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Chapter 6

Fermion-parity anomaly of
the critical supercurrent in the
quantum spin-Hall effect

6.1 Introduction

The quantum Hall effect and quantum spin-Hall effect both refer to a
two-dimensional semiconductor with an insulating bulk and a conduct-
ing edge, and both exhibit a quantized electrical conductance between
two metal electrodes. If the electrodes are superconducting, a current
can flow in equilibrium, induced by a magnetic flux without any applied
voltage. In the quantum Hall effect, the edge states are chiral (propa-
gating in a single direction only) and two opposite edges are needed to
carry a supercurrent [1–3]. Graphene is an ideal system to study this
interplay of the Josephson effect and the quantum Hall effect in a strong
magnetic field [4–6].

The interplay of the Josephson effect and the quantum spin-Hall ef-
fect, in zero magnetic field, has not yet been demonstrated experimen-
tally but promises to be strikingly different [7]. The quantum spin-Hall
insulator has helical edge states (propagating in both directions) that can
carry a supercurrent along a single edge. The edge state couples a pair
of Majorana zero-modes, allowing for the transmission of unpaired elec-
trons with h/e rather than h/2e periodic dependence on the magnetic
flux [8, 9].

An h/e flux periodicity corresponds to a 4π-periodicity in terms of
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the superconducting phase difference φ, which means that the current-
phase relationship has two branches I±(φ) and the system switches from
one branch to the other when φ is advanced by 2π at fixed total number
N of electrons in the system. This is referred to as a fermion-parity
anomaly, because the two branches have different parity σ = ± of the
number of electrons in the superconducting ground state [8].

Josephson junctions come in two types [10], depending on whether
the separation L of the superconducting electrodes is small or large com-
pared to the coherence length ξ = h̄v/∆, or equivalently, whether the
superconducting gap ∆ is small or large compared to the Thouless en-
ergy ET = h̄v/L. Existing literature [7–9, 11–18] has focused on the
short-junction regime L � ξ. The supercurrent is then determined en-
tirely by the phase dependence of a small number of Andreev levels in
the gap, just one per transverse mode. The phase dependence of the
continuous spectrum above the gap can be neglected. As the ratio L/ξ
increases, the Andreev levels proliferate and also the continuous spec-
trum starts to contribute to the supercurrent. Since σ is switched by
changing the occupation of a single level, one might wonder whether a
significant parity dependence remains in the long-junction regime.

Remarkably enough, the parity dependence becomes even stronger.
While in a short junction the two branches I+(φ) = −I−(φ) differ only
in sign, we find that in a long junction they differ both in sign and
in magnitude. In particular, the largest current that can flow without
dissipation is twice as large for I− than it is for I+. The difference is
illustrated in Fig. 6.1, in the zero-temperature limit. The basic physics
can be explained in simple terms, as we will do first, and then we will
present a complete theory for finite temperature and for arbitrary ratio
L/ξ.

6.2 Short-junction limit

We set the stage by summarizing the findings of Fu and Kane [7] in
the short-junction regime. The spectrum of the Bogoliubov-De Gennes
Hamiltonian HBdG is a ±ε symmetric combination of a discrete spec-
trum for |ε| < ∆ and a continuous spectrum for |ε| > ∆. Since backscat-
tering along the quantum spin-Hall edge is forbidden by time-reversal
symmetry [19], this is a ballistic single-channel Josephson junction. In
the limit L/ξ → 0 the discrete spectrum consists of a pair of levels at
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Figure 6.1. Phase-dependent excitation spectrum of a Josephson junction
along a quantum spin-Hall (QSH) edge (left panels) and corresponding zero-
temperature supercurrent (right panels). The supercurrent I4π is 4π-periodic,
with two branches I+ (blue solid), I− (red solid) distinguished by the ground-
state fermion parity and with a parity switch at φ = ±π. The top row shows the
short-junction limit of Ref. 7, the bottom row the long-junction limit calculated
here. (The jump in I− at φ = 0 occurs because of the change in slope indi-
cated by the green arrows in the magnified central part of the spectrum.) The
2π-periodic supercurrent I2π without parity constraints is also shown (green
dashed). The critical current is the same for I4π and I2π in the short junction,
but different by a factor of two in the long junction.

ε± = ∓∆| cos(φ/2)|, while the continuous spectrum is φ-independent
[20]. Quite generally, an eigenvalue ε(φ) of HBdG contributes to the su-
percurrent an amount

I(φ) =
ge
h̄

d
dφ

ε(φ), (6.1)

with g a factor that counts spin and other degeneracies [21]. There is no
spin degeneracy at the quantum spin-Hall edge (since spin is tied to the
direction of motion), so g = 1 and the level ε± contributes a supercurrent
[7]

I±(φ) = ±
e∆
2h̄

sin(φ/2), |φ| < π. (6.2)

To discuss the fermion-parity anomaly we assume, for definiteness,
that the total number N of electrons in the system is even. (A different
choice amounts to a 2π phase shift, or equivalently, an interchange of
I+ and I−.) The ground-state fermion parity σ is even for φ = 0 and
switches to odd when φ crosses π. Since N is fixed, this topological
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phase transition must be accompanied by a switch between even and
odd number of quasiparticle excitations. At zero temperature only the
two levels ε± closest to the Fermi level (ε = 0) play a role, and the parity
switch of σ means that a quasiparticle is transferred from ε+ < 0 to
ε− > 0. It cannot relax back from ε− to ε+ at fixed parity of N .

