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Chapter 3

Transmission processes in random patterns of subwavelength
holes

The optical transmission of random patterns of holes is believed to depend
on the transmission of the independent holes only. By comparing the trans-
mission spectra of random patterns with different hole densities, we show that
the quasi-cylindrical wave plays an important role in the transmission of sam-
ples with a large hole densities. Furthermore we report on a speckle pattern
seen in the transmission of these hole patterns. By studying the degree of
depolarization in this speckle pattern, as a function of hole density, we are
able to quantify the role of surface plasmons to the transmission.

F. van Beijnum, C. Rétif, C. B. Smiet, and M. P. van Exter, Opt. Lett. 36, 3666

(2011).
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3. Transmission processes in random patterns of subwavelength holes

3.1 Introduction

Research on the optical properties of holes in metal films has long been
subject of fundamental and applied research. In 1944 Bethe calculated the
transmission of a circular hole in a thin perfectly conducting film [55]. In 1998,
the discovery of the extraordinary optical transmission of metal hole arrays
[28] revived the interest in the optical properties of subwavelength holes and
plasmonics. The ability of holes to couple light from free space to surface
plasmons (SPP), makes them important for future applications [59, 60].

Calculating the transmission properties of subwavelength holes in metal
films has proven to be a challenge [43]. The field at the metal surface turns
out to be more complex than anticipated: not only SPP are excited at holes
and slits, but also the quasi-cylindrical wave (CW) at a short distance from
the hole, and the Norton wave at large distances [44–46].

So far, the transmission of random patterns of subwavelength holes were
believed to accurately represent the transmission of a single hole [56, 61]. In
this chapter we will argue that both the CW and SPP also contribute to
the transmission of random patterns of subwavelength holes. To reveal these
transmission processes we compare random patterns of different hole densities.

Figure 3.1a shows a scanning electron microscope (SEM) picture of a typi-
cal structure. We studied two sets of seven samples of which the inverse density
(area per hole) is chosen qa2

0 with a0 = 450 nm and q = 1, 2, 3, 4, 9, 16, 25. One
set has circular holes (average diameter: 120±6 nm) and the other has square
holes (average side length: 125 ± 5 nm). To avoid proximity effects in the
fabrication the holes have a minimum side to side distance of 50 nm. Figure
3.1b illustrates the layer structure: a glass substrate with 150 nm gold, and
20 nm of chromium.

Figure 3.1: a, A SEM picture of one of the studied samples. The holes in a metal film are positioned
randomly, samples with various hole densities are made. b, The layer structure of the metal film. The
arrows illustrate direct (dashed) and indirect (dash-dotted) transmission processes that we study.
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3.2. Modeling different transmission processes

3.2 Modeling different transmission processes
Before presenting the experiments, we calculate the contributions of the

transmission processes to the zeroth order transmission. We separate the
transmission in a direct and an indirect contribution (see arrows Fig. 3.1b),
and first include only SPP for the indirect transmission. We define td,i to be
the directly transmitted field for hole i, which is i-independent for identical
holes. In the zeroth order the directly transmitted fields are all in phase, and
therefore interfere constructively. The SPP field at hole i is a sum over the
contributions from all neighboring holes j: ts,i =

∑
j ts,ij . As each indirect

contribution ts,ij picks up a random phase, due to the random hole positioning,
the amplitudes ts,i are uncorrelated. Hence the transmitted intensity T in the
zeroth order diffraction is:

T =

∣∣∣∣∣
N∑
i=1

td,i + ts,i

∣∣∣∣∣
2

,

lim
kspp�α

〈T 〉 = N2|td|2 +N
〈
|ts|2

〉
, (3.1)

where 〈·〉 denotes ensemble averaging, N is the number of holes, kspp is the SPP
wave vector and α is the inverse propagation length. In the limit kspp � α
there is effectively no correlation between amplitude and phase of ts,i and
therefore the crossterms ts,it

∗
s,j , tdt

∗
s,j , and ts,it

∗
d cancel out for i 6= j. In our

experiments N � 1, making the SPP contribution negligible in the zeroth
order.

