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Chapter 1

Introduction

1.1 Preface

There are many concepts in quantum mechanics that are counter-intuitive
from the everyday life perspective. They range from the Heisenberg un-
certainty principle to the concept of entangled states. Recently the col-
lection has been enriched by the topological states of matter. They have
intrinsic “skin effect”, so that all the particle current flows on their sur-
face, while the bulk of the material is insulating. This property does not
depend on the exact details of a sample, disorder, etc. This is the reason
the states are called topological. The first example of such states is the
2d Quantum Hall effect [1]. Later ones are Quantum Spin Hall [2–4]
effect, 3d Topological Insulators [5–7] and Topological Superconductors
[8, 9]. The results of the first experiments observing Quantum Hall and
Spin Hall effects are in fig. 1.1. All the effects can be described in the
framework of non-interacting quasiparticles above the Fermi sea. Based
on this observation, the general classification of such topological states
is constructed [10].

The most vivid example of the counter-intuitive structure of such
materials is the Majorana fermion, which emerges on the boundary of
a topological superconductor [11, 12] or in half-integer vortices in the
topological superconductors [13, 14]. Majorana fermion is neither an
electron nor a hole (absence of electron), it is half-electron half-hole at
the same time. No classical analogy helps to understand this quasipar-
ticle, as a half-empty glass is not an empty and a filled glass simulta-
neously. It is not a state that is empty in half of the cases and filled in
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Figure 1.1. First measurements of the two topological systems in 2 dimensions.
(a) Quantum Hall effect [1] conductance measurement as a function of gate
voltage. The gate tunes through the plateaus for the Hall voltage (UH) and
dips in the voltage along the device (UPP). (b) Quantum Spin Hall effect [4]
conductance measurement as a function of gate voltage, tuning through the
bandstructure of the material and showing quantized conductance in the bulk
gap. Reprinted with permission from AAAS.

the other half. Rather it can be understood literally as a state, which is
half of an electron and half of a hole at the same time. Only by bring-
ing it together with another Majorana, it can really be measured if the
combination of them is a full electron or a full hole. This property pro-
tects the state from any kind of local potential perturbation and makes
devices based on it good candidates for a quantum memory [15] and
quantum computations [16–18]. The name “Majorana fermion” comes
from high-energy physics, where it refers to a freely moving elementary
particle. In the superconducting context the Majorana is bound at zero
energy to some defect (vortex or boundary), and is more precisely called
“Majorana bound state” or “Majorana zero-mode”. The combined object
(Majorana plus defect) is actually not a fermion but a more exotic object
called a “non-Abelian anyon” [19].

Majorana fermions are predicted to emerge on the boundary of both
1d and 2d topological superconductors [9, 10, 20–22]. They can be either
propagating or localized excitations. As the title of the present thesis
suggests, we deal with the 1d examples, which are bound states, in the
setups of realistic quantum wires. The Majorana bound states are pre-
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Figure 1.2. The first measurement of conductance for a spin-orbit coupled
nanowire (setup on the left), showing zero-bias conductance peak, taken from
[23]. The setup is very similar to the one we study in the chapter 4. Reprinted
with permission from AAAS.

dicted to emerge in spin-orbit coupled nanowires under external mag-
netic field and in contact with the usual s-wave superconductors [21, 22].
Recently the predictions have found supporting experimental evidence
[23–26]. Measurement from [23] is shown in fig. 1.2.

We start by examining the topological transition in finite wires and
show that though it becomes a crossover there is a transition of dif-
ferent kind, which stays sharp. Then using model-independent tech-
niques we study the wires in the vicinity of the two transitions, where
their properties become universal. We study the effect of disorder in the
nanowires also in a model-independent way. Then we discuss Josephson
junctions with Majorana bound states of different lengths and in differ-
ent setups: voltage biased short junction and phase biased long junction.
We finish with a detour into the theory of Nernst effect in materials with
anisotropic scattering and Fermi-surfaces.

