is is because the surface plasmon’s
radiative losses must be equal to its damping losses at critical coupling, as
we previously explained. A vacuum gap is lossless compared to a metal
layer, and so the evanescent wave in the middle layer decays over a much
larger distance in the vacuum gap than it does in the metal layer. If it has
not decayed enough before bridging the gap, then the system is overcou-
pled. In addition, there is true total internal reĘection at the glass-vacuum
interface in the Otto conĕguration, whereas the wave in the metal layer
in the Kretschmann conĕguration is not purely evanescent.

is is why the required layer thickness is many times that shown in
Fig. .; in order to balance the damping and reradiation losses, the ĕeld
must cross a much larger distance compared to the Kretschmann case.
Also, unlike the Kretschmann case, the critical coupling thickness now
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Figure .: Calculated 
curves for the Otto conĕg-

uration at two far-apart fre-
quencies. e outer layers are
plasmonium (a) and scattrium
(b), with a vacuum gap of crit-

ical coupling thickness (see
Fig. . to read off the thick-

ness) and an n = 1.5 glass-like
substrate. e critical angle

for total internal reĘection in
the substrate is indicated by

a gray line. Compare Fig. ..

exhibits a strong frequency dependence. e vacuum layer thickness d1

scales approximately with i/kz1 (.); kz1/k0 is a small imaginary number,
so d1 ∝ 1/ω. is means that when designing an Otto experiment for a
broad range ofwavelengths, amiddle layer of constant thicknesswill cause
the resonance to become undercoupled or overcoupledmuch closer to the
design wavelength than in the Kretschmann conĕguration.

W   the wavelength-dependent  curves for the Otto
system. We show a number of examples in Fig. .. ere are some no-
table differences from the equivalent  curves for theKretschmann sys-
tem (Compare Fig. ..)

For both plasmonium and scattrium, nothing special happens at the
critical angle, unlike the Kretschmann case. is is because the Otto con-
ĕguration deals with true frustrated total internal reĘection, where the
incident wave, which is evanescent in the gap, can still excite a propagat-
ing wave in the metal for some angles. e Kretschmann conĕguration,
on the other hand, has the vacuum on the outside, so whether the light
couples into the surface plasmon mode or not, it cannot travel into the
vacuum in any case; the total internal reĘection is not frustrated, only
perturbed.

In addition, secondary resonances are visible at lower angles (kx <
k0) than the main plasmonic resonances. Calculating the mode proĕle Davis, .

shows that these are waveguide modes in the vacuum gap, as suggested
by Tillin and Sambles. e Kretschmann conĕguration’s metal layer is Tillin and Sambles, .
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Figure .: Plot of the relative
error in the value of nSP (green
curves) made by using the
value obtained from ĕtting
the numerically calculated
reĘectance curves with (.).
e orange curves are the result
of simply estimating n′SP from
the resonance angle and n′′SP
from the half-width, which
is a good approximation for
plasmonium (a), but not for
scattrium (b). e error in
the real part in (a) has been
multiplied by  to improve
visibility.

not thick enough to support such modes.
In both cases, the resonance lineshape is approximately Lorentzian and

easy to interpret. Using the phenomenological ĕtting expression of (.),
shown in Fig. ., on the ĕctitious measurements of Fig. . shows that
the analysis works well for both metals, performing comparably to the
Kretschmann conĕguration. e resonance angle (making sure to take
the resonance corresponding to the plasmon mode and not a waveguide
mode) is a good indicator of the real part of the surface plasmon mode
index for plasmonium, but not at all for scattrium. Again, this is because
the approximation of (.) breaks down close to the critical angle.

Since the curves in Fig. . all have a reasonably well-deĕned line-
width, we can also estimate the imaginary part from the resonance’s half-
width at half-maximum. For scattrium, this yields reasonable results, but
for plasmonium, this estimate is even slightly better than using (.). is
indicates that, at least for the imaginary part of the mode index, the Otto
conĕguration produces much more easily interpretable experimental re-
sults than the Kretschmann conĕguration when studying surface plas-
mons on a metal with large ε′′.

. Conclusion

W     of the optical properties ofmet-
als on the resonance lineshape in  measurements and examined the
advantages and disadvantages of the Kretschmann and Otto conĕgura-
tions for  experiments.
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We have demonstrated that there are advantages to the Otto conĕg-
uration as a method of studying surface plasmons, contrary to what is
oen thought. In the case of a low-loss metal, such as our ĕctitious “plas-
monium,” it performs comparably to the Kretschmann conĕguration, al-
though the Kretschmann conĕgurationmay be preferable if working with
a large range of wavelengths. When working with high-loss metals such
as our ĕctitious “scattrium,” the resonance angle yields no information
about the real part of the surface plasmon mode index in either conĕgu-
ration. However, the linewidth of an Otto curve is always a good indica-
tor of the imaginary part of the mode index. Kretschmann curves, on the
other hand, can be asymmetric for high-loss metals, in which case they
do not have a well-deĕned linewidth.

In addition, the Otto conĕguration allows the use of arbitrarily thick
layers of metal. is is important because a scattrium-type metal ĕlm
must be very thin if used in the Kretschmann conĕguration: so thin,
in fact, that the thickness is of the same order as the electron scattering
length, possibly affecting the optical properties of the ĕlm.

We have also demonstrated a method for analyzing  curves that
allows extraction of the complex surface plasmon mode index without
any knowledge of the composition, thicknesses, or optical properties of
the various layers of metal and dielectric involved in the attenuated total
reĘection coupling system. is phenomenological method of analysis
yields values for the imaginary part of the mode index even when con-
fronted with an asymmetric Kretschmann lineshape. It also yields more
accurate values for the real part than can be obtained from the resonance
angle, and works well for metals with large or small ε′′.
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Appendix . Surface plasmon resonance curves beyond crit-
ical coupling

I  ,    the critically coupled case of
, by adjusting the thickness of the middle layer (metal in the Kretsch-
mann conĕguration, air in the Otto conĕguration) depending on the fre-
quency of the incident light. is is not feasible in a real experiment, un-
less one is willing to deal with a layer of adjustable thickness, such as an
oil layer whose thickness is changed by adjusting the mechanical pressure
on the two surrounding solids; even then, it is impossible to measure a  Quail, Rako, and Simon, .

broad range of wavelengths all at once.
erefore, in this appendix we evaluate a more realistic experimental

situation for our ĕctitious metals plasmonium and scattrium. We take
the plasma frequency of both metals to be h̵ωp = 15 eV, allowing us to
put in actual wavelengths; and we take a layer thickness appropriate to a
wavelength of 800 nm (Ω = 0.10). at is, in the Kretschmann conĕg-
uration, 24.3 nm for plasmonium and 10.0 nm for scattrium; and in the
Otto conĕguration, 2.4 μm for plasmoniumand 1.4 μm for scattrium. We
“measure” at six wavelengths, from 500 to 1000 nm.

Figure . shows the reĘectance curves for the Kretschmann conĕg-
uration. ey are not so different from the curves in Fig. ., bearing
out our assertion that the coupling efficiency does not have a very strong
dependency on the frequency in the Kretschmann conĕguration. It is in-
teresting to note that the intuitive rule of thumb, that the resonance line-
width is related to the imaginary part of the surface plasmon wave vec-
tor, now seems to apply to scattrium; the blue (λ = 500 nm) resonance is
broader in both plasmonium and scattrium, and this corresponds tomore
absorption in the metals at higher frequencies.

