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Chapter 4

Speckle correlation functions applied to surface plasmons

The optical intensity transmitted through a random pattern of subwave-
length holes in a metal film exhibits a speckle pattern. We study the variation
of this speckle pattern as a function of wavelength. We find that the resulting
speckle correlation function (SCF) separates in a wavelength dependent part
and a wavelength independent background. The wavelength dependence is
caused by surface plasmons excited at one hole and coupled out at another
hole, while the constant background originates from light transmitted directly
through the holes. By analyzing the SCF for a set of samples of varying
hole density, we find the propagation length of the surface plasmons and the
scattering losses induced by the holes.

F. van Beijnum, J. Sirre, C. Rétif, and M. P. van Exter, Phys. Rev. B 85, 35437

(2012).
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4. Speckle correlation functions applied to surface plasmons

4.1 Introduction

Structuring materials on a scale comparable or smaller than the wave-
length of light allows control over their optical properties in an unprecedented
way. Famous examples are photonic crystals, metal hole arrays, and meta-
materials. As the complexity of these structures increases, it becomes more
challenging to understand their physics. For example, to quantitatively model
the extraordinary optical transmission (EOT) [28] of metal hole arrays a large
set of parameters is required that need to be calculated numerically [45]. Also
the transmission of light through a single hole in a metal film is surprisingly
complex [43].

In contrast, disordered media can be characterized relatively easy. By
studying the variations of speckle as a function of wavelength or angle, speckle
correlation functions (SCF) can be calculated analytically [66]. These func-
tions, that can also be measured [67–71], provide insight in the dwell time
inside a medium. Only three quantities are needed to describe the SCF in
volume scattering: the transport mean free path, the energy velocity [72], and
the sample thickness.

In this chapter we apply the framework of SCFs to surface plasmons. To
this extent, we study the optical transmission through random patterns of
subwavelength holes. These random patterns are previously studied using a
broadband source [56, 73], but when illuminated with laser light the trans-
mitted intensity exhibits a speckle pattern [57]. The intensity in this speckle
pattern has two contributions: light that is directly transmitted through the
holes and light transmitted via surface waves. By studying the change of
these speckle patterns as we scan the wavelength of the laser we can record
a SCF. Because of the two different contributions to the speckle intensity, we
expect that these correlation functions are different from the ones found in
three dimensional random media.

From the SCF we hope to infer a propagation length. As it is unclear
whether the losses are dominated by absorption or scattering, we study a
set of samples with different hole densities. We analyzed a set of nine sam-
ples for which the hole density is 1/(qa2

0), where a0 = 450 nm and q =
1, 2, 3, 4, 9, 16, 25, 36, 81. Each sample covers a square area of 400 µm×400 µm.
The average side length of these square holes is 125± 5 nm. The layer struc-
ture is as follows: on the glass substrate we subsequently deposited 150 nm
gold and 20 nm of chromium, and we then perforated this metal layer. The
function of the chromium layer is to damp the surface plasmons on the gold-
air interface, limiting the analysis to one interface. Figure 4.1 shows scanning
electron microscope images of three of the studied samples, with hole densi-
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4.2. Theory

Figure 4.1: Scanning electron microscope images of three of the nine studied samples. From left to right
the hole density is 0.19 µm−2, 1.2 µm−2, and 4.9 µm−2

ties of 0.19 µm−2, 1.2 µm−2, 4.9 µm−2, that is q = 25, q = 4 and q = 1
respectively.