1.2 Majorana bound state

Let us introduce the notion of the Andreev bound state. It is a state,
which is localized in the vicinity of the superconductor and the wave-
function of which has both electron and hole component. Majorana
bound state is a particular type of the Andreev bound state, when the
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electron and hole component have equal weights:

γ1 = ψ + ψ†, (1.1)

γ2 = i(ψ− ψ†), (1.2)

where ψ is the electron annihilation operator and γ is the Majorana
operator:

γ = γ†. (1.3)

Particle-hole symmetry in the superconductors connects the creation
and annihilation operators at energies ±E counted from the middle of
the superconducting gap and requires:

γ(E) = γ†(−E), (1.4)

therefore Majorana bound state can only appear at zero energy, in the
middle of the gap.

1.2.1 Systems for observing Majorana bound state

In this thesis we will study two systems, where the Majorana bound
state may emerge: the edge of the Quantum Spin Hall insulator and
the spin-orbit nanowire in an external magnetic field, both coupled by
proximity effect to the usual s-wave superconductor.

For the purposes of the present thesis it is important to know that
the Quantum Spin Hall insulator can be thought of as two copies of the
Quantum Hall systems with opposite magnetic fields, so that they are
time-reversal partners of each other. This means that the Quantum Spin
Hall system also has insulating bulk, but two copies of the Quantum
Hall chiral edges. They are going in the opposite directions and are
forming a Kramers pair. The latter forbids the scattering from one state
to counter-propagating if the time-reversal symmetry is preserved. The
dispersion of one edge of the Quantum Spin Hall insulator is shown in
fig. 1.3.

Superconductor in proximity with the Quantum Spin Hall edge opens
the gap in the edge dispersion, but the argument above still holds and
it is forbidden to scatter from the right-moving to the left-moving state
of an electron. Nevertheless, the superconductor opens up another pos-
sibility for backscattering: Andreev reflection [27]. It is the process of
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Figure 1.3. Schematic depiction of the dispersion relation of the edge states
of the Quantum Spin Hall insulator (left) and the lowest band of the single-
channel spin-orbit nanowire (right), the two materials being used for the detec-
tion of the Majorana fermions. The Fermi level is shown with the horizontal
red line

an incident electron reflecting back as a hole and transferring a Cooper
pair into the superconductor. As described above, the normal reflec-
tion is forbidden in the Quantum Spin Hall system and there is an ideal
Andreev reflection. It turns out that if one breaks time-reversal symme-
try, the ideal Andreev reflection is lost except at zero bias. The zero-
bias peak in Andreev conductance is one of the signatures of Majorana
bound state [28, 29]. It is clear that the Andreev bound state near the
normal metal-superconductor boundary in such a system will have the
Majorana nature, as the Andreev reflection is perfect, the wavefunction
of the state is forced to be equally electron- and hole-like. Schematically
the arrangement is shown in fig. 1.4.

What is the similarity between the Quantum Spin Hall edge and the
spin-orbit nanowire, the other setup we discuss in the thesis? It turns out
that the crucial factor for the Majoranas to emerge is the non-degenerate
conducting channel, which is obviously the case for the Quantum Spin
Hall system. For the nanowire one needs quite strong spin-orbit cou-
pling in combination with the external magnetic field to completely lift
the degeneracy [21, 22]. Sketch of the dispersion relation is shown in fig.
1.3. In the nanowires one also expects to observe the Majorana-related
zero-bias peak, first measurements have been reported [23–25].

