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Chapter 2

Quasi-cylindrical wave contribution in experiments on
extraordinary optical transmission

A metal film perforated by a regular array of subwavelength holes exhibits
an unexpectedly large transmission at particular wavelengths, named the ex-
traordinary optical transmission (EOT) of metal hole arrays [28]. EOT was
first attributed to surface plasmon polaritons (SPP), reawakening a large in-
terest in plasmonics [39–41] and subwavelength metallic surfaces [30, 42, 43].
Experiments soon revealed that the field diffracted at a hole or slit is not a
SPP mode alone [34]. Further theoretical analysis [36] predicted that the extra
contribution, the quasi-cylindrical wave (CW) [35, 44–46], impacts the EOT
phenomenon too. In this chapter, we experimentally demonstrate the relative
importance of the SPP and CW in EOT by considering hole arrays of different
hole densities. From the measured spectra we extract microscopic scattering
parameters, which allow us to evidence that the CW only impacts the EOT for
high densities, when the hole spacing is roughly one wavelength. Besides pro-
viding a deeper understanding of the EOT and the related Wood’s anomaly,
the extraction of microscopic scattering parameters from the measurement of
macroscopic optical properties paves the way towards novel design strategies.

F. van Beijnum, C. Rétif, C. B. Smiet, H. T. Liu, P. Lalanne, and M. P. van Exter,

Nature 492, 411 (2012).
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2. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission

2.1 Introduction

Understanding the EOT quantitatively has been a major challenge in the
past decade (see ref. [43] for a review). An important contribution to EOT
may be the quasi-cylindrical wave (CW), which is the field on the metal surface
diffracted at a subwavelength indentation, in addition to the surface plasmon
contribution [35, 44, 46]. The justification to separate these two field contribu-
tions lies in the fact that the CW also exists in the absence of surface plasmons,
namely in the case of a perfect electric conductor interface [35, 45, 47], and
for a dielectric interface [48]. For the perfect electric conductor, the CW is
nothing else than a cylindrical wave in free space with a x−1/2 decay rate. For
metals of finite conductivity at optical frequencies, the cylindrical behavior
is only seen in the vicinity of the indentation, at a few wavelengths distance.
At larger distances, the CW decay rate keeps on increasing gradually until it
reaches an asymptotic algebraic value (x−3/2) at large distances. Because of
the periodicity of hole arrays, all these decay rates are simultaneously present
in the EOT phenomenon.

Another important result in the understanding of EOT is the development
of a semi-analytic SPP model, that quantifies the SPP contribution to EOT.
This microscopic model relies on scattering parameters that describe the inter-
action between light and the holes. The microscopic model correctly predicts
the EOT lineshape, but underestimates the magnitude of the transmission by
roughly a factor two for visible frequencies. These results suggest that the SPP
is only responsible for roughly half of the EOT phenomenon [36], whereas the
other half is due to the CW. So far, this interpretation is purely theoretical
and remains conceptual and we are not aware of any experimental confir-
mation yet. The reason is probably that many scattering parameters in the
model are dispersive and had to be calculated using complicated simulations
[36]. Measuring all these parameters with sufficient accuracy is a tremendous
experimental issue that we challenge here.

In this chapter, we provide a direct evidence for the respective role of
SPP and CW in the EOT, by exploiting the fact that the SPP and CW have
different characteristic damping lengths. This is achieved by measuring the
transmission spectra of a series of hole arrays with varying hole density, de-
signed to resonate at the same near-infrared frequency (≈ 750 nm). We find
that the normalized transmission peaks of all the low-density arrays are vir-
tually identical. The largest density array, which corresponds to the classical
hole array in [28], has a hole spacing that corresponds to the CW damping
length of one wavelength. This array shows a sudden boost of the normalized
transmission compared to the transmission of the other arrays. The observa-
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2.2. Experiments

Figure 2.1: An illustration of our sample design. To demonstrate a quasi-cylindrical wave contribution
to EOT, we compare the transmission of a series of hole arrays with different densities that all resonate
at the same wavelength. a, To decrease the hole density, the distance between so-called hole chains is
increased. b, The relevant scattering processes are sketched. At the left hole there is a surface plasmon
incident (red arrow) that is either transmitted (τ), reflected (ρ), coupled into the hole (α) or to free space
(β). At the right hole a free space mode is incident (red arrow), which scatters to a surface plasmon (β)
or couples into the hole (t). c, A scanning electron microscope picture of the q = 2 hole array.

tion of this atypical behavior for the largest density array constitutes a direct
proof of the embodiment of the CW in the EOT, or more generally of the CW
in phenomena related to subwavelength metallic gratings.