Figure ., on the other hand, shows the reĘectance curves for the
Otto conĕguration. e secondary waveguide modes are once again visi-
ble at angles less than the critical angle, but this time they are closer to
the critical angle. It is also immediately apparent that the coupling is
much worse when the layer thickness is not optimized for critical cou-
pling. e coupling to scattrium’s surface plasmon mode at kx = 1.01k0

for λ = 500 nm is much weaker than the coupling to the waveguide mode
at kx = 0.97k0. In plasmonium, the surface plasmon mode has all but
disappeared at 500 nm, visible as a tiny blip at kx = 1.015k0.

Note that themain resonance in scattrium is not necessarily plasmonic
at all wavelengths; it appears to the le of the critical angle, i.e. kmode < k0,
for λ = 900 and 1000 nm. It is a hybrid between a surface plasmon and
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Figure .:  curves for a
number of representative wave-

lengths, for a Kretschmann
experiment with (a) a 24.3 nm

layer of plasmonium on a glass-
like substrate with n = 1.5
surrounded by vacuum; (b)
a 10.0 nm layer of scattrium
on the same substrate, also

in vacuum. e metal layers’
thicknesses are designed for

critical coupling at λ = 800 nm,
but not for other wave-

lengths. Compare to Fig. ..

waveguidemode, being strongly damped in the intermediate layer, but not
entirely evanescent away from the interface. is emphasizes the modal
character of the Otto plasmon; when the layer width is different from the
critical layer width for surface plasmon mode, the effective index shis.

In all cases, even for resonances away from critical coupling, the phe-
nomenological expression of (.) still yields accurate results. e sim-
plermethod of extracting the real part of the surface plasmonwave vector
from the resonance angle is a reasonable approximation in the Otto con-
ĕguration, whereas it does not work in Kretschmann conĕguration if the
lineshapes are asymmetric, as is the case with scattrium.

e conclusion stands, that the Otto conĕguration is a better exper-
imental technique for probing surface plasmons on lossy scattrium-like
metals. However, we note that if a broad enough wavelength range is re-
quired, then a constant gap width degrades the coupling to the surface
plasmon mode, and in that case it is better to deal with the Kretschmann
conĕguration’s asymmetric lineshapes.
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Figure .:  curves for a
number of representative wave-
lengths, for an Otto experiment
with (a) plasmonium separated
from a n = 1.5 glass-like
substrate by a vacuum gap of
2.4 μm; (b) scattrium sepa-
rated from the same substrate,
by a vacuum gap of 1.4 μm.
e gaps’ thicknesses are de-
signed for critical coupling
at λ = 800 nm, but not for
other wavelengths. Compare to
Fig. ..






Anomalous dispersion of surface plas-
mons

We demonstrate, using surface plasmon resonance experiments in the Kretschmann and Otto
conĕgurations, a region of anomalous dispersion in the effective mode index of surface plasmons on

aluminum in the near-infrared. is phenomenon is a consequence of aluminum’s parallel-band
transition at . eV. Our results show that the transition is only weakly present in aluminum layers of the

order of  nm.

. Introduction

R     an important role in the
ĕeld of plasmonics. While radiative loss is commonly considered use-
ful, providing the coupling mechanism to the outside world, dissipative
loss does not have this positive side. Apart from the drive towards loss-
less plasmonics, the usual response to this challenge involves the use of  Berini and De Leon, .

materials, in this case metals, that have minimal dissipation. Oen, the  West et al., .

metals that have low loss at optical frequencies have dielectric proper-
ties that exhibit Drude-like dispersion, that is, the dielectric properties are
dominated by intraband electronic transitions. e Drude-like behavior
implies that the dispersion of the effective surface plasmon mode index
nSP is always normal, i.e.:

dnSP

dλ
< 0 and d2nSP

dλ2 > 0. (.)

Anomalous dispersion in bulk materials such as atomic vapors is usu-
ally associated with a resonance in the absorption; there the vapor is es-
sentially opaque so that the dispersion is usually difficult to measure di-
rectly. A discussion of the dispersive properties of a surface plasmon is  King, .
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slightly more involved because a surface plasmon is a mode and therefore
it is the modal dispersion that we probe. Moreover, in a simple geometry,
it is a mode that propagates along the interface between two materials
and therefore it probes the dispersion of bothmaterials. In quite a few ex-
periments the surface plasmon ĕeld extends into a number of layers with
different dielectric properties, and the anomalous dispersion can arise as
a consequence of the dispersive properties of each material separately, or
combined. For example, the dispersion relation of the surface plasmon
can be inĘuenced by interaction with a dye monolayer. Here we ad- Wähling, .

dress the simple case that the anomalous dispersion of a surface plasmon
is caused by the dispersive properties of the metal, and not of the other
materials into which it extends. Even in this simple case, the answer will
turn out to depend on the experimental approach chosen.

Following the reasoning of the previous paragraph, we are searching
for a plasmonic material — i.e. a metal where surface plasmons are not
damped too strongly — which exhibits a relatively narrow peak in the
imaginary part of the dielectric constant, and thus in the bulk absorp-
tion. Actually, there are quite a few metals that exhibit a resonance of
this kind, such as aluminum, magnesium and calcium, to name just Ehrenreich, Philipp,

and Segall, .
 Mathewson and Myers, .

 Hunderi, .

a few. For these metals, the spectral band associated with the extra ab-
sorption is known as parallel-band absorption: the absorption arises as a

 Harrison, . consequence of an interband transition between parallel electronic bands
near the Fermi energy. From an experimental point of view, aluminum
is attractive since it is a metal that has wide applications in both optics
and plasmonics. Moreover, compared to the other materials mentioned
above, it is quite easily handled.

e parallel-band absorption in aluminum is quite well known among
optics experts as it is the effect underlying the small dip at λ ≈ 800 nm
(h̵ω ≈ 1.5 eV) in the reĘectance of aluminum, and thus of all aluminum
mirrors. Ehrenreich et al. were ĕrst in explaining this dip as the result Strong, ; Ben-

nett et al., .
 Ehrenreich et al., .

of a parallel-band transition. eir analysis of the optical properties of
aluminum was extended and reĕned by Harrison and Brust. Almost Harrison, .

 Brust, . a decade later, their model of the optical properties of aluminum, as a
weakly perturbed free-electron metal, was further reĕned by Ashcro Harrison, .

and Sturm resulting in explicit expressions for the optical conductivity, Ashcro and Sturm, .

which were shown to agree well with experimental data.
In this chapter, we investigate the optical dispersion of surface plas-

mons traveling on a metallic aluminum interface in the spectral region of
parallel-band absorption, using attenuated total reĘection in the Kretsch-
mann and Otto conĕgurations.
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Light source

Lens
Polarizerf

Spectrometer
θ Iris

Figure .: Sketch of the
experimental setup. e
setup is placed on a pair of
rotation stages so that for a
certain desired internal angle
of incidence θ , the light source
and detector are rotated to the
correct angles. e prism is also
placed on a translation stage
aligned with the prism’s axis
of symmetry, so that the setup
remains symmetric and the
beam always probes the same
spot on the coated face.

. Experiment

T    -  in the spectrum
suggests that in our search for plasmonic anomalous dispersion we need
to study the spectral region between roughly 600 and 1000 nm. For the
experiment this implies the use of a broadband light source such as a lamp,
which, typically, has low spectral brightness. For this reason we choose to
couple with the surface plasmon by traditional attenuated total reĘection
methods, as originally proposed by Kretschmann and Otto. e method
put forward byKretschmann is almost universally considered preferable  Kretschmann, .

to that of Otto; but in the present case the Otto conĕguration has some  Otto, .

very strong advantages, as discussed in chapter . It was successfully used
by Tillin and Sambles to measure the dielectric function of aluminum.  Tillin and Sambles, .

