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Chapter 5

Rayleigh scattering of surface plasmons by a subwavelength
hole extracted from wavelength dependence of speckle patterns

Rayleigh scattering of light is well known for being inversely proportional
to the fourth power of the wavelength, but so far it is unclear whether this
scaling also applies to the scattering of surface plasmons at a subwavelength
hole. We extract the scattering cross section of a surface plasmon scattering
at a single hole from the transmission of random patterns of subwavelength
holes. The measured scattering cross section for surface plasmon scattering at
a single hole has a stronger wavelength dependence than the traditional λ−4

scaling found for small particles. Although this experimentally found scaling is
consistent with recent theoretical work, the magnitude of the scattering cross
section is about an order of magnitude larger than predicted.

F. van Beijnum, A. S. Meeussen C. Rétif, and M. P. van Exter, submitted for

publication.
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5. Rayleigh scattering of surface plasmons by a subwavelength hole extracted from wavelength
dependence of speckle patterns

5.1 Introduction
Subwavelength holes are important building blocks for novel photonic

structures, given that these holes are used in metamaterials [4, 79], photonic
crystal slabs [80], sensors [29] and possibly thin film solar cells [81]. In the
context of the extraordinary optical transmission [28], the transmission of light
through single subwavelength holes in metal films has attracted much interest
and its physics is surprisingly rich [43, 55, 82].

The excitation [10, 46] and scattering [83, 84] of surface plasmons by single
subwavelength holes has been studied both theoretically and experimentally.
The wavelength dependence of these scattering processes might reveal the
underlying physics of surface plasmon scattering. Also, deep understanding
of these scattering events is of paramount importance for recently developed
microscopic models [36, 37]. So far, this wavelength dependence is only studied
using metal hole arrays. One study reports the traditional [85] λ−4 dependence
[86], while another study reports a λ−n wavelength dependence where the
power n depends strongly on hole size [87]. Both experimental observations
contradict theories on surface plasmon scattering [83, 84].

For surface plasmons scattered at a single hole, the scattering cross section
has unit length instead of an area [83, 84]. This is because the cross section
is the scattered power divided by the incident power per unit width of the
surface plasmon mode. This width is along the surface and perpendicular
to the propagation direction [83, 84, 88]. Using the power per unit width
has the advantage that it is independent of the surface plasmon mode size.

Figure 5.1: a-c, These experiments
probe three scattering processes: a,
the coupling of a surface plasmon to
free space via a single hole; b, sur-
face plasmon mediated transmission,
where first a surface plasmon is ex-
cited at one hole and transmitted at
another hole; c, direct transmission
through a subwavelength hole. d,
Random patterns of subwavelength
holes are illuminated by a spectrally
filtered supercontinuum laser source,
of which we scan the wavelength.
The change of the speckle pattern as
a function of wavelength difference
∆λ is quantified by calculating the
correlation C(∆λ).

 a 

 b 

 c  d 
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5.2. Experiment

Because the scattering cross section for surface plasmons has unit length, the
traditional expression [85] of a product of a volume squared and λ−4 can not
be correct.

In this chapter we extract Rayleigh scattering of surface plasmons by single
subwavelength holes from the transmission of random patterns of these holes.
An important advantage of these random patterns is that most interference ef-
fects can be averaged, in contrast to the transmission of arrays which is entirely
dominated by interference effects. In random patterns it is also straightfor-
ward to compare samples of different hole densities, which allows separating
the ohmic and radiative losses of the surface plasmons [38].

The results presented in this chapter revolve around three quantities, of
which we measure the wavelength dependence: the surface plasmon absorption
length Labs, the scattering cross section σ, and the intensity ratio cross section
A. The surface plasmon absorption length Labs contains only the ohmic loss of
the surface plasmons. The scattering cross section σ characterizes the radiative
loss of a surface plasmon at a single hole (Fig. 5.1a). The intensity ratio cross
section A describes the transmission of light via a surface plasmon where first
a surface plasmon is excited and thereafter transmitted through the hole (Fig.
5.1b). This parameter A contains a normalization to the direct transmission
(Fig. 5.1c). Before presenting the wavelength dependence of Labs, σ and A,
we show how we extract these quantities from the transmission of random hole
patterns. Our approach is discussed in more detail in ref. [38].

