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Chapter 7

Nernst effect beyond the
relaxation-time approximation

7.1 Introduction

The Nernst effect is a magneto-thermo-electric effect, in which an electric
field Ex in the x-direction results from a temperature gradient ∂T/∂y in
the y-direction, in the presence of a (weak) magnetic field B in the z-
direction. [1] The Nernst coefficient Nxy = −Ex(B∂T/∂y)−1 depends
sensitively on anisotropies in the band structure. In particular, for a
square lattice Nxy = −Nyx is antisymmetric upon interchange of x and
y — just like the Hall resistivity — but lattice distortion breaks this
antisymmetry.

There has been much recent interest in the Nernst effect in the con-
text of high-Tc superconductivity, since underdoped cuprates were found
to have an unusually large Nernst coefficient in the normal state. [2]
This may be due to superconducting fluctuations above Tc, [3, 4] chiral-
ity of the ground state,[5] or it may be purely a quasiparticle effect. [6]
The quasiparticle Nernst effect has been studied on the basis of the lin-
earized Boltzmann equation in the relaxation-time approximation.[7–13]
This is a reliable approach if the scattering rate is isotropic, since then
the neglected “scattering-in” contributions average out to zero. There is,
however, considerable experimental evidence for predominantly small-
angle elastic scattering in the cuprates, [14–17] possibly due to long-
range potential fluctuations from dopant atoms in between the CuO2
planes.[18, 19]
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It is not surprising that existing studies rely on the relaxation-time
approximation, since the full solution of the Boltzmann equation with
both band and scattering anisotropies is a notoriously difficult problem.
[20] In our literature search we have found magneto-electric calcula-
tions that go beyond the relaxation-time approximation,[21–24] but no
magneto-thermo-electric studies. It is the purpose of this paper to pro-
vide such a calculation and to assess the reliability of the relaxation-time
approximation.

We start in Sec. 7.2 with a formulation of the anisotropic transport
problem, in terms of the socalled vector mean free path. [25, 26] In
the relaxation-time approximation, this vector Λk is simply given by the
product vkτk of velocity and scattering time (all quantities dependent on
the point k on the Fermi surface). Going beyond this approximation, Λk
is determined by an integral equation, which we solve numerically.

We also consider, in Sec. 7.3, an improvement on the relaxation-time
approximation, due to Ziman, [20, 27] which incorporates some of the
scattering-in contributions into the definition of the scattering time. For
isotropic Fermi surfaces Ziman’s scattering time is just the familiar trans-
port mean free time — which fully accounts for scattering anisotropies.
If the dispersion relation is not isotropic this is no longer the case.

We compare the exact and approximate solutions in Sec. 7.4 and
conclude in Sec. 7.5.

7.2 Formulation of the transport problem

7.2.1 Boltzmann equation

We start from the semiclassical Boltzmann transport equation for quasi-
particles (charge e) in a weak magnetic field B, driven out of equilibrium
by a spatially uniform electric field E and temperature gradient∇T. The
excitation energy is εk, relative to the Fermi energy εF. The band struc-
ture may be anisotropic, so that the velocity

vk = h̄−1∇kεk (7.1)

(with ∇k = ∂/∂k) need not be parallel to the momentum h̄k. For sim-
plicity, we assume there is only a single type of carriers at the Fermi
level (either electrons or holes).
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Upon linearization of the distribution function fk = f0 + gk around
the equilibrium solution

f0 =
1

1 + exp[(εk − εF)/kBT]
, (7.2)

the Boltzmann equation takes the form [20]

vk ·U −
e
h̄
(vk × B) · ∇kgk = ∑

k′
Q(k, k′)(gk − gk′), (7.3)

U =

(
eE− εk − εF

T
∇T
)(
− ∂ f0

∂εk

)
. (7.4)

The right-hand-side of Eq. (7.3) is the difference between the scattering-
in term ∑k′ Q(k, k′)gk′ and the scattering-out term ∑k′ Q(k′, k)gk (with
Q(k′, k) = Q(k, k′) because of detailed balance).