Here we will present experimental results for both conĕgurations and we
will see that the results are quite different, reĘecting the fact that the two
distinct experiments probe an entirely different surface plasmon mode.

Figure . shows the generic experimental setup. Highly collimated p-
polarized white light from a ĕber-coupled tungsten halogen lamp (Ocean
Optics ---) is incident on one of the faces of a prism;
the collimated beam that is internally reĘected off the metal-covered face
leaves the prism through its third face and is collected on the input facet
of a ĕber-coupled mini-spectrometer (Ocean Optics ). During
the experimentwe rotate the prism in steps that increase the internal angle
of incidence by .°; the mini-spectrometer with the associated optics is
mounted on an arm that co-rotates with the prism so that it catches the
reĘected beam. In order to ensure that we always probe the same spot on
the aluminum layer, we adjust the prism’s position aer each rotation step.
For each orientation of the prism we measure the reĘected spectrum.

F  K , we used a right-angled 
glass prism, with broadband near-infrared antireĘection coatings (650–
950 nm) on the two faces adjacent to the right angle. On the hypotenuse
we deposited a thin layer of aluminum, using a Leybold Heraeus 
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sputtering system. To prevent oxidation of the metal ĕlm, we used the
same sputtering system to immediately cap it with a Si3N4 layer of a few
nanometers thickness. e critical angle for total internal reĘection on the
–air interface is around .°, slightly less than °, meaning that the
beam is almost normally incident on the antireĘection-coated entrance
and exit faces.

In the Kretschmann conĕguration, the surface plasmon that can be
excited by the attenuated total reĘection technique resides on the Si3N4-
capped outer surface of the aluminum ĕlm. Because of the high optical
loss in bulk aluminum, the calculated layer thickness that yields critical
coupling is approximately 6 to 10 nm in the spectral region we are study-
ing.

However, thin aluminum ĕlms have optical properties quite differ-
ent from those of bulk aluminum. In the measurements of Novotny et Du et al., ; Novotny,

Bulir, Lancok, Poko-
rny, and Bodnar, .

al., the parallel band resonance is not even in evidence for layers thin-
 Novotny, Bulir, et al., . ner than 9 nm, supposedly because the electron scattering length is then

of the same order of magnitude as the layer thickness. In order to ĕnd
the best layer thickness for critical coupling, we performed experiments
on aluminum layers of several different thicknesses. e results here are
shown for a prism coated with a 10.8±0.6 nm thick aluminum layer with
7.6 ± 0.3 nm Si3N4 on top. We illustrate the layer stack on the prism and
the plasmonic mode we probe in Fig. .. Figure . shows experimental
results for this prism for a number of representative wavelengths.

BK7 glass

10.8 nm Al

7.6 nm Si3 N4

air
10 nm

|H |

Figure .: Schematic of the
various layers deposited on the
 prism used in the Kretsch-

mann setup. e calculated
amplitude of the magnetic

component of the surface plas-
mon ĕeld H⊥ is shown in red.

e le edge of the ĕgure corre-
sponds to zero amplitude. e

ĕeld mode decays exponentially
into the glass and air with decay
lengths of 9.1 μm and 0.76 μm,

respectively. Hence, the de-
cay is not visible at this scale.

e most striking feature of the experimental results is that the reĘect-
ance is relatively small for a wide range of angles of incidence and seems
not to recover at large angles, quite in contrast to the well-known case
of surface plasmons on gold or silver ĕlms. As discussed in the previous
chapter, this is typical for a metal where the ratio of the imaginary and
real parts of the dielectric constant ∣ε′′/ε′∣ is of order .

F  O , we used an equilateral prismmade of 
glass (n ≈ 1.608 at 800 nm), again with coatings deposited on all three
faces: broadband near-infrared antireĘection coatings (R < 2% for –
940 nm) on the two faces through which light enters and exits the prism;
and a compound layer on the third side consisting of 570 nm MgF2 (the
low-index dielectric), 100 nm aluminum, and 110 nm SiO2 as a capping
layer to prevent oxidation. For this prism, the critical angle for total in-
ternal reĘection at the –MgF2 interface is around °, depending on
wavelength. Again, the light beam is almost normally incident on this
prism’s antireĘection-coated faces.
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Figure .: Experimental results
for the angle-dependent reĘect-
ance for several representative
wavelengths, measured using
the Kretschmann conĕguration
and the sample illustrated
in Fig. .. e dots indicate
measured values, and the solid
lines are ĕts to the data using
(.), discussed later in this
chapter. e ĕts cut off at the
critical angle for total internal
reĘection from  glass to air,
as indicated by the small black
markers.
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Figure .: Illustration of
the various layers deposited
on the  prism used in the
Otto setup. e calculated
amplitude of the magnetic ĕeld
H⊥ associated with the surface
plasmon mode is shown in
red, in order to illustrate the
plasmonic mode that we are
probing in this experiment.
e le edge of the ĕgure
corresponds to zero amplitude.

For our experiments we chose a MgF2 spacer layer of 570 nm thick-
ness. eoretically, we expect this layer to provide critical coupling in the
750–850 nm wavelength range. Note that in this setup we excite the sur-
face plasmon at the interface between the aluminum ĕlm and the MgF2

layer. In contrast to the case of the Kretschmann conĕguration, themetal-
lic layer is sufficiently thick that it may be considered to be bulk alu-
minium.

Experimental results for the reĘectance as a function of internal an-
gle for the Otto setup are shown in Fig. ., for a number of representa-
tive wavelengths across the wavelength range of interest. e reĘectance
curves are narrower than in the Kretschmann conĕguration, but for the
longer wavelengths the coupling is far from critical.

. Results and interpretation

F   , as shown in Figs. . and ., we
extract the resonance angle, i.e. angular position of the minimum of the
reĘectance curves. We plot the resonance angle for both conĕgurations
as a function of wavelength in Fig. ..

e ĕrst thing to notice is that the two curves are quite similar qualita-
tively. In both cases, the resonance angle decreases as a function of wave-
length at the shorter and longer wavelengths measured, while at interme-
diate wavelengths the resonance angle goes through a local maximum. In
the Kretschmann conĕguration, the maximum is less pronounced than
in the Otto conĕguration. More careful inspection of the data brings
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Figure .: Example reĘectance
curves for several represen-

tative wavelengths, measured
using the Otto conĕguration
and the sample illustrated in

Fig. .. e dots indicate mea-
sured values, and the solid
lines are ĕts to the data us-
ing (.), discussed later in
this chapter. e ĕts cut off
at the critical angle for total
internal reĘection from 
glass to MgF2, as indicated
by the small black markers.
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out the differences: in the Kretschmann setup the maximum lies some-
where between 800 and 850 nm, while the Otto data exhibit a maximum
near 900 nm. Note that the Kretschmann data are noisier than the Otto
data; this reĘects the very broadminimumof the experimental reĘectance
curves for the Kretschmann conĕguration, the exact position of which is
somewhat difficult to determine, in particular when the signal to noise
ratio is not good, as is to be expected in a reĘectance minimum. e Otto
curves exhibit amuch narrower dip, the center of which is therefore easier
to determine. At longer wavelengths (λ > 900 nm) the angular reĘectance
spectra in the Otto conĕguration also exhibit a shallow dip, as our experi-
mental system is far from critical coupling there. e difficulty in ĕnding
the minimum of these shallow curves is reĘected in the noise in Fig. ..