5.2 Experiment
Our experiments are performed on a series of random patterns of sub-

wavelength holes in a metal film. The series contains eight patterns of which
only the hole density is varied. We choose the area per hole to be qa2

0, with
a0 = 0.45 µm and q ∈ [1, 2, 3, 4, 9, 16, 25, 36]. The circular holes (diameter of
120± 6 nm) perforate a 150 nm thick gold film which is deposited directly on
glass, omitting the commonly used adhesion layer. A subsequently deposited
20 nm chromium layer damps the surface plasmons on the gold-air interface,
allowing us to selectively study surface plasmons on the gold-glass interface
(see Fig. 5.1c).

We illuminate these random patterns of subwavelength holes with
monochromatic light and record the far field speckle intensity I(~θ, λ) (see
Fig. 5.1d). The change of the speckle pattern with wavelengt can be quanti-
fied by calculating the correlation between the measured speckle intensity at
wavelengths λ0 and λ1 = λ0 + ∆λ, resulting in a correlation function C(∆λ)
[66, 68, 70, 72, 89, 90]. We perform these measurements in a large wave-
length range using a supercontinuum laser source (Fianum Whitelase 400SC)
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5. Rayleigh scattering of surface plasmons by a subwavelength hole extracted from wavelength
dependence of speckle patterns

Figure 5.2: The measured correlation
functions C(∆λ) have a wavelength-
dependent contribution caused by
surface plasmons propagating on
the gold-glass interface, and a
wavelength-independent contribution
resulting from light that is directly
transmitted through the holes. The
correlation function depends strongly
on hole density: the width increases
with hole density while the back-
ground decreases. For the clarity of
the figure, the plots for ρ = 1.6 µm2

and ρ = 2.5 µm2 are offset by −0.1
and −0.2 respectively.
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of which we select a narrow line (∼ 1 nm) with a spectrometer.
Using a simple model, which assumes that only surface plasmons are ex-

cited at the holes and thus neglects the quasi-cylindrical wave contribution
[35, 44, 47], we find an analytic expression for the correlation function:

C(∆λ) =
1

〈Id + Is〉2

∣∣∣∣〈Id〉+
〈Is〉

1− iLtot Re [∆kspp]

∣∣∣∣2 . (5.1)

Equation (5.1) contains two density dependent parameters: Ltot, the prop-
agation distance of the surface plasmons which includes both radiative and
nonradiative losses; 〈Is〉 / 〈Id〉, which defines the intensity ratio between light
transmitted via surface plasmons (〈Is〉) and directly through the holes (〈Id〉).
The term Re [∆kspp] is the difference between the surface plasmon momenta at
wavelengths λ0 and λ1. To good approximation Eq. (5.1) is a Lorentzian with
an almost wavelength independent background correlation 〈Id〉2 / 〈Id + Is〉2.

Figure 5.2 shows three examples of measured correlation functions (on a
log-linear scale) for three different hole densities. The scans in this plot are
performed from 690 nm (∆λ = 0 nm) to 790 nm (∆λ = 100 nm). With
increasing hole density the background correlation (i.e. at large ∆λ) decreases
while the spectral width of the correlation increases. The observation that the
background correlation decreases shows that the efficiency of transmission via
surface plasmons increases with hole density as a larger fraction of the excited
surface plasmons is coupled out instead of being absorbed. This increase in
outcoupling is also evidenced by the increasing spectral width, which is directly
related to the losses of the surface plasmons.

The three fits in Fig. 5.2 are based on Eq. (5.1) and in good correspon-
dence with the data. From each fit two density dependent parameters can
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5.3. Results

be extracted: Ltot and 〈Is〉 / 〈Id〉. The density dependence of Ltot can be
quantified in terms of two density-independent parameters:

L−1
tot = L−1

abs + ρσ, (5.2)

where Labs is the surface plasmon absorption length in the absence of the holes
and σ is a scattering cross section that describes the radiative loss of a surface
plasmon at a single hole (see Fig. 5.1c). Because of the two dimensional
nature of our system, the hole density ρ has unit per area and the scattering
cross section σ has unit length. In the appendix we show that we can fit Eq.
(5.2) to the measured density dependence of Ltot. This fit yields two density-
independent parameters that apply to all structures: the absorption length of
the surface plasmons Labs and the scattering cross section σ at a single hole.

The second parameter that we obtain from the correlation functions is the
intensity ratio 〈Is〉 / 〈Id〉. In the appendix the experimentally obtained ratios
are presented as a function of hole density. Using our model, we can express
this intensity ratio in terms of the hole density ρ [38]:

〈Is〉
〈Id〉

=
Aρ

ρσ + L−1
abs

, (5.3)

where A is a third density-independent parameter: the intensity ratio cross
section. Equation (5.3) fits the experimental data of the density-dependent
intensity ratio, using only A as a free parameter (see appendix).