4.2 Theory
Before showing the experimental results, we will first derive an expression

for the expected correlation function. In the far field the speckle intensity is
a function of wavelength and angle: I(λ, ~θ). We define the speckle correlation
function as follows:

C ≡

〈
I(λ0, ~θ0)I(λ1, ~θ1)

〉
〈
I(λ0, ~θ0)

〉〈
I(λ1, ~θ1)

〉 − 1, (4.1)

where 〈·〉 denotes ensemble averaging [66]. We can rewrite the intensity cor-
relation function in terms of the optical fields E(λ, ~θ), using Isserlis’s theorem
[74] for Gaussian random variables [75]:

C =

∣∣∣〈E(λ0, ~θ0)E∗(λ1, ~θ1)
〉∣∣∣2〈

I(λ0, ~θ0)
〉〈

I(λ1, ~θ1)
〉 , (4.2)

where ∗ is the complex conjugate.
When measuring in the far field, at an angle ~θ, the light transmitted

through the randomly positioned holes is a sum of all illuminated holes Ei.
Depending on the position ~xi, the field from each hole acquires a random

phase: ~k||(λ)~xi, with
∣∣∣~k||(λ)

∣∣∣ = 2π sin
(∣∣∣~θ∣∣∣) /λ. Hence the correlation is:

C ∝

∣∣∣∣∣∣
∑
i,i′

〈
Ei(λ0)E∗i′(λ1)ei[

~k||(λ0)~xi−~k||(λ1)~xi′ ]
〉∣∣∣∣∣∣

2

, (4.3)
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4. Speckle correlation functions applied to surface plasmons

where the proportionality sign indicates that the normalization is now omitted.
Calculations can be performed with this expression, but the decorrelation from

ei[
~k||(λ0)~xi−~k||(λ1)~xi′ ] may have a strong influence on the correlation function

[76]. Hence, we take ~k||(λ0) = ~k||(λ1), such that the exponent becomes one for

~xi = ~xi′ . The phase of this term is random when ~xi 6= ~xi′ and ~k|| is sufficiently
large, i.e. if we are outside the zeroth diffraction order [57]. Hence, after
ensemble averaging the terms with i 6= i′ are zero, and therefore the double
sum over i and i′, reduces to a single sum.

The field Ei is a sum of a direct contribution Ed,i and a contribution via
surface waves Es,i. The field Es,i consists of contributions from all neighboring
holes. Hence the amplitude and phase are random, and depend on the position
of the surrounding holes. Although the phase is random, it changes gradually
as the excitation wavelength changes. We can now evaluate Eq. (4.3) further
by inserting Ei(λ) = Ed,i + Es,i(λ), and taking the ensemble average:

C =

∣∣∣〈|Ed|2〉+ 〈Es(λ0)E∗s (λ1)〉
∣∣∣2

〈Itot〉2
, (4.4)

with 〈Itot〉 = 〈Id〉 + 〈Is〉, where 〈Id〉 and 〈Is〉 are assumed to be wavelength
independent for the clarity of the expressions. Please note that the summation
and the i-dependence disappear because the summation is replaced by the
number of holes times the ensemble average. Also the ensemble average of

the cross terms is zero,
〈
Ed,iE

∗
s,i + E∗d,iEs,i

〉
= 0, because Es,i and Ed,i are

independent and the ensemble average of Es,i is zero. Equation 4.4 is an
essential result: the direct transmission is observable as a constant background
correlation, while the contribution from surface waves does decorrelate in a
limited wavelength range.

Next we calculate the wavelength dependent correlation caused by the sur-
face waves. For simplicity, we neglect contributions from the quasi-cylindrical
wave [36] and Norton wave [44–46], and only consider surface plasmons (SPP).
We consider a particular hole i, and write the total SPP field as a sum of con-
tributions from all the surrounding holes j. We describe the SPP propagation
as a two dimensional surface wave. As it propagates it can be absorbed or
scattered out by a hole such that:

Es,i =
∑
j

A0(φj)√
rij

e(−σρ− Im kspp+iRe kspp)rij , (4.5)

where A0(φ) is a prefactor describing the excitation and outcoupling of the sur-
face plasmon field, it has unit V/

√
m and depends on the angle φ between the
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4.3. Experiments

incident polarization and the propagation direction [10, 57]; rij is the distance
between hole i and hole j; Im kspp characterizes the loss due to absorption;
σρ characterizes the loss due to scattering; σ is the scattering cross section
and ρ the hole density. We are dealing with a two dimensional problem, and
therefore the scattering cross section is a length, instead of an area.