The resulting current-phase relationship can be represented by a
switch between 2π-periodic branches I±(φ) (reduced zone scheme), or
equivalently as a 4π-periodic function I4π(φ) (extended zone scheme).
Both representations are shown in Fig. 6.1, upper panels. We also in-
clude the 2π-periodic current I2π that results if the system can relax to
its lowest energy state without constraints on the parity of N .

6.3 Long-junction limit

An elementary discussion of the long-junction regime (to be made rigor-
ous in just a moment) goes as follows. For L� ξ we may assume [22–24]
a local linear relation between the current density I and the phase gra-
dient φ/L� 1/ξ, of the form I = constant× evφ/L. The linear increase
of I− is interrupted at φ = 0 by a discontinuity ∆I− = 2ev/L. Half of it
results from the jump in the slope of the lowest occupied positive energy
level ε = (π − |φ|)h̄v/2L (green arrows in Fig. 6.1e). The jump in the
slope of the highest occupied negative energy level contributes the other
half. In the extended zone scheme, the resulting supercurrent I4π is a
4π-periodic sawtooth with a slope ∆I−/4π = eET/2πh̄.

The corresponding parity-dependent supercurrents in the reduced
zone scheme are

I+ =
eET

2πh̄
φ, I− =

eET

2πh̄
(φ− 2π sign φ), |φ| < π. (6.3)

The 4π-periodic supercurrent I4π switches from I+ to I− at φ = π, while
I2π remains in the branch I+ by compensating the switch in ground-
state fermion parity σ by a switch in the parity of the electron number
N . These are the curves plotted in Fig. 6.1 (lower panels).

Looking at the upper panels, one might have expected the sinusoidal
current-phase relationship of I4π for a short junction to evolve into a
triangular profile for a long junction, remaining symmetric around φ =
π. This would produce a cusp at the topological phase transition, which
is avoided by the sawtooth profile — at the expense of a discontinuity at
φ = 2π.
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The maximal supercurrent is reached near φ = 2π for I4π (with par-
ity constraint) and near φ = π for I2π (without parity constraint). There
is a factor of two difference in magnitude of these critical currents in a
long junction,

I4π,c = eET/h̄, I2π,c = eET/2h̄. (6.4)

In contrast, for a short junction both are the same (equal to e∆/2h̄).

6.4 Current through the scattering matrix

To determine the crossover from the short-junction limit (6.2) to the long-
junction limit (6.3), including the temperature dependence, we adapt
the scattering theory of the Josephson effect [25] to include the fermion
parity constraints. Input is the scattering matrix s0 of electrons in the
normal region and the Andreev reflection matrix rA at the normal-
superconductor interfaces. These take a particularly simple 2× 2 form
at the quantum spin-Hall edge, but our general formulas are applicable
also to multi-channel topological superconductors.

The parity-dependent partition function is [12–14, 26]

Z± = 1
2

(
∏
ε>0

eβε/2

)(
∏
ε>0

(1 + e−βε)±∏
ε>0

(1− e−βε)

)

= 1
2 Z0

(
1±∏

ε>0
tanh(βε/2)

)
, (6.5)

with β = 1/kBT and Z0 = ∏ε>0 2 cosh(βε/2) the partition function with-
out parity constraints. From the expression for Z± one can see that the
± selects terms that contain an even (+) or an odd (−) number of quasi-
particle excitation factors e−βε, as is dictated by the ground-state fermion
parity. The partition function Z gives the free energy F and hence the
supercurrent I [27],

I± =
2e
h̄

dF±
dφ

, F± = −β−1 ln Z±, (6.6)

I2π ≡ I0 =
2e
h̄

dF0

dφ
, F0 = −β−1 ln Z0. (6.7)

The density of states ρ(ε) contains both the discrete spectrum for
|ε| < ∆ (a sum of delta functions at the Andreev levels) and the con-
tinuous spectrum for |ε| > ∆, including also a contribution ρS from the
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superconducting electrodes. Scattering theory gives the expression [25]

ρ(ε) = Im
d
dε

ν(ε + i0+) + ρS(ε), (6.8)

ν(ε) = −π−1 ln Det X(ε), X = (1−M)M−1/2, (6.9)
M(ε) = r∗A(−ε)s∗0(−ε)rA(ε)s0(ε). (6.10)

The factor M−1/2 in the definition of X, as well as the term ρS, give a
φ-independent additive contribution to F0 without any effect on I0, but
we need to retain these terms here because they do enter into the parity
constraint for I±.

In the absence of parity constraints, Ref. 28 gives the free energy

F0 = −β−1∑∞
p=0 ln Det X(iωp), (6.11)

as a sum over fermionic Matsubara frequencies ωp = (2p + 1)π/β. A
similar calculation [29] gives the parity-dependence in the form

Fσ = F0 − β−1 ln 1
2

[
1 + σeJS

√
Det X(0)

× exp
( ∞

∑
p=1

(−1)p ln Det X(iΩp/2)
)]

, (6.12)

σ = sign
[
Pf (rAs0 − sT

0 rT
A)(Det is0)

−1/2]
ε=0, (6.13)

with bosonic Matsubara frequencies Ωp = 2pπ/β. The ground-state
fermion parity σ is given in terms of the Pfaffian of the anti-symmetrized
scattering matrix, evaluated at the Fermi energy. The sign ambiguity in
the square root is resolved by fixing σ = 1 at φ = 0.