I   to draw the conclusion from the data of Fig. . that the
surface plasmon modes in the Kretschmann and Otto conĕgurations ex-
hibit anomalous dispersion. However, the resonance angle is not a good
measure for the surface plasmon wave vector, as discussed in chapter .
In order to analyze the data properly, obtaining both the real and imagi-
nary parts of the surface plasmonmode index, we ĕt the reĘectance curve
above the critical angle with the Fano-type lineshape (., .), for each
wavelength studied. As shown in chapter , this lineshape is an excellent
description of the surface plasmon resonance curves for angles of inci-
dence above the critical angle.

R(kx) = ∣B +
Aeiϕk′′SP

k′SP + ik′′SP − kx
∣
2

, kx > kcr. (.)
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Figure .: Measured resonance
angle as a function of wave-
length for the Kretschmann
experiment (a) and the Otto
experiment (b).

Here, R is the reĘectance; A, B, ϕ, k′SP, and k′′SP are ĕt parameters. e
parameter B can be identiĕed with the modulus of the reĘection coeffi-
cient r01 at the ĕrst interface. Since we are only ĕtting the part of the curve
above the critical angle, we can set B = 1 for the Otto conĕguration. From
the complex-valued kSP obtained in this way, we plot the real and imagi-
nary parts of the surface plasmon mode index nSP = kSP/k0 in Fig. ..

For comparison, we show calculated curves for the respective layer
systems using Sellmeier models for the dielectric functions of  glass,
 glass, MgF2, SiO2, and Si3N4. We used Ashcro and Sturm’s  Schott AG, .

 Dodge, .
 Malitson, .
 Bååk, .

model for the dielectric function of the thin layer of aluminum in the

 Ashcro and Sturm, .

Kretschmann experiment, with modiĕed values for the electron scatter-
ing times, as discussed in chapter . We measured the dielectric function
of the thin aluminum layer by ellipsometry and ĕt Ashcro and Sturm’s
expression to these data, with the electron scattering times as variable pa-
rameters, yielding 9.7 fs for free electron scattering and 1.9 fs for parallel-
band scattering. For the thicker aluminum used in the Otto experiment,
we used aDrude-Lorentzmodel for the dielectric function based on tab-  Rakić et al., .

ulated values. ese estimates exhibit good qualitative agreement with  Smith, Shiles, and Inokuti,
.the behavior shown in Fig. ..

e Ashcro-Sturm expression reĘects the parallel-band resonance’s
much heavier damping in the thinner layer; the electron scattering time
is greatly reduced because the scattering length is of the same order as the
layer thickness. Based on a Fermi velocity of 2.03× 106 m/s, a parallel-  Ashcro and Mermin, ,

p. .band scattering time of 3.8 fs in bulk aluminum yields a mean free path
 Mathewson and Myers, .of 7.7 nm, which is close enough to the layer thickness of 10.8 nm that
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Figure .: Real and imaginary
parts of the surface plasmon
mode index nSP = kSP/k0

obtained from our measure-
ments on aluminum ĕlms in
the Kretschmann (a, b) and

Otto (c, d) conĕgurations, as
a function of free-space wave-
length. In (a) and (b), we also
show calculated values for the

mode index in the Kretsch-
mann layer system, using

expressions for the dielectric
constant of aluminum as given
by Ashcro and Sturm ().

In (c) and (d), we show the cal-
culated mode index in a similar

manner, but using published
values for the dielectric func-
tion of bulk aluminum metal.

surface scattering effects play more of a part. Our ĕtted value of 1.9 fs
for the parallel-band scattering time, on the other hand, corresponds to a
mean free path of 3.8 nm. In Figs. .c–d, we compare the measured re-
sults to published values for bulk aluminum; however, in chapter  we will
also demonstrate an improved correspondence by adjusting the scattering
times.

Figure . brings out a few aspects quite clearly: for both the Kretsch-
mann and Otto conĕguration, there is a wavelength region where the dis-
persion of the modal index of the surface plasmon is identiĕably anoma-
lous. However, the dispersion for the two conĕgurations is quite different,
reĘecting the large difference of the surface plasmon’s modal proĕle in the
two cases studied. One reason is that the ‘Otto plasmon’ resides largely
on the interface between MgF2 and aluminum, whereas the mode in the
Kretschmann conĕguration essentially has the character of an aluminum-
air surface plasmon. Our Otto plasmon is therefore much more ‘metallic’
than our Kretschmann plasmon; the former is a better vehicle for prob-
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ing the metal’s material dispersion. A second reason that may play an
important role in explaining the difference between the dispersion of the
two modes is the effect of metal ĕlm thickness. e Kretschmann plas-
mon resides on an aluminum layer so thin that its optical properties seem
to be quite different from those of bulk metallic aluminum. In the Otto
setup, the ĕlm is sufficiently thick that its behavior is closer to that of bulk
metal.

Another difference apparent from the ĕgure is that the modal loss is
much smaller for the Kretschmann plasmon than for its Otto counterpart.
is difference can also be attributed to the Otto plasmon being consid-
erably more metallic.

. Conclusion

W     in the effective
mode index of surface plasmons onmetallic aluminum layers, pairedwith
air in theKretschmann conĕguration andMgF2 in theOtto conĕguration.
e anomalous dispersion is a direct consequence of aluminum’s optical
properties, and not those of the dielectric: speciĕcally, the absorption due
to aluminum’s interband transition at 1.5 eV.

e surface plasmon modes we have measured are not, in either of
the two conĕgurations, the same as the simple surface plasmon mode on
an inĕnite interface between two half-spaces. Each conĕguration has its
own plasmonic mode with a slightly different mode index. We ĕnd that
the properties of the ‘Otto plasmon’ havemore in commonwith themetal
than those of the ‘Kretschmann plasmon,’ which is situated more in the
dielectric.

Our Kretschmann results suggest, by the weak anomalous dispersion,
that aluminum’s interband transition is only weakly present if the alu-
minum layer is thin enough. However, our Otto results show the stronger
anomalous dispersion expected based on various models for the optical
properties of aluminum.
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Appendix . Comparison of dielectric functions obtained by
reĘection and ellipsometry

I      of our results, we also ana-
lyzed the Kretschmann reĘection curves using the entire Fabry-Perot ex-
pression for reĘection, R = ∣r0123∣2, with the real and imaginary parts of
ε1, the dielectric function of the aluminum layer, as ĕt parameters. We
used the layer thicknesses obtained by ellipsometry, and Sellmeier mod-
els for the dielectric functions of  and Si3N4. Figure . shows the Schott AG, .

 Bååk, . aluminum dielectric function we obtained in this way, compared to the
aluminum dielectric function we obtained by ellipsometry.

We conclude that the methods are in excellent agreement about the
real part of the dielectric function, but that the Kretschmann measure-
ment has a tendency to overestimate the imaginary part compared to the
ellipsometric measurement.

Figure .: Dielectric func-
tion of our 10.8 nm layer of

aluminum, measured by ellip-
sometry (green, negative real
part, and orange, imaginary

part) and Kretschmann reĘect-
ance (blue, negative real part,
and red, imaginary part). e
shaded areas indicate the con-
ĕdence interval output by the
ellipsometer’s ĕtting routine.
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
Enhancing the anomalous surface plas-
mon dispersion in aluminum

e effective index of the surface plasmon mode an an aluminum surface has a region of anomalous
dispersion in the near-infrared as a consequence of aluminum’s parallel-band transition at . eV. By

cooling aluminum to  K and performing surface plasmon resonance experiments in the Otto
conĕguration, we demonstrate a sizeable enhancement of this anomalous dispersion. e second-order

dispersion parameter derived from our measurements increases from its room temperature value of
 ps/nm⋅km to  ps/nm⋅km.