The analysis of the conductance properties of the non-interacting
normal-superconductor junctions is very convenient to perform with the
scattering matrix formalism. Scattering matrices are powerful tools for
describing the non-interacting systems [30]. Once we know the scat-
tering matrix of the system, we can understand the conductance of it
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Figure 1.4. Majorana bound state formation on the edge of the Quantum Spin
Hall insulator in between the region of backscattering, where time-reversal
symmetry is broken, and the superconductor, which provides the Andreev re-
flection

both in usual and superconducting cases [31] and we apply them for the
latter in the present thesis. The conductance from normal lead to the
superconductor via the Andreev process is calculated as:

G =
2e2

h
Tr rAr†

A, (1.5)

where rA is the subblock of the scattering matrix, corresponding to the
Andreev reflection. Majorana resonant Andreev reflection manifests it-
self in the eigenvalue 1 of the reflection matrix at zero energy. In this
thesis we will analyse the general topological properties of the scattering
matrix and will use the random scattering matrix to model disordered
normal-superconductor junction.

1.2.2 4π Josephson effect

Josephson effect is the phenomenon of current going between the two
superconductors connected by a piece of normal metal [32]. The current
may flow without resistivity if it is not too large, or if one applies voltage
to the junction between the superconductors, the current is modulated
with Josephson frequency [33].

Majorana bound states when present in the Josephson junction, i.e.
when the weak link in the junction is the spin-orbit wire or the Quantum
Spin Hall edge, has a peculiar quasi-equilibrium property: the depen-
dence of the energy of the ground state of the junction is 4π periodic in
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the superconducting phase difference between the sides of the junction
[15]. By quasi-equilibrium we mean that the measurement is done faster
than the parity relaxation time, or inverse tunnelling rate through one
of the superconducting contacts. This is true in the current- or phase-
biased case, which are discussed in the chapter 6. In the voltage-biased
case, however small the tunnelling is, it affects the periodicity of the
modulated current, which is discussed in the chapter 5.

The current through the Josephson junction can be calculated us-
ing the scattering matrix approach in two ways: one can derive from
the scattering matrix the phenomenological Hamiltonian of the junction
and study its dynamics (see chapter 5), or use the scattering matrix di-
rectly to obtain the density of states in the junction and therefore the
free energy (see chapter 6). In either case it is used that the charge and
superconducting phase difference are the conjugate variables and the
current I can be expressed as:

I =
2e
h̄

∂F
∂φ

, (1.6)

where F is the free energy of the junction and φ is the superconducting
phase difference between the two leads.

1.3 Symmetries

We will turn to the general classification of the topological states to un-
derstand what is the position of the topological superconductors in the
classification.

The basis of the theory of a topological insulator or a superconductor
is the symmetry it obeys [10]. There is a range of unitary symmetries,
which a Hamiltonian can have. These include crystallographic symme-
tries, inversion symmetry, etc. They may also influence the classification
of the Topological insulators [34], but the most important symmetries
are the anti-unitary ones, time-reversal and particle-hole, and their com-
bination, chiral symmetry. Their operators read:

T = UTK, (1.7)
P = UPK, (1.8)
C = UTU∗P, (1.9)
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Figure 1.5. Symmetry classes of non-interacting fermions as defined by their
symmetries. Numbers indicate the value of the square of the corresponding
symmetry, × means the symmetry is absent. Gray areas represent symmetry
classes with chiral symmetry.

where UT and UP are basis-dependent unitary hermitian matrices.
Though the particle-hole and the time-reversal symmetries look the

same in the previous equation, they are separated by their action on the
Hamiltonian:

T HT −1 = H, (1.10)

PHP−1 = −H, (1.11)

CHC−1 = −H. (1.12)

If the symmetry is present for a system, further classification is based
on the value of the T 2 (UTU∗T) and P2 (UPU∗P), both can be ±1. The sim-
ple way to see the difference between the two cases is to notice that not
any Hamiltonian may be brought to the basis, where the time-reversal
or particle-hole is purely complex conjugation just by rotating it with√

UT or
√

UP correspondingly, only the ones that square to +1.
By this classification all the non-interacting fermion systems may be

divided into 10 classes, see fig. 1.5. We will later on refer to them by the
names in the table (D, BDI, CII, etc.).