We assume elastic scattering with rate

Q(k, k′) = δ(εk − εk′)q(k, k′) (7.5)

from k′ to k. Detailed balance requires

q(k′, k) = q(k, k′) (7.6)

and particle conservation requires

∑
k

gk = 0. (7.7)

The sum over k represents a d-dimensional momentum integral, ∑k →
(2π)−d ´ dk (in a unit volume). The spin degree of freedom is omitted.

It is convenient to define the Fermi surface average

〈 f (k)〉SF =

¸
dSF f (k)|vk|−1¸

dSF |vk|−1 , (7.8)

with a weight factor |vk|−1 from the volume element dk = h̄−1|vk|−1dεkdSF.
The density of states is given by

N(εF) = h̄−1(2π)−d
˛

dSF |vk|−1. (7.9)

For later use we note the identity

〈 f (k)(vk ×∇k)g(k)〉SF = −〈g(k)(vk ×∇k) f (k)〉SF , (7.10)

valid for arbitrary functions f , g of k.
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7.2.2 Vector mean free paths

We seek the solution of Eq. (7.3) to first order in B. Following Refs. 25, 26
we introduce the vector mean free paths Λk (of order B0) and δΛk (of
order B1), by substituting

gk = U · (Λk + δΛk) . (7.11)

Since the vector U can have an arbitrary direction it cancels from the
equation for Λk. The equation for δΛk has also a term ∝ (vk ×∇k)U,
which vanishes because ∇kU = h̄vk∂U/∂εk.

The resulting equations for the vector mean free paths are

∑
k′

Q(k, k′)(Λk −Λk′) = vk, (7.12)

∑
k′

Q(k, k′)(δΛk − δΛk′) =
e
h̄

B · (vk ×∇k)Λk. (7.13)

They can be written in terms of Fermi surface averages,

N(εF)〈q(k, k′)(Λk −Λk′)〉S′F = vk, (7.14)

N(εF)〈q(k, k′)(δΛk − δΛk′)〉S′F =
e
h̄

B · (vk ×∇k)Λk. (7.15)

(The prime in the subscript S′F indicates that k′ is averaged over the
Fermi surface, at fixed k.) The solution should satisfy the normalization

〈Λk〉SF = 0 = 〈δΛk〉SF , (7.16)

required by particle conservation to each order in B.
The integral equations (7.12) and (7.13) can be readily solved nu-

merically. In the limit of small-angle scattering an analytical solution
is possible, by expanding the k′-dependence around k to second order,
[28, 29] but we have not pursued that method here.

7.2.3 Linear response coefficients

In linear response the electric current density j is related to the electric
field E and temperature gradient ∇T by

j = σE− α∇T. (7.17)
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The conductivity tensor σ follows from the vector mean free paths by

σ = ∑
k

evk ⊗
∂gk

∂E

= e2 ∑
k

(
− ∂ f0

∂εk

)
vk ⊗ (Λk + δΛk) . (7.18)

[The direct product indicates a dyadic tensor with elements (a⊗ b)ij =
aibj.]

At low temperatures, when −∂ f0/∂εk → δ(εk − εF), this may also be
written as a Fermi surface average,

σ = e2N(εF)〈vk ⊗ (Λk + δΛk)〉SF . (7.19)

By substituting Eq. (7.14) for vk and using Eq. (7.15) together with the
detailed balance condition (7.6) and the identity (7.10), one verifies the
Onsager reciprocity relation

σij(B) = σji(−B). (7.20)

The thermoelectric tensor α is given by

α = ∑
k

evk ⊗
∂gk

∂(−∇T)

=
e
T ∑

k
(εk − εF)

(
− ∂ f0

∂εk

)
vk ⊗ (Λk + δΛk) . (7.21)

At low temperatures this reduces to the Mott formula,

α = −π2k2
BT

3e
d

dεF
σ. (7.22)

These equations all refer to a single type of carriers at the Fermi level
(electrons or holes), as would be appropriate for hole-doped cuprates.
The ambipolar effects of coexisting electron and hole bands are not con-
sidered here.