Eq. (6.12) contains a contribution from the superconducting elec-
trodes,

JS =

ˆ ∞

∆
dε ρS(ε) ln tanh(βε/2), (6.14)

which only plays a role at temperatures T & ∆/kB. The factor eJS can
therefore be replaced by unity in the long-junction regime, when kBT .
ET � ∆.

We now specify these general formulas for the quantum spin-Hall
edge, with Hamiltonian [30]

HBdG =

(
vpσz + U(x) ∆∗(x)σy

∆(x)σy vpσz −U(x)

)
. (6.15)
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The edge runs along the x-axis, p = −ih̄∂x is the momentum operator,
and the electrostatic potential is U(x) (measured relative to the Fermi
level). The pair potential ∆(x) vanishes in the normal region |x| < L/2.
In the two superconducting regions we set ∆(x) = ∆e±iφ/2, with a step
at x = ±L/2. This socalled “rigid boundary condition” is justified for a
single channel coupled to a bulk superconducting reservoir [10].

A mode-matching calculation gives the scattering matrices

s0 =

(
0 eiχ

eiχ 0

)
, χ(ε) = χ0 + ε/ET, (6.16)

rA =

(
αeiφ/2 0

0 −αe−iφ/2

)
, α(ε) =

√
1− ε2

∆2 +
iε
∆

,

Det X(ε) = 2 cos φ + α2e2iε/ET + α−2e−2iε/ET . (6.17)

We discuss the various terms in these expressions. The electron scatter-
ing matrix s0 is purely off-diagonal, because of the absence of backscat-
tering along the quantum spin-Hall edge. The transmission phase χ
depends linearly on energy because of the linear dispersion. Electro-
static potential fluctuations contribute only to the energy-independent
offset χ0 = −(h̄v)−1 ´ L

0 U dx, which drops out in Eq. (6.9). The Andreev
reflection matrix rA (from electron to hole) is unitary below the gap.
Above the gap there is also propagation into the superconductor, so rA
is sub-unitary. The same expression (6.16) for rA applies at all energies,
evaluated at ε + i0+ to avoid the branch cut of the square root. Notice
that for φ = 0 the Andreev reflection amplitudes from S1 and S2 dif-
fer by a minus sign, because of the opposite spin of counterprogating
electrons in a helical edge state.

6.5 Results and discussion

Putting all pieces together [29] we obtain the parity-dependent super-
current for arbitrary ratio ∆/ET. In the short-junction limit ∆/ET → 0
we recover the known result (6.2), when the energy dependence of the
scattering matrix and the phase sensitivity of the continuous spectrum
can both be ignored. In the opposite long-junction limit ∆/ET → ∞ we
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Figure 6.2. Phase dependence of the parity-constrained supercurrent I4π (solid
curves, in units of eET/h̄ ∝ 1/L), calculated by a numerical evaluation of the
Matsubara sums. The left panel shows the crossover from the short-junction
to the long-junction regime in the zero-temperature limit (full interval −2π <
φ < 2π). The right panel shows the temperature dependence in the long-
junction limit (reduced interval 0 < φ < 2π). The left panel also shows the
supercurrent I2π without parity constraints (dashed curves). The insets in the
right panel show current-biased superconducting circuits that measure the I-V
and I-Φ relationships of a Josephson junction.

find

I4π = I0 −
2e
h̄β

d
dφ

ln
[ 1

2 + cos(φ/2)eS−π/2βET
]
, (6.18)

S =
∞

∑
p=1

(−1)p ln
(
1 + 2e−Ωp/ET cos φ + e−2Ωp/ET

)
, (6.19)

I2π ≡ I0 =
2e
h̄β

sin φ
∞

∑
p=0

[
cos φ + cosh(2ωp/ET)

]−1. (6.20)

The plot of the results in Fig. 6.2 shows that the crossover from a sine
to a sawtooth shape occurs early: already for ∆ = ET (so for L = ξ)
the maximum of the current-phase relationship is close to φ = 2π. The
sawtooth shape is preserved with increasing temperature for kBT . 1

2 ET.
These are encouraging results for the experimental accessibility of

the long-junction regime. The quantum spin-Hall effect has been ob-
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served in HgTe/CdTe quantum wells [31], and more recently in InAs/GaSb
quantum wells [32] — where also Andreev reflection from supercon-
ducting Nb electrodes was demonstrated [33]. For a typical Fermi ve-
locity of v ' 105 m/s in a semiconductor and superconducting gap
∆ ' 1 meV in bulk Nb, the coherence length is ξ = 70 nm, so the Joseph-
son junction length L = 0.5 µm from Ref. 33 is deep in the long-junction
regime. Since the long-junction regime is already entered for L ≈ ξ, this
would apply even if the effective superconducting gap is well below the
bulk value of Nb. The corresponding Thouless energy is ET/kB = 1.5 K,
so at T = 100 mK one should be close to the low-temperature limit.

In the ongoing search for the 4π-periodic Josephson effect the first
results have been reported [34] for the ac effect (fractional Shapiro steps
[9, 15–18]). A dc measurement of the current-flux (I-Φ, φ = 2eΦ/h̄)
relationship, on time scales large compared to the time τqp ' µs for
unpaired quasiparticles to tunnel into the system [35], will measure the
2π-periodic I2π rather than I4π. Such a phase-sensitive measurement
(Fig. 6.2, upper inset) would produce the critical current I2π,c without
any signature of the parity anomaly. In contrast, a phase-insensitive
measurement of the critical current through the current-voltage (I-V)
characteristic (lower inset) will produce I4π,c even on time scales� τqp,
because the phase of a resistively shunted (overdamped) circuit can ad-
just to a change in N on time scales much smaller than τqp. A change
in the parity of N will be compensated by a 2π phase shift, without a
change in critical current [29]. In a short junction I2π,c and I4π,c are the
same, so this does not help, but in a long junction they differ by up to a
factor of two.