These symmetries are usually based on the physical time-reversal
symmetry (P2 = −1) and on the particle-hole symmetry, which orig-
inates from the structure of the mean-field equation for superconduc-
tors, Bogoliubov-de Gennes equation. For the latter P2 = 1 always.
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Nevertheless a unitary symmetry may change the symmetry class of the
Hamiltonian as well as the absence of some terms in the Hamiltonian
due to different requirements. Let us give two examples of the change
of the symmetry class of the Hamiltonian.

i. If the Hamiltonian has some unitary symmetry as an addition to
the anti-unitary described above. For example:

σyHσy = H, (1.13)

then along with time-reversal symmetry T it has

T ′ = −UTσyK, (1.14)

T 2 = −T ′2. (1.15)

This does not mean that the system has two time-reversal symmetries,
but it means that one needs to write the Hamiltonian in the basis, where
the unitary symmetry is diagonal and then study the symmetry class of
each block. As the blocks are completely decoupled only the symmetry
class of a single block plays a role for the physical properties of the
system. Let us study an example:

T = σyK, (1.16)
T ′ = K. (1.17)

Then when we diagonalize the Hamiltonian, the first symmetry becomes
inter-block symmetry and the second stays in-block, and squares to +1,
which means that by the unitary symmetry we have moved the system
from one symmetry class to another.

ii. When some terms are absent from the Hamiltonian due to the
configuration of the system, artificial additional symmetry may be pro-
duced. BDI superconducting nanowire [36], discussed also in the chap-
ter 4, is an example of such a case. The usual 2d class D Hamiltonian of
a spin-orbit coupled material with external magnetic field in y direction
reads [21]:

H =

(
p2

2m
− µ

)
τz + vso(pxσyτz − pyσx) + EZσxτz + ∆σyτy, (1.18)

where vso is the scale, associated with the spin-orbit energy, and EZ
is the Zeeman energy due to magnetic field. The only symmetry of



10 Chapter 1. Introduction

the Hamiltonian is P = τxK, it belongs to class D. Notice, that if the
transverse direction of a nanowire made from such a material is small
compared to the spin-orbit length, then:

H′ =
(

p2

2m
− µ

)
τz + vso pxσyτz + EZσxτz + ∆σyτy, (1.19)

which has an additional symmetry T = K and brings the system into
BDI symmetry class.

1.4 Effective theories of topological phase transitions

We now proceed to the description of the generic topological phase tran-
sition. Once the system is in symmetry class AIII, D, DIII, BDI or CII
in 1 dimension, it can be made topological. Which means, under some
parameters it will have end states. The transition to such state is al-
ways accompanied with the bulk gap closing. Actually, the mechanism
of forming edge states is the same: the transition is in real space, with
edge being the region of the closed gap on the boundary.

Near the transition the system can always be described by the linear
dispersion with a small gap opening on either sides of it. Exactly at the
transition the Hamiltonian reads:

pσ⊗ τ, (1.20)

where the subscript and the structure of the σ and τ matrices is chosen
based on the symmetry class.

For the purposes of this thesis we will concentrate on the 1d case
and derive the effective theories near the topological transition for all
the classes. The symmetries in the topological classes are [10]: AIII –
C; BDI – P2 = 1, T 2 = 1; DIII – P2 = 1, T 2 = −1; D – P2 = 1; and
CII – P2 = −1, T 2 = −1. Let us describe the minimal models, tuning
through the topological transition for all the classes above.

The most simple one is for the class D (also discussed later on in the
chapter 3) and may be written in the basis of the states, for which the
topological gap closes, as:

HD = v0 pσ0 + vz pσz + aσy. (1.21)

Here vz ± v0 are the velocities of right (left) movers and a is the pa-
rameter, tuning through the topological transition, a = 0 is the point of
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the transition. The only symmetry the Hamiltonian has is the particle-
hole symmetry P = K. There always is a Majorana bound state on the
boundary between a > 0 and a < 0 regions.