This parameter A comprises two different effects: first, the excitation of
surface plasmons from free space at the glass side; second, the outcoupling to
the air side (see Fig. 5.1b). The magnitude of A contains a normalization
to the intensity transmitted directly through the hole (see Fig. 5.1c). The
parameter A has unit length, which makes the right hand side of Eq. (5.3)
dimensionless, as is the ratio on the left hand side.

To summarize, we can generalize the correlation functions C(∆λ) of sam-
ples with different hole densities, using only three density-independent param-
eters: Labs, σ and A. We measure the correlation functions for different values
of the reference wavelength λ0, allowing us to measure the wavelength depen-
dence of the parameters Labs, σ and A. In particular, we try to understand the
wavelength dependence of the scattering parameters σ and A using Rayleigh
scattering of surface plasmons at single holes as microscopic model.

5.3 Results
In Fig. 5.3 we show the measured wavelength dependence of Labs. The

absorption length increases by approximately a factor four from Labs ≈ 5 µm to
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5. Rayleigh scattering of surface plasmons by a subwavelength hole extracted from wavelength
dependence of speckle patterns

Labs ≈ 20 µm, when the wavelength is increased from 650 nm to 950 nm. The
data matches very well with the theory for which we use literature values of the
refractive index of gold [54, 77]. This correspondence is very important as it
demonstrates the validity of our approach, both qualitative and quantitative.

In Fig. 5.4 we plot the extracted value for the scattering cross section σ as
a function of wavelength. This scattering cross section shows a steep decline
from slightly more than 100 nm at a wavelength of 675 nm to around 15 nm
at 875 nm. This decline is significantly steeper than the traditional expression
for Rayleigh scattering (σ ∝ λ−4) which is indicated by the dashed line.

Recently, an analytic expression is derived for the scattering cross section of
surface plasmons scattered at a subwavelength hole [84]. For surface plasmons
scattered to the photon field this expression is:

σ = ξ
k4a6

dspp
(5.4)

where a is the hole radius, k is the wave vector in air, and dspp is the mode
size of the surface plasmon, i.e. the 1/e width of the intensity tail into the
dielectric. The dimensionless proportionality constant ξ is radius independent
for ka� 1. For a hole in a perfect electrical conductor slab of zero thickness
ξ = 0.24. Hence, the expression is essentially equivalent to that for scattering
of light by three dimensional particles, with the exception that the surface
plasmon mode size comes in as a proportionality factor. This factor indicates
that the hole is polarized more effectively when the surface plasmon mode is
more compact. The wavelength dependent mode size of a surface plasmon at
a metal-air interface is dspp ≈

√
|ε|/(2k), with ε the dielectric constant of the

metal (assuming |ε| � 1).

Figure 5.3: Inverse absorption length
L−1
abs as a function of wavelength, as

extracted from our experiments. The
obtained absorption length is in good
agreement with theory showing both
the validity of our experiment and the
quality of the gold layer.
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5.3. Results
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Figure 5.4: The scattering cross sec-
tion σ, describing the radiative loss of
a surface plasmon at a single hole, de-
creases almost a factor 10 in the mea-
sured wavelength range.

Fitting Eq. (5.4) to the data in Fig. 5.4, we see a much better correspon-
dence than for σ ∝ λ−4. This is a very important result, as it shows that the
wavelength dependence of the surface plasmon scattering can be understood
and described well using a simple expression. The wavelength dependence
of surface plasmon scattering at subwavelength holes can apparently be un-
derstood by combining Rayleigh scattering with the surface plasmon mode
size.

The prefactor predicted by the theory [84] (ξ = 0.24) is roughly two orders
of magnitude different from our results (ξ = 63±27), whereas the experiments
published with the theory agree within a factor two [84]. The theory, however,
is derived for a metal-air interface. By adapting the theory to a metal-glass
interface, we find that Eq. (5.4) should be multiplied by n6 = 11.9, with n
the refractive index of glass (see appendix), thereby increasing the theoretical
expectation to 2.8. In the appendix we speculate that the remaining order of
magnitude can be explained by the field penetration into the metal, which is
neglected when a perfect electrical conductor is assumed.

