
On topological Properties of Superconducting Nanowires
Pikulin, D.

Citation
Pikulin, D. (2013, November 26). On topological Properties of Superconducting Nanowires.
Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/22358
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/22358
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/22358


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/22358 holds various files of this Leiden University 
dissertation. 
 
Author: Pikulin, Dmitry Igorevich 
Title: On topological properties of superconducting nanowires 
Issue Date: 2013-11-26 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22358
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 3

Two types of topological
transitions in finite Majorana
wires

3.1 Introduction

Majorana bound states have been predicted to exist in various con-
densed matter setups: 5/2 FQHE state [1], in vortices found in p + ip
superconductors [2] and in specific models of 1d superconductors[3].
The importance of the Majorana states for quantum computation [4] has
brought them to the focus of the condensed matter research [5]. Next
step were the suggestions to realize the Majorana states in more experi-
mentally feasible setups, those include topological insulators [6, 7] and
semiconductor nanostructures with big spin-orbit interaction brought in
proximity to s-wave superconductors. Two- [8, 9] and one-dimensional
[10, 11] nanostructures have been considered.

The observation of Majorana bound states in 1d nanowires has been
reported by several groups by measuring zero-bias conductance peak
[12–14] and 4π Josephson effect [15]. The signature of Majorana’s is their
emergence upon a topological transition [16] separating the regions of
parameter space with and without zero-energy excitations. In all cases
the experiments have been performed with finite and rather short wires.
This brings about the question: how a topological transition taking place
in infinite system is manifested in properties of a finite wire.

Strictly speaking, this common topological transition is absent in a



38 Chapter 3. Two types of topological transitions. . .

finite system where excitation energies continuously depend on the con-
trol parameter of the transition and are never precisely zero [17, 3, 10].
This may be shown in several ways. In [17] we gave the most general
formulation in terms of the topology of the energy-dependent scatter-
ing matrix characterising a finite nanostructure. Same study revealed
a topological transition of other kind that takes place in finite systems
and manifests itself in the properties of the poles of the scattering ma-
trix. The topological number in this case is the number of poles at purely
imaginary energy, and the topological transition is the change of this in-
teger even number upon the continuous variation of the control parame-
ter. This is in contrast to a common expectation from a phase transition:
if it becomes a crossover, no sudden changes of any quantity would
occur.

In the present work we link these two topological transitions of dif-
ferent types: bulk one and finite system one. We show in this Article
that in general case the common topological transition is accompanied
by the pole topological transition (the opposite is not true, there can be
a pole topological transition in topologically trivial situation [18]). The
points of the transitions differ at the scale inversely proportional to the
wire length. We implement the generic model of the Majorana wire that
is always valid in the vicinity of the transition point and obtain the uni-
versal dependence of the pole positions on the control parameter and
a single parameter characterizing the coupling of the wire to a normal
metal lead. We discuss how the same correspondence occurs for more
specific models and how the universal picture is manifested in a trans-
port measurement.

3.2 Generic 2× 2 model

The “standard” model describing a Majorana wire encompasses a single-
band spectrum that includes spin-orbit interaction, proximity effect from
the bulk superconductor and spin magnetic field [10, 11]. Let us derive
a phenomenological effective model valid near the common topological
transition point. We can start with a multi-mode wire where the spec-
trum at each k is described by a general Hamiltonian matrix Ĥ(k) in the
space of the modes and Nambu index. The general symmetry of BdG
equations [19] requires Ĥ(k) = −ĤT(−k) in a certain (Majorana) ba-
sis. In the usual basis the BdG symmetry reads Ĥ(k) = −τx ĤT(−k)τx,
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where τx is the Pauli matrix in the Nambu space, which connects parti-
cles with holes. Then by rotation of the Hamiltonian Ĥ′(k) = U†Ĥ(k)U,
where U = 1√

2
(1 + iτx) we bring it to the Majorana basis. The com-

mon topological transition takes place when an eigenvalue of Ĥ(k = 0)
passes 0 indicating a closing of the superconducting proximity gap in
the wire.