2.2 Experiments
Figure 2.1 illustrates how we vary the hole density: we increase the distance

between so-called hole chains, while keeping the properties of these chains
fixed. The holes within the chains are spaced by ay = a0 = 450 nm. The
distance between the chains is chosen to be ax = qa0, where q=1, 2, 3, 4,
6, and 7. The holes perforate two metal layers: a 150 nm gold layer that is
deposited on a glass substrate, and a 20 nm chromium layer that damps the
SPP at the air interface. We measured the zeroth order transmission spectra
of each array using x-polarized light, hence SPP propagating along the y-axis
are negligible [10, 36, 49, 50].

Figure 2.2 shows the measured spectra on a semilog scale. Each array
has a transmission peak between 735 and 775 nm, which shifts to shorter
wavelengths as the hole spacing increases. The transmission minima of these
resonances are at 724 ± 4 nm, which is very close to the expected value of
Reneffa0 = 729 nm, where neff is the ratio between the SPP wave vector and
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2. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission

Figure 2.2: Measured transmission
spectra (solid curves) and the fitted
surface plasmon model (red dashed
curves). Each dashed curve has the
same parameters except for the q-
value. The parameters are based on
a fit of Eq. (2.3) to the data of ar-
rays with q ≥ 2. The black dashed
curve is a model prediction, plotting
Eq. (2.3) with the same parameters as
the other curves but with q = 1. The
model accurately predicts all maxima
and minima of the measured data for
q ≥ 2, showing that the transmission
of these arrays is dominated by surface
plasmons.
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the free space wave vector [51, 52]. The magnitude of the transmission minima
ranges between 0.6×10−4 and 2×10−4. The resonance peaks are the result of
a surface wave propagating in the x-direction, with the number of oscillations
per lattice period equal to the q-value of the hole array. For the 4, 6, and 7a0

arrays additional resonances are also visible between 800 and 1000 nm. These
resonances correspond to a surface wave propagating in the x-direction with
q-1 oscillations per period.

As evidenced by the log-scale plots, the zeroth order transmission dramat-
ically decreases as the hole density decreases. As will be justified hereafter,
it essentially scales as 1/q2. Thus in Fig. 2.3, we plot q2×transmission on a
linear scale, for q = 1, 2, 4, and 6. The results for q = 3 and q = 7 have
been removed for clarity of the figure. By plotting the data on a linear scale
we see that the scaled transmission is almost constant when going from q = 2
to q = 6. However for q = 1, the transmission peak is markedly larger, more
than two times larger than all the other peaks. The fact that all the arrays
except q = 1 virtually exhibit identical extraordinary transmission peaks is
not fortuitous and, as will be interpreted hereafter, it reveals the resonant
transmission due to SPPs only. With this respect, the sudden and marked
increase of the peak transmission for the largest density (q = 1) constitutes an
important result of the present work: it is a direct signature of the additional
short-range contribution of the CW to EOT.

The previous conclusions are inferred qualitatively on the basis of the dif-
ference in damping lengths between SPP and CW. Helped by the microscopic
SPP model in ref. [36], we will now aim at providing a fully quantitative anal-
ysis of the data in Figs. 2.2 and 2.3 to explicitly support our conclusions. The
major drawback of the microscopic approach is that it requires the knowledge
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2.3. Simplifying the microscopic model
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Figure 2.3: By plotting
q2 × transmission, it is shown
that there is a sudden increase of
the transmission when comparing the
q = 1 array to the other arrays. By
plotting the SPP model too, we show
that this behavior is not predicted by
considering surface plasmons alone.

of many dispersive complex-valued parameters, which need to be calculated
using full-vectorial simulations at every wavelength. This precludes its direct
application to analyze experimental data. Hereafter, we revisit the model in
depth and show that an analytical expression involving only five independent
real non-dispersive fitted parameters may accurately reproduce the whole set
of experimental spectra in Fig. 2.2 for q ≥ 2, but produces wrong predictions
for the case q = 1.