6.6 Conclusion

We have presented a theory for the 4π-periodic Josephson effect on
scales large compared to the superconducting coherence length. A mul-
titude of subgap states, as well as a continuum of states above the gap,
contribute to the supercurrent for L� ξ, but still the parity anomaly re-
sponsible for the 4π-periodicity persists. In fact, we have found that in
a long junction the anomaly manifests itself also in a phase-insensitive
way, through a doubling of the critical current. This opens up new
possibilities for the detection of this topological effect at the quantum
spin-Hall edge [31–33], and possibly also in semiconductor nanowires
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[34, 36–38].

6.7 Appendix

6.8 Details of the calculation of the free energy

6.8.1 Transformation from the real to the imaginary energy axis

According to Eq. (6.5) the free energy Fσ = −β−1 ln Zσ, with σ = ±1 the
ground-state fermion parity, is given by

Fσ = F0 − β−1 ln 1
2

[
1 + σ exp

(
∑
ε>0

ln tanh(βε/2)
)]

, (6.21)

F0 = −β−1 ∑
ε>0

ln[2 cosh(βε/2)]. (6.22)

Here F0 is the free energy in the absence of parity constraints. The
infinite product over ε is defined in terms of the density of states ρ by

∏
ε>0

f (ε) = exp
[ˆ ∞

0
dε ρ(ε) ln f (ε)

]
. (6.23)

Integrals of the type (6.23) can be done efficiently by contour integra-
tion, made possible by the fact that the scattering matrices are analytic
in the upper half of the complex energy plane. This was worked out
in Ref. 28 for F0, and here we adapt that method to include the parity
constraint in Fσ.

The function ν in the density of states (6.8) satisfies ν(ε) = ν∗(−ε),
expressing the electron-hole symmetry. If f (ε) is an even function of ε,
we may therefore convert the sum ∑ε>0 f (ε) over positive energies (in-
cluding both the discrete and the continuous spectrum) into an integral
along the entire real energy axis of f dν/dε, or νd f /dε after a partial in-
tegration. Closing the contour in the upper half of the complex energy
plane picks up the poles of d f /dε, which for the free energy are the
Matsubara frequencies on the imaginary axis.
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In Ref. 28 this transformation was carried out for F0, leading to

∑
ε>0

ln[2 cosh(βε/2)] =
ˆ ∞

0
dε ρ(ε) ln[2 cosh(βε/2)]

=
1
2i

ˆ ∞

−∞
dε

dν(ε + i0+)
dε

ln[2 cosh(βε/2)]

= − β

4i

ˆ ∞

−∞
dε ν(ε + i0+) tanh(βε/2)

= −π
∞

∑
p=0

ν(iωp), (6.24)

with ωp = (2p + 1)π/β the fermionic Matsubara frequency. For Fσ the
Matsubara sum contains bosonic Matsubara frequencies Ωp = 2pπ/β,

∑
ε>0

ln tanh(βε/2) =
1
2i

ˆ ∞

−∞
dε

dν(ε + i0+)
dε

× ln | tanh(βε/2)|

= − β

2i

 ∞

−∞
dε ν(ε + i0+)

1
sinh βε

= −π
∞

∑
p=1

(−1)pν(iΩp/2)− 1
2 πν(0). (6.25)

The notation
ffl

indicates the Cauchy principal value of the integral
(which picks up half of the pole at ε = 0). We have made use of the
identity ˆ

dx
d f
dx

ln |x| = −
 

dx f (x)
1
x

. (6.26)

For the free energy this gives

F0 = −β−1
∞

∑
p=0

ln Det X(iωp), (6.27)

Fσ = F0 − β−1 ln 1
2

[
1 + σeJS

√
Det X(0) exp

(
∞

∑
p=1

(−1)p ln Det X(iΩp/2)

)]
,

(6.28)

where we have substituted ν = −π−1 ln Det X from Eq. (6.9) and also
included the factor eJS from the φ-independent density of states in the
superconducting electrodes.
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6.8.2 Regularization

The transformation of the integral (6.25) over real energies into a sum
over imaginary frequencies requires that ν(iω) goes to zero faster than
1/ω for ω → ∞. To ensure this, we decompose ν = ν∞ + δν, with ν∞
the large-ω limit of ν(iω). It is convenient to specify ν∞(0) = 0. The
integral over ν∞ is done along the real energy axis, where it converges,
and then the remaining integral over δν becomes a converging sum over
Matsubara frequencies.