By analogy, in the symmetry class AIII:

HAIII = µσz + vz pσz + aσy, (1.22)

and the only symmetry here is the chiral one C = σx, as all the anti-
unitary symmetries act differently on µσz and pσz. Again a tunes through
the transition. The most well-known example of a system from the sym-
metry class is polyacetylene, which is described exactly by the model
above. There the excitations on the boundary of the two phases are
fermions with the charge which is half of an electron charge. Note that
the AIII case and the D one have very similar phenomenology, since they
coincide for vz = µ = 0.

Now, BDI is the version of class D with time-reversal symmetry,
which squares to +1. Minimal model for that is:

HBDI = vz pσz + aσy, (1.23)

where the symmetries read: P = K, T = σxK. The BDI class has Z

topological number, but the model above describe the system only near
one of the possible series of topological transitions. The excitations of the
phase boundaries are multiple Majorana bound states, decoupled due to
the time-reversal symmetry. The way to obtain this class in the nanowire
setup was described above and we will return to it in the section 4.

We proceed with DIII case, where the minimal Hamiltonian must be
written in a 4× 4 matrix form, as at the transition point there are 4 states
with nearly zero energy (particle-hole partners along with Kramers ones).
Then:

HDIII = v0z pτz + aτzσy + bτy + cτyσz, (1.24)

and T = τxσyK and P = K. The minimal number of terms in the
minimal Hamiltonian is 4 for 4× 4 one with both T and P symmetries.
This can be understood as following: we need that there is no possible
unitary symmetry on top of the two. That means that any combination
of Pauli matrices should not commute with the Hamiltonian. For that
you need at least 2× 2 = 4 matrices, as one needs two in both Pauli
matrix spaces. It is easy to see that if we put b = c = 0, the phase
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boundary is at a = 0. Indeed, then there are two decoupled blocks of
class D, where the transition is at a = 0. Once we couple them with b
and c, we cannot remove the degeneracy between the Majorana modes,
as they are Kramers pair of each other.

The last remaining class is CII, where:

HCII = vyz pσyτz + aτy + bσxτx + cτz, (1.25)

and the symmetries are P = τyK, T = τzσyK, again for b = c = 0 phase
boundary is a = 0, as then the model is two decoupled AIII systems at
that point. These subsystems are eigenfunctions of σy with eigenvalues
±1, and the chiral symmetry C = τxσy acts within a block.

1.5 Scattering matrix description

The Hamiltonians above can easily be transformed into scattering ma-
trices of finite systems, described by these Hamiltonians. For any 1d
system we can write a transfer matrix, connecting the right and the left
ends of it. As all the Hamiltonians above are of the form H = Ap + B,
where A and B are some matrices, the transfer matrix at energy ε is:

A
∂ψ

∂x
= (iB− iε)ψ, (1.26)

ψ(x) = exp
[

A−1(iB− iε)x
]

ψ(0). (1.27)

Transfer matrix M of a system of length L then reads:

M = exp
[

A−1(iB− iε)L
]

. (1.28)

This matrix can be transformed into scattering matrix either from one
side of a closed system (for that one finds the boundary conditions on
the far end of the system, see chapter 3 for an example), or constructs
a scattering matrix of a system, open from both sides by choosing the
propagation basis on both sides. For the first approach we write the
boundary condition on the far end of the wire of a general kind:

(1−Q)ψright = 0, (1.29)

where Q is the hermitian unitary matrix, which has only eigenvalues
+1 and −1, but it also must have equal number of them, +1 for the
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wavefunctions (eigenfunctions of the matrix), growing in the direction
outside the wire, and −1 for all other. Then we write the transfer matrix
in the basis of in- and outgoing waves:

M
(

ψin
ψout

)
= ψright, (1.30)

(1−Q)M
(

0
ψout

)
= (1−Q)M

(
ψin
0

)
(1.31)