When evaluating 〈Es(λ0)E∗s (λ1)〉 a double sum is found, for which the
cross terms associated with interference originating from different holes j 6= j′

again average out. We rewrite the phase difference of the remaining terms
as: rij/λ0 − rij/λ1 = rij∆λ/(λ0λ1), as in ref. [75]. We then form concentric
rings around hole i to find that the number of holes in each ring scales with
the radius r. On the other hand the contribution from these holes scales as
1/r multiplied by an exponential, see Eq. (4.4). By replacing the sum over
neighboring holes for an integral we find:

C =
1

〈Itot〉2

∣∣∣∣∣〈Id〉+
〈Is〉 λ̃
i∆λ+ λ̃

∣∣∣∣∣
2

. (4.6)

The width of the Lorentzian,

λ̃ = (σρ+ Im kspp)
2λ0

Re kspp
, (4.7)

combines the scattering losses (∝ σρ) and the ohmic losses (∝ Im kspp). The
relative strength is determined by the ratio 〈Is〉 / 〈Id〉, where 〈Is〉 is given by:

〈Is〉 ∝
ρ
〈
|A0(φ)|2

〉
φ

σρ+ Im kspp
, (4.8)

where the proportionality sign indicates that we omitted constant prefactors.
To summarize, we expect that we can measure a correlation function with

a background that is independent of wavelength. Besides this background
correlation, a wavelength dependent part is expected, caused by SPP prop-
agating on the metal surface. The width of this wavelength dependent part
is proportional to the losses that the SPP experiences. The hole density is a
crucial parameter for the correlation function, it determines both the weight
of the SPP part and the total loss that the SPP experience.

4.3 Experiments
The experimental setup is as follows: the light of a wavelength tunable Co-

herent 899 Ti-Sapphire laser is led through a single-mode fiber, and collimated
to a beam with a diameter of a few millimeters. This beam is first polarized

31



i
i

i
i

i
i

i
i

4. Speckle correlation functions applied to surface plasmons

Figure 4.2: Uncorrected (top) and
corrected (bottom) speckle as a func-
tion of wavelength detuning. The un-
corrected speckle changes shape and
gradually shifts upwards. After correc-
tion the speckle remains in place and
only changes shape. The amount of
correlation is indicated with C.

and then illuminates a 200 µm pinhole that is imaged onto the sample with a
magnification 3/8, leaving a 75 µm spot on the sample. This illuminated pin-
hole ensures that the size and position of the spot on the sample is wavelength
independent. The light transmitted through the sample is collected using an
aspheric lens (f = 8mm). The Fourier plane of this lens is imaged with a lens
onto an intermediate plane and this intermediate plane is subsequently imaged
onto a CCD. In the intermediate plane we block the zeroth order transmission
with a black metal rod and we select the polarization parallel to the incident
polarization. In all our experiments we scan the laser wavelength from 740 nm
to 810 nm.

We now first study the speckle that we see on the CCD. To derive Eq. (4.4),
it was crucial to keep ~k|| constant with wavelength. Experimentally, this is
achieved by rescaling the recorded images. In Fig. 4.2 we show the original
and rescaled images as a function of wavelength, for a sample of hole density
1.2 µm2. The top three images are shown as they are originally recorded. The
zeroth order peak is located below the shown speckle. As the wavelength is
tuned, the speckle moves up and changes.

In the bottom row the three images are corrected such that ~k||(λ) is con-
stant. For these images the speckle pattern changes gradually, but the speckle
remains at approximately the same position. The effect on the correction is
illustrated by the amount of correlation between a reference and the shown
images. For the original images the correlation decreases rapidly from 1 to
-0.042 and 0.014, for the rescaled images the correlation is 1, 0.84 and 0.84.