More specifically, for the quantum spin-Hall edge we take

ν∞(ε) = −π−1 ln
[
(1− 4ε2/∆2)e−2iε/ET

]
, (6.29)

in view of Eq. (6.17). The integral over ν∞ can be evaluated in closed
form,

J∞ ≡ −
β

2i

 ∞

−∞
dε ν∞(ε + i0+)

1
sinh βε

= − 1
πβET

ˆ ∞

−∞
dx

x
sinh x

−
ˆ ∞

β∆/2
dx

1
sinh x

= − π

2βET
+ ln tanh(β∆/4). (6.30)

The remaining integral over δν = ν− ν∞ then becomes a convergent
sum over Matsubara frequencies,

− β

2i

 ∞

−∞
dε

δν(ε + i0+)
sinh βε

= S − 1
2 πν(0), (6.31)

S = −π
∞

∑
p=1

(−1)p[ν(iΩp/2)− ν∞(iΩp/2)
]
. (6.32)

This gives the regularized version of Eq. (6.28),

Fσ = F0 − β−1 ln 1
2

(
1 + σeS+J∞+JS

√
Det X(0)

)
. (6.33)

6.9 Scattering formulas for the ground-state fermion
parity

The ground-state fermion parity σ(φ) switches between even and odd
whenever a pair of Andreev levels crosses the Fermi energy. Given
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σ(0) = 1, in principle one can just count the number of level crossings
between phase difference 0 and φ to determine σ. In a multichannel
Josephson junction there can be many level crossings and a single cross-
ing might be easily missed. It would be advantageous to have a direct
method of determining σ at any φ, without having to track the number
of sign changes back to φ = 0. Kitaev’s Hamiltonian expression [8] for
the ground-state fermion parity is one such method, requiring informa-
tion on the entire excitation spectrum. Here we construct an alternative
scattering approach that requires only Fermi-level information.

We present two variations of our approach: the first assumes spatial
separation of normal scattering and Andreev reflection, relating σ to
the normal-state scattering matrix s0. Alternatively, if there is no such
spatial separation, we can relate σ to the transfer matrices ML, MR at the
left and right end of the Josephson junction.

It is instructive to place these results in the general context of topo-
logical states of matter [39]. The ground-state fermion parity σ is the
Z2 topological quantum number of a system of dimensionality d = 0
in symmetry class D (when s0 has no symmetry restrictions) or BDI
(when s0 = sT

0 ). The dimensionality zero refers to the fact that this
is a closed system. We may consider opening up the system, promot-
ing it to d = 1, by replacing one of the two superconducting contacts
by a normal metal with N transverse modes. The topological quan-
tum number Q then counts the number of Majorana zero-modes at the
normal-superconducting interface. It is given by the determinant of the
reflection matrix (for class D, with Q ∈ Z2) [40] or by its trace (for class
BDI, with Q ∈ Z) [41].

6.9.1 Relation between σ and the normal-state scattering ma-
trix

The free energy (6.28) of the SNS junction incorporates the ground-state
fermion parity dependence through the quantity σ

√
Det X(0). We seek

to express this quantity in terms of the normal-state scattering matrix
s0(0), assuming a spatial separation of normal scattering in N and ideal
Andreev reflection at the NS interfaces.

We start from the definition of X = (1 − M)M−1/2 and use that
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M(0) = U∗U with unitary U = rA(0)s0(0). Since Det M = 1, we have

Det X = Det (1−U∗U) = Det (1−U∗U)T

=
Det (U −UT)

Det U
=

[Pf(U −UT)]2

Det U
. (6.34)

The determinant of U is independent of φ,

Det U = Det [rA(0)s0(0)] = Det [is0(0)]. (6.35)

We may now identify

σ
√

Det X(0) =
Pf (UT −U)√

Det U

⇒ σ = sign
[

Pf (rAs0 − sT
0 rT

A)√
Det is0

]
ε=0

. (6.36)

The two branches of the square root function introduce a sign ambiguity,
which is resolved as follows. The square root of Det X ≥ 0 is taken on
the principal branch, while the branch of the square root of Det is0 is
fixed by setting σ = 1 at φ = 0. Once this sign is fixed, the phase
dependence of the topological quantum number σ(φ) is determined by
Eq. (6.36) entirely in terms of Fermi-level properties.

6.9.2 Relation between σ and the transfer matrix

We will now extend the scattering formulation of the ground-state fermion
parity to a system where we cannot make the spatial separation of nor-
mal scattering (described by s0) and ideal Andreev reflection (described
by rA). This is possible if we work with transfer matrices instead of
scattering matrices.

It is convenient to choose a gauge where the phase difference φ
across the Josephson junction is accounted for by the delta function vec-
tor potential ~A = (φh̄/2e)δ(x)x̂, centered at a point x = 0 inside the
Josephson junction. The 2N × 2N transfer matrices ML(ε) and MR(ε)
relate electron and hole wave amplitudes to the left of x = 0,

ΨL,h = MLΨL,e, (6.37)

and to the right of x = 0,

ΨR,h = MRΨR,e. (6.38)
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The first N components Ψ+ of each vector Ψ = (Ψ+, Ψ−) refer to right-
moving states and the last N components Ψ− to left-moving states. The
Pauli matrix Σz acts on these components,

Σz

(
Ψ+

Ψ−

)
=

(
1 0
0 −1

)(
Ψ+

Ψ−

)
=

(
Ψ+

−Ψ−

)
. (6.39)

The wave amplitudes ΨL and ΨR are matched at x = 0,

ΨR,e = eiφ/2ΨL,e, ΨR,h = e−iφ/2ΨL,h. (6.40)

The combination of these equations gives

eiφ/2MRΨL,e = e−iφ/2MLΨL,e, (6.41)

so the condition for a bound state in the junction is

Det
[
eiφ/2MR − e−iφ/2ML

]
= 0. (6.42)

If we take ML and MR at the Fermi energy ε = 0, this equation gives the
values of φ at which a pair of Andreev levels crosses the Fermi level and
the ground-state fermion parity switches between even and odd.