. Introduction

I    that aluminum is a good approximation to
a free-electronmetal. Aluminum is also eminently suitable for use in plas-
monic applications at wavelengths shorter than 600 nm, where gold’s ab-
sorption starts to be a hindrance. However, aluminum has some surpris-  West et al., .

ing properties in the vicinity of its absorption peak around λ ≈ 800 nm.
In chapter , we reported anomalous dispersion of the surface plasmon
mode on an aluminum interface, exploiting this absorption. is fea-
ture is unusual, since the dispersion of the surface plasmon mode is usu-
ally normal, a consequence of the Drude-like behavior of most plasmonic
metals.

Aluminum’s absorption peak manifests most visibly as a reĘectance
dip familiar to anyone who has used aluminum mirrors, and it is due to a
parallel-band transition at 1.5 eV. More accurate analysis turned up an-  Ehrenreich et al., .

other parallel-band transition at 0.5 eV (λ ≈ 2500 nm), which had gone  Bos and Lynch, .

undiscovered until then because the Drude-like absorption dominates at
that point. Shortly aer the latter work, Ashcro and Sturm developed a
theoretical model for aluminum’s parallel-band transitions, and pointed
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out that parallel bands in the vicinity of the {} set of crystal planes
cause the 1.5 eV absorption peak, and likewise, bands near the {} planes
are responsible for the 0.5 eV peak. Ashcro and Sturm, .

Interestingly, the parallel-band absorption peaks in aluminum have a
pronounced temperature dependence. When the temperature is reduced,
they shi toward slightly higher energies, narrow, and become stronger. Liljenvall et al., ; Math-

ewson and Myers, ;
Benbow and Lynch, .

A pressure dependence was also discovered: at  GPa, both absorption
peaks move by almost a whole electron volt toward higher energies. In Tups and Syassen, .
addition, parallel-band transitions occur only in crystalline aluminum,
not in liquid aluminum or in other solid states. Aer the s, the Miller, .

 Bernland, Hun-
deri, and Myers, .

subject of aluminum’s parallel-band transitions seems to have been largely
forgotten, but the data are far from buried. ey are readily available in
Palik’s well-known Handbook of Optical Constants of Solids. Smith et al., .

In this chapter, we present experimental measurements of the temp-
erature-dependent surface plasmon dispersion relation in aluminum in
the neighborhood of the resonance at 1.5 eV, using the method of atten-
uated total reĘection in the Otto conĕguration. We cool the aluminum
to liquid-nitrogen temperatures, causing a giant increase in the anoma-
lous dispersion that accompanies the resonance, compared to what we
reported in chapter . Finally, we discuss the feasibility of surface plas-
mon solitons on a liquid nitrogen-cooled aluminum surface.

. Temperature dependence of the parallel-band absorption

T    saw a considerable amount of labor expended
on measuring and understanding the optical properties of metallic alu-
minum. Muchof thatworkwas focused on the energy range below2.5 eV,
where interband absorption plays an important role. Work by several au-
thors provided a reasonably accurate description of the interband fea- Bennett et al., ;

Ehrenreich et al., ;
Dresselhaus, Dressel-

haus, and Beaglehole, .

tures and their impact on the optical properties, in particular the inter-
band feature at 1.5 eV. e picture that arose is that most of the interband
absorption is due to aluminum’s parallel bands near the Fermi energy. Harrison, .

In , building on this work, Ashcro and Sturm proposed a more
detailed description of the intraband and interband absorption which Ashcro and Sturm, .

was in good agreementwith experimental data over a relatively large range
of energies. Moreover, it allowed them to predict a temperature depen-
dence of the interband absorption peak. Mathewson and Myers em- Mathewson and Myers, .

ployed this theoretical model to analyze the optical constants of metallic
aluminum over a wide range of energies, at various temperatures, work
which was extended by Benbow and Lynch. Benbow and Lynch, .
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Figure .: Real (a) and imagi-
nary (b) parts of the dielectric
function of aluminum, cal-
culated using the model of
Ashcro and Sturm ()
with temperature-dependent
parameters extrapolated from
the experimental results of
Mathewson and Myers ()
and Benbow and Lynch ().
e dashed line is the Drude
contribution, without the
parallel-band resonance’s
inĘuence.

T  A  S  as a starting point, we
show the wavelength dependence of the real and imaginary parts of the
dielectric function of aluminum in Fig. .. We calculate the curves using
parameters derived from Mathewson and Myers, supplemented by data
for 4.2 K from Benbow and Lynch. e green (room temperature) and
red (198 K) curves correspond to measurements reported in Mathewson
and Myers. e blue curve is an estimate, according to the model, of the
dielectric function of the aluminum in our liquid nitrogen-cooled exper-
iments at 86 K. e dashed curve shows the Drude contribution to the
real and imaginary parts of the dielectric constant. Note that these results
suggest that the parallel-band transition’s inĘuence can be felt over the
whole visible spectrum. While the real part ε′ is dominated by the Drude
response, the imaginary part ε′′ is not.

e resonant feature at λ ≈ 850 nm (1.5 eV) in ε′ and ε′′ becomesmore
pronounced as the temperature is reduced. Possibly more important, in
particular from the point of view of anomalous dispersion, is that the fea-
ture sharpens in both the real and imaginary parts when the temperature
is reduced.

. Experiment

I       of the surface
plasmon mode on an aluminum surface, we used the method of attenu-
ated total reĘection in the Otto conĕguration, illustrated schematically  Otto, .

in Fig. .. e relative merits of the Kretschmann and Otto experimental
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conĕgurations have been extensively discussed in chapters  and ; the
most important reason for using the Otto conĕguration is the ability to
employ a thick layer of aluminum, with supposedly known optical con-
stants. e thin layers required for the Kretschmann conĕguration do not
always exhibit the parallel-band resonance we are trying to probe, or it Novotny, Bulir, et al., .

is there to a lesser degree. We have performed pre-
liminary experiments on the

low-temperature response
of aluminum in a Kretsch-
mann conĕguration, which
also suggest an increase of

the anomalous dispersion of
the surface plasmon mode.

Surface plasmon

Evanescent

θ

wave

Figure .: e evanescent tail
of a light beam, incident in a
high-index dielectric (dark

blue) at an angle θ greater than
the critical angle, excites a sur-
face plasmon on the interface

between a metal and a low-
index dielectric (light blue).

e Otto conĕguration involves three materials, a high-index dielec-
tric (dielectric function ε0), a low-index dielectric (dielectric function ε1),
and a metal (complex dielectric function ε2, with real part ε′2 < 0). A light
beam is incident at an angle θ greater than the critical angle for total inter-
nal reĘection at the – interface and undergoes total internal reĘection,
its evanescent tail extending into medium . When the parallel compo-
nent of the wave vector of the incident beam in medium  phase-matches
to the surface plasmon mode on the – interface, then the incident wave
can couple to this surface plasmon mode, which is visible as an attenua-
tion of the reĘected wave. is evanescent wave coupling is similar to the
phenomenon of frustrated total internal reĘection.

We used an equilateral prism made of Schott  glass (n ≈ 1.608 at
800 nm)with coatings deposited on all three sides: broadbandnear-infra-
red antireĘection coatings (R < 2% for 500–940 nm) on two sides, and
three layers on the third side: 570 nm MgF2 (the low-index dielectric),
100 nm aluminum, and 110 nm SiO2 as a capping layer to prevent the
aluminum from oxidizing.