7.2.4 Nernst effect

We take a two-dimensional (d = 2) layered geometry in the x− y plane,
with a magnetic field B = Bẑ in the z-direction. The Nernst effect re-
lates a transverse electric field, say in the x-direction, to a longitudinal
temperature gradient (in the y-direction), for zero electric current.
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One distinguishes the isothermal and adiabatic Nernst effect, [1] de-
pending on whether ∂T/∂x = 0 or jh,x = 0 is enforced (with jh the heat
current). As is appropriate for the cuprates, [30] we assume that a high
phonon contribution to the thermal conductivity keeps the transverse
temperature gradient ∂T/∂x negligibly small, so that the Nernst effect
is measured under isothermal conditions.

The isothermal Nernst effect is expressed by

Ex = θxy

(
−∂T

∂y

)
,

∂T
∂x

= 0, je = 0, (7.23)

and similarly with x and y interchanged. The thermopower tensor

θ = −σ−1α (7.24)

has off-diagonal elements

θxy = −
σyyαxy − σxyαyy

σxxσyy − σxyσyx
, (7.25a)

θyx = −
σxxαyx − σyxαxx

σxxσyy − σxyσyx
. (7.25b)

We will consider two-dimensional anisotropic band structures that
still possess at least one axis of reflection symmetry, say the y-axis. Upon
reflection the component jx 7→ −jx of the electric current changes sign,
while Ey and ∂T/∂y remain unchanged. The perpendicular magnetic
field B 7→ −B also changes sign, because it is an axial vector. It follows
that σxy(B) = −σxy(−B) and αxy(B) = −αxy(−B) are both odd functions
of B, so they vanish when B→ 0.

Using the Mott formula (7.22), one can then define the B-independent
Nernst coefficients

Nxy = lim
B→0

θxy/B

=
π2k2

BT
3e

lim
B→0

1
Bσxx

(
dσxy

dεF
−

σxy

σyy

dσyy

dεF

)
=

π2k2
BT

3e
lim
B→0

1
B

σyy

σxx

d
dεF

σxy

σyy
, (7.26a)

Nyx = −π2k2
BT

3e
lim
B→0

1
B

σxx

σyy

d
dεF

σxy

σxx
. (7.26b)
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These expressions relate the Nernst coefficients to the energy derivative
of the Hall angle in the small magnetic-field limit. The cancellation in
Eq. (7.26a) of any identical energy dependence of σxy and σyy is known
as the Sondheimer cancellation.[6, 31] On a square lattice one has σxx =
σyy, hence Nxy = −Nyx, but without this C4 symmetry the two Nernst
coefficients differ in absolute value.

In terms of the vector mean free paths, the Nernst coefficients are
given by

Nxy =
π2k2

BT
3eB

〈vk,yΛk,y〉SF

〈vk,xΛk,x〉SF

d
dεF

〈vk,xδΛk,y〉SF

〈vk,yΛk,y〉SF

, (7.27a)

Nyx = −π2k2
BT

3eB
〈vk,xΛk,x〉SF

〈vk,yΛk,y〉SF

d
dεF

〈vk,yδΛk,x〉SF

〈vk,xΛk,x〉SF

, (7.27b)

where we have used that Λk is B-independent and δΛk is ∝ B.

7.3 Relaxation-time approximation

In the relaxation-time approximation the scattering-in term ∑k′ Q(k, k′)gk′

on the right-hand-side of the Boltzmann equation (7.3) is omitted. [20]
Only the scattering-out term gk ∑k′ Q(k, k′) = gk/τk is retained, con-
taining the momentum dependent relaxation rate

1/τk = ∑
k′

Q(k, k′) = N(εF)〈q(k, k′)〉S′F . (7.28)

Without the scattering-in term, the equations (7.12) and (7.13) for the
vector mean free paths can be solved immediately,

Λk = vkτk, δΛk =
e
h̄

τkB · (vk ×∇k)τkvk. (7.29)

In general this solution does not satisfy the particle conservation require-
ment (7.16), which is the fundamental deficiency of the relaxation-time
approximation.