In contrast to the SPP contribution just discussed, we expect the amplitude
and phase of the CW to be correlated because this contribution decays rapidly,
even within a wavelength. Hence the crossterms do not average out and an
extra contribution proportional to N2 is expected. However, this contribution
will only be found if the average hole spacing is sufficiently small. Thus if we
compare patterns with different hole density, the ratio 〈T 〉 /N2 should change
if the hole density is sufficiently large.

3.3 Recorded transmission spectra for different hole densities
We measure the zeroth order transmission of our samples using a standard

white light transmission spectroscopy setup (not shown). The light from a
halogen lamp is filtered (longpass, 600 nm) and coupled into a 200 µm fiber.
The end facet of this fiber is imaged onto the sample with a magnification of
1.5. The transmitted light is imaged (M=2/3) onto a second fiber that leads to
an Ocean Optics 2000+ USB spectrometer. The small NA (NA=(6±2) ·10−3)
of the detection optics singles out the zeroth order transmission.
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3. Transmission processes in random patterns of subwavelength holes

Figure 3.2: Intensity transmission of
the four densest samples, normalized
by (ρ/ρ0)2. The normalized transmis-
sion of the densest sample is enhanced
as a result of the quasi-cylindrical
wave.
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To see an effect of the CW the transmission spectra are scaled with (ρ0/ρ)2,
with ρ0 = 1/(0.45 µm)2. For the low hole densities, the transmission of the
structure approaches that of the gold itself (Tgold ≈ 3 · 10−6). Hence, we
need to correct for the transmission of the unperforated gold. Since both
contributions are coherent we had to assume a phase relation to account for
the interference, we choose the contributions to be in phase. This correction
works for hole densities larger than ρ0/9.

Figure 3.2 shows the scaled spectra for circular holes. The spectra for ρ0/2,
ρ0/3, and ρ0/4 overlap within 5%. In contrast, the scaled transmission of the
densest sample at 685 nm is 37±1% larger than that of the scaled transmission
of the other three samples. This enhancement decreases gradually to 11± 2%
at 600 nm, and to 18 ± 5% at 900 nm. For the square holes a similar but
somewhat larger enhancement is found. We attribute the increase of the scaled
transmission of the densest sample to the CW contribution discussed above.

Besides the hole density dependence of the spectra, the wavelength depen-
dence of the transmission has attracted much interest too [55, 56, 62]. The long
wavelength tail of the transmission can be fitted using the Bethe-Bouwkamp
formula [55, 63], (see e.g. [43]). The fit results in a diameter of 130 nm,
which is surprisingly close to the diameter of 120±6 nm measured in the SEM
pictures.

A remaining issue is whether the maximum in the transmission is a shape
resonance. The transmission maximum appears to be dependent on the hole
size, since transmission maxima of the (larger) square holes are at a larger
wavelength (750 nm). In calculations and experiments on perfect electric
conductor films such a size dependent transmission maximum is found too
[43, 62, 64, 65]. In ref. [43] it is shown that a maximum is expected at
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3.4. Polarization analysis of far field speckle pattern

kr ≈ 1.6 for zero thickness and at kr ≈ 2.1 for a thickness equal to the radius.
However, in our experiments a maximum is found at kr = 0.8, hence the origin
of this feature is not yet resolved.

3.4 Polarization analysis of far field speckle pattern
We not only observe the zeroth order diffraction peak, but also a speckle

pattern (order 10−3, see Fig. 3.3a). If we illuminate the sample with polarized
laser light, and place an analyzing polarizer, we see that the zeroth order can
be suppressed while the speckle pattern remains visible (see Fig. 3.3 b). The
speckle pattern intensity for the orthogonal polarization is roughly an order
of magnitude smaller than that of the parallel polarization. Moreover the
pattern has changed (only 2% correlation in speckle patterns). To the best of
our knowledge, this speckle pattern has never been reported.

Before analyzing the speckle patterns in further detail, we calculate the
contributions to the speckle intensity at an angle ~θ. In contrast to the analysis
of the zeroth order, the contributions of the direct transmission will not be in
phase. Two holes at position ~ri and ~rj will have a phase difference ~k||(~ri− ~rj).
Hence, the transmitted intensity in the speckle pattern is:

〈T (θ)〉 = N
(
|td|2 +

〈
|ts|2

〉)
. (3.2)

In contrast to the zeroth order transmission, both contributions are now in-
coherent and therefore both scale with N . However, one would expect that
the direct contribution only has the incident polarization, whereas the SPP
contribution is partially depolarized.