2.3 Simplifying the microscopic model
The microscopic model, as originally formulated in [36], considers one-

dimensional hole chains (along the y-direction) as the elementary scatterers
of the hole arrays and assumes that the electromagnetic interaction between
the hole chains is mediated only by the SPP modes on unperturbed interfaces,
the CW being totally neglected. The microscopic model couples three modes:
the SPP mode at the gold-glass interface that consists of SPP propagating in
both directions along the x-axis, the fundamental mode within the holes, and
the free space modes.

The modes are coupled by the following scattering parameters, illustrated
in Fig. 2.1b. An incident surface plasmon can: couple into the holes of the
hole chain (α); couple to free space (β); or be transmitted (τ) or reflected (ρ).
An incident plane wave can couple to a surface plasmon (β) or directly into
the holes of the hole chain (t). The propagation of the surface plasmon from
one hole chain to another is described by e−iksppax , where kspp = 2πneff/λ is
the wave vector of the SPP on a flat gold-glass interface and ax is the distance
between the hole chains. Because we kept the hole size constant for each array,
the scattering parameters (α, β, ρ, and τ) should be the same for each array.
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2. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission

Only the hole spacing ax depends on the parameter q, namely ax = qa0.
In line with the coupled mode approach proposed in [36] we derived (see

appendix) the transmission coefficient tf of a single hole chain, modified by
the SPP excited at the surrounding hole chains:

tf = t+
2αβ

e−iksppax − (ρ+ τ)
. (2.1)

The assumption that the hole chains only excite a plane SPP wave in the x-
direction is valid if the incident polarization is along the x-axis. Moreover, the
holes within the hole chain have to be less than a SPP wavelength apart [36].
The model neglects the influence of the metal-air interface. In the appendix
we show this assumption holds if the surface plasmons at that interface are
sufficiently damped by the chromium layer.

The optical transmission measured at a particular angle is a sum of the field
contributions from all illuminated hole chains. If we define N0 as the number
of illuminated hole chains for the q = 1 array, N = N0/q is the number of hole
chains as a function of q. In the zeroth diffraction order, the contributions
from all hole chains are in phase, hence the transmitted intensity is [53]

T ∝ 1/q2 |tf |2 , (2.2)

where the proportionality factor is independent of q, as further discussed in
the appendix.

Equations (2.1) and (2.2) are not yet simple enough to be used for modeling
experimental data. Its six parameters are complex, so we have twelve real-
valued parameters. To reduce the number of free parameters we combine
both αβ and ρ + τ into one complex parameter each. Furthermore, we need
only the phase difference between t and αβ. For the complex variable kspp

we combine linearly interpolated literature values for the gold properties [54]
with a measured value of the index of refraction of the substrate (1.51). This
leaves us with a model of five free parameters.

Another crucial step towards fitting the model to the data is the wavelength
dependence of the parameters. The following approximations are used: 1)
t ∝ λ−2, as indicated by several studies [43, 55–57]; 2) αβ ∝ λ−4 in rough
agreement with a factor 4 reduction for a wavelength increase of 38%, as
reported in ref. [36]; 3) we keep ρ+ τ constant, as calculations show that this
sum has limited dispersion; 4) the phase of ρ + τ and the phase difference
between αβ and t are also kept constant with wavelength. So finally, we have
the following fit equation:

T = q−2

∣∣∣∣λ2
0

λ2
p1 +

λ4
0

λ4

p2e
ip3

e−iksppqa0 − p4eip5

∣∣∣∣2 . (2.3)
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2.4. Fitting the microscopic model to the transmission spectra

Parameter Fit value Error

p1 0.0740 0.0006
p2 0.0243 0.0006
p3 0.681π 0.013π
p4 0.857 0.009
p5 0.132π 0.006π∣∣e−iksppa0∣∣ 1.021 N.A.

Table 2.1: The values of the fitting parameters
p1 to p5. For completeness we also give the ab-
solute value of e−iksppa0 , evaluated at 800 nm.
Also we give an estimate of the error in the fit
values.

with λ0 = 800 nm and p1 to p5 the five real-valued parameters in the model.
The physical significance of parameters p1 and p4 is discussed in the appendix.