We placed the prism in a θ–2θ reĘectometry setup, already described
in chapter , and illustrated in Fig. .. is time, the prism was enclosed
within a home-built liquid nitrogen bath cryostat. eprismwas clamped
between two copper cold plates in thermal contact with the liquid ni-
trogen bath. Monitoring the temperature of the cold plates during the
experiment proved them to be stable at 77 K; simulations with the heat
Ęow module of  suggest that the aluminum layer’s temperature
reaches a steady state of 86 K within twenty minutes of the cold plates
reaching 77 K. e prism assembly was shielded with ĕberglass insula-
tion on the sides where optical access was not required, and the entire
cryostat was placed on top of the rotation stage of the θ–2θ reĘectometer.

As one can see in Fig. ., we need to probe a relatively broad spec-
tral region between approximately 700 and 1000 nm. erefore, as a light
source we used a collimated beam from a ĕber-coupled tungsten halogen
ĕber source (Ocean Optics ---), and measured the re-
Ęectance spectrum from 620–1000 nm as a function of angle of incidence
using a ĕber-coupled mini-spectrometer (Ocean Optics ). We
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Figure .: Measured reĘectance
curves for several representative
wavelengths. e dots indicate
measured values, and the solid
lines are ĕts to the data using
(.), discussed later in this
chapter. e ĕts cut off at the
critical angle for total internal
reĘection from  to MgF2,
where the ĕt function no longer
applies. is is indicated by the
small black markers.

show experimental results for selected wavelengths across the wavelength
range of interest in Fig. ..

F   we extract the resonance angle by deter-
mining the angle at which the reĘection reaches a minimum. Figure .  For this, we use the minimum

of the ĕtting function (.),
discussed in the next section.

shows the resonance angle as a function ofwavelength, for each spectrom-
eter wavelength bin.

e resonance angle decreases as a function of wavelength at both long
and short wavelengths, as if aluminum were a Drude-like metal in these
wavelength ranges. However, the slope of the curve reverses sign in be-
tween, and, for the low-temperature curve, the resonance angle increases
from about 770 to 870 nm. e data become more noisy at λ > 950 nm;
this reĘects the layer thickness getting farther and farther from the thick-
ness necessary for critical coupling. is makes the surface plasmon res-
onance dip shallower, and its minimum therefore harder to pinpoint ex-
actly.

. Analysis

W    the dispersion of the surface plasmon
mode from the results shown in Fig. ., as discussed in chapter , since the
resonance angle is only an approximate indicator of the surface-plasmon
wave vector at a particular wavelength. erefore, we analyze our angle-
dependent wavelength curves using the method outlined in chapter  in
order to obtain both the real and imaginary parts of the wave vector. We
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Figure .: Angle of incidence
at which the reĘectance reaches

a minimum, as a function
of free-space wavelength.
For comparison, we show

the same quantity for room
temperature (see Fig. .b.)

600 650 700 750 800 850 900 950 1000
Wavelength (nm)

58.4

58.6

58.8

59.0

59.2

59.4

59.6

59.8

60.0

Re
so

na
nc

e a
ng

le
 (°

)

86 K
298 K

ĕt the data with a Fano-type lineshape:

R(kx) = ∣1 +
Aeiϕk′′SP

k′SP + ik′′SP − kx
∣
2

, kx > kcr. (.)

In this expression, there are four ĕt parameters: the resonance amplitude
A, the phase difference ϕ between the resonance and the background, and
the real and imaginary parts of themode index k′SP and k′′SP. Wediscard the
part of the curve measured at angles less than the critical angle, which al-
lows us to set a unit background and ĕt with only four parameters instead
of ĕve as in (.). is procedure yields a complex-valued surface plas-
mon wave vector kSP, and we deĕne the effective surface plasmon mode
index to be nSP = kSP/k0. is effectivemode index is plotted as a function
of wavelength in Figure ., where we see a region of anomalous disper-
sion from about 750 nm to 850 nm, accompanied by an absorption peak
centered around 800 nm. e solid lines are the mode index calculated
for this system, taking the Ashcro-Sturm model for the dielectric func-
tion of aluminum, as shown in Fig. .. We took as the pseudopotential
U200 = 0.795 eV, as the Drude scattering time τD = 11.5 fs, and as the
parallel-band scattering time τ I = 6.0 fs. For the purpose of this calcula-
tion, we used a Sellmeier model for the dispersion of  glass, MgF2, Schott AG, .

 Dodge, . and SiO2. Both the real and imaginary parts of the experimentally de-
 Malitson, . termined mode index are slightly higher than the calculated prediction,

but exhibit very similar overall behavior.
Fig. . demonstrates that the parallel-band absorption resonance in

metallic aluminum and its associated anomalous dispersion do indeed
inĘuence the dispersion relation of surface plasmons traveling along an
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Figure .: Measured real
part (a) and imaginary part
(b) of the surface plasmon
mode index, determined
by analysis of the angle-
dependent reĘectance curves,
measured at T = 86 K. e
solid lines are a calculation
of the mode index to be
expected for this particular
Otto-conĕguration system,
based on the Ashcro-Sturm
model for aluminum’s dielectric
function and published values
for the other materials’ optical
properties. Compare to Fig. ..

interface between aluminum and a dielectric.

T   shown in Fig. . suggest that a short (less
than 100 fs) surface plasmon pulse with its center wavelength in the vicin-
ity of the parallel-band absorption will experience substantial pulse re-
shaping. In order to obtain some insight into the pulse propagation we
evaluate the modal group index,

ng =
dω
dk
= n − λ dn

dλ
, (.)

and the second-order dispersion parameter, which is proportional to the
group index’s derivative,

D = −λ
c
d2n
dλ2 . (.)

In both of the above equations, n refers to the real part of the surface-
plasmon mode index. e dispersion is called normal for D < 0, and
anomalous when D > 0.

In order to ĕnd the group index and second-order dispersion param-
eter we smooth the data of Fig. . using a Savitzky-Golay ĕlter, allow-  Savitzky and Golay, .

ing us to estimate the curves’ derivatives. We plot the surface plasmon
group index estimated from our data in Fig. ., and for comparison, we
also show the group index obtained in the same way from the room-
temperature Otto data of chapter . We clearly see that a plasmonic pulse
would experience strong dispersion in the parallel-band region, which is
greatly enhanced by cooling down the aluminum.
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Figure .: Real parts of
the group and phase in-

dex (smoothed version of
Fig. .a) of the surface plas-
mon mode, as a function of
free-space wavelength. For

comparison, the same quan-
tity at room temperature is

shown (orange), as calculated
from the data of chapter .
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Our estimates for the second-order dispersion parameterD, expressed
in ps/nm⋅km, are shown in Fig. .. At both temperatures, there is a A unit for D common in

ĕber optics, meaning pi-
cosecond delay per nanome-

ter bandwidth and kilo-
meter propagation length.

region where D is positive, meaning that the group velocity dispersion is
anomalous.

At the peak of the anomalous dispersion regime, the second-order dis-
persion reaches the large value of 25000 ps/nm ⋅ km. e peak value at
room temperature is about 9000 ps/nm ⋅ km, meaning that cooling to liq-
uid nitrogen temperatures causes almost a threefold increase of this peak
value. ewavelength range inwhich anomalous dispersion occurs, how-
ever, is narrower (about 70 nm versus 100 nm at room temperature.) is
is consistent withMathewson andMyers’ earliermeasurements demon- Mathewson and Myers, .

strating that the parallel-band resonance became stronger and narrower
at lower temperatures.