Substitution into Eq. (7.19) gives the conductivity tensor

σ = e2N(εF)〈τkvk ⊗ (vk + Ωkτkvk)〉SF , (7.30)

with differential operator

Ωk =
e
h̄

B · (vk ×∇k). (7.31)
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For a two-dimensional lattice with reflection symmetry in the y-axis,
the elements of the conductivity tensor are given by

σxx = e2N(εF)〈τv2
x〉SF , σyy = e2N(εF)〈τv2

y〉SF , (7.32)

σxy = −σyx = e2N(εF)
eB
h̄

×
〈

τvx

(
vx

∂

∂ky
− vy

∂

∂kx

)
τvy

〉
SF

. (7.33)

(Here we don’t write the subscript k to simplify the notation.) The
Nernst coefficients in the relaxation-time approximation then follow from
Eq. (7.26) as the energy derivative of the ratio of two Fermi surface av-
erages,

Nxy = Z0
σyy

σxx

d
dεF

〈
τvx

(
vx

∂
∂ky
− vy

∂
∂kx

)
τvy

〉
SF

〈τv2
y〉SF

, (7.34a)

Nyx = −Z0
σxx

σyy

d
dεF

〈
τvx

(
vx

∂
∂ky
− vy

∂
∂kx

)
τvy

〉
SF

〈τv2
x〉SF

, (7.34b)

where we have defined

Z0 =
π2k2

BT
3h̄

. (7.35)

One may further simplify the relaxation-time approximation by tak-
ing an isotropic relaxation time τ0(εF), which is the approach taken in
Refs. 9–13. Since (vk ×∇k)τ0(εF) = 0, Eq. (7.34) then reduces to

Nxy = Z0
σyy

σxx

d
dεF

τ0(εF)

〈v2
y〉SF

〈
v2

x
∂vy

∂ky
− vxvy

∂vy

∂kx

〉
SF

, (7.36a)

Nyx = −Z0
σxx

σyy

d
dεF

τ0(εF)

〈v2
x〉SF

〈
v2

x
∂vy

∂ky
− vxvy

∂vy

∂kx

〉
SF

. (7.36b)

If one stays with a momentum dependent relaxation time τk, then it
is possible to improve on the relaxation-time approximation by changing
the definition (7.28) into Ziman’s expression [20, 27]

1/τZiman
k = N(εF)

〈
q(k, k′)

(
1− vk · vk′

|vk| |vk′ |

)〉
S′F

. (7.37)

Ziman’s improvement of the relaxation-time approximation becomes ex-
act if the Fermi surface is isotropic, meaning that εk is only a function of
|k| and q(k, k′) is only a function of k · k′.
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7.4 Comparison



Figure 7.1. Band filling at which the dispersion relation (7.42) has a Van Hove
singularity at the Fermi level, as a function of lattice distortion.

We turn to a comparison of the Nernst effect in relaxation-time ap-
proximation with the exact solution of the linearized Boltzmann equa-
tion. For this comparison we need to specify an elastic scattering rate
Q(k, k′) = δ(εk − εk′)q(k, k′) and a dispersion relation εk.

For the scattering, we take a random impurity potential with range
ξ. By increasing ξ relative to the Fermi wave length, we can study the
transition from isotropic scattering to (small-angle) forward scattering.
We model the impurity potential by a sum of Gaussians, centered at the
random positions ri of the impurities,

U(r) = ∑
i

Ui exp
(
−|r− ri|2

ξ2

)
. (7.38)

The amplitude Ui is uniformly distributed in [−δ, δ]. The correlator is

〈U(r)U(r′)〉 = π

6
δ2ξ2nimp exp

(
−|r− r′|2

2ξ2

)
, (7.39)

⇒ 〈|U(k)|2〉 = 1
12 δ2ξ4nimp exp

(
− 1

2 ξ2|k|2
)

, (7.40)
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where nimp is the two-dimensional impurity density (number of impu-
rities per area per layer). The resulting elastic scattering rate (in Born
approximation) becomes

q(k, k′) =γ0 exp
(
− 1

2 ξ2|k− k′|2
)

,

γ0 =
πδ2ξ4nimp

6h̄
. (7.41)

Values of ξ/a of order unity are to be expected in the cuprates for scat-
tering by impurities between the CuO2 planes, when ξ is of the order of
the interplane distance.