Figure 3.3: Angular transmission pattern of the sample of with ρ/ρ0 = 16 illuminated with a weakly
focussed beam. a, Using an analyzing polarizer parallel to the incident polarization, we see a zeroth order
diffraction peak and a speckle pattern. b, By rotating the polarizer 90◦ the zeroth order is suppressed.
All intensities are normalized to the maximum intensity of the zeroth order in a.
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3. Transmission processes in random patterns of subwavelength holes

Figure 3.4: The ratio of the power in
the speckle pattern for parallel over the
orthogonal polarization. The ratio in-
creases with hole density, showing that
there is an indirect contribution.

Using a simple model we calculate the SPP contribution at hole i from all
other holes j using: ts,i =

∑
j ts,ij . We assume that the light propagates along

a straight line from hole j to i. The field will be damped due to absorption
and light that is scattered out of the surface plasmon mode, making ts,ij =(
C(φ)/

√
rij
)

exp((α+ikspp)rij). The excitation efficiency C(φ) is a function of
the angle φ between the incident polarization and the propagation direction,
and has unit

√
m. The loss rate due to scattering is denoted as α.

The exact form of C(φ) is unknown, but we can approximate it using a
projection argument: C(φ) ∝ cosφ. Besides the excitation efficiency, there
is a detection efficiency. Using a polarizer parallel or orthogonal to the inci-
dent polarization, this results in an extra factor of cosφ or sinφ respectively.
Hence, the fraction of the average power in the surface modes for the parallel
polarization (C2

|| ∝
〈
cos4 φ

〉
) is three times larger than in the orthogonal po-

larization (C2
⊥ ∝

〈
cos2 φ sin2 φ

〉
). The ratio between the power in the speckle

pattern for the parallel and orthogonal polarization is thus:

P⊥
P||

=
|td,⊥|2 + ρC2

⊥/(2α)∣∣td,||∣∣2 + ρ3C2
⊥/(2α)

, (3.3)

where |td,⊥|2 is the depolarized part of the direct transmission. Thus at low
hole densities, one measures the depolarization due to imperfections of the
holes. As the hole density increases the relative amount of depolarized light
will increase, due to the increased outcoupling of SPP.

For all seven samples we measured the ratio between the power in the
speckle pattern for the parallel and orthogonal polarization. In Fig. 3.4 this
ratio is plotted versus the hole density. The measured ratios increase with hole
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3.5. Conclusion

density from 0.03 to 0.2. The fact that the depolarization is density dependent
proofs the existence of an indirect contribution. When fitting the data to the
theory (line in Fig. 3.4), we see that the data point at the largest hole density
can not be fitted properly. However we expect the CW to contribute to both
the zeroth order and the speckle pattern, because the CW contribution is
random but with a correlation between amplitude and phase.

From the fit we conclude that C2
||/(2α

∣∣td,||∣∣2) = 0.14 ± 0.02 µm2. This

means that for a hole density of 1 µm−2 and parallel polarizers the SPP con-
tribution is 14% of the direct transmission. From the fit we find: |td,⊥|2 =
0.031±0.005, meaning that 3% of the directly transmitted light is depolarized
by the holes. By imaging a low density sample, we observe that the trans-
mission through individual holes can be blocked within experimental accuracy
using a polarizer. However the blocking angle varies from hole to hole, ranging
from −10◦ to 10◦, which in rough agreement with the 3% found in Fig. 3.4.

3.5 Conclusion
We have shown that random patterns of subwavelength holes of variable

hole densities are an ideal tool to unravel transmission processes. In the zeroth
order transmission the direct transmission and quasi-cylindrical wave (CW)
are the only relevant contributions. By analyzing a newly reported speckle
pattern for different polarization states, we have quantified the SPP contribu-
tion to the transmission.

In future work the enhancement as a result of the CW can possibly be
predicted using a recent theoretical calculation of the CW contribution near
a single hole [46]. Moreover, the analysis of the speckle pattern could be done
for different materials or wavelength ranges, to study the importance of the
SPP and the CW there.
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