W   using this anomalous dispersion to create a surface
plasmon soliton. e anomalous dispersion region is about 70 nm wide,
centered around 830 nm. is bandwidth corresponds approximately to a
14 fs Fourier-limited pulsewidth. Surface plasmons generally have a short
decay length, typically less than 50 μm in the relevant wavelength range.
e broadening of a 14 fs pulse associated with D = 25000 ps/nm ⋅ km
over a length of 50 μm is 88 fs. However, the 1/e surface plasmon ampli-
tude damping length at 830 nm in our measurements is a mere 2.2 μm,
leading to a pulse broadening of 3.8 fs over one damping length.

However, this does not mean that a surface plasmon soliton is possi-
ble on an unmodiĕed aluminum-vacuum interface. A soliton pulse in
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Figure .: Second-order
dispersion parameter D
estimated from the measured
surface plasmon dispersion
relation, as a function of free-
space wavelength. Note the
region where D > 0, where the
group dispersion is anomalous.

conventional optics requires both anomalous dispersion and Kerr non-
linearity in order to maintain its shape. For a surface plasmon soliton,
the aluminum must be paired with a dielectric exhibiting the Kerr effect,
changing the dispersion relation. Although Sámson et al. suggest us-  Sámson et al., .

ing a pulse with a peak power high enough that the metal’s intrinsic Kerr
nonlinearity suffices, we suspect that this would prove prohibitively dam-
aging. Huang, Chang, Leung, and Tsai suggest a possible expression for  Huang et al., .

the dispersion relation of a surface plasmon on the interface between an
ideal metal and a Kerr medium.

e propagation losses are an additional consideration for a surface
plasmon soliton. When the 1/e amplitude damping length of a surface
plasmon is littlemore than 2 μm, then to be of any use theremust be some
form of loss compensation added to the surface plasmon mode. Pairing
themetal with a pumped gainmedium as the dielectric seems a promis-  Noginov et al., .

ing way to achieve this.

. Conclusion

B   to 86 K, we have demonstrated a sizeable en-
hancement of the anomalous dispersion in the effective surface plasmon
mode index previously reported in chapter . e measured dispersion
relation indicates that there is a wavelength region between approximately
810 and 880 nm where the second-order dispersion is anomalous, mean-
ing this system is capable of supporting a plasmon soliton, provided that
some form of nonlinear Kerr effect can be added and the propagation
losses can be compensated.
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Appendix . Ashcro-Sturm model for the temperature-de-
pendent parallel-band conductivity

A  S were the ĕrst researchers to derive explicit Ashcro and Sturm, .

expressions for the contribution to the optical conductivity, and therefore
to the dielectric function, from parallel-band transitions. However, their
paper unfortunately contains several misprints, making it nearly impos-
sible to use their results simply by reading their paper. In this appendix
we hope to correct this state of affairs by reprinting the expressions we
obtained by going through their derivation carefully and simplifying the
notation here and there.

Ashcro and Sturm cast their model in the form of the optical con-
ductivity, which describes the metal’s optical properties equivalently to
the dielectric function ε. ey are related as follows:

ε(ω) = 1 + iσ(ω)/ωε0. (.)

e parallel-bandmodel, σ(ω) = σD(ω)+σ I(ω), consists of an interband
contribution σ I(ω) and a free-electron contribution σD(ω),

σD(ω) =
σDC

1 − iωτD
. (.)

Equation (.) is equivalent to themore familiar form of theDrudemodel,
(.), with the Drude electron scattering time τD = 1/γ and the  con- : direct current

ductivity σDC = ε0τDω2
p. e interband contribution takes the form of

σ I(ω) = ∑K σ I,K(ω), where K is the reciprocal lattice vector correspond-
ing to the set of planes in which the parallel bands occur, and the expres-
sion takes the sum over all such sets of planes. e contribution from one
set of planes σ I,K(ω) is a complicated expression, but it is governed by
the interband electron scattering time τ I, and the two energies between
which parallel-band absorption occurs: the lower bound

h̵ω− = 2UK, (.)

whereUK is the Fourier component of the pseudopotential for K; and the
upper bound

h̵ω+ = (h̵2K2/2m∗)(2kF/K − 1), (.)

where m∗ is the effective optical mass of a conduction electron and kF is
the Fermi wave vector. ere is also a “normal” interband contribution to
the absorption (i.e. not due to parallel bands) which dominates for ω >
ω+, but it is negligible within the frequency regime that we are examining.
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In short, the model is an integral over a density of states in the por-
tion of k-space in which the parallel-band absorption occurs. e two
scattering times τD and τ I are important, because they remove all sorts
of inĘuences from the model. For example, the inĘuence of aluminum
ĕlm thickness discussed in chapter  manifests itself as a broadening of
the interband scattering, which is why the resonance is less in evidence.
Experiments suggest that in rough terms, τD ≈ 2τ I for any temperature,  Mathewson and Myers, .

which suggests that the electron-phonon scattering dominates τ I. How-  Benbow and Lynch, .

ever, in other circumstances, experimental observations suggest that the
values of τ I for resonances associated with different sets of planes diverge,
and separate values τ200 and τ111 are necessary to explain the observed
data.  Benbow and Lynch, ;

Tups and Syassen, .

T   for the real and imaginary parts of the parallel-
band conductivity for one set of planes, reproduced from Ashcro and
Sturm in slightly simpliĕed form, are:

σ(ω)′ = σ0zJ(ω)
ρ(z2 + b2)

; (.)

σ(ω)′′ = σ0

2πbρ
( 1

2 sinφ+ ln
t20 + 2t0ρ cosφ+ + ρ

2

t20 − 2t0ρ cosφ+ + ρ2

+ cosφ+ (arctan
t0 + ρ cosφ+
ρ sinφ+

+ arctan
t0 − ρ cosφ+
ρ sinφ+

)

+π b
2 − z2

b2 + z2
J(ω)) , (.)

where the quantities z = ω/ω−, b = 1/ω−τ I, ρ = ((1−b2+z2)2+4z2b2)1/4,
and t0 =

√
ω+/ω− − 1 are all dimensionless and represent frequency ra-

tios, the angles

φ± =
π
4
± 1

2
arctan 1 + b2 − z2

2bz
, (.)

σ0 is a constant with units of conductivity deĕned as e2MKK/24πh̵ with e
the elementary charge and MK the multiplicity associated with the K set
of planes, i.e. how many planes bound the ĕrst Brillouin zone:  for the
{} set of planes and  for the {} set of planes. (e solid angle wedge
deĕned by the XULKW points in the Brillouin zone is one forty-eighth of
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the entire zone.) J(ω) is a complicated real-valued function deĕned as

πJ(ω) = 4zbρ
z2 + b2 arctan t0

+ 1
2
(z

2 − b2

z2 + b2 cosφ− +
2zb

z2 + b2 sinφ−) ln
t20 + 2t0ρ sinφ− + ρ

2

t20 − 2t0ρ sinφ− + ρ2

+ ((z
2 − b2

z2 + b2 sinφ− −
2zb

z2 + b2 cosφ−)

× (arctan
t0 + ρ sinφ−
ρ cosφ−

+ arctan
t0 − ρ sinφ−
ρ cosφ−

)) . (.)

Contrary towhatAshcro and Sturm assert on p. , J(ω) does not tend
to unity for ω →∞.