2.4 Fitting the microscopic model to the transmission spectra

The fitted curves obtained with the model are shown with the red dashed
curves in Fig. 2.2. For the fit we only use the data of arrays q = 2 to q = 7, as
we expect the transmission of these arrays to be dominated by SPP. To make
sure that the minima are fitted well, we fitted 10 log(data) to 10 log(model).
The result is plotted in Fig. 2.2 on a logarithmic scale, and the fit values are
given in Table 2.1. For the arrays with q=2, 3, 4, 6, 7 the model describes the
spectral positions of all minima and maxima very accurately, including the
(q − 1, 0) resonances. Also the transmission magnitude is well modeled.

Remarkably too, Eq. (2.3) used with q = 1 (black dashed curve in Figs.
2.2 and 2.3) fails at predicting the experimental data for q = 1. In particular it
underestimates the transmission peak by a factor 2.5. The latter is consistent
with the theoretical predictions in [36], which conclude that SPP account for
only half of the total transmitted energy at peak transmittance for a resonance
wavelength of 700nm. In the Appendix, we expand the SPP microscopic model
to incorporate the CW (see Eq. (2.7) therein), this extended model accurately
describes the experimental data for q = 1 (see Fig. 2.6). Let us emphasize
that this result is achieved using the exact same scattering parameters and
does not require any additional fitting.

The observation that the transmission spectra of these six different hole
arrays (including the particular q = 1 case) can be described with only five
parameters is a big success of the microscopic theory. Moreover, it is of im-
portance that these parameters are directly related to elementary scattering
processes. Apparently the resonance of perforated metal surface can be mod-
eled with a combination of a SPP mode and a CW on an unperturbed surface
and a few extra scattering parameters, which can be inferred from simple
transmission measurements.
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2. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission

2.5 Conclusion
We have presented the first experiments that quantitatively show the re-

spective contributions of surface plasmons polaritons (SPP) and the quasi-
cylindrical wave to extraordinary optical transmission (EOT). This in-depth
analysis has been made possible by deriving the elementary scattering param-
eters defined in [36] from classical transmission measurements performed on
a series of hole arrays. The possibility of making these microscopic scattering
parameters experimentally accessible may be paramount for understanding
and designing complex periodic or aperiodic metallic structures. Hence, varia-
tions to this modeling approach may have important implications in applying
plasmonic structures to sensors, photovoltaics, LEDs or lasers.

2.6 Methods
The sample is fabricated as follows. Using e-beam lithography we created

pillars on a glass substrate. Then we deposited 150 nm of gold and subse-
quently deposited the 20 nm chromium. Finally, we etched away the pillars.
The function of the chromium layer is to heavily damp surface plasmons on
the gold-air interface. We analyzed scanning electron microscope pictures of
each array to conclude that the average hole radius is 81± 4 nm. By studying
the position of the diffraction orders using a 635 nm laser diode, we concluded
that the lattice parameters a0 of all arrays are equal within 2 nm. Each array
covers an area of 400 µm× 400 µm.

The transmission spectrum of each array is measured using the following
setup (not shown). The light of a halogen lamp is filtered (longpass, 600 nm)
and coupled into a 200 µm diameter fiber. The light coupled out of the fiber
is polarized along the x-axis. The end facet of the fiber is imaged onto the
sample with a magnification of 1.5. The 300 µm diameter spot is centered
on the 400 µm × 400 µm arrays. The zeroth order transmission is imaged
(M=2/3) onto a 365 µm diameter fiber that leads to an Ocean Optics 2000+
USB spectrometer. To measure the reference spectrum, we move the sample
out of the beam using a stage.

An accurate measurement of the transmission spectrum requires sufficient
spatial and temporal coherence of the illuminating and detected light. The
spatial coherence at the sample is ensured by the limited numerical aperture
(NA ≈ (6± 2)× 10−3) of the illumination, which corresponds to a coherence
length of a few tens of micrometers on the sample [53], being much larger than
an SPP propagation length. The temporal coherence is ensured by the spectral
resolution of the detecting spectrometer. The 1 nm resolution corresponds to
coherence times of hundreds of femtoseconds [53] and is an order of magnitude
better then strictly needed.
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2.6. Methods

Appendix
In this appendix, we provide the equations of the SPP model [36] and of

the SPP+CW model [45] that are used for fitting the experimental data. We
also explain the fitting process in more detail.