Because of the excitation gap in the bulk superconductor, there can
be no particle current flowing through the Josephson junction for ener-
gies ε < ∆. This requires

Ψ†
eΣzΨe + Ψ†

hΣzΨh = 0, (6.43)

both to the left and to the right of x = 0. The corresponding unitarity
constraint on the transfer matrices ML and MR is

M†Σz M + Σz = 0⇒ M−1 = −Σz M†Σz. (6.44)

At the Fermi level ε = 0 we have the additional constraint of particle-
hole symmetry, M−1(0) = M∗(0), which together with the unitarity
constraint implies that M(0)Σz is an antisymmetric matrix,

[M(0)Σz]
T = −M(0)Σz. (6.45)

In what follows we restrict ourselves to ε = 0 and omit the energy argu-
ment.
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Since |Det M| = 1, we may define the real angle α (modulo 2π) by

Det (MLMR) = e−iα−2iνπ, 0 ≤ α < 2π, ν ∈ Z. (6.46)

The function

ζ2(φ) = eiα/2+iνπ Det
(

eiφ/2MRΣz − e−iφ/2MLΣz

)
(6.47)

is real for all φ and vanishes when the ground-state fermion parity
switches. Since it is the determinant of an antisymmetric matrix, it can
be written as the square of a Pfaffian,

ζ(φ) = eiα/4+iνπ/2 Pf
(

eiφ/2MRΣz − e−iφ/2MLΣz

)
. (6.48)

We choose ν ∈ {0, 1, 2, 3} such that ζ(0) is real and positive. The
function ζ(φ) then will remain real for all φ, switching sign when the
ground-state fermion parity switches. We can thus identify the topolog-
ical quantum number with

σ = sign
[
eiα/4+iνπ/2Pf

(
eiφ/2MRΣz − e−iφ/2MLΣz

)]
. (6.49)

6.9.3 Multichannel applications

In the main text we apply our scattering formulation to the quantum
spin-Hall edge, which has N = 1 channels (counting spin) and Q = 1
Majorana zero-modes (at each NS interface). More generally, the formu-
las given apply directly to any N ≥ 1, with the requirement that N −Q
is an even integer. This is a technical requirement, to avoid the difficulty
that for N −Q odd one of the N channels has identically zero Andreev
reflection probability at the Fermi level [41]. Here we show how this
restriction can be removed, first in terms of the scattering matrix, then
in terms of the transfer matrix.

Scattering matrix formulation

We assume a spatial separation of normal-state scattering (described by
s0) and Andreev reflection (described by rA). For N−Q odd one channel
is fully decoupled from the NS interface, so we cannot include it in rA.
We are free to choose basis states such that the decoupled channel has
the index N (for the left interface) and 2N (for the right interface). Our
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goal is to determine the reduced unitary scattering matrix s̃0 that relates
the incoming and outgoing electrons in the remaining channels. This is
obtained from the relation ψout = s0ψin by algebraic elimination of the
decoupled components ψout

N = ψin
N and ψout

2N = ψin
2N . We thus arrive at

s̃0 = PTs0[1− (1− PPT)s0]
−1P, (6.50)

with the 2N × (2N − 2)-dimensional matrix

Pnm =


δn,m if 1 ≤ n ≤ N − 1
δn,m+1 if N + 1 ≤ n ≤ 2N − 1
0 if n ∈ {N, 2N}

. (6.51)

The combination 1 − PPT projects onto the decoupled channels. The
remaining channels are Andreev reflected with unit probability, as de-
scribed by the 2(N − 1)× 2(N − 1)-dimensional unitary matrix rA. All
formulas carry through, with the replacement of s0 by s̃0.

With appropriately chosen P, this construction extends to cases with
multiple decoupled channels, including situations where their number
differs at the two interfaces.

Transfer matrix formulation

We again choose a particular set of basis states for incoming and out-
going modes at the left and right interface, such that the decoupled
channel has index N and 2N, respectively. An electron in this chan-
nel is reflected as an electron and a hole is reflected as a hole. Therefore
these channels do not appear in the 2(N− 1)× 2(N− 1) electron-to-hole
transfer matrices M̃L and M̃R. These relate

Ψ̃L,h = M̃LΨ̃L,e, Ψ̃R,h = M̃RΨ̃R,e, (6.52)

where Ψ̃ differs from Ψ because it does not include the decoupled chan-
nel.

When we match wave functions at x = 0 we have to take into ac-
count that the basis states need not coincide: the basis that decouples
the channel from the left interface can be different from the basis that
decouples it from the right interface. The matching condition (6.40) thus
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contains a pair of N × N unitary matrices umatch, vmatch to change the
basis of left-moving and right-moving states,

ΨR,e = eiφ/2
(

umatch 0
0 vmatch

)
ΨL,e,

ΨR,h = e−iφ/2
(

u∗match 0
0 v∗match

)
ΨL,h.