For the dispersion relation we follow a recent study of the Nernst
effect in hole-doped cuprates, [10] by taking the tight-binding dispersion
of a distorted square lattice with first (t1), second (t2), and third (t3)
nearest-neigbor hopping:

E(k) = − 2t1
[
(1 + ε) cos kx + (1− ε) cos ky

]
− 2t3

[
(1 + ε) cos 2kx + (1− ε) cos 2ky

]
+ 4t2 cos kx cos ky. (7.42)

The lattice constant is a and k is measured in units of 1/a. The C4 sym-
metry is distorted by the anisotropy parameter ε, preserving reflection
symmetry in the x and y-axes.

We use ratios of hopping parameters t2/t1 = 0.32, t3/t2 = 0.5, and
compare two values of the band filling fractions nband = 1.156 and 0.875.
(Band fillings are measured relative to a half filled band.) The corre-
sponding Fermi energies at ε = 0 are EF = 0 and EF ≈ −0.97 t1 re-
spectively, and are adjusted as ε is varied to keep nband fixed. For both
these band fillings the Van Hove singularity is below the Fermi level, see
Fig. 7.1, but it is closest for nband = 0.875. We therefore expect a larger
Nernst effect for that band filling than for nband = 1.156.

The Nernst coefficient is plotted in units of

N0 =
t1a4Z0

h̄γ0
=

π2k2
BT

3h̄2
t1a4

γ0
. (7.43)

We show only Nxy, since Nyx is related by

Nxy(ε) = −Nyx(−ε). (7.44)

We compare three results for the Nernst coefficient:
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• the exact solution of the linearized Boltzmann equation, from Eq.
(7.27);

• the momentum-dependent relaxation-time approximation, from Eq.
(7.34);

• Ziman’s improvement on the relaxation-time approximation, from
Eq. (7.37).

We have found that there is little difference between the momentum-
dependent and momentum-independent relaxation-time approximations
[Eqs. (7.34) and (7.36)], so we only plot the former. Results are shown in
Figs. 7.2–7.4.

Fig. 7.2 shows that the relaxation-time approximation agrees well
with the exact solution for nearly isotropic scattering (ξ � a). With in-
creasing ξ small-angle scattering begins to dominate, and the relaxation-
time approximation breaks down for ξ & 0.4 a. The break down occurs
earlier for positive than for negative ε, which can be understood by con-
sidering the anisotropic curvature of the Fermi surface.[32]

In Fig. 7.3 we see that Ziman’s improved approximation remains
reliable over a somewhat larger range of ξ. Still, for a modestly large
ξ = 0.75 a also Ziman’s approximation has broken down completely, see
Fig. 7.4, giving wrong magnitude and sign of the Nernst coefficient.

7.5 Conclusion

In conclusion, we have shown that the relaxation-time approximation
is not a reliable method to calculate the Nernst effect in the combined
presence of band and scattering anisotropies. The deficiencies are qual-
itative, even the sign of the effect can come out wrong. Of course, the
relaxation-time approximation remains a valuable tool to assess the ef-
fects of band anisotropy in the case of isotropic scattering.

We have based our comparison on parameters relevant for the cuprates,
[10] but we have only considered one possible mechanism (single-band
elastic quasiparticle scattering) for the Nernst effect in cuprate supercon-
ductors. Other mechanisms (ambipolar diffusion, inelastic scattering,
superconducting fluctuations) would require separate investigations.[6]
It is hoped that the general framework provided here will motivate and
facilitate work in that direction.
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Figure 7.2. Dependence of the Nernst coefficient on the distortion ε of the
square lattice at a fixed band filling nband = 0.875, for three different values of
the range ξ of the scattering potential. The three panels show how the exact
solution of the linearized Boltzmann equation (solid) starts out very close to the
relaxation-time approximation (dotted) for nearly isotropic scattering, and then
becomes progressively different as small-angle scattering begins to dominate.
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Figure 7.3. Dependence of the Nernst coefficient on the range ξ of the scattering
potential, for an undistorted square lattice (ε = 0). Two values of the band
filling are shown in the upper and lower panel. The three curves in each panel
correspond to: the exact solution of the linearized Boltzmann equation (solid),
the relaxation-time approximation (dotted), and Ziman’s improvement on the
relaxation-time approximation (dash-dotted).
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Figure 7.4. Same as Fig. 7.3, but now showing the dependence on the distortion
ε of the square lattice for a fixed range ξ = 0.75 a of the scattering potential.
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