For the 2D hole arrays considered in the experiment, the transmission
coefficient tF of the zeroth-order plane wave can be expressed with a Fabry-
Perot equation [36],

tF =
tAt
′
Ae

ik0nFMd

1− rAr′Aei2k0nFMd
(2.4)

for which we assume that the transmission of light is mediated by the least-
attenuated fundamental mode of subwavelength holes. In Eq. (2.4), tA and
rA (resp. t′A and r′A) are the transmission and reflection coefficients of the
fundamental mode at the gold-glass (respectively chromium-air) interface, as
defined in Fig. 2.4, nFM is the complex effective index of the fundamental
mode, d is the thickness of gold film and k0 = 2π/λ . Then the zeroth-order
power transmittance is T = (ng/na) |tF |2, where ng = 1.5 and na = 1 are
the refractive indices of glass and air, respectively. In the absence of surface-
wave-mediated resonance at the air interface, due to the damping chromium
layer, t′A and r′A depend only weakly on the wavelength in the spectral range of
interest (essentially fixed by the resonance of the glass interface), and |r′A| <<
1 [36, 58]. Thus Eq. (2.4) can be simplified as:

tF = tAt
′
Ae

ik0nFMd (2.5)

in which the sole resonance term is tA. Within the scope of the pure-SPP
model, which assumes that only SPPs are carrying energy between the hole

Figure 2.4: Scattering parameters tF , tA, t′A, rA and r′A defined for a 2D hole array. The x-polarized
plane wave (sketched by the vertical arrow in glass region) is normally incident from the glass side in
the experiment. The array periods in x- and y-directions are qa0 and a0 respectively, and the gold
film thickness is d. tF is the transmission coefficient of the zeroth-order plane wave, tA (resp. t′A) is
the transmission coefficient from the incident plane wave to the transmitted fundamental mode of the
hole array at the gold-glass interface (resp. from the fundamental mode to the transmitted zeroth-order
plane wave at the gold-chromium-air interface), and rA (resp. r′A) is the reflection coefficient of the
fundamental mode at the gold-glass (resp. gold-chromium-air) interface.
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2. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission

Figure 2.5: SPP-scattering parameters t,α,β, ρ and τ defined for a single y-periodic chain of holes. a, For
an incident plane wave (sketched by the red arrow in glass region), t is the transmission coefficient from
the plane wave to the fundamental hole-chain mode, and β is the SPP launching coefficient (sketched by
the horizontal arrows). b, For an incident SPP (red arrow), ρ and τ are the reflection and transmission
SPP coefficients, and α is the coupling coefficient to the fundamental hole-chain mode.

chains at the glass interface [36], tA under normal incidence can be expressed
as

tA = t+
2αβ

u−1 − (ρ+ τ)
. (2.6)

where u = eiksppqa0 is the phase shift experienced by the SPP in one period
qa0; t,α,β, ρ and τ are SPP-scattering parameters associated to the scattering
of SPPs by individual hole chains (see Fig. 2.5 for a definition and [36] for
more details), t corresponds to the direct transmission, β denotes the SPP
launching coefficient, α describes the coupling from the excited SPP to the
fundamental chain mode, and ρ and τ characterize the in-plane reflection and
transmission of the SPP. The pure-SPP model and the associated Eq. (2.6) are
used for fitting the transmission spectra and for obtaining the red dash-dotted
curve in Fig. 2.2.

Recently, two of the authors have extended the pure-SPP coupled-wave
model by incorporating the contribution of the CW to the transmission. Im-
portantly, it is found that the scattering coefficients associated to the CW are
(in the limit of small apertures) strictly identical to the SPP scattering coeffi-
cients α, β, ρ and τ , and that a coupled-wave model considering both the SPP
and quasi-cylindrical wave can thus be straightforwardly deduced from the
pure SPP model. Details concerning the derivation can be found in [45]. In
the generalized SPP+CW (Hybrid Wave, or HW) model, which is considering
the total field on the interface and which is therefore much more accurate, the
refined ”equivalent” of Eq. (2.6) is

tA = t+
2αβ

(1/
∑
HHW + 1)− (ρ+ τ)

. (2.7)

where
∑
HHW =

∑
HSPP +HCW combines a SPP part,

∑
HSPP = 1/(u−1−
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2.6. Methods

1), and a CW part,
∑
HCW , which represents a lattice summation of CW

field at multiples of period qa0 (
∑
HCW is known analytically [45]).