Given the promising results for the scattering cross section, we may also
be able to understand the wavelength dependence of the intensity ratio cross
section A. In Fig. 5.5 we plot the extracted value for A as a function of
wavelength: A spans roughly an order of magnitude and is of comparable
magnitude as σ, suggesting that A and σ may be related. Similar to σ, A has
a stronger wavelength dependence than λ−4.

In the appendix we derive a relation between A and σ, which is A =
ση3λ/(n16dspp). The efficiency η describes, for an incident surface plasmon,
how much power is radiated to the substrate relative to the total power scat-
tered out at this hole. The factor 3λ/(n16dspp) describes, for a magnetic
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5. Rayleigh scattering of surface plasmons by a subwavelength hole extracted from wavelength
dependence of speckle patterns

Figure 5.5: The intensity ratio cross
section, A, represents transmission of
light via a surface plasmon, that is
excitation at one hole and transmis-
sion at another hole. This parameter
also decreases almost a factor 10 in
the measured wavelength range and is
comparable in magnitude to the scat-
tering cross section σ.
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dipole, how much power is radiated to surface plasmons relative to the power
radiated to the free space at the substrate side. This calculation assumes that
both the surface plasmon excitation and outcoupling are mediated via the
same (magnetic) dipole moment.

In Fig. 5.5 we plot a fit of A = ση3λ/(n16dspp), using η as free parameter
and the value of ξ we obtained from Fig. 5.4 which describes σ. We obtain a
fitted value of η = 0.67± 0.19, which is reasonable as we expect this efficiency
to be close to, but smaller than, one. This demonstrates the consistency
of the experimental data and the data analysis. We are able to relate two
independent quantities (the intensity ratio and the spectral width) to the
same scattering cross section σ using a simple efficiency factor.

These measurements are also performed on square holes with side length
125± 5 nm, showing the same wavelength dependencies for both σ and A (see
appendix). For these square holes, the experimentally obtained values for ξ
and η are very similar to those of circular holes.

5.4 Conclusions
The scattering cross section of surface plasmons scattered by a subwave-

length hole is measured in the wavelength range of 650-900 nm. The re-
ported wavelength dependence is stronger than Rayleigh scattering predicts,
because a surface plasmon polarizes the hole less efficiently at larger wave-
lengths. Nonetheless, this behavior can be captured in a simple expression.

Additionally, the measured scattering cross section explains the ratio be-
tween surface plasmon mediated transmission and direct transmission of ran-
dom hole patterns. Our results therefore imply that it may be viable to model
particular complex plasmonic structures, like metal hole arrays, using only

44



i
i

i
i

i
i

i
i

5.4. Conclusions

physical parameters like the hole size, hole density and film thickness. How-
ever, first the magnitude of the measured scattering cross section needs to
be understood as it is one order of magnitude larger than recent theoretical
predictions.

The presented methodology of obtaining scattering cross sections from
transmission measurements on samples of different hole densities is surpris-
ingly powerful, and may prove to be fruitful outside plasmonics too. More-
over, we showed the advantage of using random patterns instead of arrays,
as the randomness allows measurements at virtually any wavelength without
changing the illumination angle and thus the character of the excited dipole
moments.
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5. Rayleigh scattering of surface plasmons by a subwavelength hole extracted from wavelength
dependence of speckle patterns

Appendix
This appendix consists of four parts. We first present a derivation of the

model used to fit our experimental correlation functions. Second, the param-
eters in our model are shown to be related the relevant magnetic and electric
polarizabilities. In the third part we show the experimentally obtained density
dependence of the propagation length and the intensity ratio, from which we
obtained density independent parameters. In the last part, we present our re-
sults for square holes, presenting the wavelength dependence of the scattering
cross section and of the intensity ratio cross section.

Model

In our experiments we calculate the correlation between two far-field
speckle patterns I(λ0, ~θ0) and I(λ1, ~θ1), and express it as an experimental
speckle correlation function (SCF). We have fitted the measured correlation
function to a model containing two experimental parameters. In this section
we show how we derived this model.