For rescaling the images we need to choose a point in the image for which
~k||(λ) = 0. Although we expected this point to be the zeroth order, we noticed
that the correlation between two images recorded at different wavelengths is
a few percent larger when we choose this point outside the zeroth order. The

32



i
i

i
i

i
i

i
i

4.3. Experiments

10
0

10
1

0

0.2

0.4

0.6

0.8

1

wavelength detuning (nm)

co
rr

el
at

io
n

 

 

ρ=0.19µm−2

ρ=1.2µm−2

ρ=4.9µm−2

model

Figure 4.3: Measured correlation
functions for three different hole den-
sities. Each function combines a
Lorentzian part with a wavelength in-
dependent background. With increas-
ing hole density the Lorentzian be-
comes wider, while the background de-
creases.

origin of this effect has not been resolved so far. For our data processing we
use the optimum point outside the zeroth order.

Now that we know how to rescale the images, we can measure the speckle
correlation functions. Figure 4.3 shows three typical correlation functions, for
the samples with hole densities 4.9 µm2, 1.2 µm2, and 0.19 µm2. The cor-
relation function changes drastically with the hole density. Notwithstanding,
it is shown that the correlation functions exhibit the predicted behavior: a
wavelength dependent contribution and a constant background correlation.
With increasing hole density, the background level decreases while the width
of the wavelength dependent part increases. The decreasing background level
is due to the increasing SPP contribution, as our model suggests. The increas-
ing width implies shorter propagation lengths. This may be expected, as the
scattering losses are proportional to the hole density.

To quantify our findings we have fitted the measured correlation functions
to Eq. (4.6). Figure 4.3 shows that the theory describes the data well. The
observation that our simple model describes the data might come as a surprise,
as we omitted the wavelength dependence of both 〈Id〉 and 〈Is〉. Especially
for 〈Id〉 it is well known that it has a strong wavelength dependence, see e.g.
[43] for a recent review. There are two ways to interpret our observation of
a constant background correlation. First, because we normalize the recorded
speckle patterns, see Eq. (4.1), a constant background correlation will also
be found if the ratio 〈Is〉 / 〈Id〉 is constant. So far, there is not much litera-
ture reported on the wavelength dependence of 〈Is〉, but work on hole chains
suggests that this is possible [36]. Second, the normalization makes the ef-
fect of the wavelength dependence smaller, as not only the nominator of the
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4. Speckle correlation functions applied to surface plasmons

Figure 4.4: The loss plotted as a func-
tion of hole density. For all samples
except the most dense, the loss in-
creases linear with hole density. The
loss at zero hole density is the surface
surface plasmon absorption loss, that
corresponds roughly with literature.

correlation changes but also the denominator. For a typical example, with
〈Is〉 / 〈Id〉 = 1/4 and a reduction of 〈Id〉 to 70% of its original value, the back-
ground decreases to 62% instead of 67% for the constant background. To see
this small decay, the scan range would have to be much larger. Finally, we
also have an experimental argument for why the wavelength dependence of
〈Id〉 and 〈Id〉 are not relevant. If we scan in the opposite direction, namely
810 nm to 740 nm, instead of increasing the wavelength, we find practically
the same correlation C(∆λ).

4.4 Extracted fit parameters

Two fit parameters are extracted from the fit, the losses (σρ + Im kspp)
and the ratio 〈Is〉 / 〈Id〉. As seen in Fig. 4.4 the loss increases linearly with
hole density, as expected from Eq. (4.7). However, the loss of the highest hole
density sample is larger than expected from a linear dependence. For this data
point the error margin is also larger than the other data points, because the
background level could not be fitted properly as the correlation still decreases
within our scan range.

We fitted these loss values with a linear function, from which we find
an offset of 0.049 ± 0.002 µm−1 and the slope σ = 26 ± 2 nm. The cross
section is reasonable, considering the hole side length of 125 ± 5 nm. The
offset corresponds reasonably to the values that can be calculated using the
dielectric constant of gold at 740 nm reported by Johnson and Christy [77]
(0.056 µm−1) and Palik [54] (0.065 µm−1).