I       into these difficult expressions
and to reproduce Ashcro and Sturm’s Figs.  and , we also consider the
expressions for the limit inwhich there are no electron collisions (τ →∞).
In this case, J(ω) reduces to the much simpler

J(ω) = H(ω − ω−) −H(ω − ω+), (.)

where H(ω) is the Heaviside step function. It is now apparent that the
physical meaning of J(ω) is simply the frequency range in which parallel-
band absorption occurs (ω− toω+): the parallel-band absorption is absent
at lower energies, and at higher energies it is replaced by what Ashcro
and Sturm term the “normal” interband absorption, which we shall not
cover in this appendix. e complicated expression in which electron col-
lisions are included simply soens the sharp transition between absorp-
tion regimes. e real part for the collisionless case is then

σ(ω)′ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ0
z
√
z2−1

, ω− < ω < ω+,

0, otherwise,
(.)

e imaginary part is given by two expressions, one for frequencies below
ω− and one for frequencies above:

σ(ω)′′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2σ0
πz (

1√
1−z2

arctan
√

z20−1√
1−z2
− arctan

√
z20 − 1) , ω < ω−,

2σ0
πz (

1
2
√
z2−1

ln
√

z20−1−
√
z2−1

√
z20−1+

√
z2−1
− arctan

√
z20 − 1) , ω > ω−

,

(.)
where z0 = ω+/ω−.
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Ashcro and Sturm calculate their ĕgures using values for the scatter-
ing times of τ I = τD = 0.6 × 10−14 s, pseudopotentials U111 = 0.0179 Ry  Ashcro and Sturm, .

(0.244 eV) and U200 = 0.0562 Ry (0.765 eV), and a0kF = 0.9247. We  Ashcro, .

have made our computer code available with which we calculate the con-
ductivity and dielectric function of aluminum.  Chimento, a.
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Samenvatting

E  is een lichtgolf die gebonden is aan een
metaaloppervlak. Er bestaan twee soorten van: de ene komt voor bij me-
talen deeltjesmet sub-micron afmetingen, de andere bijmetaaloppervlak-
ken die tenminste op de schaal van de optische golĘengte vlak zijn. In
dit proefschri, “Tweedimensionale optica: diffractie en dispersie bij op-
pervlakteplasmonen,” gaat het over het laatste type. Deze soort plant zich
langs het twee-dimensionale metaaloppervlak voort, in tegenstelling tot
‘gewoon’ licht dat door de driedimensionale ruimte reist. De binding van
oppervlakteplasmonen aan het metaaloppervlak maakt het mogelijk op-
tische signalen te sturen door kanalen met extreem kleine afmetingen.

Deel : Verschijnselen bij dunne spleten in metaalĕlms

U  , o.a. dat van mijn voorganger Nikolay Kuzmin, was
bekend dat onder bepaalde omstandigheden een zeer nauwe spleet of kras
in een heel dunne metaallaag invallend licht met de juiste polarisatie om
kan zetten in oppervlakteplasmonen, en omgekeerd.

In hoofdstuk  bekijken we bij een metaalĕlm gemaakt van goud met
een dikte van . mm, hoeveel licht door spleten van verschillende
breedte, varierend van . tot . mm, doorgelaten wordt, en
hoe dit doorgelaten licht gepolariseerd is. We gebruiken het aanslaan van
oppervlakteplasmonen bij één polarisatie om de polarisatie van het door-
gelaten licht te kunnen beheersen. Het blijkt dat bij een bepaalde spleet-
breedte en ĕlmdikte de spleet lineair gepolariseerd licht kan omzetten in
circulair gepolariseerd, en omgekeerd. Wij hebben een simpel model ont-
wikkeld dat deze uitkomst ook op intuïtieve wijze verklaart. Dit resultaat
is een handigemanier omop kleine schaal de functionaliteit van een zoge-
naamde kwart-lambdaplaat te realiseren. In hoofdstuk  gebruiken we dit
verschijnsel nog eens, maar met cirkelvormige spleten, om een optische
draaikolk te laten ontstaan uit circulair gepolariseerd licht, en daarmee
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optisch spinimpulsmoment om te zetten in optisch baanimpulsmoment.
Hoofdstuk  beschrij een proef met twee zeer nauwe spleten die in

een heel dunne goudĕlm parallel aan elkaar zijn gekerfd. De ene spleet
wordt beschenen met licht; dat wordt daar gedeeltelijk omgezet in op-
pervlakteplasmonen. De oppervlakteplasmonen reizen naar de andere
spleet waar ze weer omgezet worden in licht. We meten de lichtverdeling,
maar onderweg is deze door buiging van vorm veranderd ten opzichte
van de verdeling bij het invallende licht. Deze vormverandering gebrui-
ken we om informatie over de fase (het golffront) van het invallende licht
te achterhalen; de fase kan niet direct worden gemeten en wordt meestal
gemeten met behulp van interferentie met een tweede lichtbundel. Als
toepassing van deze techniek meten we de fase van een bundel die een
optische draaikolk bevat, maar uiteindelijk kan de techniek leiden tot een
golffrontsensor met een veel hogere ruimtelijke resolutie dan de gangbare
technieken, wat interessant zou kunnen zijn voor de astronomie en -
lithograĕe.

Deel : Anomale dispersie van oppervlakteplasmonen

D    dat de snelheid waarmee licht zich
door een materiaal voortplant aangt van de golĘengte van het licht (de
kleur). Bijvoorbeeld, een puls van rood licht en één van blauw die op
hetzelfde moment een blok glas worden ingestuurd, komen aan de an-
dere kant op verschillende momenten aan. Gewoonlijk komt het rode
licht eerder aan dan het blauwe (deze situatie wordt ‘normale dispersie’
genoemd), maar soms is het andersom: ‘anomale’ dispersie. Anomale
dispersie heb je nodig om solitonen te laten ontstaan, lichtpulsen die een
lange afstand kunnen aĘeggen zonder te vervormen.

Anomale dispersie komt vaak voor in de buurt van golĘengtes die het
materiaal absorbeert. Het metaal aluminium hee zo’n absorptie in het
nabije infrarood. In het tweede deel van dit werk proberen wij de vraag
te beantwoorden of deze absorptie ook anomale dispersie van oppervlak-
teplasmonen aan een aluminiumoppervlak met zich meebrengt. Dit on-
derzoeken wij met een methode, waarbij de oppervlakteplasmonen aan-
geslagen worden door licht aan te voeren vanuit een prisma. Deze tech-
niek kent twee varianten, genoemd naar de Duitse onderzoekers Kretsch-
mann en Otto. Van de Ottoconĕguratie wordt vaak gedacht dat deze al-
leen maar nadelen biedt vergeleken met de Kretschmannconĕguratie. In
hoofdstuk  latenwe zien dat dit eenmisverstand is. Daarnaast introduce-
ren we een analysemethode waarmee wij de resultaten van experimenten



 

aan verliesgevende metalen met beide opstellingen zinvol kunnen inter-
preteren, wat niet mogelijk is met de gebruikelijke aanpak.

Hoofdstukken  en  beschrijven de meetresultaten aan oppervlakte-
plasmonen met anomale dispersie. In hoofdstuk  tonen we inderdaad
anomale dispersie aan bij oppervlakteplasmonen op een aluminiumop-
pervlak. Vervolgens maken we de mate van anomale dispersie nog veel
groter door het metaal tot vloeibare stikstoemperatuur af te koelen, on-
geveer −200 ○C, beschreven in hoofdstuk . Dit is echter een afweging
tussen meer anomale dispersie en meer verlies, omdat de oppervlakte-
plasmonen sneller uitdoven op het gekoelde metaal.
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