We calculate the correlation between two speckle patterns, which are both
normalized to their mean intensity. Assuming the experimental correlation
function is well described by an ensemble average, the correlation is expressed
as follows:

C(λ0, λ1) ≡

〈
I(λ0, ~θ0)I(λ1, ~θ1)

〉
〈
I(λ0, ~θ0)

〉〈
I(λ1, ~θ1)

〉 − 1, (5.5)

where 〈·〉 denotes ensemble averaging. Using Isserlis theorem [74] Eq. (5.5)
can be rewritten in terms of the electric fields E(λ0, ~θ0) and E(λ1, ~θ1), which
simplifies further calculations:

C(λ0, λ1) =

∣∣∣〈E(λ0, ~θ0)E∗(λ1, ~θ1)
〉∣∣∣2〈

I(λ0, ~θ0)
〉〈

I(λ1, ~θ1)
〉 , (5.6)

where ∗ denotes the complex conjugate. The field at a particular angle ~θ, is a
summation of the fields at all individual holes i multiplied by a phase factor

exp
[
i~xi ~k||(λ)

]
that depends on the position of the hole ~xi, where

∣∣∣ ~k||(λ0)
∣∣∣ =

(2π/λ) sin
∣∣∣~θ∣∣∣. Hence the total field E(λ, ~θ) is:

E(λ, ~θ) =
∑
i

Ei(λ) exp
[
i~xi ~k||(λ)

]
, (5.7)

46



i
i

i
i

i
i

i
i

5.4. Conclusions

Inserting Eq. (5.7) into Eq. (5.6) results in a double summation (over i and
i′) of which the terms with i 6= i′ have an ensemble average of zero. For the

terms with i = i′ we find
〈
Ei(λ0)E∗i (λ1) exp

[
ixi( ~k||(λ0)− ~k||(λ1))

]〉
. This

reduces to 〈Ei(λ0)E∗i (λ1)〉 if we choose ~k||(λ0) = ~k||(λ1). This condition can
be achieved experimentally by rescaling the recorded images [38]. Hence our
expression for the correlation function is now:

C(λ0, λ1) =
|〈Ei(λ0)E∗i (λ1)〉|2

〈Ii(λ0)〉 〈Ii(λ1)〉
, (5.8)

This expression shows that we only have to consider the field at a single
hole i, because the ensemble-averaged contribution of each hole is identical.
Therefore we will now continue to derive an expression for the field at a single
hole. We assume that this field has two contributions: a directly transmitted
field Ed,i(λ) and a surface plasmon field Es,i(λ), thereby neglecting the possible
influence of the quasi-cylindrical wave [35, 44, 47] which is found at distances
of roughly a wavelength from the hole. Inserting Ei(λ) = Ed,i(λ) + Es,i(λ)
into Eq. (5.8) we obtain:

C ∝
∣∣〈Ed,i(λ0)E∗d,i(λ1)

〉
+
〈
Es,i(λ0)E∗s,i(λ1)

〉∣∣2 . (5.9)

To find this expression we use
〈
E∗d,i(λ1)Es,i(λ0) + Ed,i(λ0)E∗s,i(λ1)

〉
= 0, re-

sulting from the random phase of the surface plasmon field.
We can specify Es,i(λ) further, assuming that the surface plasmons are

radiated with an angular dependence A0(λ, φj) from another hole j. These
surface plasmons decay as a cylindrical wave (1/

√
rij) combined with an expo-

nential decay due to radiative and nonradiative losses, given by the following
expression:

Es,i(λ) =
∑
j

A0(λ, φj)√
rij

exp

[
−1

2
L−1

tot(λ)rij + iRe kspp(λ)rij

]
, (5.10)

with L−1
tot(λ) = ρσ(λ) + 2 Im kspp(λ) the total propagation length, which has

a contribution from radiative decay (ρσ) and absorption L−1
abs = 2 Im kspp(λ).

Please note that the amplitude cross section used in previous work [38] is a
factor two smaller than the (more common) intensity cross section used here.
If we calculating the product Es,i(λ0)E∗s,i(λ1) we find:

Es,i(λ0)E∗s,i(λ1) =
∑
j

A0(λ0, φj)A
∗
0(λ1, φj)

rij
× (5.11)

exp

[
−1

2
(L−1

tot(λ0) + L−1
tot(λ1))rij + iRe [∆kspp]rij

]
,
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5. Rayleigh scattering of surface plasmons by a subwavelength hole extracted from wavelength
dependence of speckle patterns

where:

Re [∆kspp] = Re kspp(λ0)− Re kspp(λ1) =
2π

λ0λ1
(∆λneff(λ0)−∆neffλ1)

(5.12)
with ∆λ = λ1 − λ0 and ∆neff = neff(λ1)− neff(λ0). For ∆nλ0 << ∆λneff(λ0)
this is expressed as:

Re kspp(λ0)− Re kspp(λ1) = 2π

(
∆λneff(λ0)

λ0λ1

)
(5.13)

In case of an ensemble average, we can replace the summation in Eq. (5.12)
with an integral using the average number of holes in an infinitesimal area:
ρrdrdφ. This integral over a complex exponential results in what is essentially
a complex Lorentzian. The resulting correlation function is:

C =
1

〈Id + Is〉2

∣∣∣∣〈Id〉+
〈Is〉

1− iLtot Re [∆kspp]

∣∣∣∣2 , (5.14)

where:

L−1
tot =

1

2
(L−1

tot(λ0) + L−1
tot(λ1)), (5.15)

〈Id〉 = 〈Ed(λ0)E∗d(λ1)〉 , (5.16)

〈Is〉 = ρLtot 〈A0(λ0, φ)A∗0(λ1, φ)〉φ , (5.17)

where 〈·〉φ =
∫ 2π

0 〈·〉 dφ. The factor A in the main manuscript is:

A ≡
〈A0(λ0, φ)A∗0(λ1, φ)〉φ〈

Ed(λ0)E∗d(λ1)
〉 =

〈Is〉
〈Id〉

(ρLtot)
−1. (5.18)

To fit Eq. (5.14) we assume that 〈Id〉 / 〈Is〉 and Ltot are wavelength indepen-
dent within the scan range. Hence these fitted values are an average value
over the wavelength range of interest. In the main manuscript it is shown
that, although some approximations had to be made, the fit function works
very well.

Relating model parameters to polarizability
Recent work has calculated the scattering cross section of the hole in terms

of its polarizability [84]. This work shows that there are two relevant dipole
moments in the surface plasmon scattering problem: a electric dipole oriented
normal to the surface and a magnetic dipole oriented parallel to the surface.
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5.4. Conclusions

In this section we will briefly discuss this calculation, trying to clarify the as-
sumptions made. Hereafter we will try to relate the calculated scattering cross
section to the intensity ratio cross section A extracted from our measurements.

The calculation assumes a surface plasmon on a metal dielectric interface,
of which the power per length P/L⊥ is calculated, analogous to the intensity
in three dimensions. Using the induced dipole moments, the authors calculate
the power radiated to free space Pout and to the surface plasmon field Pspp.
When calculating this radiation, a closed film (i.e. without a hole) is assumed.

By dividing these radiated powers by P/L⊥ a scattering cross section can
be calculated for the scattering to free space (σ) and the scattering to surface
plasmons (σspp) [84]:

σ =
Pout
P/L⊥

≈ 32πk5
0

3
√
|ε|

(|αE |2 + |αM |2) (5.19)

σspp =
Pspp
P/L⊥

≈ 8π2k5
0

|ε|
(2 |αE |2 + |αM |2) (5.20)

Strikingly, both expressions have a different dependence on the dielectric con-
stant ε of the metal. Our understanding of this is as follows: the magnitude
of the dipole moment induced by an incident surface plasmon is inversely pro-
portional to the mode size dspp ≈

√
|ε|/(2k0). The radiation to free space

is comparable to that of a normal dipole, that is it has no dependency on ε.
Radiation to the surface plasmon field, however, scales with the width of the
angular spectrum [91] of the surface plasmon. This width is proportional to
λ/dspp, yielding an extra factor ∝ 1/

√
|ε|.

Expressing the equations in terms of dspp and λ/dspp yields:

σ ≈ 1

dspp
(16/3)πk4

0

(
|αE |2 + |αM |2

)
(5.21)

σspp ≈
λ

d2
spp

πk4
0

(
2 |αE |2 + |αM |2

)
(5.22)

where the factor (16π/3)
(
|αE |2 + |αM |2

)
is what we call η in the main

manuscript. If the electric polarizability is negligible, the ratio between these
two cross sections is σspp/σ = 3λ/(16dspp) ≈ 0.5, for gold at 800 nm. This
ratio is the power radiated to the surface plasmon field relative to that of the
free space modes for a magnetic dipole. The same ratio can also be found by
comparing the density of modes of the surface plasmon field to that of free
space modes.

The theory in ref. [84] assumes that the surface plasmon is on a metal-
air interface. In our experiment, however, it is a gold-glass interface, which
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has some consequences for the quantitative agreement between the theory and
experiment. For Rayleigh scattering, the expression is in terms of the wave
vector inside the medium [92] (k = n2π/λ) , hence we expect k4

0 has to be
replaced by k4. Additionally, dspp ≈

√
ε/(2n2k0), contains the refractive index

squared and the λ in the expression σspp/σ = 3λ/(16dspp) should be λ/n. The
modifications together yield an increase of n6 of the scattering cross section
σ.