(6.53)

The matching matrices umatch, vmatch correspond to a 2N × 2N uni-
tary scattering matrix smatch that has only transmission blocks,

smatch =

(
0 umatch

v†
match 0

)
. (6.54)

We apply the projection (6.50) to smatch to obtain a 2(N − 1)× 2(N − 1)
unitary scattering matrix s̃match that does not contain the decoupled
channels. We then transform back from scattering matrix s̃match to trans-
fer matrix m̃match, which relates

Ψ̃R,e = eiφ/2m̃matchΨL,e, Ψ̃R,h = e−iφ/2m̃∗matchΨL,h. (6.55)

Unitarity of s̃match implies for m̃match the condition

m̃−1
match = Σzm̃†

matchΣz. (6.56)

Combining Eqs. (6.52) and (6.55) we arrive at

eiφ/2M̃Rm̃matchΨ̃L,e = e−iφ/2m̃∗matchM̃LΨ̃L,e, (6.57)

and the corresponding condition for a bound state,

Det
[
eiφ/2M̃Rm̃match − e−iφ/2m̃∗matchM̃L

]
= 0. (6.58)

We rewrite this using Eq. (6.56) as the determinant of an antisymmet-
ric matrix,

Det
[
eiφ/2M̃RΣz − e−iφ/2m̃∗matchM̃LΣzm̃†

match

]
= 0. (6.59)

We then proceed as in Eqs. (6.46)–(6.49), with MR replaced by M̃R and
ML replaced by m̃∗matchM̃LΣzm̃†

matchΣz.
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6.10 Evaluation of the supercurrent along QSHE edge

We apply Eq. (6.33) to the quantum spin-Hall edge. According to Eq.
(6.17), we have

ν(iω) = − 1
π

ln
[
2 cos φ + ζ+(ω) + ζ−(ω)

]
, (6.60)

ζ±(ω) = e±2ω/ET
(√

1 + ω2/∆2 ±ω/∆
)2. (6.61)

The Matsubara sum (6.32), with ν∞ given by Eq. (6.29), takes the form

S =
∞

∑
p=1

(−1)p ln
[

2 cos φ + ζ+(Ωp/2) + ζ−(Ωp/2)

(1 + Ω2
p/∆2)eΩp/ET

]
(6.62)

The function J∞ is given by Eq. (6.30) and

σ
√

Det X(0) = 2 cos(φ/2), (6.63)

in view of Eqs. (6.16) and (6.36).
The superconducting electrodes couple to the quantum spin-Hall

edge via a single transverse mode, over a total length LS. The corre-
sponding density of states is

ρS(ε) =
2

πES

|ε|√
ε2 − ∆2

, |ε| > ∆. (6.64)

We have defined ES = h̄vF/LS. The superconducting electrodes affect
the parity-dependent free energy (6.33) through the factor eJS , with

JS =

ˆ ∞

∆
dε ρS(ε) ln tanh(βε/2)

= − 2β

πES

ˆ ∞

∆
dε

√
ε2 − ∆2

sinh βε
. (6.65)

Collecting results, we arrive at the parity-dependent supercurrent

Iσ = I0 −
2e
h̄β

d
dφ

ln 1
2

[
1 + σ| cos(φ/2)|eS+J∞+JS

]
, (6.66)

σ = sign [cos(φ/2)], (6.67)
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with I0 the 2π-periodic supercurrent in the absence of parity constraints,

I0 =
4e
h̄β

sin φ
∞

∑
p=0

[2 cos φ + ζ+(ωp) + ζ−(ωp)]
−1. (6.68)

In the long-junction regime ∆ � ET, kBT these results reduce to the
equations (6.18)–(6.20) given in the main text.

6.10.1 Short-junction limit

As a check on the consistency of the whole formalism, we take the short-
junction limit ET → ∞ of the parity-dependent supercurrent (6.66) and
see if we recover the results of Fu and Kane [7]. We choose the phase
interval |φ| < π and abbreviate

u ≡ 1
2 cos(φ/2)β∆. (6.69)

The Matsubara sums (6.62) and (6.68) can be evaluated in closed
form in the short-junction limit,

lim
ET→∞

S =
∞

∑
p=1

(−1)p ln
(2 cos φ + 2 + Ω2

p/∆2

1 + Ω2
p/∆2

)
= ln

(
tanh u

2 cos(φ/2) tanh(β∆/4)

)
, (6.70)

lim
ET→∞

I0 =
4e
h̄β

sin φ
∞

∑
p=0

[2 cos φ + 2 + 4ω2
p/∆2]−1

=
e∆
2h̄

sin(φ/2) tanh u. (6.71)

In the same limit J∞ = ln tanh(β∆/4); upon substitution into Eq. (6.66)
we arrive at

I± = I0 −
2e
h̄β

d
dφ

ln
( 1

2 ±
1
2 eJS tanh u

)
= − 2e

h̄β

d
dφ

ln
(
cosh u± eJS sinh u

)
. (6.72)

In the zero-temperature limit JS → 0 and we recover the result of
Ref. 7,

lim
T→0

I± = ∓ 2e
h̄β

du
dφ

= ± e∆
2h̄

sin(φ/2). (6.73)
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The parity dependence at finite temperature can be quantified by the
difference δI = 1

2 (I+ − I−), for which we find the compact expression

δI = − 4e
h̄β

τ

1− τ2
1

sinh 2u
du
dφ

, τ = eJS tanh u, (6.74)

in agreement with Ref. 13.