The symmetries of the scattering matrix can be deduced from the
procedure above, but a more simple way is to look at an infinitely nar-
row piece of the material in question. Then the scattering matrix coin-
cides with the time evolution matrix over the time the particle takes to
scatter. There are now time shifts in such a setup. Then:

S(ε) = ei∆t(H−ε), (1.32)

and the symmetries of H are directly transformed into the ones of the S.
For example:

KHK = −H, (1.33)

KS(ε)K = ei∆t(H+ε) = S(−ε). (1.34)

This symmetries transform into the analytical properties of the S. For
example for the matrix above:

KS(ε + iΓ)K = S(−ε + iΓ). (1.35)

This will be used in the chapter 2, where we will study the analytical
properties of the scattering matrices in more details.

1.6 This thesis

1.6.1 Chapter 2

Motivated by the recent developments in the field of one-dimensional
topological superconductors, in this chapter we investigate the topo-
logical properties of the scattering matrix of generic superconducting
junctions where dimension should not play any role. We argue that for
any finite junction the scattering matrix is always topologically trivial.
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The apparent contradiction with the previous results is resolved by tak-
ing into account the low-energy resonant poles of the scattering matrix.
Thus, no common topological transition occurs in a finite junction. This
is what one expects from the general theory of phase transitions, which
predicts that they become crossovers in finite systems. A transition of a
different kind is revealed. It concerns the configuration of the resonant
poles of the scattering matrix of the system. We also introduce a sample
setup, where the transition can be artificially induced. In later chapters
we will return to this transition.

1.6.2 Chapter 3

This chapter builds on the the results of the previous one and addresses
the correspondence between the common topological transition in infi-
nite system and the topological transition of the other type that mani-
fests itself in the positions of the poles of the scattering matrices. The
setup studied is a nanowire coupled to a lead through a tunnel barrier.
In the vicinity of the common transition we establish a universal depen-
dence of the pole positions on the parameter controlling the transition.
The manifestations of the pole transitions in the differential conductance
are discussed.

1.6.3 Chapter 4

This chapter shows that weak antilocalization by disorder competes with
resonant Andreev reflection from a Majorana zero-mode and produces
a zero-voltage conductance peak of order e2/h in a superconducting
nanowire. The phase conjugation needed for quantum interference to
survive a disorder average is provided by particle-hole symmetry - in
the absence of time-reversal symmetry and without requiring a topolog-
ically nontrivial phase. We identify methods to distinguish the Majorana
resonance from the weak antilocalization effect. The mechanism for the
individual system to show a peak in zero-bias conductance is the pole
transition studied in chapters 2 and 3. An example of the dependence
of the conductance of a single normal metal-superconductor contact is
shown in fig. 1.6.



1.6 This thesis 15

Figure 1.6. Example of a conductance dependence of magnetic field and bias
voltage for a narrow nanowire. It shows that the zero-bias peak is developed
in a region of magnetic fields, and the peak is not connected with the topology,
but with the pole transition from chapters 2 and 3. Averaging over the systems
gives the effect, discussed in the chapter 4, weak antilocalization.
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Figure 1.7. Sketch of the dependences of the 2π (parity non-conserving) and
4π (parity conserving) supercurrents for long and short Josephson junctions.
The picture shows doubling of the supercurrent in the case of the long junction.

1.6.4 Chapter 5

In this chapter we study the other setup, already discussed in the chapter
2, Josephson junction made with a topological nanowire. We derive and
discuss a generic phenomenological model that accounts for avoided
crossing of Andreev states. This allows for a model-independent study.
We investigate the dynamics of the junction at constant bias voltage to
reveal an unexpected pattern of any-π Josephson effect in the limit of
slow decoherence.