Owing to BdG symmetry, the zero eigenvalue is doubly degenerate.
Thus we concentrate on two modes corresponding the eigenvalue, and
mutually related by the complex conjugation: in this basis, the BdG sym-
metry is expressed in the above form. Near the transition point the gen-
eral form for this Hamiltonian in Majorana basis reads H(k = 0) = aσy,
where σ’s here and below are usual Pauli matrices. The phenomenologi-
cal parameter a controls the proximity to the transition and is a function
of physical control parameters like magnetic field or chemical potential,
a = 0 in the transition point. Expanding near k = 0 and taking into
account the BdG symmetry, we find two possible terms ∝ kσx and ∝ kσz.
The combination of the two can be brought to ∝ kσz by a rotation of the
pseudospin about y axis. This brings us to the generic Hamiltonian we
will use in further consideration:

H = vkσz + aσy. (3.1)

It has been first introduced in [20].
Let us turn to a finite wire, setup on Fig. 3.1a. The boundary condi-

tions at the wire ends must be consistent with the current conservation.
The operator of current reads Î = ∂H

∂k = vσz so the conservation implies
that the wavefunction Ψ = {ψ1, ψ2}T has to satisfy:

|ψ1|2 = |ψ2|2, (3.2)

At zero energy the wavefunction is real [21], and we are left with binary
choice ψ1 = ±ψ2. We fix the signs to + at the right end of a system
and − at the left one. In this case, in the limit of infinite wire length
the Majorana states are formed at a < 0 while the phase at a > 0 is
topologically trivial (Fig. 3.1b).

Let us now contact the left end of the wire with a normal metal lead
and describe the situation in therms of the scattering matrix from/to
normal lead modes. Scattering matrices are very useful objects to study
the properties of the superconducting junctions [22]. They incorporate
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relevant details of the setup in few parameters and allow to compute
different properties of the junction, like conductivity. They also allow for
the topological classification of the junction in a concise way [17]. The
BdG symmetry equation in the Majorana basis implies for any scattering
matrix that S∗(−E) = S(E).

3.3 Scattering matrix

There are two interesting modes in the wire propagating in opposite
directions. The scattering matrix of the contact Sc is in the basis of the
incoming waves in the lead and the single mode of the wire and is thus
of size M + 1× M + 1, M is the number of modes in the normal lead.
We separate it into blocks as:

Sc =

(
ř11 ř21
ř12 r

)
. (3.3)

Here ř11 is M × M matrix of the (Andreev) reflection to the leads that
also incorporates the scattering in all other wire modes, ř21, 12 are scat-
tering amplitudes from/to the wire and r is a number, which gives the
reflection amplitude in the wire (r = 1 corresponding to the wire isola-
tion) [23]. By virtue of BdG condition Sc is real at zero energy. Since the
interesting energy dependence comes from the wire, we can neglect the
energy dependence of Sc.

To get the full M×M scattering matrix in the space of normal lead
modes, we need to combine the Sc with the scattering amplitude Sw that
describes the propagation along the wire, reflection from the right and
the propagation back to the left end. This amplitude is easy to find from
the Hamiltonian (1) and reads

Sw = eiχ =

(
coth(

√
a2 − ε2L/v) + a+iε√

a2−ε2

)
(

coth(
√

a2 − ε2L/v) + a−iε√
a2−ε2

) . (3.4)

L being the wire length. The whole peculiarity of the limit of the infinite
wire may be seen from this formula. If we formally set L → ∞ and
then set energy to zero, we obtain Sw(ε = 0) = sign(a), which is thus
topologically trivial (nontrivial) for a < 0 (a > 0). However, at any finite
L Sw(ε = 0) = 1 and is thus topologically trivial.



3.3 Scattering matrix 41

Figure 3.1. (a) The setup: the Majorana wire of the length L at the top of
a superconductor is connected to a normal-metal lead. The total scattering
matrix at low energy incorporates that of the contact (Sc) and energy-dependent
scattering matrix describing propagation in the wire, Sw. Orange ellipse shows
the position of the ”buried“ Majorana (b) Sketch of the (continuous) spectrum
in the limit of infinite L: a Majorana level emerges upon the common topological
transition. (c) The common topological transition becomes a crossover for finite
L. The quantized energy levels (real parts of the pole energy positions) are
sketched versus the control parameter a. The lowest level reaches 0 at the point
of the pole topological transition. Dashed lines give the imaginary parts of the
pole positions for the lowest level.