A last step in calculating σ is finding the appropriate values for αM and
αE . Rotenberg et al. calculated these values using a hole in a perfect electric
conductor. In this paper, the calculated polarizability per cubed radius a3 is
plotted as a function of the size parameter a/λ. For a/λ� 1 the polarizability
per cubed radius is constant. For the magnetic polarizability a shape resonance
is found at a/λ ≈ 0.2, and for larger a/λ the polarizability per cubed radius
decreases. The polarizability depends on the film thickness: a 42% increase
is found comparing a infinitely thick film with a zero thickness film. For
the calculations in the main manuscript, we use the zero thickness value of
αM = 0.106a3 and αE = 0.054a3.

Using these values for the polarizability the measured scattering cross sec-
tion roughly an order of magnitude larger than predicted. To explain this dif-
ference between the theory and the experiment, we consider the penetration
of the optical field into the metal. This penetration is neglected in calculating
the polarizability of the hole, as it is calculated assuming a perfect electrical
conductor. This penetration depth (∼ 25 nm) is small compared to most holes
in previous experiments (a = 25 nm− 500 nm) [84], where a good agreement
between theory and experiment is reported. Somewhat speculatively, we esti-
mate the effect of the penetration depth on the polarizability by modeling a
hole in a metal of finite conductivity as a hole in a perfect electrical conduc-
tor whose radius is increased with the penetration depth of the field. If this
approximation is valid, this would increase the expected value of ξ by a factor
(85/60)6 = 8.1 to η = 23 ± 10. This would reduce the difference between
theory and experiment to a factor 2.7± 1.2.

Finally, we wish to relate the intensity ratio cross section A to the scat-
tering cross section σ. In the main text we showed that the ratio A/σ is the
maximum ratio between surface plasmon mediated transmission and directly
transmitted light as 〈Is〉 / 〈Id〉 ≈ A/σ in the limit of high hole density. In this
limit, the power flow simplifies as all excited surface plasmons are coupled out
before they can be absorbed.

The power flow in the high density limit is sketched in Fig. 5.6. We assume
an incident plane wave with power Pin which polarizes a hole and thereafter
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Figure 5.6: A sketch of the power flow, in the limit of
high hole densities. An incident plane wave with power
Pin induces a dipole moment. This dipole radiates into
three channels: through the hole (P1), into the substrate
(P2) and to a surface plasmon mode P3. For high den-
sities there is no absorption loss, and hence all power
in the surface plasmon mode is scattered out at other
holes. At these holes the ratio between light scattered
through the hole and into the substrate is defined to be
P ′1/P

′
2.

radiates into three channels: P1 through the hole, P2 back into the substrate
and P3 into the surface plasmon field. In the high hole density limit the entire
surface plasmon field is eventually scattered out, either through the hole (P ′1)
or back into the substrate (P ′2), such that P3 = P ′1 + P ′2.

The transmission via surface plasmons Ps is equal to P ′1, but expressing it
as Ps = P3P

′
1/(P

′
1 + P ′2) will prove to be more useful. Given that the directly

transmitted power Pd is equal to P1, we find:

Ps
Pd

=
P3

P2

P ′2
P ′1 + P ′2

= η
P3

P2
. (5.23)

where we assume P ′1/P
′
2 = P1/P2, which physically means that the excitation

and outcoupling are mediated via the same (magnetic) dipole moment. Note
that we also introduced a efficiency η = P ′2/(P

′
1 + P ′2), which quantifies how

much of the outcoupling is to the substrate relative to all light scattered out.
At this point it is importantly to realize that ratio P3/P2 is equal to the
ratio Pspp/Pout = σspp/σ calculated in ref. [84]. Hence, P3/P2 = σspp/σ =
3λ/(16ndspp). This allows us to relate A to σ:

A

σ
=
Ps
Pd

= η
σspp
σ

= η
3

16dspp

λ

n
. (5.24)

This is a very important result as we now found that the entire experiment
can be described using a single scattering cross section σ, an efficiency η and
some known prefactors. We expect η to be smaller but close to one, yielding
a fairly accurate prediction for the relation between A and σ. This efficiency
η, which has not been studied yet, basically quantifies how efficiently power is
radiated to the substrate relative to the total radiative loss.
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Density dependence of the loss and the intensity ratio

In this section we present the density dependence of Ltot and 〈Is〉 / 〈Id〉 for
three wavelength ranges: 705± 15 nm, 803± 13 nm and 881± 9 nm. We show
that the measured dependencies are the same as those expected and presented
in the main manuscript. Also, we show that these plots clearly reveal the
strong wavelength dependence of Labs(λ), σ(λ), and A(λ) presented in the
main text.