In Fig. 4.5 the ratio 〈Is〉 / 〈Id〉 is plotted versus hole density. We observe a
nonlinear increase. Equation 4.8 shows that when σρ is comparable to Im kspp,
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4.4. Extracted fit parameters

Figure 4.5: The surface plasmon con-
tribution 〈Is〉 relative to the direct
contribution 〈Id〉 increases non linearly
with hole density. Using only the verti-
cal scale as a free parameter, the data
can be reasonably fitted to theory.

this nonlinear increase is expected. We fitted Eq. (4.8) to this data, using the
values of Im kspp and σ we just obtained, leaving only the vertical scale as a
free parameter. The fit result is reasonable. Interestingly, both the intensities
at low hole density and at the largest density are underestimated by the fit.

Nevertheless, from fitting the intensity ratio we conclude that the scatter-
ing cross section found in Fig. 4.4, fits the data reasonably well. The high
intensity for the most dense sample can imply an extra contribution to the
field, that may be caused by the quasi-cylindrical wave [36, 45, 46]. However,
to be able to make a sensible judgement about this, the correlation function
should be studied theoretically, including and excluding the quasi-cylindrical
wave. Moreover, it would be of great value to use a scanning laser with a
larger range, to measure the full correlation function for this sample.

Another interesting question that arises from this data, is whether the
underestimation of the low hole density is related to the Norton Wave [44–
46]. At the distance probed with these low densities, roughly five propagation
lengths (ρσ = 1

5 Im kspp), the Norton wave should have the same amplitude as
the SPP. However, at these distances the field is only 7 · 10−3 of its original
strength and we wonder if these small fields contribute to the decorrelation
seen. On the other hand, the Norton Wave becomes more than three orders of
magnitude larger than the SPP field, for a distance of roughly ten propagation
lengths [46].

Besides this set of random patterns with square holes, we have also ana-
lyzed a set of patterns of circular holes, with a diameter of 120 ± 6 nm. For
these samples the signal is smaller than for square holes, and hence we could
only measure the five most dense samples. The measured correlation functions
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4. Speckle correlation functions applied to surface plasmons

show a larger background correlation, when comparing patterns with the same
hole density. From a similar analysis as for the square holes we found a cross
section of 18± 1 nm and an absorption loss of 0.035± 0.002. µm−1. The loss
of the most dense sample is now not as high as found for the square holes, and
all found loss values fit the SPP model.

4.5 Conclusion and discussion
We have derived a simple expression for the speckle correlation function

for random patterns of subwavelength holes. The expression has two contri-
butions, a constant background resulting from the direct transmission of the
holes, and a wavelength dependent part due to surface plasmons propagating
on the surface. The predicted behavior of a constant background and wave-
length dependent part is also seen in the measured correlation function. By
fitting the experimental results, we find that the propagation length of the
surface plasmon decreases with increasing hole density, as the surface plasmon
has a larger probability of being scattered out by the holes. This measure-
ment yields the scattering cross section of the holes. Moreover the surface
plasmon contribution increases with hole density, as more holes are available
to excite surface plasmons. The results for the most dense sample are not con-
sistent with the other samples, which implies that the quasi-cylindrical wave
contribution might be visible in correlation functions.

We believe the application of speckle correlation functions to plasmonics
can be very valuable. The experiments give insight in both the surface plasmon
excitation and outcoupling by the holes. Moreover, it may be possible to
study the influence of the quasi-cylindrical wave on the correlation functions,
in theory and experiments. Also, the combination of a constant background
and a wavelength dependent part is new compared to 3D random media [69].
Furthermore it is interesting that two different transmission processes can be
separated using speckle correlation functions. It would be interesting to see
if similar behavior is found when the 3D samples are made sufficiently thin
compared to the transport mean free path, or when these media are modified
such that very short paths through the medium exist [78].
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