42 Chapter 3. Two types of topological transitions. . .

The full scattering matrix thus reads

S = ř11 + ř21eiχ
1− reiχ ř12. (3.5)

3.4 Poles of the matrix and the topological transi-
tions

We concentrate on poles of the matrix (3.5). Those are solutions of√
a2 − ε2 coth(

√
a2 − ε2L/v) + a− iε

1− r
1 + r

= 0. (3.6)

At finite length L the common topological transition becomes a crossover
taking place in an interval of a of the order of effective level spacing in
the wire v/L and at the corresponding energy scale. We call this inter-
val crossover region and aim to describe this universal crossover. To this
end we rescale a, ε to dimensionless units ã = a v

L , ε̃ = ε v
L . The equation

becomes √
ã2 − ε̃2 coth(

√
ã2 − ε̃2) + ã− iε̃

1− r
1 + r

= 0. (3.7)

Numerical solutions for pole positions are shown in Fig. 3.2a,b for two
values of r as functions of the control parameter ã. We see a sharp
feature in the crossover region: the pole topological transition. At this
point, the real part of the energy of the lowest pole becomes strictly zero.
This occurs at finite negative values of ã. The higher the transmission
through the Sc, the closer to 0 is the transition point. This dependence is
presented in Fig.3.2c. In the limit of low transmissions, the pole transi-
tion takes place at |ã| ' ln(1− r) where the exponentially small splitting
of Majorana states matches small decay rate of the left-end state to the
normal metal. The real parts of energies of all other poles follow the
hyperbola-like curves indicating formation of discrete energy levels in
the wire above the gap edge |ã|. The same transition is seen in imaginary
parts of energy positions as a splitting of the curve corresponding to the
lowest pole. The upper (lower) parts of the split curve give the decay
rates of the left(right) end Majorana state. The decay rate for the Majo-
rana “buried” at the right end falls off exponentially with increasing |ã|:
ε̃ ≈ 2iã exp(−2|ã|) 1+r

1−r .
Let us reveal the peculiarity of the pole positions in the vicinity of

the transition point. For this, we expand (3.7) near the transition point
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ã = a0, ε̃ = iε0 to obtain the relation between the deviations δε,δa from
the point in the lowest non-vanishing order:

δa = Cδε2; C ' 1. (3.8)

Here µ = 1−r
1+r . This gives square root splitting of either real parts of

the energy positions δε = ±
√

δa/C at δa > 0 or imaginary ones, δε =
±i
√
|δa|/C at δa < 0. This square root dependence of δε on δa is in full

agreement with Fig. 3.2a,b.

3.5 Conductance signatures of the transition

The experimentally observable quantity is the differential conductance
of the contact, G(ε = eV), V being the voltage drop at the contact. It
is known that each pole in the scattering matrix produces a Lorentian-
shaped peak or deep in the conductance curve [17]. In terms of the
scattering matrix, the conductance reads G = e2

2πh̄ Tr(1− τySτyS†). Sub-
stituting S in the form of (3.5), we obtain a universal energy dependence
of the conductance in the crossover region,

G(ε) = G0 + G1 f (a, ε); (3.9)

f (a, ε) =
(1− r2)2

1 + r2 + 2r cos χ(a, ε)
. (3.10)

The dependence is governed by the universal function f (a, ε) (0 < f <
4) while the non-universal coefficients G0, G1 depend on the details of
the Sc,

G0 =
e2

2πh̄
Tr
(

1− (ř11 − r−1ř21ř12)τyřT
11τy

)
,

G1 =
e2

2πh̄
Tr
(
τyř21ř12τy(řT

12řT
12 + (r− r−1)řT

11)
)

(1− r2)2 . (3.11)

The coefficient G1 ' e2/h̄ and can be of any sign while G0 can be much
bigger than e2/h̄. The function f (Fig. 3.3) at any r gives a sequence
of peaks associated with the poles of the scattering matrix. The peaks
are narrow in the isolation limit r → 1. Before the transition, the peaks
are far from zero energy. Upon the crossover, the peaks come close to
zero and almost merge near the transition point. However, they never
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merge to a single peak: the Majorana state at far end of the wire is man-
ifested in the conductance as a dip that becomes increasingly narrow
upon increasing −ã.

Since the poles always have a finite imaginary part, and the con-
ductance is defined at real energy, there is no singularity in f (ε) at the
point of the pole topological transition. However, this singularity can
be readily identified from the experimental data by numerical analytical
continuation to complex energy plane. This amounts to fitting the con-
ductance trace by a superposition of Lorentian peaks. The positions of
the fitted Lorentians will give the real parts of the pole positions while
their widths give the imaginary parts.

3.6 Discussion

Another setup proposed [20] to reveal the signatures of Majorana fermions
encompasses normal leads at both ends of a finite nanowire. Also in this
case the common topological transition is accompanied by a pole tran-
sition and proceeds in a similar way. The qualitative difference is that
far below the transition both Majorana states retain a finite width and
each of the two associated poles is manifested only in the scattering from
the corresponding end of the wire. In the model under consideration,
the Majorana splitting retains the same sign. More detailed models, e.g.
[10], predict spectacular oscillations of the splitting [24]. We stress that
in the limit of the long wires LkF � 1 such oscillations can only start
far from the common topological transition, that is, at the values of the
control parameter that are parametrically bigger than v/L.