1.6.5 Chapter 6

This chapter investigates the Josephson current through the helical edge
state of a quantum spin-Hall insulator. The separation L between the
superconducting electrons and the coherence length ξ can have arbitrary
relation with each other. We calculate the maximum (critical) current Ic
that can flow without dissipation along a single edge, going beyond the
short-junction restriction L � ξ of earlier work, and find a dependence
on the fermion parity of the ground state when L becomes larger than
ξ. Fermion-parity conservation doubles the critical current in the low-
temperature, long-junction limit, while for a short junction Ic is the same
with or without parity constraints, see fig. 1.7. This provides a phase-
insensitive, DC signature of the 4π-periodic Josephson effect.
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1.6.6 Chapter 7

This chapter steps out of the main topic of the current thesis. Motivated
by recent interest in the Nernst effect in cuprate superconductors, we cal-
culate the magneto-thermo-electric effect for an arbitrary (anisotropic)
quasiparticle dispersion relation and elastic scattering rate. The exact
solution of the linearised Boltzmann equation is compared with the com-
monly used relaxation-time approximation. We find qualitative deficien-
cies of this approximation, to the extent that it can get the sign wrong of
the Nernst coefficient. Ziman’s improvement of the relaxation-time ap-
proximation, which becomes exact when the Fermi surface is isotropic,
also cannot capture the combined effects of anisotropy in dispersion and
scattering.



18 Chapter 1. Introduction



Bibliography

[1] K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45, 494
(1980).

[2] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

[3] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science, 314, 1757
(2006).

[4] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W.
Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007).

[5] L. Fu, C. L. Kane and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).

[6] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306(R) (2007).

[7] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z.
Hasan, Nature 452, 970 (2008).

[8] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).

[9] J. Nilsson, A. R. Akhmerov, and C. W. J. Beenakker, Phys. Rev. Lett.
101, 120403 (2008).

[10] A. P. Schnyder, S. Ryu, A. Furusaki and A. W. W. Ludwig, Phys.
Rev. B 78, 195125 (2008).

[11] C. W. J. Beenakker, Annu. Rev. Con. Mat. Phys. 4, 113 (2013).

[12] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).

[13] G. Moore and N. Read, Nucl. Phys. B 360 362 (1991).

[14] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).



20 BIBLIOGRAPHY

[15] A. Yu. Kitaev Phys. Usp. 44, 131 (2001).

[16] A. Yu. Kitaev Ann. Phys. 303, 2 (2013).

[17] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher,
Nature Physics 7, 412 (2011).

[18] T. Hyart, B. van Heck, I. C. Fulga, M. Burrello, A. R. Akhmerov, and
C. W. J. Beenakker, Phys. Rev. B 88, 035121 (2013).

[19] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma,
Rev. Mod. Phys. 80, 1083 (2008).

[20] L. Fu and C. L. Kane, Phys. Rev. B 79, 161408R (2009).

[21] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105,
077001 (2010).

[22] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002
(2010).

[23] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers,
and L. P. Kouwenhoven, Science 336, 1003 (2012).

[24] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q.
Xu, Nano Lett. 12, 6414-6419 (2012).

[25] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman,
Nature Physics 8, 887 (2012).

[26] L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nature Physics 8, 795
(2012).

[27] A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).

[28] Shuo Mi, D. I. Pikulin, M. Wimmer, and C. W. J. Beenakker, Phys.
Rev. B 87, 241405(R) (2013).

[29] K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103, 237001
(2009).

[30] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).

[31] Y. V. Nazarov and Y. M. Blanter, Quantum Transport, (Cambridge
University Press, Cambridge, 2009).



BIBLIOGRAPHY 21

[32] B. D. Josephson, Rev. Mod. Phys. 36, 216 (1964).

[33] P.-G. de Gennes, Superconductivity of Metals and Alloys, Addison-
Wesley, Reading, MA (1986).

[34] L. Fu, Phys. Rev. Lett., 106, 106802 (2011).

[35] I. C. Fulga, F. Hassler, and A. R. Akhmerov, Phys. Rev. B 85, 165409
(2012).

[36] S. Tewari and J. D. Sau, Phys. Rev. Lett. 109, 150408 (2012).



22 BIBLIOGRAPHY