6.10.2 Zero-temperature limit in the long-junction regime

Another check on the formalism is provided by the combined zero-
temperature and long-junction limits. We again choose the interval
|φ| < π. The Matsubara sums (6.62) and (6.68) are given in the long-
junction limit by

lim
∆→∞

S =
∞

∑
p=1

(−1)p ln
(
1 + 2e−Ωp/ET cos φ + e−2Ωp/ET

)
, (6.75)

lim
∆→∞

I0 =
2e
h̄β

sin φ
∞

∑
p=0

[
cos φ + cosh(2ωp/ET)

]−1. (6.76)

In the zero-temperature limit the sums may be converted into inte-
grals, with the results

S → − ln |2 cos(φ/2)|, I0 →
eET

2πh̄
φ. (6.77)

The two terms J∞ and JS both vanish at T = 0. Substitution into Eq.
(6.66) gives I+ = I0, in agreement with Eq. (6.3), while I− remains unde-
termined. The zero-temperature limit of I− depends on on higher order
terms in the low-temperature expansion of S that we have not been
able to calculate analytically. A numerical calculation (using the Padé
approximant built into the NSum|AlternatingSigns routine of Mathe-
matica) gives

lim
T→0

lim
∆→∞

2
βET

ln
(

1
2 − | cos(φ/2)|eS+J∞

)
= |φ| − π, (6.78)

resulting in a current I− in agreement with Eq. (6.3).
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Figure 6.3. Left panel a: Circuit of a current-biased, resistively shunted Joseph-
son junction, to measure the current-voltage characteristic. Right panel b: Cir-
cuit of an rf squid to measure the current-phase relationship.

6.11 Circuits to measure the critical current

As explained in the main text, the two circuits shown in Fig. 6.2 (inset)
both measure the critical current of the Josephson junction, but their
sensitivity to fermion-parity constraints is fundamentally different. A
measurement of the current-phase relationship (upper circuit) is insen-
sitive to parity constraints when quasiparticles can enter or leave the
system on the time scale of the measurement. This gives the critical cur-
rent I2π,c. A measurement of the current-voltage characteristic (lower
circuit) remains governed by fermion-parity constraints as long as the
quasiparticle tunnelling time τqp is large compared to the phase relax-
ation time τJ of the resistively shunted Josephson junction. This then
gives I4π,c. Here we analyze these two circuits in some more detail.

In the zero-temperature, long-junction limit, we have the 4π-periodic
sawtooth current-phase relationship shown in Fig. 6.1 (lower panel).
This plot is for an even number of electrons in the system, P ≡ (−1)N =
1, while for odd parity P = −1 the sawtooth is displaced horizontally
by 2π. Both cases are contained in the formula

IP (φ) =
I4π,c

2π
mod4π(φ + Pπ + π)− I4π,c. (6.79)

The modulo function is defined by mod4π(φ) = φ − 4πn, with n ∈ Z

such that mod4π(φ) ∈ [0, 4π).
We start by considering the current-biased circuit of Fig. 6.3a. A

voltage V = (h̄/2e)dφ/dt drops over a resistor R in parallel with the
Josephson junction, of capacitance C. The two characteristic time scales
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of the circuit are the RC time and the phase relaxation time

τJ =
h
2e

1
RI4π,c

=
RQ

2R
h̄

ET
, (6.80)

where RQ = h/e2 is the resistance quantum. The characteristic energy
scales of the Josephson junction are the charging energy e2/C and the
Josephson energy h̄I4π,c/e = ET.

The capacitance should be sufficiently small that the phase dynamics
is overdamped, RC � τJ, and sufficiently large that the phase dynamics
is classical, e2/C � ET. We also wish to ensure that the Josephson
junction remains in its ground state during the phase relaxation, which
requires ETτJ/h̄� 1. Together these three conditions are met if

(R/RQ)
2τJ � RC � τJ, (6.81)

with R� RQ.
At a fixed parity P , the bias current I = IP + V/R drives the phase

φ(t) according to

I
I4π,c

=
τJ

2π

dφ

dt
+

1
2π

mod4π(φ + Pπ + π)− 1. (6.82)

A typical value ET/kB ' 1 K gives h̄/ET ' 10−11 s. The typical time
scales for quasiparticle poisoning are in the µs to ms range [35], so even
if R� RQ we can safely assume that τJ � τqp and use Eq. (6.82) to calcu-
late the relaxation of the phase in between two quasiparticle tunnelling
events.

The phase relaxation due to a quasiparticle tunnelling event at t = 0
(by which P 7→ −P) amounts to a 2π phase slip on a time scale τJ,

φ(t) = φ(0)e−t/τJ + [φ(0) + 2π](1− e−t/τJ). (6.83)

Before and after the phase slip the junction is in a zero-voltage state, for
bias currents I . I4π,c. During the phase slip there is a voltage pulse
of integrated area

´
V(t)dt = h/2e. The corresponding time-averaged

voltage V̄ = h/2eτqp is smaller by a factor τJ/τqp � 1 than the voltage
that develops for I & I4π,c.

This shows that the current-biased circuit of Fig. 6.3a provides a dc

measurement of the parity-constrained critical current I4π,c. In contrast,
the circuit of Fig. 6.3b is not sensitive to parity constraints. This rf squid
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is phase-biased for sufficiently small inductance L � h/eI4π,c. Quasi-
particle tunnelling events have only a small effect on the phase, which
remains fixed by the enclosed flux Φ = (h̄/2e)φ ≈ LI.

At low temperatures the parity of the number of electrons N in the
system will equilibrate at the ground-state fermion parity σ, which im-
plies that N is even (P = 1) for mod4π(φ + π) < 2π and odd (P = −1)
for mod4π(φ + π) > 2π. In either case the supercurrent IP given by Eq.
(6.79) cannot become larger than I4π,c/2 = I2π,c — which is the critical
current without parity constraints.
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