3.7 Conclusion

To conclude, we have formulated and studied a universal model that
describes the crossover in the vicinity of the common topological tran-
sition for finite clean Majorana wires. Importantly, we have shown that
the sharp pole topological transition takes place in the crossover inter-
val of the control parameter and computed the dependence of the pole
positions on the control parameter in this interval. We have also found a
universal shape of differential conductance for this model, this enables
its straightforward experimental verification.



3.7 Conclusion 45

We stress the universal character of our conclusions, in particular, the
predictions for the conductance: those should hold in any sufficiently
long wire with small disorder in the vicinity of the topological transition.
Some features of our results have been seen in Ref. [12]: the authors
have observed a narrow zero-bias peak on the background of a wider
dip as seen in Fig. 3.3d (assuming G1 is negative). From the other
hand, no regular patten of peaks moving to zero upon changing the
control parameter has been observed so far. More experimental data, in
particular, for longer wires are required to clarify the discrepancy that
can be due to sufficiently strong disorder or finite temperature effects.
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Figure 3.2. The real (a) and and imaginary (b) parts of the pole energy positions
versus the control parameter ã at two values of the reflection amplitude r: r =
0.86 (green dots, almost isolated)and r = 0.34 (red crosses, almost transparent).
The part of (a) within the rectangular is replotted in (c). The pole topological
transition occurs at a0 = −1.2 for r = 0.86 and a0 = −3.3 for r = 0.34. (d) The
dependence of the transition point a0 on r.
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Figure 3.3. The universal bias-dependent contribution to differential Andreev
conductance of the contact versus energy/voltage. Solid, dashed, dotted curves
correspond to r = 0.9, 0.5, 0.1 respectively (ã0 ≈ −0.5,−1.7,−3.5). (a) ã = 2,
long before the transition. (b) ã = 0, the bulk topological transition, no sharp
features in the conductance curves. (c) ã = −2 in the crossover interval. (d)
ã = −4 long after the transition. The Majorana at the far end of the wire is
manifested as a narrow dip at zero bias.



48 Chapter 3. Two types of topological transitions. . .



Bibliography

[1] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).

[2] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).

[3] A. Y. Kitaev, Phys.-Usp. 44, 131 (2001).

[4] A. Y. Kitaev, Ann. Phys. 303, 2 (2003).

[5] See C. W. J. Beenakker, Annu. Rev. Con. Mat. Phys. 4, 113 (2013)
for a review.

[6] Liang Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).

[7] A. R. Akhmerov, Johan Nilsson, and C. W. J. Beenakker, Phys. Rev.
Lett. 102, 216404 (2009).

[8] M.Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett. 103, 020401
(2009).

[9] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev.
Lett. 104, 040502 (2010).

[10] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105,
077001 (2010).

[11] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002
(2010).

[12] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers,
and L. P. Kouwenhoven, Science 336, 1003 (2012).

[13] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H.
Q. Xu, Nano Lett. 12, 6414 (2012).



50 BIBLIOGRAPHY

[14] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman,
Nature Physics 8, 887 (2012).

[15] L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nature Physics 8, 795
(2012).

[16] G. E. Volovik, The Universe in a Helium Droplet, Oxford University
Press (2003).

[17] D. I. Pikulin and Yu. V. Nazarov, JETP Letters, 94, 9, 693-697 (2011).

[18] D. I. Pikulin, J. P. Dahlhaus, M. Wimmer, H. Schomerus, and C. W.
J. Beenakker, New J. Phys. 14, 125011 (2012).

[19] P.-G. de Gennes, Superconductivity of Metals and Alloys, Addison-
Wesley, Reading, MA (1986).

[20] A. R. Akhmerov, J. P. Dahlhaus, F. Hassler, M. Wimmer, and C. W.
J. Beenakker, Phys. Rev. Lett. 106, 057001 (2011).

[21] The wavefunction may be chosen real by choosing it real in arbi-
trary point of the setup and then using the fact that S-matrix is
real in Majorana basis at zero energy.

[22] A. L. Shelankov, Zh. Eksp. Teor. Fiz., Pis’ma, 32, 2, 122-125 (1980);
G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25,
4515 (1982).

[23] We should also require 0 ≤ r < 1, since r passing 0 would have
indicated another topological transition, in this case somewhere
outside the wire [20] and not related to it.

[24] J. Klinovaja and D. Loss, Phys. Rev. B 86, 085408 (2012).