In Fig. 5.7a the fit parameter Ltot is plotted as a function of hole density
for three different wavelengths. First, it is important that the expected density
dependence (L−1

tot = L−1
abs + ρσ) is satisfied, which is the case. Second, we can

see that the inverse propagation length is not only density dependent, but also
wavelength dependent. The slope σ decreases from 705±15 nm to 803±13 nm
by a factor four, and the slope almost vanishes at 881 ± 9 nm. Third, the
axis cutoff that resembles the surface plasmon absorption loss, decreases with
wavelength by more than a factor two. This is consistent with the theoretically
expected dependence.

In Fig. 5.7b we show the density dependence of the intensity ratio
〈Is〉 / 〈Id〉. The data for each wavelength shows the expected dependence
(〈Is〉 / 〈Id〉 = AρLtot), which is plotted as a solid line with only the vertical
scale A as a free parameter. For this fit we use the values of Labs and σ that we
obtained for each wavelength in Fig. 5.7a to describe Ltot: L

−1
tot = L−1

abs + ρσ.

To relate Fig. 5.7b to the presented values for A in the main manuscript,
we compare the three curves in Fig. 5.7 at low densities. There is a factor
four difference between the top curve (λ = 705) and the lowest curve (λ =

Figure 5.7: a, The inverse propagation length L−1
tot as a function of hole density for three different

wavelength ranges. Both the axis cutoff, i.e. the absorption, and the slope decrease with wavelength.
b, The density dependence of the intensity ratio 〈Is〉 / 〈Id〉. For each hole density the intensity ratio
decreases with wavelength. In the low density regime the intensity ratio increases linearly.
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Figure 5.8: a, The measured values of the scattering cross section σ for circular and square holes. For
both types the predicted wavelength dependence reproduces the data accurately. The prefactor for the
round holes is smaller however. b, The measured values of the intensity ratio cross section A for round
and square holes. Also for this parameter the predicted wavelength dependence describes the data of
both round and square holes.

881). The propagation length, which is dominated by absorption at these low
densities, increase roughly a factor two in this wavelength range. Hence the
factor four difference between the curves in Fig. 5.7b resembles the order of
magnitude change of A presented in Fig. 5.5.

Last, we note that the ratio 〈Is〉 / 〈Id〉 shows an outlier at the highest hole
density for each wavelength, which is systematically larger than the fitted
model. These outliers are expected because we neglected the influence the
quasi-cylindrical waves [35, 44, 47] in our model. Additionally, our model
neglects the heavily damped surface plasmons on the gold-air interface, which
is also not valid from high densities. For these reasons, these outliers are not
used to obtain the fitted value for A.

Analysis of square holes

In addition to the round holes presented in the main text, we have also
studied square holes. These square holes have a rib size (125± 5 nm) slightly
larger than the diameter of the round holes (120 ± 6 nm). We are interested
whether the shape has any influence on the magnitude of the scattering cross
section its wavelength dependence.

In Fig. 5.8a we plot the results for the scattering cross section of the square
holes, along with the results for round holes presented in the main text. The
measured scattering cross section σ is larger for the square hole than that of
the round holes, but its wavelength dependence is very similar. The suggested
wavelength dependence σ = ξk4a6/dspp accurately fits the experimental data,
where we choose a the rib length divided by two. The prefactor ξ is found to
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be 1.7±1.3 larger for the square holes, where the large error bar is mostly the
result of the error in the hole size.

In Fig. 5.8b we plot the results for the intensity ratio cross section, also
with the results of the round holes. The value of A is larger for the square
holes too. We fit the expected wavelength dependence of A = 3ηλσ/(16ndspp),
using the value of ξ just found and leaving only η as a free parameter. We
find η = 0.60± 0.13, which is comparable to that of round holes.

In conclusion, the data for the square hole shows the same wavelength
dependence of σ and A. The prefactors η and ξ obtained for the square holes
do not differ significantly from those found for round holes.
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