As explained in the main text, with the SPP model the zeroth-order power
transmittance T for our samples with periods qa0 and a0 can be expressed with
a fitting-ready form deduced from Eq. (2.6),

T (q) = q−2

∣∣∣∣tfit +
2αfit

u(q)−1 − (ρfit)

∣∣∣∣2 . (2.8)

where tfit = tt′A,fit, αfit = 2αβt′A,fit, t
′
A,fit = eik0nFMd

√
ng/nat

′
A. Equation

(2.8) exhibits an analytical dependence of T with q, in which the complex
fitted parameters tfit, αfit and ρfit are all independent of q, and u−1(q) =
eiksppqa0 is known. This enables a unified theoretical framework for analyzing
samples with the same metal thickness, hole size and periodicity a0 along the
y-direction but with different periods in the x-direction (as done in Fig. 2.2
in the main text for q=2-7).

As indicated in the main text, the wavelength dependence of tfit, αfit and
ρfit are adopted to be tfit = p1(λ0/λ)2, αfit = p2e

ip3(λ0/λ)4 and ρfit = p4e
ip5 ,

where the real quantities p1 to p5 are independent of the wavelength. Thus on
overall, the whole series of experimental spectra obtained for various q’s (this
represents a large quantity of data) are fitted with only five real parameters.
The drastic reduction in the parameter space not only evidences that the
microscopic model captures the essence of the physical mechanism of the EOT,
but also allows for a very robust fitting procedure.

For the SPP+CW model, Eq. (2.8) becomes,

T (q) = q−2

∣∣∣∣tfit +
2αfit

1/
∑
HHW (q)− (ρfit)

∣∣∣∣2 . (2.9)

where HHW (q) depends on q in a known analytical way [45]. Therefore once
the unknown quantities tfit, αfit and ρfit are determined by the previous
fitting procedure, the prediction of the SPP+CW model is immediately com-
puted with the fitted quantities; no additional fitting or numerical calculations
are required. In Fig. 2.6, we show the results of the SPP+CW model for q = 1
(see the red sold curves). On the logarithmic scale the deviations between the
model and the data are similar to that of the other samples for q = 2 − 7.
On the linear scale it is clearly seen that the CW boosts the transmission by
more than a factor two. The small deviations between experiment and the
SPP model for q = 2 − 7 or the SPP+CW model for q = 1 are probably
due to the many approximations we had to make to derive our fit expression.
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2. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission

Figure 2.6: Results of the SPP model and the SPP+CW model using the fit parameters from the SPP
model. a, On a logarithmic scale it is seen that the SPP+CW model fits the q = 1 data for well over
three orders of magnitude. b, By plotting q2×transmission on a linear scale, we show that the predicted
transmission for the SPP+CW model is more than two times larger than for the SPP model. This shows
that the CW explains the discrepancy between the SPP model and the experimental data.

Also, we fit the data on a logarithmic scale, and therefore the fit routine al-
lows some deviations at the maximum transmission, in favor for a better fit
of the minima. We believe that the remarkable agreement obtained for q = 1
in Fig. 2.6 between the experimental data and the SPP+CW model and not
for the pure-SPP model constitutes a critical proof of the embodiment of the
quasi-cylindrical wave in the EOT.

Finally, we would like to discuss the physical significance of two of our
fit parameters. The parameter p1 allows us to calculate the transmission
enhancement and suppression, as this parameter characterizes the light that is
transmitted without surface wave resonance. Given the fitted p2

1 = 5.5×10−3,
the maximum transmission of 0.093 for q = 1 is 17 times larger than this value,
while the minimum of 8.5×10−5 is 65 times smaller. For the q = 6 sample, the
enhancement and suppression are reduced because of SPP absorption and the
virtual absence of the CW. The enhancement is now 4.4, while suppression is
reduced to a factor 3.3.

A second interesting fit parameter is p4 = |ρ+τ |. This parameter quantifies
the scattering losses of the SPP wave at the hole chains. Its fit value of
p4 = 0.857 should be compared with the modulus of eiksppa0 = 0.98 around
the resonance wavelength. This comparison shows that the SPP scattering
losses are roughly 7 times larger than the absorption losses for our densest
(q = 1) sample, while they are approximately equal for the q = 7 low-density
sample.
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